1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#include <linux/bitops.h>
12#include <linux/delay.h>
13#include <linux/interrupt.h>
14#include <linux/pci.h>
15#include <linux/module.h>
16#include <linux/seq_file.h>
17#include <linux/crc32.h>
18#include "net_driver.h"
19#include "bitfield.h"
20#include "efx.h"
21#include "nic.h"
22#include "farch_regs.h"
23#include "io.h"
24#include "workarounds.h"
25
26/* Falcon-architecture (SFC4000 and SFC9000-family) support */
27
28/**************************************************************************
29 *
30 * Configurable values
31 *
32 **************************************************************************
33 */
34
35/* This is set to 16 for a good reason.  In summary, if larger than
36 * 16, the descriptor cache holds more than a default socket
37 * buffer's worth of packets (for UDP we can only have at most one
38 * socket buffer's worth outstanding).  This combined with the fact
39 * that we only get 1 TX event per descriptor cache means the NIC
40 * goes idle.
41 */
42#define TX_DC_ENTRIES 16
43#define TX_DC_ENTRIES_ORDER 1
44
45#define RX_DC_ENTRIES 64
46#define RX_DC_ENTRIES_ORDER 3
47
48/* If EFX_MAX_INT_ERRORS internal errors occur within
49 * EFX_INT_ERROR_EXPIRE seconds, we consider the NIC broken and
50 * disable it.
51 */
52#define EFX_INT_ERROR_EXPIRE 3600
53#define EFX_MAX_INT_ERRORS 5
54
55/* Depth of RX flush request fifo */
56#define EFX_RX_FLUSH_COUNT 4
57
58/* Driver generated events */
59#define _EFX_CHANNEL_MAGIC_TEST		0x000101
60#define _EFX_CHANNEL_MAGIC_FILL		0x000102
61#define _EFX_CHANNEL_MAGIC_RX_DRAIN	0x000103
62#define _EFX_CHANNEL_MAGIC_TX_DRAIN	0x000104
63
64#define _EFX_CHANNEL_MAGIC(_code, _data)	((_code) << 8 | (_data))
65#define _EFX_CHANNEL_MAGIC_CODE(_magic)		((_magic) >> 8)
66
67#define EFX_CHANNEL_MAGIC_TEST(_channel)				\
68	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TEST, (_channel)->channel)
69#define EFX_CHANNEL_MAGIC_FILL(_rx_queue)				\
70	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_FILL,			\
71			   efx_rx_queue_index(_rx_queue))
72#define EFX_CHANNEL_MAGIC_RX_DRAIN(_rx_queue)				\
73	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_RX_DRAIN,			\
74			   efx_rx_queue_index(_rx_queue))
75#define EFX_CHANNEL_MAGIC_TX_DRAIN(_tx_queue)				\
76	_EFX_CHANNEL_MAGIC(_EFX_CHANNEL_MAGIC_TX_DRAIN,			\
77			   (_tx_queue)->queue)
78
79static void efx_farch_magic_event(struct efx_channel *channel, u32 magic);
80
81/**************************************************************************
82 *
83 * Hardware access
84 *
85 **************************************************************************/
86
87static inline void efx_write_buf_tbl(struct efx_nic *efx, efx_qword_t *value,
88				     unsigned int index)
89{
90	efx_sram_writeq(efx, efx->membase + efx->type->buf_tbl_base,
91			value, index);
92}
93
94static bool efx_masked_compare_oword(const efx_oword_t *a, const efx_oword_t *b,
95				     const efx_oword_t *mask)
96{
97	return ((a->u64[0] ^ b->u64[0]) & mask->u64[0]) ||
98		((a->u64[1] ^ b->u64[1]) & mask->u64[1]);
99}
100
101int efx_farch_test_registers(struct efx_nic *efx,
102			     const struct efx_farch_register_test *regs,
103			     size_t n_regs)
104{
105	unsigned address = 0, i, j;
106	efx_oword_t mask, imask, original, reg, buf;
107
108	for (i = 0; i < n_regs; ++i) {
109		address = regs[i].address;
110		mask = imask = regs[i].mask;
111		EFX_INVERT_OWORD(imask);
112
113		efx_reado(efx, &original, address);
114
115		/* bit sweep on and off */
116		for (j = 0; j < 128; j++) {
117			if (!EFX_EXTRACT_OWORD32(mask, j, j))
118				continue;
119
120			/* Test this testable bit can be set in isolation */
121			EFX_AND_OWORD(reg, original, mask);
122			EFX_SET_OWORD32(reg, j, j, 1);
123
124			efx_writeo(efx, &reg, address);
125			efx_reado(efx, &buf, address);
126
127			if (efx_masked_compare_oword(&reg, &buf, &mask))
128				goto fail;
129
130			/* Test this testable bit can be cleared in isolation */
131			EFX_OR_OWORD(reg, original, mask);
132			EFX_SET_OWORD32(reg, j, j, 0);
133
134			efx_writeo(efx, &reg, address);
135			efx_reado(efx, &buf, address);
136
137			if (efx_masked_compare_oword(&reg, &buf, &mask))
138				goto fail;
139		}
140
141		efx_writeo(efx, &original, address);
142	}
143
144	return 0;
145
146fail:
147	netif_err(efx, hw, efx->net_dev,
148		  "wrote "EFX_OWORD_FMT" read "EFX_OWORD_FMT
149		  " at address 0x%x mask "EFX_OWORD_FMT"\n", EFX_OWORD_VAL(reg),
150		  EFX_OWORD_VAL(buf), address, EFX_OWORD_VAL(mask));
151	return -EIO;
152}
153
154/**************************************************************************
155 *
156 * Special buffer handling
157 * Special buffers are used for event queues and the TX and RX
158 * descriptor rings.
159 *
160 *************************************************************************/
161
162/*
163 * Initialise a special buffer
164 *
165 * This will define a buffer (previously allocated via
166 * efx_alloc_special_buffer()) in the buffer table, allowing
167 * it to be used for event queues, descriptor rings etc.
168 */
169static void
170efx_init_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
171{
172	efx_qword_t buf_desc;
173	unsigned int index;
174	dma_addr_t dma_addr;
175	int i;
176
177	EFX_BUG_ON_PARANOID(!buffer->buf.addr);
178
179	/* Write buffer descriptors to NIC */
180	for (i = 0; i < buffer->entries; i++) {
181		index = buffer->index + i;
182		dma_addr = buffer->buf.dma_addr + (i * EFX_BUF_SIZE);
183		netif_dbg(efx, probe, efx->net_dev,
184			  "mapping special buffer %d at %llx\n",
185			  index, (unsigned long long)dma_addr);
186		EFX_POPULATE_QWORD_3(buf_desc,
187				     FRF_AZ_BUF_ADR_REGION, 0,
188				     FRF_AZ_BUF_ADR_FBUF, dma_addr >> 12,
189				     FRF_AZ_BUF_OWNER_ID_FBUF, 0);
190		efx_write_buf_tbl(efx, &buf_desc, index);
191	}
192}
193
194/* Unmaps a buffer and clears the buffer table entries */
195static void
196efx_fini_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
197{
198	efx_oword_t buf_tbl_upd;
199	unsigned int start = buffer->index;
200	unsigned int end = (buffer->index + buffer->entries - 1);
201
202	if (!buffer->entries)
203		return;
204
205	netif_dbg(efx, hw, efx->net_dev, "unmapping special buffers %d-%d\n",
206		  buffer->index, buffer->index + buffer->entries - 1);
207
208	EFX_POPULATE_OWORD_4(buf_tbl_upd,
209			     FRF_AZ_BUF_UPD_CMD, 0,
210			     FRF_AZ_BUF_CLR_CMD, 1,
211			     FRF_AZ_BUF_CLR_END_ID, end,
212			     FRF_AZ_BUF_CLR_START_ID, start);
213	efx_writeo(efx, &buf_tbl_upd, FR_AZ_BUF_TBL_UPD);
214}
215
216/*
217 * Allocate a new special buffer
218 *
219 * This allocates memory for a new buffer, clears it and allocates a
220 * new buffer ID range.  It does not write into the buffer table.
221 *
222 * This call will allocate 4KB buffers, since 8KB buffers can't be
223 * used for event queues and descriptor rings.
224 */
225static int efx_alloc_special_buffer(struct efx_nic *efx,
226				    struct efx_special_buffer *buffer,
227				    unsigned int len)
228{
229#ifdef CONFIG_SFC_SRIOV
230	struct siena_nic_data *nic_data = efx->nic_data;
231#endif
232	len = ALIGN(len, EFX_BUF_SIZE);
233
234	if (efx_nic_alloc_buffer(efx, &buffer->buf, len, GFP_KERNEL))
235		return -ENOMEM;
236	buffer->entries = len / EFX_BUF_SIZE;
237	BUG_ON(buffer->buf.dma_addr & (EFX_BUF_SIZE - 1));
238
239	/* Select new buffer ID */
240	buffer->index = efx->next_buffer_table;
241	efx->next_buffer_table += buffer->entries;
242#ifdef CONFIG_SFC_SRIOV
243	BUG_ON(efx_siena_sriov_enabled(efx) &&
244	       nic_data->vf_buftbl_base < efx->next_buffer_table);
245#endif
246
247	netif_dbg(efx, probe, efx->net_dev,
248		  "allocating special buffers %d-%d at %llx+%x "
249		  "(virt %p phys %llx)\n", buffer->index,
250		  buffer->index + buffer->entries - 1,
251		  (u64)buffer->buf.dma_addr, len,
252		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
253
254	return 0;
255}
256
257static void
258efx_free_special_buffer(struct efx_nic *efx, struct efx_special_buffer *buffer)
259{
260	if (!buffer->buf.addr)
261		return;
262
263	netif_dbg(efx, hw, efx->net_dev,
264		  "deallocating special buffers %d-%d at %llx+%x "
265		  "(virt %p phys %llx)\n", buffer->index,
266		  buffer->index + buffer->entries - 1,
267		  (u64)buffer->buf.dma_addr, buffer->buf.len,
268		  buffer->buf.addr, (u64)virt_to_phys(buffer->buf.addr));
269
270	efx_nic_free_buffer(efx, &buffer->buf);
271	buffer->entries = 0;
272}
273
274/**************************************************************************
275 *
276 * TX path
277 *
278 **************************************************************************/
279
280/* This writes to the TX_DESC_WPTR; write pointer for TX descriptor ring */
281static inline void efx_farch_notify_tx_desc(struct efx_tx_queue *tx_queue)
282{
283	unsigned write_ptr;
284	efx_dword_t reg;
285
286	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
287	EFX_POPULATE_DWORD_1(reg, FRF_AZ_TX_DESC_WPTR_DWORD, write_ptr);
288	efx_writed_page(tx_queue->efx, &reg,
289			FR_AZ_TX_DESC_UPD_DWORD_P0, tx_queue->queue);
290}
291
292/* Write pointer and first descriptor for TX descriptor ring */
293static inline void efx_farch_push_tx_desc(struct efx_tx_queue *tx_queue,
294					  const efx_qword_t *txd)
295{
296	unsigned write_ptr;
297	efx_oword_t reg;
298
299	BUILD_BUG_ON(FRF_AZ_TX_DESC_LBN != 0);
300	BUILD_BUG_ON(FR_AA_TX_DESC_UPD_KER != FR_BZ_TX_DESC_UPD_P0);
301
302	write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
303	EFX_POPULATE_OWORD_2(reg, FRF_AZ_TX_DESC_PUSH_CMD, true,
304			     FRF_AZ_TX_DESC_WPTR, write_ptr);
305	reg.qword[0] = *txd;
306	efx_writeo_page(tx_queue->efx, &reg,
307			FR_BZ_TX_DESC_UPD_P0, tx_queue->queue);
308}
309
310
311/* For each entry inserted into the software descriptor ring, create a
312 * descriptor in the hardware TX descriptor ring (in host memory), and
313 * write a doorbell.
314 */
315void efx_farch_tx_write(struct efx_tx_queue *tx_queue)
316{
317	struct efx_tx_buffer *buffer;
318	efx_qword_t *txd;
319	unsigned write_ptr;
320	unsigned old_write_count = tx_queue->write_count;
321
322	tx_queue->xmit_more_available = false;
323	if (unlikely(tx_queue->write_count == tx_queue->insert_count))
324		return;
325
326	do {
327		write_ptr = tx_queue->write_count & tx_queue->ptr_mask;
328		buffer = &tx_queue->buffer[write_ptr];
329		txd = efx_tx_desc(tx_queue, write_ptr);
330		++tx_queue->write_count;
331
332		EFX_BUG_ON_PARANOID(buffer->flags & EFX_TX_BUF_OPTION);
333
334		/* Create TX descriptor ring entry */
335		BUILD_BUG_ON(EFX_TX_BUF_CONT != 1);
336		EFX_POPULATE_QWORD_4(*txd,
337				     FSF_AZ_TX_KER_CONT,
338				     buffer->flags & EFX_TX_BUF_CONT,
339				     FSF_AZ_TX_KER_BYTE_COUNT, buffer->len,
340				     FSF_AZ_TX_KER_BUF_REGION, 0,
341				     FSF_AZ_TX_KER_BUF_ADDR, buffer->dma_addr);
342	} while (tx_queue->write_count != tx_queue->insert_count);
343
344	wmb(); /* Ensure descriptors are written before they are fetched */
345
346	if (efx_nic_may_push_tx_desc(tx_queue, old_write_count)) {
347		txd = efx_tx_desc(tx_queue,
348				  old_write_count & tx_queue->ptr_mask);
349		efx_farch_push_tx_desc(tx_queue, txd);
350		++tx_queue->pushes;
351	} else {
352		efx_farch_notify_tx_desc(tx_queue);
353	}
354}
355
356/* Allocate hardware resources for a TX queue */
357int efx_farch_tx_probe(struct efx_tx_queue *tx_queue)
358{
359	struct efx_nic *efx = tx_queue->efx;
360	unsigned entries;
361
362	entries = tx_queue->ptr_mask + 1;
363	return efx_alloc_special_buffer(efx, &tx_queue->txd,
364					entries * sizeof(efx_qword_t));
365}
366
367void efx_farch_tx_init(struct efx_tx_queue *tx_queue)
368{
369	struct efx_nic *efx = tx_queue->efx;
370	efx_oword_t reg;
371
372	/* Pin TX descriptor ring */
373	efx_init_special_buffer(efx, &tx_queue->txd);
374
375	/* Push TX descriptor ring to card */
376	EFX_POPULATE_OWORD_10(reg,
377			      FRF_AZ_TX_DESCQ_EN, 1,
378			      FRF_AZ_TX_ISCSI_DDIG_EN, 0,
379			      FRF_AZ_TX_ISCSI_HDIG_EN, 0,
380			      FRF_AZ_TX_DESCQ_BUF_BASE_ID, tx_queue->txd.index,
381			      FRF_AZ_TX_DESCQ_EVQ_ID,
382			      tx_queue->channel->channel,
383			      FRF_AZ_TX_DESCQ_OWNER_ID, 0,
384			      FRF_AZ_TX_DESCQ_LABEL, tx_queue->queue,
385			      FRF_AZ_TX_DESCQ_SIZE,
386			      __ffs(tx_queue->txd.entries),
387			      FRF_AZ_TX_DESCQ_TYPE, 0,
388			      FRF_BZ_TX_NON_IP_DROP_DIS, 1);
389
390	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
391		int csum = tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD;
392		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_IP_CHKSM_DIS, !csum);
393		EFX_SET_OWORD_FIELD(reg, FRF_BZ_TX_TCP_CHKSM_DIS,
394				    !csum);
395	}
396
397	efx_writeo_table(efx, &reg, efx->type->txd_ptr_tbl_base,
398			 tx_queue->queue);
399
400	if (efx_nic_rev(efx) < EFX_REV_FALCON_B0) {
401		/* Only 128 bits in this register */
402		BUILD_BUG_ON(EFX_MAX_TX_QUEUES > 128);
403
404		efx_reado(efx, &reg, FR_AA_TX_CHKSM_CFG);
405		if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
406			__clear_bit_le(tx_queue->queue, &reg);
407		else
408			__set_bit_le(tx_queue->queue, &reg);
409		efx_writeo(efx, &reg, FR_AA_TX_CHKSM_CFG);
410	}
411
412	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
413		EFX_POPULATE_OWORD_1(reg,
414				     FRF_BZ_TX_PACE,
415				     (tx_queue->queue & EFX_TXQ_TYPE_HIGHPRI) ?
416				     FFE_BZ_TX_PACE_OFF :
417				     FFE_BZ_TX_PACE_RESERVED);
418		efx_writeo_table(efx, &reg, FR_BZ_TX_PACE_TBL,
419				 tx_queue->queue);
420	}
421}
422
423static void efx_farch_flush_tx_queue(struct efx_tx_queue *tx_queue)
424{
425	struct efx_nic *efx = tx_queue->efx;
426	efx_oword_t tx_flush_descq;
427
428	WARN_ON(atomic_read(&tx_queue->flush_outstanding));
429	atomic_set(&tx_queue->flush_outstanding, 1);
430
431	EFX_POPULATE_OWORD_2(tx_flush_descq,
432			     FRF_AZ_TX_FLUSH_DESCQ_CMD, 1,
433			     FRF_AZ_TX_FLUSH_DESCQ, tx_queue->queue);
434	efx_writeo(efx, &tx_flush_descq, FR_AZ_TX_FLUSH_DESCQ);
435}
436
437void efx_farch_tx_fini(struct efx_tx_queue *tx_queue)
438{
439	struct efx_nic *efx = tx_queue->efx;
440	efx_oword_t tx_desc_ptr;
441
442	/* Remove TX descriptor ring from card */
443	EFX_ZERO_OWORD(tx_desc_ptr);
444	efx_writeo_table(efx, &tx_desc_ptr, efx->type->txd_ptr_tbl_base,
445			 tx_queue->queue);
446
447	/* Unpin TX descriptor ring */
448	efx_fini_special_buffer(efx, &tx_queue->txd);
449}
450
451/* Free buffers backing TX queue */
452void efx_farch_tx_remove(struct efx_tx_queue *tx_queue)
453{
454	efx_free_special_buffer(tx_queue->efx, &tx_queue->txd);
455}
456
457/**************************************************************************
458 *
459 * RX path
460 *
461 **************************************************************************/
462
463/* This creates an entry in the RX descriptor queue */
464static inline void
465efx_farch_build_rx_desc(struct efx_rx_queue *rx_queue, unsigned index)
466{
467	struct efx_rx_buffer *rx_buf;
468	efx_qword_t *rxd;
469
470	rxd = efx_rx_desc(rx_queue, index);
471	rx_buf = efx_rx_buffer(rx_queue, index);
472	EFX_POPULATE_QWORD_3(*rxd,
473			     FSF_AZ_RX_KER_BUF_SIZE,
474			     rx_buf->len -
475			     rx_queue->efx->type->rx_buffer_padding,
476			     FSF_AZ_RX_KER_BUF_REGION, 0,
477			     FSF_AZ_RX_KER_BUF_ADDR, rx_buf->dma_addr);
478}
479
480/* This writes to the RX_DESC_WPTR register for the specified receive
481 * descriptor ring.
482 */
483void efx_farch_rx_write(struct efx_rx_queue *rx_queue)
484{
485	struct efx_nic *efx = rx_queue->efx;
486	efx_dword_t reg;
487	unsigned write_ptr;
488
489	while (rx_queue->notified_count != rx_queue->added_count) {
490		efx_farch_build_rx_desc(
491			rx_queue,
492			rx_queue->notified_count & rx_queue->ptr_mask);
493		++rx_queue->notified_count;
494	}
495
496	wmb();
497	write_ptr = rx_queue->added_count & rx_queue->ptr_mask;
498	EFX_POPULATE_DWORD_1(reg, FRF_AZ_RX_DESC_WPTR_DWORD, write_ptr);
499	efx_writed_page(efx, &reg, FR_AZ_RX_DESC_UPD_DWORD_P0,
500			efx_rx_queue_index(rx_queue));
501}
502
503int efx_farch_rx_probe(struct efx_rx_queue *rx_queue)
504{
505	struct efx_nic *efx = rx_queue->efx;
506	unsigned entries;
507
508	entries = rx_queue->ptr_mask + 1;
509	return efx_alloc_special_buffer(efx, &rx_queue->rxd,
510					entries * sizeof(efx_qword_t));
511}
512
513void efx_farch_rx_init(struct efx_rx_queue *rx_queue)
514{
515	efx_oword_t rx_desc_ptr;
516	struct efx_nic *efx = rx_queue->efx;
517	bool is_b0 = efx_nic_rev(efx) >= EFX_REV_FALCON_B0;
518	bool iscsi_digest_en = is_b0;
519	bool jumbo_en;
520
521	/* For kernel-mode queues in Falcon A1, the JUMBO flag enables
522	 * DMA to continue after a PCIe page boundary (and scattering
523	 * is not possible).  In Falcon B0 and Siena, it enables
524	 * scatter.
525	 */
526	jumbo_en = !is_b0 || efx->rx_scatter;
527
528	netif_dbg(efx, hw, efx->net_dev,
529		  "RX queue %d ring in special buffers %d-%d\n",
530		  efx_rx_queue_index(rx_queue), rx_queue->rxd.index,
531		  rx_queue->rxd.index + rx_queue->rxd.entries - 1);
532
533	rx_queue->scatter_n = 0;
534
535	/* Pin RX descriptor ring */
536	efx_init_special_buffer(efx, &rx_queue->rxd);
537
538	/* Push RX descriptor ring to card */
539	EFX_POPULATE_OWORD_10(rx_desc_ptr,
540			      FRF_AZ_RX_ISCSI_DDIG_EN, iscsi_digest_en,
541			      FRF_AZ_RX_ISCSI_HDIG_EN, iscsi_digest_en,
542			      FRF_AZ_RX_DESCQ_BUF_BASE_ID, rx_queue->rxd.index,
543			      FRF_AZ_RX_DESCQ_EVQ_ID,
544			      efx_rx_queue_channel(rx_queue)->channel,
545			      FRF_AZ_RX_DESCQ_OWNER_ID, 0,
546			      FRF_AZ_RX_DESCQ_LABEL,
547			      efx_rx_queue_index(rx_queue),
548			      FRF_AZ_RX_DESCQ_SIZE,
549			      __ffs(rx_queue->rxd.entries),
550			      FRF_AZ_RX_DESCQ_TYPE, 0 /* kernel queue */ ,
551			      FRF_AZ_RX_DESCQ_JUMBO, jumbo_en,
552			      FRF_AZ_RX_DESCQ_EN, 1);
553	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
554			 efx_rx_queue_index(rx_queue));
555}
556
557static void efx_farch_flush_rx_queue(struct efx_rx_queue *rx_queue)
558{
559	struct efx_nic *efx = rx_queue->efx;
560	efx_oword_t rx_flush_descq;
561
562	EFX_POPULATE_OWORD_2(rx_flush_descq,
563			     FRF_AZ_RX_FLUSH_DESCQ_CMD, 1,
564			     FRF_AZ_RX_FLUSH_DESCQ,
565			     efx_rx_queue_index(rx_queue));
566	efx_writeo(efx, &rx_flush_descq, FR_AZ_RX_FLUSH_DESCQ);
567}
568
569void efx_farch_rx_fini(struct efx_rx_queue *rx_queue)
570{
571	efx_oword_t rx_desc_ptr;
572	struct efx_nic *efx = rx_queue->efx;
573
574	/* Remove RX descriptor ring from card */
575	EFX_ZERO_OWORD(rx_desc_ptr);
576	efx_writeo_table(efx, &rx_desc_ptr, efx->type->rxd_ptr_tbl_base,
577			 efx_rx_queue_index(rx_queue));
578
579	/* Unpin RX descriptor ring */
580	efx_fini_special_buffer(efx, &rx_queue->rxd);
581}
582
583/* Free buffers backing RX queue */
584void efx_farch_rx_remove(struct efx_rx_queue *rx_queue)
585{
586	efx_free_special_buffer(rx_queue->efx, &rx_queue->rxd);
587}
588
589/**************************************************************************
590 *
591 * Flush handling
592 *
593 **************************************************************************/
594
595/* efx_farch_flush_queues() must be woken up when all flushes are completed,
596 * or more RX flushes can be kicked off.
597 */
598static bool efx_farch_flush_wake(struct efx_nic *efx)
599{
600	/* Ensure that all updates are visible to efx_farch_flush_queues() */
601	smp_mb();
602
603	return (atomic_read(&efx->active_queues) == 0 ||
604		(atomic_read(&efx->rxq_flush_outstanding) < EFX_RX_FLUSH_COUNT
605		 && atomic_read(&efx->rxq_flush_pending) > 0));
606}
607
608static bool efx_check_tx_flush_complete(struct efx_nic *efx)
609{
610	bool i = true;
611	efx_oword_t txd_ptr_tbl;
612	struct efx_channel *channel;
613	struct efx_tx_queue *tx_queue;
614
615	efx_for_each_channel(channel, efx) {
616		efx_for_each_channel_tx_queue(tx_queue, channel) {
617			efx_reado_table(efx, &txd_ptr_tbl,
618					FR_BZ_TX_DESC_PTR_TBL, tx_queue->queue);
619			if (EFX_OWORD_FIELD(txd_ptr_tbl,
620					    FRF_AZ_TX_DESCQ_FLUSH) ||
621			    EFX_OWORD_FIELD(txd_ptr_tbl,
622					    FRF_AZ_TX_DESCQ_EN)) {
623				netif_dbg(efx, hw, efx->net_dev,
624					  "flush did not complete on TXQ %d\n",
625					  tx_queue->queue);
626				i = false;
627			} else if (atomic_cmpxchg(&tx_queue->flush_outstanding,
628						  1, 0)) {
629				/* The flush is complete, but we didn't
630				 * receive a flush completion event
631				 */
632				netif_dbg(efx, hw, efx->net_dev,
633					  "flush complete on TXQ %d, so drain "
634					  "the queue\n", tx_queue->queue);
635				/* Don't need to increment active_queues as it
636				 * has already been incremented for the queues
637				 * which did not drain
638				 */
639				efx_farch_magic_event(channel,
640						      EFX_CHANNEL_MAGIC_TX_DRAIN(
641							      tx_queue));
642			}
643		}
644	}
645
646	return i;
647}
648
649/* Flush all the transmit queues, and continue flushing receive queues until
650 * they're all flushed. Wait for the DRAIN events to be received so that there
651 * are no more RX and TX events left on any channel. */
652static int efx_farch_do_flush(struct efx_nic *efx)
653{
654	unsigned timeout = msecs_to_jiffies(5000); /* 5s for all flushes and drains */
655	struct efx_channel *channel;
656	struct efx_rx_queue *rx_queue;
657	struct efx_tx_queue *tx_queue;
658	int rc = 0;
659
660	efx_for_each_channel(channel, efx) {
661		efx_for_each_channel_tx_queue(tx_queue, channel) {
662			efx_farch_flush_tx_queue(tx_queue);
663		}
664		efx_for_each_channel_rx_queue(rx_queue, channel) {
665			rx_queue->flush_pending = true;
666			atomic_inc(&efx->rxq_flush_pending);
667		}
668	}
669
670	while (timeout && atomic_read(&efx->active_queues) > 0) {
671		/* If SRIOV is enabled, then offload receive queue flushing to
672		 * the firmware (though we will still have to poll for
673		 * completion). If that fails, fall back to the old scheme.
674		 */
675		if (efx_siena_sriov_enabled(efx)) {
676			rc = efx_mcdi_flush_rxqs(efx);
677			if (!rc)
678				goto wait;
679		}
680
681		/* The hardware supports four concurrent rx flushes, each of
682		 * which may need to be retried if there is an outstanding
683		 * descriptor fetch
684		 */
685		efx_for_each_channel(channel, efx) {
686			efx_for_each_channel_rx_queue(rx_queue, channel) {
687				if (atomic_read(&efx->rxq_flush_outstanding) >=
688				    EFX_RX_FLUSH_COUNT)
689					break;
690
691				if (rx_queue->flush_pending) {
692					rx_queue->flush_pending = false;
693					atomic_dec(&efx->rxq_flush_pending);
694					atomic_inc(&efx->rxq_flush_outstanding);
695					efx_farch_flush_rx_queue(rx_queue);
696				}
697			}
698		}
699
700	wait:
701		timeout = wait_event_timeout(efx->flush_wq,
702					     efx_farch_flush_wake(efx),
703					     timeout);
704	}
705
706	if (atomic_read(&efx->active_queues) &&
707	    !efx_check_tx_flush_complete(efx)) {
708		netif_err(efx, hw, efx->net_dev, "failed to flush %d queues "
709			  "(rx %d+%d)\n", atomic_read(&efx->active_queues),
710			  atomic_read(&efx->rxq_flush_outstanding),
711			  atomic_read(&efx->rxq_flush_pending));
712		rc = -ETIMEDOUT;
713
714		atomic_set(&efx->active_queues, 0);
715		atomic_set(&efx->rxq_flush_pending, 0);
716		atomic_set(&efx->rxq_flush_outstanding, 0);
717	}
718
719	return rc;
720}
721
722int efx_farch_fini_dmaq(struct efx_nic *efx)
723{
724	struct efx_channel *channel;
725	struct efx_tx_queue *tx_queue;
726	struct efx_rx_queue *rx_queue;
727	int rc = 0;
728
729	/* Do not attempt to write to the NIC during EEH recovery */
730	if (efx->state != STATE_RECOVERY) {
731		/* Only perform flush if DMA is enabled */
732		if (efx->pci_dev->is_busmaster) {
733			efx->type->prepare_flush(efx);
734			rc = efx_farch_do_flush(efx);
735			efx->type->finish_flush(efx);
736		}
737
738		efx_for_each_channel(channel, efx) {
739			efx_for_each_channel_rx_queue(rx_queue, channel)
740				efx_farch_rx_fini(rx_queue);
741			efx_for_each_channel_tx_queue(tx_queue, channel)
742				efx_farch_tx_fini(tx_queue);
743		}
744	}
745
746	return rc;
747}
748
749/* Reset queue and flush accounting after FLR
750 *
751 * One possible cause of FLR recovery is that DMA may be failing (eg. if bus
752 * mastering was disabled), in which case we don't receive (RXQ) flush
753 * completion events.  This means that efx->rxq_flush_outstanding remained at 4
754 * after the FLR; also, efx->active_queues was non-zero (as no flush completion
755 * events were received, and we didn't go through efx_check_tx_flush_complete())
756 * If we don't fix this up, on the next call to efx_realloc_channels() we won't
757 * flush any RX queues because efx->rxq_flush_outstanding is at the limit of 4
758 * for batched flush requests; and the efx->active_queues gets messed up because
759 * we keep incrementing for the newly initialised queues, but it never went to
760 * zero previously.  Then we get a timeout every time we try to restart the
761 * queues, as it doesn't go back to zero when we should be flushing the queues.
762 */
763void efx_farch_finish_flr(struct efx_nic *efx)
764{
765	atomic_set(&efx->rxq_flush_pending, 0);
766	atomic_set(&efx->rxq_flush_outstanding, 0);
767	atomic_set(&efx->active_queues, 0);
768}
769
770
771/**************************************************************************
772 *
773 * Event queue processing
774 * Event queues are processed by per-channel tasklets.
775 *
776 **************************************************************************/
777
778/* Update a channel's event queue's read pointer (RPTR) register
779 *
780 * This writes the EVQ_RPTR_REG register for the specified channel's
781 * event queue.
782 */
783void efx_farch_ev_read_ack(struct efx_channel *channel)
784{
785	efx_dword_t reg;
786	struct efx_nic *efx = channel->efx;
787
788	EFX_POPULATE_DWORD_1(reg, FRF_AZ_EVQ_RPTR,
789			     channel->eventq_read_ptr & channel->eventq_mask);
790
791	/* For Falcon A1, EVQ_RPTR_KER is documented as having a step size
792	 * of 4 bytes, but it is really 16 bytes just like later revisions.
793	 */
794	efx_writed(efx, &reg,
795		   efx->type->evq_rptr_tbl_base +
796		   FR_BZ_EVQ_RPTR_STEP * channel->channel);
797}
798
799/* Use HW to insert a SW defined event */
800void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
801			      efx_qword_t *event)
802{
803	efx_oword_t drv_ev_reg;
804
805	BUILD_BUG_ON(FRF_AZ_DRV_EV_DATA_LBN != 0 ||
806		     FRF_AZ_DRV_EV_DATA_WIDTH != 64);
807	drv_ev_reg.u32[0] = event->u32[0];
808	drv_ev_reg.u32[1] = event->u32[1];
809	drv_ev_reg.u32[2] = 0;
810	drv_ev_reg.u32[3] = 0;
811	EFX_SET_OWORD_FIELD(drv_ev_reg, FRF_AZ_DRV_EV_QID, evq);
812	efx_writeo(efx, &drv_ev_reg, FR_AZ_DRV_EV);
813}
814
815static void efx_farch_magic_event(struct efx_channel *channel, u32 magic)
816{
817	efx_qword_t event;
818
819	EFX_POPULATE_QWORD_2(event, FSF_AZ_EV_CODE,
820			     FSE_AZ_EV_CODE_DRV_GEN_EV,
821			     FSF_AZ_DRV_GEN_EV_MAGIC, magic);
822	efx_farch_generate_event(channel->efx, channel->channel, &event);
823}
824
825/* Handle a transmit completion event
826 *
827 * The NIC batches TX completion events; the message we receive is of
828 * the form "complete all TX events up to this index".
829 */
830static int
831efx_farch_handle_tx_event(struct efx_channel *channel, efx_qword_t *event)
832{
833	unsigned int tx_ev_desc_ptr;
834	unsigned int tx_ev_q_label;
835	struct efx_tx_queue *tx_queue;
836	struct efx_nic *efx = channel->efx;
837	int tx_packets = 0;
838
839	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
840		return 0;
841
842	if (likely(EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_COMP))) {
843		/* Transmit completion */
844		tx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_DESC_PTR);
845		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
846		tx_queue = efx_channel_get_tx_queue(
847			channel, tx_ev_q_label % EFX_TXQ_TYPES);
848		tx_packets = ((tx_ev_desc_ptr - tx_queue->read_count) &
849			      tx_queue->ptr_mask);
850		efx_xmit_done(tx_queue, tx_ev_desc_ptr);
851	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_WQ_FF_FULL)) {
852		/* Rewrite the FIFO write pointer */
853		tx_ev_q_label = EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_Q_LABEL);
854		tx_queue = efx_channel_get_tx_queue(
855			channel, tx_ev_q_label % EFX_TXQ_TYPES);
856
857		netif_tx_lock(efx->net_dev);
858		efx_farch_notify_tx_desc(tx_queue);
859		netif_tx_unlock(efx->net_dev);
860	} else if (EFX_QWORD_FIELD(*event, FSF_AZ_TX_EV_PKT_ERR)) {
861		efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
862	} else {
863		netif_err(efx, tx_err, efx->net_dev,
864			  "channel %d unexpected TX event "
865			  EFX_QWORD_FMT"\n", channel->channel,
866			  EFX_QWORD_VAL(*event));
867	}
868
869	return tx_packets;
870}
871
872/* Detect errors included in the rx_evt_pkt_ok bit. */
873static u16 efx_farch_handle_rx_not_ok(struct efx_rx_queue *rx_queue,
874				      const efx_qword_t *event)
875{
876	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
877	struct efx_nic *efx = rx_queue->efx;
878	bool rx_ev_buf_owner_id_err, rx_ev_ip_hdr_chksum_err;
879	bool rx_ev_tcp_udp_chksum_err, rx_ev_eth_crc_err;
880	bool rx_ev_frm_trunc, rx_ev_drib_nib, rx_ev_tobe_disc;
881	bool rx_ev_other_err, rx_ev_pause_frm;
882	bool rx_ev_hdr_type, rx_ev_mcast_pkt;
883	unsigned rx_ev_pkt_type;
884
885	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
886	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
887	rx_ev_tobe_disc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_TOBE_DISC);
888	rx_ev_pkt_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_TYPE);
889	rx_ev_buf_owner_id_err = EFX_QWORD_FIELD(*event,
890						 FSF_AZ_RX_EV_BUF_OWNER_ID_ERR);
891	rx_ev_ip_hdr_chksum_err = EFX_QWORD_FIELD(*event,
892						  FSF_AZ_RX_EV_IP_HDR_CHKSUM_ERR);
893	rx_ev_tcp_udp_chksum_err = EFX_QWORD_FIELD(*event,
894						   FSF_AZ_RX_EV_TCP_UDP_CHKSUM_ERR);
895	rx_ev_eth_crc_err = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_ETH_CRC_ERR);
896	rx_ev_frm_trunc = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_FRM_TRUNC);
897	rx_ev_drib_nib = ((efx_nic_rev(efx) >= EFX_REV_FALCON_B0) ?
898			  0 : EFX_QWORD_FIELD(*event, FSF_AA_RX_EV_DRIB_NIB));
899	rx_ev_pause_frm = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PAUSE_FRM_ERR);
900
901	/* Every error apart from tobe_disc and pause_frm */
902	rx_ev_other_err = (rx_ev_drib_nib | rx_ev_tcp_udp_chksum_err |
903			   rx_ev_buf_owner_id_err | rx_ev_eth_crc_err |
904			   rx_ev_frm_trunc | rx_ev_ip_hdr_chksum_err);
905
906	/* Count errors that are not in MAC stats.  Ignore expected
907	 * checksum errors during self-test. */
908	if (rx_ev_frm_trunc)
909		++channel->n_rx_frm_trunc;
910	else if (rx_ev_tobe_disc)
911		++channel->n_rx_tobe_disc;
912	else if (!efx->loopback_selftest) {
913		if (rx_ev_ip_hdr_chksum_err)
914			++channel->n_rx_ip_hdr_chksum_err;
915		else if (rx_ev_tcp_udp_chksum_err)
916			++channel->n_rx_tcp_udp_chksum_err;
917	}
918
919	/* TOBE_DISC is expected on unicast mismatches; don't print out an
920	 * error message.  FRM_TRUNC indicates RXDP dropped the packet due
921	 * to a FIFO overflow.
922	 */
923#ifdef DEBUG
924	if (rx_ev_other_err && net_ratelimit()) {
925		netif_dbg(efx, rx_err, efx->net_dev,
926			  " RX queue %d unexpected RX event "
927			  EFX_QWORD_FMT "%s%s%s%s%s%s%s%s\n",
928			  efx_rx_queue_index(rx_queue), EFX_QWORD_VAL(*event),
929			  rx_ev_buf_owner_id_err ? " [OWNER_ID_ERR]" : "",
930			  rx_ev_ip_hdr_chksum_err ?
931			  " [IP_HDR_CHKSUM_ERR]" : "",
932			  rx_ev_tcp_udp_chksum_err ?
933			  " [TCP_UDP_CHKSUM_ERR]" : "",
934			  rx_ev_eth_crc_err ? " [ETH_CRC_ERR]" : "",
935			  rx_ev_frm_trunc ? " [FRM_TRUNC]" : "",
936			  rx_ev_drib_nib ? " [DRIB_NIB]" : "",
937			  rx_ev_tobe_disc ? " [TOBE_DISC]" : "",
938			  rx_ev_pause_frm ? " [PAUSE]" : "");
939	}
940#endif
941
942	/* The frame must be discarded if any of these are true. */
943	return (rx_ev_eth_crc_err | rx_ev_frm_trunc | rx_ev_drib_nib |
944		rx_ev_tobe_disc | rx_ev_pause_frm) ?
945		EFX_RX_PKT_DISCARD : 0;
946}
947
948/* Handle receive events that are not in-order. Return true if this
949 * can be handled as a partial packet discard, false if it's more
950 * serious.
951 */
952static bool
953efx_farch_handle_rx_bad_index(struct efx_rx_queue *rx_queue, unsigned index)
954{
955	struct efx_channel *channel = efx_rx_queue_channel(rx_queue);
956	struct efx_nic *efx = rx_queue->efx;
957	unsigned expected, dropped;
958
959	if (rx_queue->scatter_n &&
960	    index == ((rx_queue->removed_count + rx_queue->scatter_n - 1) &
961		      rx_queue->ptr_mask)) {
962		++channel->n_rx_nodesc_trunc;
963		return true;
964	}
965
966	expected = rx_queue->removed_count & rx_queue->ptr_mask;
967	dropped = (index - expected) & rx_queue->ptr_mask;
968	netif_info(efx, rx_err, efx->net_dev,
969		   "dropped %d events (index=%d expected=%d)\n",
970		   dropped, index, expected);
971
972	efx_schedule_reset(efx, EFX_WORKAROUND_5676(efx) ?
973			   RESET_TYPE_RX_RECOVERY : RESET_TYPE_DISABLE);
974	return false;
975}
976
977/* Handle a packet received event
978 *
979 * The NIC gives a "discard" flag if it's a unicast packet with the
980 * wrong destination address
981 * Also "is multicast" and "matches multicast filter" flags can be used to
982 * discard non-matching multicast packets.
983 */
984static void
985efx_farch_handle_rx_event(struct efx_channel *channel, const efx_qword_t *event)
986{
987	unsigned int rx_ev_desc_ptr, rx_ev_byte_cnt;
988	unsigned int rx_ev_hdr_type, rx_ev_mcast_pkt;
989	unsigned expected_ptr;
990	bool rx_ev_pkt_ok, rx_ev_sop, rx_ev_cont;
991	u16 flags;
992	struct efx_rx_queue *rx_queue;
993	struct efx_nic *efx = channel->efx;
994
995	if (unlikely(ACCESS_ONCE(efx->reset_pending)))
996		return;
997
998	rx_ev_cont = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_JUMBO_CONT);
999	rx_ev_sop = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_SOP);
1000	WARN_ON(EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_Q_LABEL) !=
1001		channel->channel);
1002
1003	rx_queue = efx_channel_get_rx_queue(channel);
1004
1005	rx_ev_desc_ptr = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_DESC_PTR);
1006	expected_ptr = ((rx_queue->removed_count + rx_queue->scatter_n) &
1007			rx_queue->ptr_mask);
1008
1009	/* Check for partial drops and other errors */
1010	if (unlikely(rx_ev_desc_ptr != expected_ptr) ||
1011	    unlikely(rx_ev_sop != (rx_queue->scatter_n == 0))) {
1012		if (rx_ev_desc_ptr != expected_ptr &&
1013		    !efx_farch_handle_rx_bad_index(rx_queue, rx_ev_desc_ptr))
1014			return;
1015
1016		/* Discard all pending fragments */
1017		if (rx_queue->scatter_n) {
1018			efx_rx_packet(
1019				rx_queue,
1020				rx_queue->removed_count & rx_queue->ptr_mask,
1021				rx_queue->scatter_n, 0, EFX_RX_PKT_DISCARD);
1022			rx_queue->removed_count += rx_queue->scatter_n;
1023			rx_queue->scatter_n = 0;
1024		}
1025
1026		/* Return if there is no new fragment */
1027		if (rx_ev_desc_ptr != expected_ptr)
1028			return;
1029
1030		/* Discard new fragment if not SOP */
1031		if (!rx_ev_sop) {
1032			efx_rx_packet(
1033				rx_queue,
1034				rx_queue->removed_count & rx_queue->ptr_mask,
1035				1, 0, EFX_RX_PKT_DISCARD);
1036			++rx_queue->removed_count;
1037			return;
1038		}
1039	}
1040
1041	++rx_queue->scatter_n;
1042	if (rx_ev_cont)
1043		return;
1044
1045	rx_ev_byte_cnt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_BYTE_CNT);
1046	rx_ev_pkt_ok = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_PKT_OK);
1047	rx_ev_hdr_type = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_HDR_TYPE);
1048
1049	if (likely(rx_ev_pkt_ok)) {
1050		/* If packet is marked as OK then we can rely on the
1051		 * hardware checksum and classification.
1052		 */
1053		flags = 0;
1054		switch (rx_ev_hdr_type) {
1055		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_TCP:
1056			flags |= EFX_RX_PKT_TCP;
1057			/* fall through */
1058		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_UDP:
1059			flags |= EFX_RX_PKT_CSUMMED;
1060			/* fall through */
1061		case FSE_CZ_RX_EV_HDR_TYPE_IPV4V6_OTHER:
1062		case FSE_AZ_RX_EV_HDR_TYPE_OTHER:
1063			break;
1064		}
1065	} else {
1066		flags = efx_farch_handle_rx_not_ok(rx_queue, event);
1067	}
1068
1069	/* Detect multicast packets that didn't match the filter */
1070	rx_ev_mcast_pkt = EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_PKT);
1071	if (rx_ev_mcast_pkt) {
1072		unsigned int rx_ev_mcast_hash_match =
1073			EFX_QWORD_FIELD(*event, FSF_AZ_RX_EV_MCAST_HASH_MATCH);
1074
1075		if (unlikely(!rx_ev_mcast_hash_match)) {
1076			++channel->n_rx_mcast_mismatch;
1077			flags |= EFX_RX_PKT_DISCARD;
1078		}
1079	}
1080
1081	channel->irq_mod_score += 2;
1082
1083	/* Handle received packet */
1084	efx_rx_packet(rx_queue,
1085		      rx_queue->removed_count & rx_queue->ptr_mask,
1086		      rx_queue->scatter_n, rx_ev_byte_cnt, flags);
1087	rx_queue->removed_count += rx_queue->scatter_n;
1088	rx_queue->scatter_n = 0;
1089}
1090
1091/* If this flush done event corresponds to a &struct efx_tx_queue, then
1092 * send an %EFX_CHANNEL_MAGIC_TX_DRAIN event to drain the event queue
1093 * of all transmit completions.
1094 */
1095static void
1096efx_farch_handle_tx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1097{
1098	struct efx_tx_queue *tx_queue;
1099	int qid;
1100
1101	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1102	if (qid < EFX_TXQ_TYPES * efx->n_tx_channels) {
1103		tx_queue = efx_get_tx_queue(efx, qid / EFX_TXQ_TYPES,
1104					    qid % EFX_TXQ_TYPES);
1105		if (atomic_cmpxchg(&tx_queue->flush_outstanding, 1, 0)) {
1106			efx_farch_magic_event(tx_queue->channel,
1107					      EFX_CHANNEL_MAGIC_TX_DRAIN(tx_queue));
1108		}
1109	}
1110}
1111
1112/* If this flush done event corresponds to a &struct efx_rx_queue: If the flush
1113 * was successful then send an %EFX_CHANNEL_MAGIC_RX_DRAIN, otherwise add
1114 * the RX queue back to the mask of RX queues in need of flushing.
1115 */
1116static void
1117efx_farch_handle_rx_flush_done(struct efx_nic *efx, efx_qword_t *event)
1118{
1119	struct efx_channel *channel;
1120	struct efx_rx_queue *rx_queue;
1121	int qid;
1122	bool failed;
1123
1124	qid = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_DESCQ_ID);
1125	failed = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_RX_FLUSH_FAIL);
1126	if (qid >= efx->n_channels)
1127		return;
1128	channel = efx_get_channel(efx, qid);
1129	if (!efx_channel_has_rx_queue(channel))
1130		return;
1131	rx_queue = efx_channel_get_rx_queue(channel);
1132
1133	if (failed) {
1134		netif_info(efx, hw, efx->net_dev,
1135			   "RXQ %d flush retry\n", qid);
1136		rx_queue->flush_pending = true;
1137		atomic_inc(&efx->rxq_flush_pending);
1138	} else {
1139		efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1140				      EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue));
1141	}
1142	atomic_dec(&efx->rxq_flush_outstanding);
1143	if (efx_farch_flush_wake(efx))
1144		wake_up(&efx->flush_wq);
1145}
1146
1147static void
1148efx_farch_handle_drain_event(struct efx_channel *channel)
1149{
1150	struct efx_nic *efx = channel->efx;
1151
1152	WARN_ON(atomic_read(&efx->active_queues) == 0);
1153	atomic_dec(&efx->active_queues);
1154	if (efx_farch_flush_wake(efx))
1155		wake_up(&efx->flush_wq);
1156}
1157
1158static void efx_farch_handle_generated_event(struct efx_channel *channel,
1159					     efx_qword_t *event)
1160{
1161	struct efx_nic *efx = channel->efx;
1162	struct efx_rx_queue *rx_queue =
1163		efx_channel_has_rx_queue(channel) ?
1164		efx_channel_get_rx_queue(channel) : NULL;
1165	unsigned magic, code;
1166
1167	magic = EFX_QWORD_FIELD(*event, FSF_AZ_DRV_GEN_EV_MAGIC);
1168	code = _EFX_CHANNEL_MAGIC_CODE(magic);
1169
1170	if (magic == EFX_CHANNEL_MAGIC_TEST(channel)) {
1171		channel->event_test_cpu = raw_smp_processor_id();
1172	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_FILL(rx_queue)) {
1173		/* The queue must be empty, so we won't receive any rx
1174		 * events, so efx_process_channel() won't refill the
1175		 * queue. Refill it here */
1176		efx_fast_push_rx_descriptors(rx_queue, true);
1177	} else if (rx_queue && magic == EFX_CHANNEL_MAGIC_RX_DRAIN(rx_queue)) {
1178		efx_farch_handle_drain_event(channel);
1179	} else if (code == _EFX_CHANNEL_MAGIC_TX_DRAIN) {
1180		efx_farch_handle_drain_event(channel);
1181	} else {
1182		netif_dbg(efx, hw, efx->net_dev, "channel %d received "
1183			  "generated event "EFX_QWORD_FMT"\n",
1184			  channel->channel, EFX_QWORD_VAL(*event));
1185	}
1186}
1187
1188static void
1189efx_farch_handle_driver_event(struct efx_channel *channel, efx_qword_t *event)
1190{
1191	struct efx_nic *efx = channel->efx;
1192	unsigned int ev_sub_code;
1193	unsigned int ev_sub_data;
1194
1195	ev_sub_code = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBCODE);
1196	ev_sub_data = EFX_QWORD_FIELD(*event, FSF_AZ_DRIVER_EV_SUBDATA);
1197
1198	switch (ev_sub_code) {
1199	case FSE_AZ_TX_DESCQ_FLS_DONE_EV:
1200		netif_vdbg(efx, hw, efx->net_dev, "channel %d TXQ %d flushed\n",
1201			   channel->channel, ev_sub_data);
1202		efx_farch_handle_tx_flush_done(efx, event);
1203		efx_siena_sriov_tx_flush_done(efx, event);
1204		break;
1205	case FSE_AZ_RX_DESCQ_FLS_DONE_EV:
1206		netif_vdbg(efx, hw, efx->net_dev, "channel %d RXQ %d flushed\n",
1207			   channel->channel, ev_sub_data);
1208		efx_farch_handle_rx_flush_done(efx, event);
1209		efx_siena_sriov_rx_flush_done(efx, event);
1210		break;
1211	case FSE_AZ_EVQ_INIT_DONE_EV:
1212		netif_dbg(efx, hw, efx->net_dev,
1213			  "channel %d EVQ %d initialised\n",
1214			  channel->channel, ev_sub_data);
1215		break;
1216	case FSE_AZ_SRM_UPD_DONE_EV:
1217		netif_vdbg(efx, hw, efx->net_dev,
1218			   "channel %d SRAM update done\n", channel->channel);
1219		break;
1220	case FSE_AZ_WAKE_UP_EV:
1221		netif_vdbg(efx, hw, efx->net_dev,
1222			   "channel %d RXQ %d wakeup event\n",
1223			   channel->channel, ev_sub_data);
1224		break;
1225	case FSE_AZ_TIMER_EV:
1226		netif_vdbg(efx, hw, efx->net_dev,
1227			   "channel %d RX queue %d timer expired\n",
1228			   channel->channel, ev_sub_data);
1229		break;
1230	case FSE_AA_RX_RECOVER_EV:
1231		netif_err(efx, rx_err, efx->net_dev,
1232			  "channel %d seen DRIVER RX_RESET event. "
1233			"Resetting.\n", channel->channel);
1234		atomic_inc(&efx->rx_reset);
1235		efx_schedule_reset(efx,
1236				   EFX_WORKAROUND_6555(efx) ?
1237				   RESET_TYPE_RX_RECOVERY :
1238				   RESET_TYPE_DISABLE);
1239		break;
1240	case FSE_BZ_RX_DSC_ERROR_EV:
1241		if (ev_sub_data < EFX_VI_BASE) {
1242			netif_err(efx, rx_err, efx->net_dev,
1243				  "RX DMA Q %d reports descriptor fetch error."
1244				  " RX Q %d is disabled.\n", ev_sub_data,
1245				  ev_sub_data);
1246			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1247		} else
1248			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1249		break;
1250	case FSE_BZ_TX_DSC_ERROR_EV:
1251		if (ev_sub_data < EFX_VI_BASE) {
1252			netif_err(efx, tx_err, efx->net_dev,
1253				  "TX DMA Q %d reports descriptor fetch error."
1254				  " TX Q %d is disabled.\n", ev_sub_data,
1255				  ev_sub_data);
1256			efx_schedule_reset(efx, RESET_TYPE_DMA_ERROR);
1257		} else
1258			efx_siena_sriov_desc_fetch_err(efx, ev_sub_data);
1259		break;
1260	default:
1261		netif_vdbg(efx, hw, efx->net_dev,
1262			   "channel %d unknown driver event code %d "
1263			   "data %04x\n", channel->channel, ev_sub_code,
1264			   ev_sub_data);
1265		break;
1266	}
1267}
1268
1269int efx_farch_ev_process(struct efx_channel *channel, int budget)
1270{
1271	struct efx_nic *efx = channel->efx;
1272	unsigned int read_ptr;
1273	efx_qword_t event, *p_event;
1274	int ev_code;
1275	int tx_packets = 0;
1276	int spent = 0;
1277
1278	if (budget <= 0)
1279		return spent;
1280
1281	read_ptr = channel->eventq_read_ptr;
1282
1283	for (;;) {
1284		p_event = efx_event(channel, read_ptr);
1285		event = *p_event;
1286
1287		if (!efx_event_present(&event))
1288			/* End of events */
1289			break;
1290
1291		netif_vdbg(channel->efx, intr, channel->efx->net_dev,
1292			   "channel %d event is "EFX_QWORD_FMT"\n",
1293			   channel->channel, EFX_QWORD_VAL(event));
1294
1295		/* Clear this event by marking it all ones */
1296		EFX_SET_QWORD(*p_event);
1297
1298		++read_ptr;
1299
1300		ev_code = EFX_QWORD_FIELD(event, FSF_AZ_EV_CODE);
1301
1302		switch (ev_code) {
1303		case FSE_AZ_EV_CODE_RX_EV:
1304			efx_farch_handle_rx_event(channel, &event);
1305			if (++spent == budget)
1306				goto out;
1307			break;
1308		case FSE_AZ_EV_CODE_TX_EV:
1309			tx_packets += efx_farch_handle_tx_event(channel,
1310								&event);
1311			if (tx_packets > efx->txq_entries) {
1312				spent = budget;
1313				goto out;
1314			}
1315			break;
1316		case FSE_AZ_EV_CODE_DRV_GEN_EV:
1317			efx_farch_handle_generated_event(channel, &event);
1318			break;
1319		case FSE_AZ_EV_CODE_DRIVER_EV:
1320			efx_farch_handle_driver_event(channel, &event);
1321			break;
1322		case FSE_CZ_EV_CODE_USER_EV:
1323			efx_siena_sriov_event(channel, &event);
1324			break;
1325		case FSE_CZ_EV_CODE_MCDI_EV:
1326			efx_mcdi_process_event(channel, &event);
1327			break;
1328		case FSE_AZ_EV_CODE_GLOBAL_EV:
1329			if (efx->type->handle_global_event &&
1330			    efx->type->handle_global_event(channel, &event))
1331				break;
1332			/* else fall through */
1333		default:
1334			netif_err(channel->efx, hw, channel->efx->net_dev,
1335				  "channel %d unknown event type %d (data "
1336				  EFX_QWORD_FMT ")\n", channel->channel,
1337				  ev_code, EFX_QWORD_VAL(event));
1338		}
1339	}
1340
1341out:
1342	channel->eventq_read_ptr = read_ptr;
1343	return spent;
1344}
1345
1346/* Allocate buffer table entries for event queue */
1347int efx_farch_ev_probe(struct efx_channel *channel)
1348{
1349	struct efx_nic *efx = channel->efx;
1350	unsigned entries;
1351
1352	entries = channel->eventq_mask + 1;
1353	return efx_alloc_special_buffer(efx, &channel->eventq,
1354					entries * sizeof(efx_qword_t));
1355}
1356
1357int efx_farch_ev_init(struct efx_channel *channel)
1358{
1359	efx_oword_t reg;
1360	struct efx_nic *efx = channel->efx;
1361
1362	netif_dbg(efx, hw, efx->net_dev,
1363		  "channel %d event queue in special buffers %d-%d\n",
1364		  channel->channel, channel->eventq.index,
1365		  channel->eventq.index + channel->eventq.entries - 1);
1366
1367	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
1368		EFX_POPULATE_OWORD_3(reg,
1369				     FRF_CZ_TIMER_Q_EN, 1,
1370				     FRF_CZ_HOST_NOTIFY_MODE, 0,
1371				     FRF_CZ_TIMER_MODE, FFE_CZ_TIMER_MODE_DIS);
1372		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1373	}
1374
1375	/* Pin event queue buffer */
1376	efx_init_special_buffer(efx, &channel->eventq);
1377
1378	/* Fill event queue with all ones (i.e. empty events) */
1379	memset(channel->eventq.buf.addr, 0xff, channel->eventq.buf.len);
1380
1381	/* Push event queue to card */
1382	EFX_POPULATE_OWORD_3(reg,
1383			     FRF_AZ_EVQ_EN, 1,
1384			     FRF_AZ_EVQ_SIZE, __ffs(channel->eventq.entries),
1385			     FRF_AZ_EVQ_BUF_BASE_ID, channel->eventq.index);
1386	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1387			 channel->channel);
1388
1389	return 0;
1390}
1391
1392void efx_farch_ev_fini(struct efx_channel *channel)
1393{
1394	efx_oword_t reg;
1395	struct efx_nic *efx = channel->efx;
1396
1397	/* Remove event queue from card */
1398	EFX_ZERO_OWORD(reg);
1399	efx_writeo_table(efx, &reg, efx->type->evq_ptr_tbl_base,
1400			 channel->channel);
1401	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1402		efx_writeo_table(efx, &reg, FR_BZ_TIMER_TBL, channel->channel);
1403
1404	/* Unpin event queue */
1405	efx_fini_special_buffer(efx, &channel->eventq);
1406}
1407
1408/* Free buffers backing event queue */
1409void efx_farch_ev_remove(struct efx_channel *channel)
1410{
1411	efx_free_special_buffer(channel->efx, &channel->eventq);
1412}
1413
1414
1415void efx_farch_ev_test_generate(struct efx_channel *channel)
1416{
1417	efx_farch_magic_event(channel, EFX_CHANNEL_MAGIC_TEST(channel));
1418}
1419
1420void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue)
1421{
1422	efx_farch_magic_event(efx_rx_queue_channel(rx_queue),
1423			      EFX_CHANNEL_MAGIC_FILL(rx_queue));
1424}
1425
1426/**************************************************************************
1427 *
1428 * Hardware interrupts
1429 * The hardware interrupt handler does very little work; all the event
1430 * queue processing is carried out by per-channel tasklets.
1431 *
1432 **************************************************************************/
1433
1434/* Enable/disable/generate interrupts */
1435static inline void efx_farch_interrupts(struct efx_nic *efx,
1436				      bool enabled, bool force)
1437{
1438	efx_oword_t int_en_reg_ker;
1439
1440	EFX_POPULATE_OWORD_3(int_en_reg_ker,
1441			     FRF_AZ_KER_INT_LEVE_SEL, efx->irq_level,
1442			     FRF_AZ_KER_INT_KER, force,
1443			     FRF_AZ_DRV_INT_EN_KER, enabled);
1444	efx_writeo(efx, &int_en_reg_ker, FR_AZ_INT_EN_KER);
1445}
1446
1447void efx_farch_irq_enable_master(struct efx_nic *efx)
1448{
1449	EFX_ZERO_OWORD(*((efx_oword_t *) efx->irq_status.addr));
1450	wmb(); /* Ensure interrupt vector is clear before interrupts enabled */
1451
1452	efx_farch_interrupts(efx, true, false);
1453}
1454
1455void efx_farch_irq_disable_master(struct efx_nic *efx)
1456{
1457	/* Disable interrupts */
1458	efx_farch_interrupts(efx, false, false);
1459}
1460
1461/* Generate a test interrupt
1462 * Interrupt must already have been enabled, otherwise nasty things
1463 * may happen.
1464 */
1465void efx_farch_irq_test_generate(struct efx_nic *efx)
1466{
1467	efx_farch_interrupts(efx, true, true);
1468}
1469
1470/* Process a fatal interrupt
1471 * Disable bus mastering ASAP and schedule a reset
1472 */
1473irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx)
1474{
1475	struct falcon_nic_data *nic_data = efx->nic_data;
1476	efx_oword_t *int_ker = efx->irq_status.addr;
1477	efx_oword_t fatal_intr;
1478	int error, mem_perr;
1479
1480	efx_reado(efx, &fatal_intr, FR_AZ_FATAL_INTR_KER);
1481	error = EFX_OWORD_FIELD(fatal_intr, FRF_AZ_FATAL_INTR);
1482
1483	netif_err(efx, hw, efx->net_dev, "SYSTEM ERROR "EFX_OWORD_FMT" status "
1484		  EFX_OWORD_FMT ": %s\n", EFX_OWORD_VAL(*int_ker),
1485		  EFX_OWORD_VAL(fatal_intr),
1486		  error ? "disabling bus mastering" : "no recognised error");
1487
1488	/* If this is a memory parity error dump which blocks are offending */
1489	mem_perr = (EFX_OWORD_FIELD(fatal_intr, FRF_AZ_MEM_PERR_INT_KER) ||
1490		    EFX_OWORD_FIELD(fatal_intr, FRF_AZ_SRM_PERR_INT_KER));
1491	if (mem_perr) {
1492		efx_oword_t reg;
1493		efx_reado(efx, &reg, FR_AZ_MEM_STAT);
1494		netif_err(efx, hw, efx->net_dev,
1495			  "SYSTEM ERROR: memory parity error "EFX_OWORD_FMT"\n",
1496			  EFX_OWORD_VAL(reg));
1497	}
1498
1499	/* Disable both devices */
1500	pci_clear_master(efx->pci_dev);
1501	if (efx_nic_is_dual_func(efx))
1502		pci_clear_master(nic_data->pci_dev2);
1503	efx_farch_irq_disable_master(efx);
1504
1505	/* Count errors and reset or disable the NIC accordingly */
1506	if (efx->int_error_count == 0 ||
1507	    time_after(jiffies, efx->int_error_expire)) {
1508		efx->int_error_count = 0;
1509		efx->int_error_expire =
1510			jiffies + EFX_INT_ERROR_EXPIRE * HZ;
1511	}
1512	if (++efx->int_error_count < EFX_MAX_INT_ERRORS) {
1513		netif_err(efx, hw, efx->net_dev,
1514			  "SYSTEM ERROR - reset scheduled\n");
1515		efx_schedule_reset(efx, RESET_TYPE_INT_ERROR);
1516	} else {
1517		netif_err(efx, hw, efx->net_dev,
1518			  "SYSTEM ERROR - max number of errors seen."
1519			  "NIC will be disabled\n");
1520		efx_schedule_reset(efx, RESET_TYPE_DISABLE);
1521	}
1522
1523	return IRQ_HANDLED;
1524}
1525
1526/* Handle a legacy interrupt
1527 * Acknowledges the interrupt and schedule event queue processing.
1528 */
1529irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id)
1530{
1531	struct efx_nic *efx = dev_id;
1532	bool soft_enabled = ACCESS_ONCE(efx->irq_soft_enabled);
1533	efx_oword_t *int_ker = efx->irq_status.addr;
1534	irqreturn_t result = IRQ_NONE;
1535	struct efx_channel *channel;
1536	efx_dword_t reg;
1537	u32 queues;
1538	int syserr;
1539
1540	/* Read the ISR which also ACKs the interrupts */
1541	efx_readd(efx, &reg, FR_BZ_INT_ISR0);
1542	queues = EFX_EXTRACT_DWORD(reg, 0, 31);
1543
1544	/* Legacy interrupts are disabled too late by the EEH kernel
1545	 * code. Disable them earlier.
1546	 * If an EEH error occurred, the read will have returned all ones.
1547	 */
1548	if (EFX_DWORD_IS_ALL_ONES(reg) && efx_try_recovery(efx) &&
1549	    !efx->eeh_disabled_legacy_irq) {
1550		disable_irq_nosync(efx->legacy_irq);
1551		efx->eeh_disabled_legacy_irq = true;
1552	}
1553
1554	/* Handle non-event-queue sources */
1555	if (queues & (1U << efx->irq_level) && soft_enabled) {
1556		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1557		if (unlikely(syserr))
1558			return efx_farch_fatal_interrupt(efx);
1559		efx->last_irq_cpu = raw_smp_processor_id();
1560	}
1561
1562	if (queues != 0) {
1563		efx->irq_zero_count = 0;
1564
1565		/* Schedule processing of any interrupting queues */
1566		if (likely(soft_enabled)) {
1567			efx_for_each_channel(channel, efx) {
1568				if (queues & 1)
1569					efx_schedule_channel_irq(channel);
1570				queues >>= 1;
1571			}
1572		}
1573		result = IRQ_HANDLED;
1574
1575	} else {
1576		efx_qword_t *event;
1577
1578		/* Legacy ISR read can return zero once (SF bug 15783) */
1579
1580		/* We can't return IRQ_HANDLED more than once on seeing ISR=0
1581		 * because this might be a shared interrupt. */
1582		if (efx->irq_zero_count++ == 0)
1583			result = IRQ_HANDLED;
1584
1585		/* Ensure we schedule or rearm all event queues */
1586		if (likely(soft_enabled)) {
1587			efx_for_each_channel(channel, efx) {
1588				event = efx_event(channel,
1589						  channel->eventq_read_ptr);
1590				if (efx_event_present(event))
1591					efx_schedule_channel_irq(channel);
1592				else
1593					efx_farch_ev_read_ack(channel);
1594			}
1595		}
1596	}
1597
1598	if (result == IRQ_HANDLED)
1599		netif_vdbg(efx, intr, efx->net_dev,
1600			   "IRQ %d on CPU %d status " EFX_DWORD_FMT "\n",
1601			   irq, raw_smp_processor_id(), EFX_DWORD_VAL(reg));
1602
1603	return result;
1604}
1605
1606/* Handle an MSI interrupt
1607 *
1608 * Handle an MSI hardware interrupt.  This routine schedules event
1609 * queue processing.  No interrupt acknowledgement cycle is necessary.
1610 * Also, we never need to check that the interrupt is for us, since
1611 * MSI interrupts cannot be shared.
1612 */
1613irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id)
1614{
1615	struct efx_msi_context *context = dev_id;
1616	struct efx_nic *efx = context->efx;
1617	efx_oword_t *int_ker = efx->irq_status.addr;
1618	int syserr;
1619
1620	netif_vdbg(efx, intr, efx->net_dev,
1621		   "IRQ %d on CPU %d status " EFX_OWORD_FMT "\n",
1622		   irq, raw_smp_processor_id(), EFX_OWORD_VAL(*int_ker));
1623
1624	if (!likely(ACCESS_ONCE(efx->irq_soft_enabled)))
1625		return IRQ_HANDLED;
1626
1627	/* Handle non-event-queue sources */
1628	if (context->index == efx->irq_level) {
1629		syserr = EFX_OWORD_FIELD(*int_ker, FSF_AZ_NET_IVEC_FATAL_INT);
1630		if (unlikely(syserr))
1631			return efx_farch_fatal_interrupt(efx);
1632		efx->last_irq_cpu = raw_smp_processor_id();
1633	}
1634
1635	/* Schedule processing of the channel */
1636	efx_schedule_channel_irq(efx->channel[context->index]);
1637
1638	return IRQ_HANDLED;
1639}
1640
1641/* Setup RSS indirection table.
1642 * This maps from the hash value of the packet to RXQ
1643 */
1644void efx_farch_rx_push_indir_table(struct efx_nic *efx)
1645{
1646	size_t i = 0;
1647	efx_dword_t dword;
1648
1649	BUG_ON(efx_nic_rev(efx) < EFX_REV_FALCON_B0);
1650
1651	BUILD_BUG_ON(ARRAY_SIZE(efx->rx_indir_table) !=
1652		     FR_BZ_RX_INDIRECTION_TBL_ROWS);
1653
1654	for (i = 0; i < FR_BZ_RX_INDIRECTION_TBL_ROWS; i++) {
1655		EFX_POPULATE_DWORD_1(dword, FRF_BZ_IT_QUEUE,
1656				     efx->rx_indir_table[i]);
1657		efx_writed(efx, &dword,
1658			   FR_BZ_RX_INDIRECTION_TBL +
1659			   FR_BZ_RX_INDIRECTION_TBL_STEP * i);
1660	}
1661}
1662
1663/* Looks at available SRAM resources and works out how many queues we
1664 * can support, and where things like descriptor caches should live.
1665 *
1666 * SRAM is split up as follows:
1667 * 0                          buftbl entries for channels
1668 * efx->vf_buftbl_base        buftbl entries for SR-IOV
1669 * efx->rx_dc_base            RX descriptor caches
1670 * efx->tx_dc_base            TX descriptor caches
1671 */
1672void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw)
1673{
1674	unsigned vi_count, buftbl_min;
1675
1676#ifdef CONFIG_SFC_SRIOV
1677	struct siena_nic_data *nic_data = efx->nic_data;
1678#endif
1679
1680	/* Account for the buffer table entries backing the datapath channels
1681	 * and the descriptor caches for those channels.
1682	 */
1683	buftbl_min = ((efx->n_rx_channels * EFX_MAX_DMAQ_SIZE +
1684		       efx->n_tx_channels * EFX_TXQ_TYPES * EFX_MAX_DMAQ_SIZE +
1685		       efx->n_channels * EFX_MAX_EVQ_SIZE)
1686		      * sizeof(efx_qword_t) / EFX_BUF_SIZE);
1687	vi_count = max(efx->n_channels, efx->n_tx_channels * EFX_TXQ_TYPES);
1688
1689#ifdef CONFIG_SFC_SRIOV
1690	if (efx->type->sriov_wanted(efx)) {
1691		unsigned vi_dc_entries, buftbl_free, entries_per_vf, vf_limit;
1692
1693		nic_data->vf_buftbl_base = buftbl_min;
1694
1695		vi_dc_entries = RX_DC_ENTRIES + TX_DC_ENTRIES;
1696		vi_count = max(vi_count, EFX_VI_BASE);
1697		buftbl_free = (sram_lim_qw - buftbl_min -
1698			       vi_count * vi_dc_entries);
1699
1700		entries_per_vf = ((vi_dc_entries + EFX_VF_BUFTBL_PER_VI) *
1701				  efx_vf_size(efx));
1702		vf_limit = min(buftbl_free / entries_per_vf,
1703			       (1024U - EFX_VI_BASE) >> efx->vi_scale);
1704
1705		if (efx->vf_count > vf_limit) {
1706			netif_err(efx, probe, efx->net_dev,
1707				  "Reducing VF count from from %d to %d\n",
1708				  efx->vf_count, vf_limit);
1709			efx->vf_count = vf_limit;
1710		}
1711		vi_count += efx->vf_count * efx_vf_size(efx);
1712	}
1713#endif
1714
1715	efx->tx_dc_base = sram_lim_qw - vi_count * TX_DC_ENTRIES;
1716	efx->rx_dc_base = efx->tx_dc_base - vi_count * RX_DC_ENTRIES;
1717}
1718
1719u32 efx_farch_fpga_ver(struct efx_nic *efx)
1720{
1721	efx_oword_t altera_build;
1722	efx_reado(efx, &altera_build, FR_AZ_ALTERA_BUILD);
1723	return EFX_OWORD_FIELD(altera_build, FRF_AZ_ALTERA_BUILD_VER);
1724}
1725
1726void efx_farch_init_common(struct efx_nic *efx)
1727{
1728	efx_oword_t temp;
1729
1730	/* Set positions of descriptor caches in SRAM. */
1731	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_TX_DC_BASE_ADR, efx->tx_dc_base);
1732	efx_writeo(efx, &temp, FR_AZ_SRM_TX_DC_CFG);
1733	EFX_POPULATE_OWORD_1(temp, FRF_AZ_SRM_RX_DC_BASE_ADR, efx->rx_dc_base);
1734	efx_writeo(efx, &temp, FR_AZ_SRM_RX_DC_CFG);
1735
1736	/* Set TX descriptor cache size. */
1737	BUILD_BUG_ON(TX_DC_ENTRIES != (8 << TX_DC_ENTRIES_ORDER));
1738	EFX_POPULATE_OWORD_1(temp, FRF_AZ_TX_DC_SIZE, TX_DC_ENTRIES_ORDER);
1739	efx_writeo(efx, &temp, FR_AZ_TX_DC_CFG);
1740
1741	/* Set RX descriptor cache size.  Set low watermark to size-8, as
1742	 * this allows most efficient prefetching.
1743	 */
1744	BUILD_BUG_ON(RX_DC_ENTRIES != (8 << RX_DC_ENTRIES_ORDER));
1745	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_SIZE, RX_DC_ENTRIES_ORDER);
1746	efx_writeo(efx, &temp, FR_AZ_RX_DC_CFG);
1747	EFX_POPULATE_OWORD_1(temp, FRF_AZ_RX_DC_PF_LWM, RX_DC_ENTRIES - 8);
1748	efx_writeo(efx, &temp, FR_AZ_RX_DC_PF_WM);
1749
1750	/* Program INT_KER address */
1751	EFX_POPULATE_OWORD_2(temp,
1752			     FRF_AZ_NORM_INT_VEC_DIS_KER,
1753			     EFX_INT_MODE_USE_MSI(efx),
1754			     FRF_AZ_INT_ADR_KER, efx->irq_status.dma_addr);
1755	efx_writeo(efx, &temp, FR_AZ_INT_ADR_KER);
1756
1757	if (EFX_WORKAROUND_17213(efx) && !EFX_INT_MODE_USE_MSI(efx))
1758		/* Use an interrupt level unused by event queues */
1759		efx->irq_level = 0x1f;
1760	else
1761		/* Use a valid MSI-X vector */
1762		efx->irq_level = 0;
1763
1764	/* Enable all the genuinely fatal interrupts.  (They are still
1765	 * masked by the overall interrupt mask, controlled by
1766	 * falcon_interrupts()).
1767	 *
1768	 * Note: All other fatal interrupts are enabled
1769	 */
1770	EFX_POPULATE_OWORD_3(temp,
1771			     FRF_AZ_ILL_ADR_INT_KER_EN, 1,
1772			     FRF_AZ_RBUF_OWN_INT_KER_EN, 1,
1773			     FRF_AZ_TBUF_OWN_INT_KER_EN, 1);
1774	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0)
1775		EFX_SET_OWORD_FIELD(temp, FRF_CZ_SRAM_PERR_INT_P_KER_EN, 1);
1776	EFX_INVERT_OWORD(temp);
1777	efx_writeo(efx, &temp, FR_AZ_FATAL_INTR_KER);
1778
1779	/* Disable the ugly timer-based TX DMA backoff and allow TX DMA to be
1780	 * controlled by the RX FIFO fill level. Set arbitration to one pkt/Q.
1781	 */
1782	efx_reado(efx, &temp, FR_AZ_TX_RESERVED);
1783	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER, 0xfe);
1784	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_RX_SPACER_EN, 1);
1785	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_ONE_PKT_PER_Q, 1);
1786	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PUSH_EN, 1);
1787	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_DIS_NON_IP_EV, 1);
1788	/* Enable SW_EV to inherit in char driver - assume harmless here */
1789	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_SOFT_EVT_EN, 1);
1790	/* Prefetch threshold 2 => fetch when descriptor cache half empty */
1791	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_THRESHOLD, 2);
1792	/* Disable hardware watchdog which can misfire */
1793	EFX_SET_OWORD_FIELD(temp, FRF_AZ_TX_PREF_WD_TMR, 0x3fffff);
1794	/* Squash TX of packets of 16 bytes or less */
1795	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0)
1796		EFX_SET_OWORD_FIELD(temp, FRF_BZ_TX_FLUSH_MIN_LEN_EN, 1);
1797	efx_writeo(efx, &temp, FR_AZ_TX_RESERVED);
1798
1799	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1800		EFX_POPULATE_OWORD_4(temp,
1801				     /* Default values */
1802				     FRF_BZ_TX_PACE_SB_NOT_AF, 0x15,
1803				     FRF_BZ_TX_PACE_SB_AF, 0xb,
1804				     FRF_BZ_TX_PACE_FB_BASE, 0,
1805				     /* Allow large pace values in the
1806				      * fast bin. */
1807				     FRF_BZ_TX_PACE_BIN_TH,
1808				     FFE_BZ_TX_PACE_RESERVED);
1809		efx_writeo(efx, &temp, FR_BZ_TX_PACE);
1810	}
1811}
1812
1813/**************************************************************************
1814 *
1815 * Filter tables
1816 *
1817 **************************************************************************
1818 */
1819
1820/* "Fudge factors" - difference between programmed value and actual depth.
1821 * Due to pipelined implementation we need to program H/W with a value that
1822 * is larger than the hop limit we want.
1823 */
1824#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD 3
1825#define EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL 1
1826
1827/* Hard maximum search limit.  Hardware will time-out beyond 200-something.
1828 * We also need to avoid infinite loops in efx_farch_filter_search() when the
1829 * table is full.
1830 */
1831#define EFX_FARCH_FILTER_CTL_SRCH_MAX 200
1832
1833/* Don't try very hard to find space for performance hints, as this is
1834 * counter-productive. */
1835#define EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX 5
1836
1837enum efx_farch_filter_type {
1838	EFX_FARCH_FILTER_TCP_FULL = 0,
1839	EFX_FARCH_FILTER_TCP_WILD,
1840	EFX_FARCH_FILTER_UDP_FULL,
1841	EFX_FARCH_FILTER_UDP_WILD,
1842	EFX_FARCH_FILTER_MAC_FULL = 4,
1843	EFX_FARCH_FILTER_MAC_WILD,
1844	EFX_FARCH_FILTER_UC_DEF = 8,
1845	EFX_FARCH_FILTER_MC_DEF,
1846	EFX_FARCH_FILTER_TYPE_COUNT,		/* number of specific types */
1847};
1848
1849enum efx_farch_filter_table_id {
1850	EFX_FARCH_FILTER_TABLE_RX_IP = 0,
1851	EFX_FARCH_FILTER_TABLE_RX_MAC,
1852	EFX_FARCH_FILTER_TABLE_RX_DEF,
1853	EFX_FARCH_FILTER_TABLE_TX_MAC,
1854	EFX_FARCH_FILTER_TABLE_COUNT,
1855};
1856
1857enum efx_farch_filter_index {
1858	EFX_FARCH_FILTER_INDEX_UC_DEF,
1859	EFX_FARCH_FILTER_INDEX_MC_DEF,
1860	EFX_FARCH_FILTER_SIZE_RX_DEF,
1861};
1862
1863struct efx_farch_filter_spec {
1864	u8	type:4;
1865	u8	priority:4;
1866	u8	flags;
1867	u16	dmaq_id;
1868	u32	data[3];
1869};
1870
1871struct efx_farch_filter_table {
1872	enum efx_farch_filter_table_id id;
1873	u32		offset;		/* address of table relative to BAR */
1874	unsigned	size;		/* number of entries */
1875	unsigned	step;		/* step between entries */
1876	unsigned	used;		/* number currently used */
1877	unsigned long	*used_bitmap;
1878	struct efx_farch_filter_spec *spec;
1879	unsigned	search_limit[EFX_FARCH_FILTER_TYPE_COUNT];
1880};
1881
1882struct efx_farch_filter_state {
1883	struct efx_farch_filter_table table[EFX_FARCH_FILTER_TABLE_COUNT];
1884};
1885
1886static void
1887efx_farch_filter_table_clear_entry(struct efx_nic *efx,
1888				   struct efx_farch_filter_table *table,
1889				   unsigned int filter_idx);
1890
1891/* The filter hash function is LFSR polynomial x^16 + x^3 + 1 of a 32-bit
1892 * key derived from the n-tuple.  The initial LFSR state is 0xffff. */
1893static u16 efx_farch_filter_hash(u32 key)
1894{
1895	u16 tmp;
1896
1897	/* First 16 rounds */
1898	tmp = 0x1fff ^ key >> 16;
1899	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1900	tmp = tmp ^ tmp >> 9;
1901	/* Last 16 rounds */
1902	tmp = tmp ^ tmp << 13 ^ key;
1903	tmp = tmp ^ tmp >> 3 ^ tmp >> 6;
1904	return tmp ^ tmp >> 9;
1905}
1906
1907/* To allow for hash collisions, filter search continues at these
1908 * increments from the first possible entry selected by the hash. */
1909static u16 efx_farch_filter_increment(u32 key)
1910{
1911	return key * 2 - 1;
1912}
1913
1914static enum efx_farch_filter_table_id
1915efx_farch_filter_spec_table_id(const struct efx_farch_filter_spec *spec)
1916{
1917	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1918		     (EFX_FARCH_FILTER_TCP_FULL >> 2));
1919	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1920		     (EFX_FARCH_FILTER_TCP_WILD >> 2));
1921	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1922		     (EFX_FARCH_FILTER_UDP_FULL >> 2));
1923	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_IP !=
1924		     (EFX_FARCH_FILTER_UDP_WILD >> 2));
1925	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1926		     (EFX_FARCH_FILTER_MAC_FULL >> 2));
1927	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_RX_MAC !=
1928		     (EFX_FARCH_FILTER_MAC_WILD >> 2));
1929	BUILD_BUG_ON(EFX_FARCH_FILTER_TABLE_TX_MAC !=
1930		     EFX_FARCH_FILTER_TABLE_RX_MAC + 2);
1931	return (spec->type >> 2) + ((spec->flags & EFX_FILTER_FLAG_TX) ? 2 : 0);
1932}
1933
1934static void efx_farch_filter_push_rx_config(struct efx_nic *efx)
1935{
1936	struct efx_farch_filter_state *state = efx->filter_state;
1937	struct efx_farch_filter_table *table;
1938	efx_oword_t filter_ctl;
1939
1940	efx_reado(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
1941
1942	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
1943	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_FULL_SRCH_LIMIT,
1944			    table->search_limit[EFX_FARCH_FILTER_TCP_FULL] +
1945			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1946	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_TCP_WILD_SRCH_LIMIT,
1947			    table->search_limit[EFX_FARCH_FILTER_TCP_WILD] +
1948			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1949	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_FULL_SRCH_LIMIT,
1950			    table->search_limit[EFX_FARCH_FILTER_UDP_FULL] +
1951			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1952	EFX_SET_OWORD_FIELD(filter_ctl, FRF_BZ_UDP_WILD_SRCH_LIMIT,
1953			    table->search_limit[EFX_FARCH_FILTER_UDP_WILD] +
1954			    EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1955
1956	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
1957	if (table->size) {
1958		EFX_SET_OWORD_FIELD(
1959			filter_ctl, FRF_CZ_ETHERNET_FULL_SEARCH_LIMIT,
1960			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
1961			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
1962		EFX_SET_OWORD_FIELD(
1963			filter_ctl, FRF_CZ_ETHERNET_WILDCARD_SEARCH_LIMIT,
1964			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
1965			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
1966	}
1967
1968	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
1969	if (table->size) {
1970		EFX_SET_OWORD_FIELD(
1971			filter_ctl, FRF_CZ_UNICAST_NOMATCH_Q_ID,
1972			table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].dmaq_id);
1973		EFX_SET_OWORD_FIELD(
1974			filter_ctl, FRF_CZ_UNICAST_NOMATCH_RSS_ENABLED,
1975			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1976			   EFX_FILTER_FLAG_RX_RSS));
1977		EFX_SET_OWORD_FIELD(
1978			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_Q_ID,
1979			table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].dmaq_id);
1980		EFX_SET_OWORD_FIELD(
1981			filter_ctl, FRF_CZ_MULTICAST_NOMATCH_RSS_ENABLED,
1982			!!(table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1983			   EFX_FILTER_FLAG_RX_RSS));
1984
1985		/* There is a single bit to enable RX scatter for all
1986		 * unmatched packets.  Only set it if scatter is
1987		 * enabled in both filter specs.
1988		 */
1989		EFX_SET_OWORD_FIELD(
1990			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
1991			!!(table->spec[EFX_FARCH_FILTER_INDEX_UC_DEF].flags &
1992			   table->spec[EFX_FARCH_FILTER_INDEX_MC_DEF].flags &
1993			   EFX_FILTER_FLAG_RX_SCATTER));
1994	} else if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
1995		/* We don't expose 'default' filters because unmatched
1996		 * packets always go to the queue number found in the
1997		 * RSS table.  But we still need to set the RX scatter
1998		 * bit here.
1999		 */
2000		EFX_SET_OWORD_FIELD(
2001			filter_ctl, FRF_BZ_SCATTER_ENBL_NO_MATCH_Q,
2002			efx->rx_scatter);
2003	}
2004
2005	efx_writeo(efx, &filter_ctl, FR_BZ_RX_FILTER_CTL);
2006}
2007
2008static void efx_farch_filter_push_tx_limits(struct efx_nic *efx)
2009{
2010	struct efx_farch_filter_state *state = efx->filter_state;
2011	struct efx_farch_filter_table *table;
2012	efx_oword_t tx_cfg;
2013
2014	efx_reado(efx, &tx_cfg, FR_AZ_TX_CFG);
2015
2016	table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2017	if (table->size) {
2018		EFX_SET_OWORD_FIELD(
2019			tx_cfg, FRF_CZ_TX_ETH_FILTER_FULL_SEARCH_RANGE,
2020			table->search_limit[EFX_FARCH_FILTER_MAC_FULL] +
2021			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_FULL);
2022		EFX_SET_OWORD_FIELD(
2023			tx_cfg, FRF_CZ_TX_ETH_FILTER_WILD_SEARCH_RANGE,
2024			table->search_limit[EFX_FARCH_FILTER_MAC_WILD] +
2025			EFX_FARCH_FILTER_CTL_SRCH_FUDGE_WILD);
2026	}
2027
2028	efx_writeo(efx, &tx_cfg, FR_AZ_TX_CFG);
2029}
2030
2031static int
2032efx_farch_filter_from_gen_spec(struct efx_farch_filter_spec *spec,
2033			       const struct efx_filter_spec *gen_spec)
2034{
2035	bool is_full = false;
2036
2037	if ((gen_spec->flags & EFX_FILTER_FLAG_RX_RSS) &&
2038	    gen_spec->rss_context != EFX_FILTER_RSS_CONTEXT_DEFAULT)
2039		return -EINVAL;
2040
2041	spec->priority = gen_spec->priority;
2042	spec->flags = gen_spec->flags;
2043	spec->dmaq_id = gen_spec->dmaq_id;
2044
2045	switch (gen_spec->match_flags) {
2046	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2047	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT |
2048	      EFX_FILTER_MATCH_REM_HOST | EFX_FILTER_MATCH_REM_PORT):
2049		is_full = true;
2050		/* fall through */
2051	case (EFX_FILTER_MATCH_ETHER_TYPE | EFX_FILTER_MATCH_IP_PROTO |
2052	      EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT): {
2053		__be32 rhost, host1, host2;
2054		__be16 rport, port1, port2;
2055
2056		EFX_BUG_ON_PARANOID(!(gen_spec->flags & EFX_FILTER_FLAG_RX));
2057
2058		if (gen_spec->ether_type != htons(ETH_P_IP))
2059			return -EPROTONOSUPPORT;
2060		if (gen_spec->loc_port == 0 ||
2061		    (is_full && gen_spec->rem_port == 0))
2062			return -EADDRNOTAVAIL;
2063		switch (gen_spec->ip_proto) {
2064		case IPPROTO_TCP:
2065			spec->type = (is_full ? EFX_FARCH_FILTER_TCP_FULL :
2066				      EFX_FARCH_FILTER_TCP_WILD);
2067			break;
2068		case IPPROTO_UDP:
2069			spec->type = (is_full ? EFX_FARCH_FILTER_UDP_FULL :
2070				      EFX_FARCH_FILTER_UDP_WILD);
2071			break;
2072		default:
2073			return -EPROTONOSUPPORT;
2074		}
2075
2076		/* Filter is constructed in terms of source and destination,
2077		 * with the odd wrinkle that the ports are swapped in a UDP
2078		 * wildcard filter.  We need to convert from local and remote
2079		 * (= zero for wildcard) addresses.
2080		 */
2081		rhost = is_full ? gen_spec->rem_host[0] : 0;
2082		rport = is_full ? gen_spec->rem_port : 0;
2083		host1 = rhost;
2084		host2 = gen_spec->loc_host[0];
2085		if (!is_full && gen_spec->ip_proto == IPPROTO_UDP) {
2086			port1 = gen_spec->loc_port;
2087			port2 = rport;
2088		} else {
2089			port1 = rport;
2090			port2 = gen_spec->loc_port;
2091		}
2092		spec->data[0] = ntohl(host1) << 16 | ntohs(port1);
2093		spec->data[1] = ntohs(port2) << 16 | ntohl(host1) >> 16;
2094		spec->data[2] = ntohl(host2);
2095
2096		break;
2097	}
2098
2099	case EFX_FILTER_MATCH_LOC_MAC | EFX_FILTER_MATCH_OUTER_VID:
2100		is_full = true;
2101		/* fall through */
2102	case EFX_FILTER_MATCH_LOC_MAC:
2103		spec->type = (is_full ? EFX_FARCH_FILTER_MAC_FULL :
2104			      EFX_FARCH_FILTER_MAC_WILD);
2105		spec->data[0] = is_full ? ntohs(gen_spec->outer_vid) : 0;
2106		spec->data[1] = (gen_spec->loc_mac[2] << 24 |
2107				 gen_spec->loc_mac[3] << 16 |
2108				 gen_spec->loc_mac[4] << 8 |
2109				 gen_spec->loc_mac[5]);
2110		spec->data[2] = (gen_spec->loc_mac[0] << 8 |
2111				 gen_spec->loc_mac[1]);
2112		break;
2113
2114	case EFX_FILTER_MATCH_LOC_MAC_IG:
2115		spec->type = (is_multicast_ether_addr(gen_spec->loc_mac) ?
2116			      EFX_FARCH_FILTER_MC_DEF :
2117			      EFX_FARCH_FILTER_UC_DEF);
2118		memset(spec->data, 0, sizeof(spec->data)); /* ensure equality */
2119		break;
2120
2121	default:
2122		return -EPROTONOSUPPORT;
2123	}
2124
2125	return 0;
2126}
2127
2128static void
2129efx_farch_filter_to_gen_spec(struct efx_filter_spec *gen_spec,
2130			     const struct efx_farch_filter_spec *spec)
2131{
2132	bool is_full = false;
2133
2134	/* *gen_spec should be completely initialised, to be consistent
2135	 * with efx_filter_init_{rx,tx}() and in case we want to copy
2136	 * it back to userland.
2137	 */
2138	memset(gen_spec, 0, sizeof(*gen_spec));
2139
2140	gen_spec->priority = spec->priority;
2141	gen_spec->flags = spec->flags;
2142	gen_spec->dmaq_id = spec->dmaq_id;
2143
2144	switch (spec->type) {
2145	case EFX_FARCH_FILTER_TCP_FULL:
2146	case EFX_FARCH_FILTER_UDP_FULL:
2147		is_full = true;
2148		/* fall through */
2149	case EFX_FARCH_FILTER_TCP_WILD:
2150	case EFX_FARCH_FILTER_UDP_WILD: {
2151		__be32 host1, host2;
2152		__be16 port1, port2;
2153
2154		gen_spec->match_flags =
2155			EFX_FILTER_MATCH_ETHER_TYPE |
2156			EFX_FILTER_MATCH_IP_PROTO |
2157			EFX_FILTER_MATCH_LOC_HOST | EFX_FILTER_MATCH_LOC_PORT;
2158		if (is_full)
2159			gen_spec->match_flags |= (EFX_FILTER_MATCH_REM_HOST |
2160						  EFX_FILTER_MATCH_REM_PORT);
2161		gen_spec->ether_type = htons(ETH_P_IP);
2162		gen_spec->ip_proto =
2163			(spec->type == EFX_FARCH_FILTER_TCP_FULL ||
2164			 spec->type == EFX_FARCH_FILTER_TCP_WILD) ?
2165			IPPROTO_TCP : IPPROTO_UDP;
2166
2167		host1 = htonl(spec->data[0] >> 16 | spec->data[1] << 16);
2168		port1 = htons(spec->data[0]);
2169		host2 = htonl(spec->data[2]);
2170		port2 = htons(spec->data[1] >> 16);
2171		if (spec->flags & EFX_FILTER_FLAG_TX) {
2172			gen_spec->loc_host[0] = host1;
2173			gen_spec->rem_host[0] = host2;
2174		} else {
2175			gen_spec->loc_host[0] = host2;
2176			gen_spec->rem_host[0] = host1;
2177		}
2178		if (!!(gen_spec->flags & EFX_FILTER_FLAG_TX) ^
2179		    (!is_full && gen_spec->ip_proto == IPPROTO_UDP)) {
2180			gen_spec->loc_port = port1;
2181			gen_spec->rem_port = port2;
2182		} else {
2183			gen_spec->loc_port = port2;
2184			gen_spec->rem_port = port1;
2185		}
2186
2187		break;
2188	}
2189
2190	case EFX_FARCH_FILTER_MAC_FULL:
2191		is_full = true;
2192		/* fall through */
2193	case EFX_FARCH_FILTER_MAC_WILD:
2194		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC;
2195		if (is_full)
2196			gen_spec->match_flags |= EFX_FILTER_MATCH_OUTER_VID;
2197		gen_spec->loc_mac[0] = spec->data[2] >> 8;
2198		gen_spec->loc_mac[1] = spec->data[2];
2199		gen_spec->loc_mac[2] = spec->data[1] >> 24;
2200		gen_spec->loc_mac[3] = spec->data[1] >> 16;
2201		gen_spec->loc_mac[4] = spec->data[1] >> 8;
2202		gen_spec->loc_mac[5] = spec->data[1];
2203		gen_spec->outer_vid = htons(spec->data[0]);
2204		break;
2205
2206	case EFX_FARCH_FILTER_UC_DEF:
2207	case EFX_FARCH_FILTER_MC_DEF:
2208		gen_spec->match_flags = EFX_FILTER_MATCH_LOC_MAC_IG;
2209		gen_spec->loc_mac[0] = spec->type == EFX_FARCH_FILTER_MC_DEF;
2210		break;
2211
2212	default:
2213		WARN_ON(1);
2214		break;
2215	}
2216}
2217
2218static void
2219efx_farch_filter_init_rx_auto(struct efx_nic *efx,
2220			      struct efx_farch_filter_spec *spec)
2221{
2222	/* If there's only one channel then disable RSS for non VF
2223	 * traffic, thereby allowing VFs to use RSS when the PF can't.
2224	 */
2225	spec->priority = EFX_FILTER_PRI_AUTO;
2226	spec->flags = (EFX_FILTER_FLAG_RX |
2227		       (efx->n_rx_channels > 1 ? EFX_FILTER_FLAG_RX_RSS : 0) |
2228		       (efx->rx_scatter ? EFX_FILTER_FLAG_RX_SCATTER : 0));
2229	spec->dmaq_id = 0;
2230}
2231
2232/* Build a filter entry and return its n-tuple key. */
2233static u32 efx_farch_filter_build(efx_oword_t *filter,
2234				  struct efx_farch_filter_spec *spec)
2235{
2236	u32 data3;
2237
2238	switch (efx_farch_filter_spec_table_id(spec)) {
2239	case EFX_FARCH_FILTER_TABLE_RX_IP: {
2240		bool is_udp = (spec->type == EFX_FARCH_FILTER_UDP_FULL ||
2241			       spec->type == EFX_FARCH_FILTER_UDP_WILD);
2242		EFX_POPULATE_OWORD_7(
2243			*filter,
2244			FRF_BZ_RSS_EN,
2245			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2246			FRF_BZ_SCATTER_EN,
2247			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2248			FRF_BZ_TCP_UDP, is_udp,
2249			FRF_BZ_RXQ_ID, spec->dmaq_id,
2250			EFX_DWORD_2, spec->data[2],
2251			EFX_DWORD_1, spec->data[1],
2252			EFX_DWORD_0, spec->data[0]);
2253		data3 = is_udp;
2254		break;
2255	}
2256
2257	case EFX_FARCH_FILTER_TABLE_RX_MAC: {
2258		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2259		EFX_POPULATE_OWORD_7(
2260			*filter,
2261			FRF_CZ_RMFT_RSS_EN,
2262			!!(spec->flags & EFX_FILTER_FLAG_RX_RSS),
2263			FRF_CZ_RMFT_SCATTER_EN,
2264			!!(spec->flags & EFX_FILTER_FLAG_RX_SCATTER),
2265			FRF_CZ_RMFT_RXQ_ID, spec->dmaq_id,
2266			FRF_CZ_RMFT_WILDCARD_MATCH, is_wild,
2267			FRF_CZ_RMFT_DEST_MAC_HI, spec->data[2],
2268			FRF_CZ_RMFT_DEST_MAC_LO, spec->data[1],
2269			FRF_CZ_RMFT_VLAN_ID, spec->data[0]);
2270		data3 = is_wild;
2271		break;
2272	}
2273
2274	case EFX_FARCH_FILTER_TABLE_TX_MAC: {
2275		bool is_wild = spec->type == EFX_FARCH_FILTER_MAC_WILD;
2276		EFX_POPULATE_OWORD_5(*filter,
2277				     FRF_CZ_TMFT_TXQ_ID, spec->dmaq_id,
2278				     FRF_CZ_TMFT_WILDCARD_MATCH, is_wild,
2279				     FRF_CZ_TMFT_SRC_MAC_HI, spec->data[2],
2280				     FRF_CZ_TMFT_SRC_MAC_LO, spec->data[1],
2281				     FRF_CZ_TMFT_VLAN_ID, spec->data[0]);
2282		data3 = is_wild | spec->dmaq_id << 1;
2283		break;
2284	}
2285
2286	default:
2287		BUG();
2288	}
2289
2290	return spec->data[0] ^ spec->data[1] ^ spec->data[2] ^ data3;
2291}
2292
2293static bool efx_farch_filter_equal(const struct efx_farch_filter_spec *left,
2294				   const struct efx_farch_filter_spec *right)
2295{
2296	if (left->type != right->type ||
2297	    memcmp(left->data, right->data, sizeof(left->data)))
2298		return false;
2299
2300	if (left->flags & EFX_FILTER_FLAG_TX &&
2301	    left->dmaq_id != right->dmaq_id)
2302		return false;
2303
2304	return true;
2305}
2306
2307/*
2308 * Construct/deconstruct external filter IDs.  At least the RX filter
2309 * IDs must be ordered by matching priority, for RX NFC semantics.
2310 *
2311 * Deconstruction needs to be robust against invalid IDs so that
2312 * efx_filter_remove_id_safe() and efx_filter_get_filter_safe() can
2313 * accept user-provided IDs.
2314 */
2315
2316#define EFX_FARCH_FILTER_MATCH_PRI_COUNT	5
2317
2318static const u8 efx_farch_filter_type_match_pri[EFX_FARCH_FILTER_TYPE_COUNT] = {
2319	[EFX_FARCH_FILTER_TCP_FULL]	= 0,
2320	[EFX_FARCH_FILTER_UDP_FULL]	= 0,
2321	[EFX_FARCH_FILTER_TCP_WILD]	= 1,
2322	[EFX_FARCH_FILTER_UDP_WILD]	= 1,
2323	[EFX_FARCH_FILTER_MAC_FULL]	= 2,
2324	[EFX_FARCH_FILTER_MAC_WILD]	= 3,
2325	[EFX_FARCH_FILTER_UC_DEF]	= 4,
2326	[EFX_FARCH_FILTER_MC_DEF]	= 4,
2327};
2328
2329static const enum efx_farch_filter_table_id efx_farch_filter_range_table[] = {
2330	EFX_FARCH_FILTER_TABLE_RX_IP,	/* RX match pri 0 */
2331	EFX_FARCH_FILTER_TABLE_RX_IP,
2332	EFX_FARCH_FILTER_TABLE_RX_MAC,
2333	EFX_FARCH_FILTER_TABLE_RX_MAC,
2334	EFX_FARCH_FILTER_TABLE_RX_DEF,	/* RX match pri 4 */
2335	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 0 */
2336	EFX_FARCH_FILTER_TABLE_TX_MAC,	/* TX match pri 1 */
2337};
2338
2339#define EFX_FARCH_FILTER_INDEX_WIDTH 13
2340#define EFX_FARCH_FILTER_INDEX_MASK ((1 << EFX_FARCH_FILTER_INDEX_WIDTH) - 1)
2341
2342static inline u32
2343efx_farch_filter_make_id(const struct efx_farch_filter_spec *spec,
2344			 unsigned int index)
2345{
2346	unsigned int range;
2347
2348	range = efx_farch_filter_type_match_pri[spec->type];
2349	if (!(spec->flags & EFX_FILTER_FLAG_RX))
2350		range += EFX_FARCH_FILTER_MATCH_PRI_COUNT;
2351
2352	return range << EFX_FARCH_FILTER_INDEX_WIDTH | index;
2353}
2354
2355static inline enum efx_farch_filter_table_id
2356efx_farch_filter_id_table_id(u32 id)
2357{
2358	unsigned int range = id >> EFX_FARCH_FILTER_INDEX_WIDTH;
2359
2360	if (range < ARRAY_SIZE(efx_farch_filter_range_table))
2361		return efx_farch_filter_range_table[range];
2362	else
2363		return EFX_FARCH_FILTER_TABLE_COUNT; /* invalid */
2364}
2365
2366static inline unsigned int efx_farch_filter_id_index(u32 id)
2367{
2368	return id & EFX_FARCH_FILTER_INDEX_MASK;
2369}
2370
2371u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx)
2372{
2373	struct efx_farch_filter_state *state = efx->filter_state;
2374	unsigned int range = EFX_FARCH_FILTER_MATCH_PRI_COUNT - 1;
2375	enum efx_farch_filter_table_id table_id;
2376
2377	do {
2378		table_id = efx_farch_filter_range_table[range];
2379		if (state->table[table_id].size != 0)
2380			return range << EFX_FARCH_FILTER_INDEX_WIDTH |
2381				state->table[table_id].size;
2382	} while (range--);
2383
2384	return 0;
2385}
2386
2387s32 efx_farch_filter_insert(struct efx_nic *efx,
2388			    struct efx_filter_spec *gen_spec,
2389			    bool replace_equal)
2390{
2391	struct efx_farch_filter_state *state = efx->filter_state;
2392	struct efx_farch_filter_table *table;
2393	struct efx_farch_filter_spec spec;
2394	efx_oword_t filter;
2395	int rep_index, ins_index;
2396	unsigned int depth = 0;
2397	int rc;
2398
2399	rc = efx_farch_filter_from_gen_spec(&spec, gen_spec);
2400	if (rc)
2401		return rc;
2402
2403	table = &state->table[efx_farch_filter_spec_table_id(&spec)];
2404	if (table->size == 0)
2405		return -EINVAL;
2406
2407	netif_vdbg(efx, hw, efx->net_dev,
2408		   "%s: type %d search_limit=%d", __func__, spec.type,
2409		   table->search_limit[spec.type]);
2410
2411	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2412		/* One filter spec per type */
2413		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_UC_DEF != 0);
2414		BUILD_BUG_ON(EFX_FARCH_FILTER_INDEX_MC_DEF !=
2415			     EFX_FARCH_FILTER_MC_DEF - EFX_FARCH_FILTER_UC_DEF);
2416		rep_index = spec.type - EFX_FARCH_FILTER_UC_DEF;
2417		ins_index = rep_index;
2418
2419		spin_lock_bh(&efx->filter_lock);
2420	} else {
2421		/* Search concurrently for
2422		 * (1) a filter to be replaced (rep_index): any filter
2423		 *     with the same match values, up to the current
2424		 *     search depth for this type, and
2425		 * (2) the insertion point (ins_index): (1) or any
2426		 *     free slot before it or up to the maximum search
2427		 *     depth for this priority
2428		 * We fail if we cannot find (2).
2429		 *
2430		 * We can stop once either
2431		 * (a) we find (1), in which case we have definitely
2432		 *     found (2) as well; or
2433		 * (b) we have searched exhaustively for (1), and have
2434		 *     either found (2) or searched exhaustively for it
2435		 */
2436		u32 key = efx_farch_filter_build(&filter, &spec);
2437		unsigned int hash = efx_farch_filter_hash(key);
2438		unsigned int incr = efx_farch_filter_increment(key);
2439		unsigned int max_rep_depth = table->search_limit[spec.type];
2440		unsigned int max_ins_depth =
2441			spec.priority <= EFX_FILTER_PRI_HINT ?
2442			EFX_FARCH_FILTER_CTL_SRCH_HINT_MAX :
2443			EFX_FARCH_FILTER_CTL_SRCH_MAX;
2444		unsigned int i = hash & (table->size - 1);
2445
2446		ins_index = -1;
2447		depth = 1;
2448
2449		spin_lock_bh(&efx->filter_lock);
2450
2451		for (;;) {
2452			if (!test_bit(i, table->used_bitmap)) {
2453				if (ins_index < 0)
2454					ins_index = i;
2455			} else if (efx_farch_filter_equal(&spec,
2456							  &table->spec[i])) {
2457				/* Case (a) */
2458				if (ins_index < 0)
2459					ins_index = i;
2460				rep_index = i;
2461				break;
2462			}
2463
2464			if (depth >= max_rep_depth &&
2465			    (ins_index >= 0 || depth >= max_ins_depth)) {
2466				/* Case (b) */
2467				if (ins_index < 0) {
2468					rc = -EBUSY;
2469					goto out;
2470				}
2471				rep_index = -1;
2472				break;
2473			}
2474
2475			i = (i + incr) & (table->size - 1);
2476			++depth;
2477		}
2478	}
2479
2480	/* If we found a filter to be replaced, check whether we
2481	 * should do so
2482	 */
2483	if (rep_index >= 0) {
2484		struct efx_farch_filter_spec *saved_spec =
2485			&table->spec[rep_index];
2486
2487		if (spec.priority == saved_spec->priority && !replace_equal) {
2488			rc = -EEXIST;
2489			goto out;
2490		}
2491		if (spec.priority < saved_spec->priority) {
2492			rc = -EPERM;
2493			goto out;
2494		}
2495		if (saved_spec->priority == EFX_FILTER_PRI_AUTO ||
2496		    saved_spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO)
2497			spec.flags |= EFX_FILTER_FLAG_RX_OVER_AUTO;
2498	}
2499
2500	/* Insert the filter */
2501	if (ins_index != rep_index) {
2502		__set_bit(ins_index, table->used_bitmap);
2503		++table->used;
2504	}
2505	table->spec[ins_index] = spec;
2506
2507	if (table->id == EFX_FARCH_FILTER_TABLE_RX_DEF) {
2508		efx_farch_filter_push_rx_config(efx);
2509	} else {
2510		if (table->search_limit[spec.type] < depth) {
2511			table->search_limit[spec.type] = depth;
2512			if (spec.flags & EFX_FILTER_FLAG_TX)
2513				efx_farch_filter_push_tx_limits(efx);
2514			else
2515				efx_farch_filter_push_rx_config(efx);
2516		}
2517
2518		efx_writeo(efx, &filter,
2519			   table->offset + table->step * ins_index);
2520
2521		/* If we were able to replace a filter by inserting
2522		 * at a lower depth, clear the replaced filter
2523		 */
2524		if (ins_index != rep_index && rep_index >= 0)
2525			efx_farch_filter_table_clear_entry(efx, table,
2526							   rep_index);
2527	}
2528
2529	netif_vdbg(efx, hw, efx->net_dev,
2530		   "%s: filter type %d index %d rxq %u set",
2531		   __func__, spec.type, ins_index, spec.dmaq_id);
2532	rc = efx_farch_filter_make_id(&spec, ins_index);
2533
2534out:
2535	spin_unlock_bh(&efx->filter_lock);
2536	return rc;
2537}
2538
2539static void
2540efx_farch_filter_table_clear_entry(struct efx_nic *efx,
2541				   struct efx_farch_filter_table *table,
2542				   unsigned int filter_idx)
2543{
2544	static efx_oword_t filter;
2545
2546	EFX_WARN_ON_PARANOID(!test_bit(filter_idx, table->used_bitmap));
2547	BUG_ON(table->offset == 0); /* can't clear MAC default filters */
2548
2549	__clear_bit(filter_idx, table->used_bitmap);
2550	--table->used;
2551	memset(&table->spec[filter_idx], 0, sizeof(table->spec[0]));
2552
2553	efx_writeo(efx, &filter, table->offset + table->step * filter_idx);
2554
2555	/* If this filter required a greater search depth than
2556	 * any other, the search limit for its type can now be
2557	 * decreased.  However, it is hard to determine that
2558	 * unless the table has become completely empty - in
2559	 * which case, all its search limits can be set to 0.
2560	 */
2561	if (unlikely(table->used == 0)) {
2562		memset(table->search_limit, 0, sizeof(table->search_limit));
2563		if (table->id == EFX_FARCH_FILTER_TABLE_TX_MAC)
2564			efx_farch_filter_push_tx_limits(efx);
2565		else
2566			efx_farch_filter_push_rx_config(efx);
2567	}
2568}
2569
2570static int efx_farch_filter_remove(struct efx_nic *efx,
2571				   struct efx_farch_filter_table *table,
2572				   unsigned int filter_idx,
2573				   enum efx_filter_priority priority)
2574{
2575	struct efx_farch_filter_spec *spec = &table->spec[filter_idx];
2576
2577	if (!test_bit(filter_idx, table->used_bitmap) ||
2578	    spec->priority != priority)
2579		return -ENOENT;
2580
2581	if (spec->flags & EFX_FILTER_FLAG_RX_OVER_AUTO) {
2582		efx_farch_filter_init_rx_auto(efx, spec);
2583		efx_farch_filter_push_rx_config(efx);
2584	} else {
2585		efx_farch_filter_table_clear_entry(efx, table, filter_idx);
2586	}
2587
2588	return 0;
2589}
2590
2591int efx_farch_filter_remove_safe(struct efx_nic *efx,
2592				 enum efx_filter_priority priority,
2593				 u32 filter_id)
2594{
2595	struct efx_farch_filter_state *state = efx->filter_state;
2596	enum efx_farch_filter_table_id table_id;
2597	struct efx_farch_filter_table *table;
2598	unsigned int filter_idx;
2599	struct efx_farch_filter_spec *spec;
2600	int rc;
2601
2602	table_id = efx_farch_filter_id_table_id(filter_id);
2603	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2604		return -ENOENT;
2605	table = &state->table[table_id];
2606
2607	filter_idx = efx_farch_filter_id_index(filter_id);
2608	if (filter_idx >= table->size)
2609		return -ENOENT;
2610	spec = &table->spec[filter_idx];
2611
2612	spin_lock_bh(&efx->filter_lock);
2613	rc = efx_farch_filter_remove(efx, table, filter_idx, priority);
2614	spin_unlock_bh(&efx->filter_lock);
2615
2616	return rc;
2617}
2618
2619int efx_farch_filter_get_safe(struct efx_nic *efx,
2620			      enum efx_filter_priority priority,
2621			      u32 filter_id, struct efx_filter_spec *spec_buf)
2622{
2623	struct efx_farch_filter_state *state = efx->filter_state;
2624	enum efx_farch_filter_table_id table_id;
2625	struct efx_farch_filter_table *table;
2626	struct efx_farch_filter_spec *spec;
2627	unsigned int filter_idx;
2628	int rc;
2629
2630	table_id = efx_farch_filter_id_table_id(filter_id);
2631	if ((unsigned int)table_id >= EFX_FARCH_FILTER_TABLE_COUNT)
2632		return -ENOENT;
2633	table = &state->table[table_id];
2634
2635	filter_idx = efx_farch_filter_id_index(filter_id);
2636	if (filter_idx >= table->size)
2637		return -ENOENT;
2638	spec = &table->spec[filter_idx];
2639
2640	spin_lock_bh(&efx->filter_lock);
2641
2642	if (test_bit(filter_idx, table->used_bitmap) &&
2643	    spec->priority == priority) {
2644		efx_farch_filter_to_gen_spec(spec_buf, spec);
2645		rc = 0;
2646	} else {
2647		rc = -ENOENT;
2648	}
2649
2650	spin_unlock_bh(&efx->filter_lock);
2651
2652	return rc;
2653}
2654
2655static void
2656efx_farch_filter_table_clear(struct efx_nic *efx,
2657			     enum efx_farch_filter_table_id table_id,
2658			     enum efx_filter_priority priority)
2659{
2660	struct efx_farch_filter_state *state = efx->filter_state;
2661	struct efx_farch_filter_table *table = &state->table[table_id];
2662	unsigned int filter_idx;
2663
2664	spin_lock_bh(&efx->filter_lock);
2665	for (filter_idx = 0; filter_idx < table->size; ++filter_idx) {
2666		if (table->spec[filter_idx].priority != EFX_FILTER_PRI_AUTO)
2667			efx_farch_filter_remove(efx, table,
2668						filter_idx, priority);
2669	}
2670	spin_unlock_bh(&efx->filter_lock);
2671}
2672
2673int efx_farch_filter_clear_rx(struct efx_nic *efx,
2674			       enum efx_filter_priority priority)
2675{
2676	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_IP,
2677				     priority);
2678	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_MAC,
2679				     priority);
2680	efx_farch_filter_table_clear(efx, EFX_FARCH_FILTER_TABLE_RX_DEF,
2681				     priority);
2682	return 0;
2683}
2684
2685u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
2686				   enum efx_filter_priority priority)
2687{
2688	struct efx_farch_filter_state *state = efx->filter_state;
2689	enum efx_farch_filter_table_id table_id;
2690	struct efx_farch_filter_table *table;
2691	unsigned int filter_idx;
2692	u32 count = 0;
2693
2694	spin_lock_bh(&efx->filter_lock);
2695
2696	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2697	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2698	     table_id++) {
2699		table = &state->table[table_id];
2700		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2701			if (test_bit(filter_idx, table->used_bitmap) &&
2702			    table->spec[filter_idx].priority == priority)
2703				++count;
2704		}
2705	}
2706
2707	spin_unlock_bh(&efx->filter_lock);
2708
2709	return count;
2710}
2711
2712s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
2713				enum efx_filter_priority priority,
2714				u32 *buf, u32 size)
2715{
2716	struct efx_farch_filter_state *state = efx->filter_state;
2717	enum efx_farch_filter_table_id table_id;
2718	struct efx_farch_filter_table *table;
2719	unsigned int filter_idx;
2720	s32 count = 0;
2721
2722	spin_lock_bh(&efx->filter_lock);
2723
2724	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2725	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2726	     table_id++) {
2727		table = &state->table[table_id];
2728		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2729			if (test_bit(filter_idx, table->used_bitmap) &&
2730			    table->spec[filter_idx].priority == priority) {
2731				if (count == size) {
2732					count = -EMSGSIZE;
2733					goto out;
2734				}
2735				buf[count++] = efx_farch_filter_make_id(
2736					&table->spec[filter_idx], filter_idx);
2737			}
2738		}
2739	}
2740out:
2741	spin_unlock_bh(&efx->filter_lock);
2742
2743	return count;
2744}
2745
2746/* Restore filter stater after reset */
2747void efx_farch_filter_table_restore(struct efx_nic *efx)
2748{
2749	struct efx_farch_filter_state *state = efx->filter_state;
2750	enum efx_farch_filter_table_id table_id;
2751	struct efx_farch_filter_table *table;
2752	efx_oword_t filter;
2753	unsigned int filter_idx;
2754
2755	spin_lock_bh(&efx->filter_lock);
2756
2757	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2758		table = &state->table[table_id];
2759
2760		/* Check whether this is a regular register table */
2761		if (table->step == 0)
2762			continue;
2763
2764		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2765			if (!test_bit(filter_idx, table->used_bitmap))
2766				continue;
2767			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2768			efx_writeo(efx, &filter,
2769				   table->offset + table->step * filter_idx);
2770		}
2771	}
2772
2773	efx_farch_filter_push_rx_config(efx);
2774	efx_farch_filter_push_tx_limits(efx);
2775
2776	spin_unlock_bh(&efx->filter_lock);
2777}
2778
2779void efx_farch_filter_table_remove(struct efx_nic *efx)
2780{
2781	struct efx_farch_filter_state *state = efx->filter_state;
2782	enum efx_farch_filter_table_id table_id;
2783
2784	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2785		kfree(state->table[table_id].used_bitmap);
2786		vfree(state->table[table_id].spec);
2787	}
2788	kfree(state);
2789}
2790
2791int efx_farch_filter_table_probe(struct efx_nic *efx)
2792{
2793	struct efx_farch_filter_state *state;
2794	struct efx_farch_filter_table *table;
2795	unsigned table_id;
2796
2797	state = kzalloc(sizeof(struct efx_farch_filter_state), GFP_KERNEL);
2798	if (!state)
2799		return -ENOMEM;
2800	efx->filter_state = state;
2801
2802	if (efx_nic_rev(efx) >= EFX_REV_FALCON_B0) {
2803		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2804		table->id = EFX_FARCH_FILTER_TABLE_RX_IP;
2805		table->offset = FR_BZ_RX_FILTER_TBL0;
2806		table->size = FR_BZ_RX_FILTER_TBL0_ROWS;
2807		table->step = FR_BZ_RX_FILTER_TBL0_STEP;
2808	}
2809
2810	if (efx_nic_rev(efx) >= EFX_REV_SIENA_A0) {
2811		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_MAC];
2812		table->id = EFX_FARCH_FILTER_TABLE_RX_MAC;
2813		table->offset = FR_CZ_RX_MAC_FILTER_TBL0;
2814		table->size = FR_CZ_RX_MAC_FILTER_TBL0_ROWS;
2815		table->step = FR_CZ_RX_MAC_FILTER_TBL0_STEP;
2816
2817		table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2818		table->id = EFX_FARCH_FILTER_TABLE_RX_DEF;
2819		table->size = EFX_FARCH_FILTER_SIZE_RX_DEF;
2820
2821		table = &state->table[EFX_FARCH_FILTER_TABLE_TX_MAC];
2822		table->id = EFX_FARCH_FILTER_TABLE_TX_MAC;
2823		table->offset = FR_CZ_TX_MAC_FILTER_TBL0;
2824		table->size = FR_CZ_TX_MAC_FILTER_TBL0_ROWS;
2825		table->step = FR_CZ_TX_MAC_FILTER_TBL0_STEP;
2826	}
2827
2828	for (table_id = 0; table_id < EFX_FARCH_FILTER_TABLE_COUNT; table_id++) {
2829		table = &state->table[table_id];
2830		if (table->size == 0)
2831			continue;
2832		table->used_bitmap = kcalloc(BITS_TO_LONGS(table->size),
2833					     sizeof(unsigned long),
2834					     GFP_KERNEL);
2835		if (!table->used_bitmap)
2836			goto fail;
2837		table->spec = vzalloc(table->size * sizeof(*table->spec));
2838		if (!table->spec)
2839			goto fail;
2840	}
2841
2842	table = &state->table[EFX_FARCH_FILTER_TABLE_RX_DEF];
2843	if (table->size) {
2844		/* RX default filters must always exist */
2845		struct efx_farch_filter_spec *spec;
2846		unsigned i;
2847
2848		for (i = 0; i < EFX_FARCH_FILTER_SIZE_RX_DEF; i++) {
2849			spec = &table->spec[i];
2850			spec->type = EFX_FARCH_FILTER_UC_DEF + i;
2851			efx_farch_filter_init_rx_auto(efx, spec);
2852			__set_bit(i, table->used_bitmap);
2853		}
2854	}
2855
2856	efx_farch_filter_push_rx_config(efx);
2857
2858	return 0;
2859
2860fail:
2861	efx_farch_filter_table_remove(efx);
2862	return -ENOMEM;
2863}
2864
2865/* Update scatter enable flags for filters pointing to our own RX queues */
2866void efx_farch_filter_update_rx_scatter(struct efx_nic *efx)
2867{
2868	struct efx_farch_filter_state *state = efx->filter_state;
2869	enum efx_farch_filter_table_id table_id;
2870	struct efx_farch_filter_table *table;
2871	efx_oword_t filter;
2872	unsigned int filter_idx;
2873
2874	spin_lock_bh(&efx->filter_lock);
2875
2876	for (table_id = EFX_FARCH_FILTER_TABLE_RX_IP;
2877	     table_id <= EFX_FARCH_FILTER_TABLE_RX_DEF;
2878	     table_id++) {
2879		table = &state->table[table_id];
2880
2881		for (filter_idx = 0; filter_idx < table->size; filter_idx++) {
2882			if (!test_bit(filter_idx, table->used_bitmap) ||
2883			    table->spec[filter_idx].dmaq_id >=
2884			    efx->n_rx_channels)
2885				continue;
2886
2887			if (efx->rx_scatter)
2888				table->spec[filter_idx].flags |=
2889					EFX_FILTER_FLAG_RX_SCATTER;
2890			else
2891				table->spec[filter_idx].flags &=
2892					~EFX_FILTER_FLAG_RX_SCATTER;
2893
2894			if (table_id == EFX_FARCH_FILTER_TABLE_RX_DEF)
2895				/* Pushed by efx_farch_filter_push_rx_config() */
2896				continue;
2897
2898			efx_farch_filter_build(&filter, &table->spec[filter_idx]);
2899			efx_writeo(efx, &filter,
2900				   table->offset + table->step * filter_idx);
2901		}
2902	}
2903
2904	efx_farch_filter_push_rx_config(efx);
2905
2906	spin_unlock_bh(&efx->filter_lock);
2907}
2908
2909#ifdef CONFIG_RFS_ACCEL
2910
2911s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
2912				struct efx_filter_spec *gen_spec)
2913{
2914	return efx_farch_filter_insert(efx, gen_spec, true);
2915}
2916
2917bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
2918				     unsigned int index)
2919{
2920	struct efx_farch_filter_state *state = efx->filter_state;
2921	struct efx_farch_filter_table *table =
2922		&state->table[EFX_FARCH_FILTER_TABLE_RX_IP];
2923
2924	if (test_bit(index, table->used_bitmap) &&
2925	    table->spec[index].priority == EFX_FILTER_PRI_HINT &&
2926	    rps_may_expire_flow(efx->net_dev, table->spec[index].dmaq_id,
2927				flow_id, index)) {
2928		efx_farch_filter_table_clear_entry(efx, table, index);
2929		return true;
2930	}
2931
2932	return false;
2933}
2934
2935#endif /* CONFIG_RFS_ACCEL */
2936
2937void efx_farch_filter_sync_rx_mode(struct efx_nic *efx)
2938{
2939	struct net_device *net_dev = efx->net_dev;
2940	struct netdev_hw_addr *ha;
2941	union efx_multicast_hash *mc_hash = &efx->multicast_hash;
2942	u32 crc;
2943	int bit;
2944
2945	if (!efx_dev_registered(efx))
2946		return;
2947
2948	netif_addr_lock_bh(net_dev);
2949
2950	efx->unicast_filter = !(net_dev->flags & IFF_PROMISC);
2951
2952	/* Build multicast hash table */
2953	if (net_dev->flags & (IFF_PROMISC | IFF_ALLMULTI)) {
2954		memset(mc_hash, 0xff, sizeof(*mc_hash));
2955	} else {
2956		memset(mc_hash, 0x00, sizeof(*mc_hash));
2957		netdev_for_each_mc_addr(ha, net_dev) {
2958			crc = ether_crc_le(ETH_ALEN, ha->addr);
2959			bit = crc & (EFX_MCAST_HASH_ENTRIES - 1);
2960			__set_bit_le(bit, mc_hash);
2961		}
2962
2963		/* Broadcast packets go through the multicast hash filter.
2964		 * ether_crc_le() of the broadcast address is 0xbe2612ff
2965		 * so we always add bit 0xff to the mask.
2966		 */
2967		__set_bit_le(0xff, mc_hash);
2968	}
2969
2970	netif_addr_unlock_bh(net_dev);
2971}
2972