1/****************************************************************************
2 * Driver for Solarflare network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2006-2013 Solarflare Communications Inc.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
9 */
10
11#ifndef EFX_NIC_H
12#define EFX_NIC_H
13
14#include <linux/net_tstamp.h>
15#include <linux/i2c-algo-bit.h>
16#include "net_driver.h"
17#include "efx.h"
18#include "mcdi.h"
19
20enum {
21	EFX_REV_FALCON_A0 = 0,
22	EFX_REV_FALCON_A1 = 1,
23	EFX_REV_FALCON_B0 = 2,
24	EFX_REV_SIENA_A0 = 3,
25	EFX_REV_HUNT_A0 = 4,
26};
27
28static inline int efx_nic_rev(struct efx_nic *efx)
29{
30	return efx->type->revision;
31}
32
33u32 efx_farch_fpga_ver(struct efx_nic *efx);
34
35/* NIC has two interlinked PCI functions for the same port. */
36static inline bool efx_nic_is_dual_func(struct efx_nic *efx)
37{
38	return efx_nic_rev(efx) < EFX_REV_FALCON_B0;
39}
40
41/* Read the current event from the event queue */
42static inline efx_qword_t *efx_event(struct efx_channel *channel,
43				     unsigned int index)
44{
45	return ((efx_qword_t *) (channel->eventq.buf.addr)) +
46		(index & channel->eventq_mask);
47}
48
49/* See if an event is present
50 *
51 * We check both the high and low dword of the event for all ones.  We
52 * wrote all ones when we cleared the event, and no valid event can
53 * have all ones in either its high or low dwords.  This approach is
54 * robust against reordering.
55 *
56 * Note that using a single 64-bit comparison is incorrect; even
57 * though the CPU read will be atomic, the DMA write may not be.
58 */
59static inline int efx_event_present(efx_qword_t *event)
60{
61	return !(EFX_DWORD_IS_ALL_ONES(event->dword[0]) |
62		  EFX_DWORD_IS_ALL_ONES(event->dword[1]));
63}
64
65/* Returns a pointer to the specified transmit descriptor in the TX
66 * descriptor queue belonging to the specified channel.
67 */
68static inline efx_qword_t *
69efx_tx_desc(struct efx_tx_queue *tx_queue, unsigned int index)
70{
71	return ((efx_qword_t *) (tx_queue->txd.buf.addr)) + index;
72}
73
74/* Get partner of a TX queue, seen as part of the same net core queue */
75static struct efx_tx_queue *efx_tx_queue_partner(struct efx_tx_queue *tx_queue)
76{
77	if (tx_queue->queue & EFX_TXQ_TYPE_OFFLOAD)
78		return tx_queue - EFX_TXQ_TYPE_OFFLOAD;
79	else
80		return tx_queue + EFX_TXQ_TYPE_OFFLOAD;
81}
82
83/* Report whether this TX queue would be empty for the given write_count.
84 * May return false negative.
85 */
86static inline bool __efx_nic_tx_is_empty(struct efx_tx_queue *tx_queue,
87					 unsigned int write_count)
88{
89	unsigned int empty_read_count = ACCESS_ONCE(tx_queue->empty_read_count);
90
91	if (empty_read_count == 0)
92		return false;
93
94	return ((empty_read_count ^ write_count) & ~EFX_EMPTY_COUNT_VALID) == 0;
95}
96
97/* Decide whether we can use TX PIO, ie. write packet data directly into
98 * a buffer on the device.  This can reduce latency at the expense of
99 * throughput, so we only do this if both hardware and software TX rings
100 * are empty.  This also ensures that only one packet at a time can be
101 * using the PIO buffer.
102 */
103static inline bool efx_nic_may_tx_pio(struct efx_tx_queue *tx_queue)
104{
105	struct efx_tx_queue *partner = efx_tx_queue_partner(tx_queue);
106	return tx_queue->piobuf &&
107	       __efx_nic_tx_is_empty(tx_queue, tx_queue->insert_count) &&
108	       __efx_nic_tx_is_empty(partner, partner->insert_count);
109}
110
111/* Decide whether to push a TX descriptor to the NIC vs merely writing
112 * the doorbell.  This can reduce latency when we are adding a single
113 * descriptor to an empty queue, but is otherwise pointless.  Further,
114 * Falcon and Siena have hardware bugs (SF bug 33851) that may be
115 * triggered if we don't check this.
116 * We use the write_count used for the last doorbell push, to get the
117 * NIC's view of the tx queue.
118 */
119static inline bool efx_nic_may_push_tx_desc(struct efx_tx_queue *tx_queue,
120					    unsigned int write_count)
121{
122	bool was_empty = __efx_nic_tx_is_empty(tx_queue, write_count);
123
124	tx_queue->empty_read_count = 0;
125	return was_empty && tx_queue->write_count - write_count == 1;
126}
127
128/* Returns a pointer to the specified descriptor in the RX descriptor queue */
129static inline efx_qword_t *
130efx_rx_desc(struct efx_rx_queue *rx_queue, unsigned int index)
131{
132	return ((efx_qword_t *) (rx_queue->rxd.buf.addr)) + index;
133}
134
135enum {
136	PHY_TYPE_NONE = 0,
137	PHY_TYPE_TXC43128 = 1,
138	PHY_TYPE_88E1111 = 2,
139	PHY_TYPE_SFX7101 = 3,
140	PHY_TYPE_QT2022C2 = 4,
141	PHY_TYPE_PM8358 = 6,
142	PHY_TYPE_SFT9001A = 8,
143	PHY_TYPE_QT2025C = 9,
144	PHY_TYPE_SFT9001B = 10,
145};
146
147#define FALCON_XMAC_LOOPBACKS			\
148	((1 << LOOPBACK_XGMII) |		\
149	 (1 << LOOPBACK_XGXS) |			\
150	 (1 << LOOPBACK_XAUI))
151
152/* Alignment of PCIe DMA boundaries (4KB) */
153#define EFX_PAGE_SIZE	4096
154/* Size and alignment of buffer table entries (same) */
155#define EFX_BUF_SIZE	EFX_PAGE_SIZE
156
157/* NIC-generic software stats */
158enum {
159	GENERIC_STAT_rx_noskb_drops,
160	GENERIC_STAT_rx_nodesc_trunc,
161	GENERIC_STAT_COUNT
162};
163
164/**
165 * struct falcon_board_type - board operations and type information
166 * @id: Board type id, as found in NVRAM
167 * @init: Allocate resources and initialise peripheral hardware
168 * @init_phy: Do board-specific PHY initialisation
169 * @fini: Shut down hardware and free resources
170 * @set_id_led: Set state of identifying LED or revert to automatic function
171 * @monitor: Board-specific health check function
172 */
173struct falcon_board_type {
174	u8 id;
175	int (*init) (struct efx_nic *nic);
176	void (*init_phy) (struct efx_nic *efx);
177	void (*fini) (struct efx_nic *nic);
178	void (*set_id_led) (struct efx_nic *efx, enum efx_led_mode mode);
179	int (*monitor) (struct efx_nic *nic);
180};
181
182/**
183 * struct falcon_board - board information
184 * @type: Type of board
185 * @major: Major rev. ('A', 'B' ...)
186 * @minor: Minor rev. (0, 1, ...)
187 * @i2c_adap: I2C adapter for on-board peripherals
188 * @i2c_data: Data for bit-banging algorithm
189 * @hwmon_client: I2C client for hardware monitor
190 * @ioexp_client: I2C client for power/port control
191 */
192struct falcon_board {
193	const struct falcon_board_type *type;
194	int major;
195	int minor;
196	struct i2c_adapter i2c_adap;
197	struct i2c_algo_bit_data i2c_data;
198	struct i2c_client *hwmon_client, *ioexp_client;
199};
200
201/**
202 * struct falcon_spi_device - a Falcon SPI (Serial Peripheral Interface) device
203 * @device_id:		Controller's id for the device
204 * @size:		Size (in bytes)
205 * @addr_len:		Number of address bytes in read/write commands
206 * @munge_address:	Flag whether addresses should be munged.
207 *	Some devices with 9-bit addresses (e.g. AT25040A EEPROM)
208 *	use bit 3 of the command byte as address bit A8, rather
209 *	than having a two-byte address.  If this flag is set, then
210 *	commands should be munged in this way.
211 * @erase_command:	Erase command (or 0 if sector erase not needed).
212 * @erase_size:		Erase sector size (in bytes)
213 *	Erase commands affect sectors with this size and alignment.
214 *	This must be a power of two.
215 * @block_size:		Write block size (in bytes).
216 *	Write commands are limited to blocks with this size and alignment.
217 */
218struct falcon_spi_device {
219	int device_id;
220	unsigned int size;
221	unsigned int addr_len;
222	unsigned int munge_address:1;
223	u8 erase_command;
224	unsigned int erase_size;
225	unsigned int block_size;
226};
227
228static inline bool falcon_spi_present(const struct falcon_spi_device *spi)
229{
230	return spi->size != 0;
231}
232
233enum {
234	FALCON_STAT_tx_bytes = GENERIC_STAT_COUNT,
235	FALCON_STAT_tx_packets,
236	FALCON_STAT_tx_pause,
237	FALCON_STAT_tx_control,
238	FALCON_STAT_tx_unicast,
239	FALCON_STAT_tx_multicast,
240	FALCON_STAT_tx_broadcast,
241	FALCON_STAT_tx_lt64,
242	FALCON_STAT_tx_64,
243	FALCON_STAT_tx_65_to_127,
244	FALCON_STAT_tx_128_to_255,
245	FALCON_STAT_tx_256_to_511,
246	FALCON_STAT_tx_512_to_1023,
247	FALCON_STAT_tx_1024_to_15xx,
248	FALCON_STAT_tx_15xx_to_jumbo,
249	FALCON_STAT_tx_gtjumbo,
250	FALCON_STAT_tx_non_tcpudp,
251	FALCON_STAT_tx_mac_src_error,
252	FALCON_STAT_tx_ip_src_error,
253	FALCON_STAT_rx_bytes,
254	FALCON_STAT_rx_good_bytes,
255	FALCON_STAT_rx_bad_bytes,
256	FALCON_STAT_rx_packets,
257	FALCON_STAT_rx_good,
258	FALCON_STAT_rx_bad,
259	FALCON_STAT_rx_pause,
260	FALCON_STAT_rx_control,
261	FALCON_STAT_rx_unicast,
262	FALCON_STAT_rx_multicast,
263	FALCON_STAT_rx_broadcast,
264	FALCON_STAT_rx_lt64,
265	FALCON_STAT_rx_64,
266	FALCON_STAT_rx_65_to_127,
267	FALCON_STAT_rx_128_to_255,
268	FALCON_STAT_rx_256_to_511,
269	FALCON_STAT_rx_512_to_1023,
270	FALCON_STAT_rx_1024_to_15xx,
271	FALCON_STAT_rx_15xx_to_jumbo,
272	FALCON_STAT_rx_gtjumbo,
273	FALCON_STAT_rx_bad_lt64,
274	FALCON_STAT_rx_bad_gtjumbo,
275	FALCON_STAT_rx_overflow,
276	FALCON_STAT_rx_symbol_error,
277	FALCON_STAT_rx_align_error,
278	FALCON_STAT_rx_length_error,
279	FALCON_STAT_rx_internal_error,
280	FALCON_STAT_rx_nodesc_drop_cnt,
281	FALCON_STAT_COUNT
282};
283
284/**
285 * struct falcon_nic_data - Falcon NIC state
286 * @pci_dev2: Secondary function of Falcon A
287 * @board: Board state and functions
288 * @stats: Hardware statistics
289 * @stats_disable_count: Nest count for disabling statistics fetches
290 * @stats_pending: Is there a pending DMA of MAC statistics.
291 * @stats_timer: A timer for regularly fetching MAC statistics.
292 * @spi_flash: SPI flash device
293 * @spi_eeprom: SPI EEPROM device
294 * @spi_lock: SPI bus lock
295 * @mdio_lock: MDIO bus lock
296 * @xmac_poll_required: XMAC link state needs polling
297 */
298struct falcon_nic_data {
299	struct pci_dev *pci_dev2;
300	struct falcon_board board;
301	u64 stats[FALCON_STAT_COUNT];
302	unsigned int stats_disable_count;
303	bool stats_pending;
304	struct timer_list stats_timer;
305	struct falcon_spi_device spi_flash;
306	struct falcon_spi_device spi_eeprom;
307	struct mutex spi_lock;
308	struct mutex mdio_lock;
309	bool xmac_poll_required;
310};
311
312static inline struct falcon_board *falcon_board(struct efx_nic *efx)
313{
314	struct falcon_nic_data *data = efx->nic_data;
315	return &data->board;
316}
317
318enum {
319	SIENA_STAT_tx_bytes = GENERIC_STAT_COUNT,
320	SIENA_STAT_tx_good_bytes,
321	SIENA_STAT_tx_bad_bytes,
322	SIENA_STAT_tx_packets,
323	SIENA_STAT_tx_bad,
324	SIENA_STAT_tx_pause,
325	SIENA_STAT_tx_control,
326	SIENA_STAT_tx_unicast,
327	SIENA_STAT_tx_multicast,
328	SIENA_STAT_tx_broadcast,
329	SIENA_STAT_tx_lt64,
330	SIENA_STAT_tx_64,
331	SIENA_STAT_tx_65_to_127,
332	SIENA_STAT_tx_128_to_255,
333	SIENA_STAT_tx_256_to_511,
334	SIENA_STAT_tx_512_to_1023,
335	SIENA_STAT_tx_1024_to_15xx,
336	SIENA_STAT_tx_15xx_to_jumbo,
337	SIENA_STAT_tx_gtjumbo,
338	SIENA_STAT_tx_collision,
339	SIENA_STAT_tx_single_collision,
340	SIENA_STAT_tx_multiple_collision,
341	SIENA_STAT_tx_excessive_collision,
342	SIENA_STAT_tx_deferred,
343	SIENA_STAT_tx_late_collision,
344	SIENA_STAT_tx_excessive_deferred,
345	SIENA_STAT_tx_non_tcpudp,
346	SIENA_STAT_tx_mac_src_error,
347	SIENA_STAT_tx_ip_src_error,
348	SIENA_STAT_rx_bytes,
349	SIENA_STAT_rx_good_bytes,
350	SIENA_STAT_rx_bad_bytes,
351	SIENA_STAT_rx_packets,
352	SIENA_STAT_rx_good,
353	SIENA_STAT_rx_bad,
354	SIENA_STAT_rx_pause,
355	SIENA_STAT_rx_control,
356	SIENA_STAT_rx_unicast,
357	SIENA_STAT_rx_multicast,
358	SIENA_STAT_rx_broadcast,
359	SIENA_STAT_rx_lt64,
360	SIENA_STAT_rx_64,
361	SIENA_STAT_rx_65_to_127,
362	SIENA_STAT_rx_128_to_255,
363	SIENA_STAT_rx_256_to_511,
364	SIENA_STAT_rx_512_to_1023,
365	SIENA_STAT_rx_1024_to_15xx,
366	SIENA_STAT_rx_15xx_to_jumbo,
367	SIENA_STAT_rx_gtjumbo,
368	SIENA_STAT_rx_bad_gtjumbo,
369	SIENA_STAT_rx_overflow,
370	SIENA_STAT_rx_false_carrier,
371	SIENA_STAT_rx_symbol_error,
372	SIENA_STAT_rx_align_error,
373	SIENA_STAT_rx_length_error,
374	SIENA_STAT_rx_internal_error,
375	SIENA_STAT_rx_nodesc_drop_cnt,
376	SIENA_STAT_COUNT
377};
378
379/**
380 * struct siena_nic_data - Siena NIC state
381 * @efx: Pointer back to main interface structure
382 * @wol_filter_id: Wake-on-LAN packet filter id
383 * @stats: Hardware statistics
384 * @vf_buftbl_base: The zeroth buffer table index used to back VF queues.
385 * @vfdi_status: Common VFDI status page to be dmad to VF address space.
386 * @local_addr_list: List of local addresses. Protected by %local_lock.
387 * @local_page_list: List of DMA addressable pages used to broadcast
388 *	%local_addr_list. Protected by %local_lock.
389 * @local_lock: Mutex protecting %local_addr_list and %local_page_list.
390 * @peer_work: Work item to broadcast peer addresses to VMs.
391 */
392struct siena_nic_data {
393	struct efx_nic *efx;
394	int wol_filter_id;
395	u64 stats[SIENA_STAT_COUNT];
396#ifdef CONFIG_SFC_SRIOV
397	struct efx_channel *vfdi_channel;
398	unsigned vf_buftbl_base;
399	struct efx_buffer vfdi_status;
400	struct list_head local_addr_list;
401	struct list_head local_page_list;
402	struct mutex local_lock;
403	struct work_struct peer_work;
404#endif
405};
406
407enum {
408	EF10_STAT_tx_bytes = GENERIC_STAT_COUNT,
409	EF10_STAT_tx_packets,
410	EF10_STAT_tx_pause,
411	EF10_STAT_tx_control,
412	EF10_STAT_tx_unicast,
413	EF10_STAT_tx_multicast,
414	EF10_STAT_tx_broadcast,
415	EF10_STAT_tx_lt64,
416	EF10_STAT_tx_64,
417	EF10_STAT_tx_65_to_127,
418	EF10_STAT_tx_128_to_255,
419	EF10_STAT_tx_256_to_511,
420	EF10_STAT_tx_512_to_1023,
421	EF10_STAT_tx_1024_to_15xx,
422	EF10_STAT_tx_15xx_to_jumbo,
423	EF10_STAT_rx_bytes,
424	EF10_STAT_rx_bytes_minus_good_bytes,
425	EF10_STAT_rx_good_bytes,
426	EF10_STAT_rx_bad_bytes,
427	EF10_STAT_rx_packets,
428	EF10_STAT_rx_good,
429	EF10_STAT_rx_bad,
430	EF10_STAT_rx_pause,
431	EF10_STAT_rx_control,
432	EF10_STAT_rx_unicast,
433	EF10_STAT_rx_multicast,
434	EF10_STAT_rx_broadcast,
435	EF10_STAT_rx_lt64,
436	EF10_STAT_rx_64,
437	EF10_STAT_rx_65_to_127,
438	EF10_STAT_rx_128_to_255,
439	EF10_STAT_rx_256_to_511,
440	EF10_STAT_rx_512_to_1023,
441	EF10_STAT_rx_1024_to_15xx,
442	EF10_STAT_rx_15xx_to_jumbo,
443	EF10_STAT_rx_gtjumbo,
444	EF10_STAT_rx_bad_gtjumbo,
445	EF10_STAT_rx_overflow,
446	EF10_STAT_rx_align_error,
447	EF10_STAT_rx_length_error,
448	EF10_STAT_rx_nodesc_drops,
449	EF10_STAT_rx_pm_trunc_bb_overflow,
450	EF10_STAT_rx_pm_discard_bb_overflow,
451	EF10_STAT_rx_pm_trunc_vfifo_full,
452	EF10_STAT_rx_pm_discard_vfifo_full,
453	EF10_STAT_rx_pm_trunc_qbb,
454	EF10_STAT_rx_pm_discard_qbb,
455	EF10_STAT_rx_pm_discard_mapping,
456	EF10_STAT_rx_dp_q_disabled_packets,
457	EF10_STAT_rx_dp_di_dropped_packets,
458	EF10_STAT_rx_dp_streaming_packets,
459	EF10_STAT_rx_dp_hlb_fetch,
460	EF10_STAT_rx_dp_hlb_wait,
461	EF10_STAT_COUNT
462};
463
464/* Maximum number of TX PIO buffers we may allocate to a function.
465 * This matches the total number of buffers on each SFC9100-family
466 * controller.
467 */
468#define EF10_TX_PIOBUF_COUNT 16
469
470/**
471 * struct efx_ef10_nic_data - EF10 architecture NIC state
472 * @mcdi_buf: DMA buffer for MCDI
473 * @warm_boot_count: Last seen MC warm boot count
474 * @vi_base: Absolute index of first VI in this function
475 * @n_allocated_vis: Number of VIs allocated to this function
476 * @must_realloc_vis: Flag: VIs have yet to be reallocated after MC reboot
477 * @must_restore_filters: Flag: filters have yet to be restored after MC reboot
478 * @n_piobufs: Number of PIO buffers allocated to this function
479 * @wc_membase: Base address of write-combining mapping of the memory BAR
480 * @pio_write_base: Base address for writing PIO buffers
481 * @pio_write_vi_base: Relative VI number for @pio_write_base
482 * @piobuf_handle: Handle of each PIO buffer allocated
483 * @must_restore_piobufs: Flag: PIO buffers have yet to be restored after MC
484 *	reboot
485 * @rx_rss_context: Firmware handle for our RSS context
486 * @stats: Hardware statistics
487 * @workaround_35388: Flag: firmware supports workaround for bug 35388
488 * @must_check_datapath_caps: Flag: @datapath_caps needs to be revalidated
489 *	after MC reboot
490 * @datapath_caps: Capabilities of datapath firmware (FLAGS1 field of
491 *	%MC_CMD_GET_CAPABILITIES response)
492 */
493struct efx_ef10_nic_data {
494	struct efx_buffer mcdi_buf;
495	u16 warm_boot_count;
496	unsigned int vi_base;
497	unsigned int n_allocated_vis;
498	bool must_realloc_vis;
499	bool must_restore_filters;
500	unsigned int n_piobufs;
501	void __iomem *wc_membase, *pio_write_base;
502	unsigned int pio_write_vi_base;
503	unsigned int piobuf_handle[EF10_TX_PIOBUF_COUNT];
504	bool must_restore_piobufs;
505	u32 rx_rss_context;
506	u64 stats[EF10_STAT_COUNT];
507	bool workaround_35388;
508	bool must_check_datapath_caps;
509	u32 datapath_caps;
510};
511
512/*
513 * On the SFC9000 family each port is associated with 1 PCI physical
514 * function (PF) handled by sfc and a configurable number of virtual
515 * functions (VFs) that may be handled by some other driver, often in
516 * a VM guest.  The queue pointer registers are mapped in both PF and
517 * VF BARs such that an 8K region provides access to a single RX, TX
518 * and event queue (collectively a Virtual Interface, VI or VNIC).
519 *
520 * The PF has access to all 1024 VIs while VFs are mapped to VIs
521 * according to VI_BASE and VI_SCALE: VF i has access to VIs numbered
522 * in range [VI_BASE + i << VI_SCALE, VI_BASE + i + 1 << VI_SCALE).
523 * The number of VIs and the VI_SCALE value are configurable but must
524 * be established at boot time by firmware.
525 */
526
527/* Maximum VI_SCALE parameter supported by Siena */
528#define EFX_VI_SCALE_MAX 6
529/* Base VI to use for SR-IOV. Must be aligned to (1 << EFX_VI_SCALE_MAX),
530 * so this is the smallest allowed value. */
531#define EFX_VI_BASE 128U
532/* Maximum number of VFs allowed */
533#define EFX_VF_COUNT_MAX 127
534/* Limit EVQs on VFs to be only 8k to reduce buffer table reservation */
535#define EFX_MAX_VF_EVQ_SIZE 8192UL
536/* The number of buffer table entries reserved for each VI on a VF */
537#define EFX_VF_BUFTBL_PER_VI					\
538	((EFX_MAX_VF_EVQ_SIZE + 2 * EFX_MAX_DMAQ_SIZE) *	\
539	 sizeof(efx_qword_t) / EFX_BUF_SIZE)
540
541#ifdef CONFIG_SFC_SRIOV
542
543/* SIENA */
544static inline bool efx_siena_sriov_wanted(struct efx_nic *efx)
545{
546	return efx->vf_count != 0;
547}
548
549static inline bool efx_siena_sriov_enabled(struct efx_nic *efx)
550{
551	return efx->vf_init_count != 0;
552}
553
554static inline unsigned int efx_vf_size(struct efx_nic *efx)
555{
556	return 1 << efx->vi_scale;
557}
558
559int efx_init_sriov(void);
560void efx_siena_sriov_probe(struct efx_nic *efx);
561int efx_siena_sriov_init(struct efx_nic *efx);
562void efx_siena_sriov_mac_address_changed(struct efx_nic *efx);
563void efx_siena_sriov_tx_flush_done(struct efx_nic *efx, efx_qword_t *event);
564void efx_siena_sriov_rx_flush_done(struct efx_nic *efx, efx_qword_t *event);
565void efx_siena_sriov_event(struct efx_channel *channel, efx_qword_t *event);
566void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx, unsigned dmaq);
567void efx_siena_sriov_flr(struct efx_nic *efx, unsigned flr);
568void efx_siena_sriov_reset(struct efx_nic *efx);
569void efx_siena_sriov_fini(struct efx_nic *efx);
570void efx_fini_sriov(void);
571
572/* EF10 */
573static inline bool efx_ef10_sriov_wanted(struct efx_nic *efx) { return false; }
574static inline int efx_ef10_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
575static inline void efx_ef10_sriov_mac_address_changed(struct efx_nic *efx) {}
576static inline void efx_ef10_sriov_reset(struct efx_nic *efx) {}
577static inline void efx_ef10_sriov_fini(struct efx_nic *efx) {}
578
579#else
580
581/* SIENA */
582static inline bool efx_siena_sriov_wanted(struct efx_nic *efx) { return false; }
583static inline bool efx_siena_sriov_enabled(struct efx_nic *efx) { return false; }
584static inline unsigned int efx_vf_size(struct efx_nic *efx) { return 0; }
585static inline int efx_init_sriov(void) { return 0; }
586static inline void efx_siena_sriov_probe(struct efx_nic *efx) {}
587static inline int efx_siena_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
588static inline void efx_siena_sriov_mac_address_changed(struct efx_nic *efx) {}
589static inline void efx_siena_sriov_tx_flush_done(struct efx_nic *efx,
590						 efx_qword_t *event) {}
591static inline void efx_siena_sriov_rx_flush_done(struct efx_nic *efx,
592						 efx_qword_t *event) {}
593static inline void efx_siena_sriov_event(struct efx_channel *channel,
594					 efx_qword_t *event) {}
595static inline void efx_siena_sriov_desc_fetch_err(struct efx_nic *efx,
596						  unsigned dmaq) {}
597static inline void efx_siena_sriov_flr(struct efx_nic *efx, unsigned flr) {}
598static inline void efx_siena_sriov_reset(struct efx_nic *efx) {}
599static inline void efx_siena_sriov_fini(struct efx_nic *efx) {}
600static inline void efx_fini_sriov(void) {}
601
602/* EF10 */
603static inline bool efx_ef10_sriov_wanted(struct efx_nic *efx) { return false; }
604static inline int efx_ef10_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
605static inline void efx_ef10_sriov_mac_address_changed(struct efx_nic *efx) {}
606static inline void efx_ef10_sriov_reset(struct efx_nic *efx) {}
607static inline void efx_ef10_sriov_fini(struct efx_nic *efx) {}
608
609#endif
610
611/* FALCON */
612static inline bool efx_falcon_sriov_wanted(struct efx_nic *efx) { return false; }
613static inline int efx_falcon_sriov_init(struct efx_nic *efx) { return -EOPNOTSUPP; }
614static inline void efx_falcon_sriov_mac_address_changed(struct efx_nic *efx) {}
615static inline void efx_falcon_sriov_reset(struct efx_nic *efx) {}
616static inline void efx_falcon_sriov_fini(struct efx_nic *efx) {}
617
618int efx_siena_sriov_set_vf_mac(struct net_device *dev, int vf, u8 *mac);
619int efx_siena_sriov_set_vf_vlan(struct net_device *dev, int vf,
620				u16 vlan, u8 qos);
621int efx_siena_sriov_get_vf_config(struct net_device *dev, int vf,
622				  struct ifla_vf_info *ivf);
623int efx_siena_sriov_set_vf_spoofchk(struct net_device *net_dev, int vf,
624				    bool spoofchk);
625
626struct ethtool_ts_info;
627int efx_ptp_probe(struct efx_nic *efx, struct efx_channel *channel);
628void efx_ptp_defer_probe_with_channel(struct efx_nic *efx);
629void efx_ptp_remove(struct efx_nic *efx);
630int efx_ptp_set_ts_config(struct efx_nic *efx, struct ifreq *ifr);
631int efx_ptp_get_ts_config(struct efx_nic *efx, struct ifreq *ifr);
632void efx_ptp_get_ts_info(struct efx_nic *efx, struct ethtool_ts_info *ts_info);
633bool efx_ptp_is_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
634int efx_ptp_get_mode(struct efx_nic *efx);
635int efx_ptp_change_mode(struct efx_nic *efx, bool enable_wanted,
636			unsigned int new_mode);
637int efx_ptp_tx(struct efx_nic *efx, struct sk_buff *skb);
638void efx_ptp_event(struct efx_nic *efx, efx_qword_t *ev);
639size_t efx_ptp_describe_stats(struct efx_nic *efx, u8 *strings);
640size_t efx_ptp_update_stats(struct efx_nic *efx, u64 *stats);
641void efx_time_sync_event(struct efx_channel *channel, efx_qword_t *ev);
642void __efx_rx_skb_attach_timestamp(struct efx_channel *channel,
643				   struct sk_buff *skb);
644static inline void efx_rx_skb_attach_timestamp(struct efx_channel *channel,
645					       struct sk_buff *skb)
646{
647	if (channel->sync_events_state == SYNC_EVENTS_VALID)
648		__efx_rx_skb_attach_timestamp(channel, skb);
649}
650void efx_ptp_start_datapath(struct efx_nic *efx);
651void efx_ptp_stop_datapath(struct efx_nic *efx);
652
653extern const struct efx_nic_type falcon_a1_nic_type;
654extern const struct efx_nic_type falcon_b0_nic_type;
655extern const struct efx_nic_type siena_a0_nic_type;
656extern const struct efx_nic_type efx_hunt_a0_nic_type;
657
658/**************************************************************************
659 *
660 * Externs
661 *
662 **************************************************************************
663 */
664
665int falcon_probe_board(struct efx_nic *efx, u16 revision_info);
666
667/* TX data path */
668static inline int efx_nic_probe_tx(struct efx_tx_queue *tx_queue)
669{
670	return tx_queue->efx->type->tx_probe(tx_queue);
671}
672static inline void efx_nic_init_tx(struct efx_tx_queue *tx_queue)
673{
674	tx_queue->efx->type->tx_init(tx_queue);
675}
676static inline void efx_nic_remove_tx(struct efx_tx_queue *tx_queue)
677{
678	tx_queue->efx->type->tx_remove(tx_queue);
679}
680static inline void efx_nic_push_buffers(struct efx_tx_queue *tx_queue)
681{
682	tx_queue->efx->type->tx_write(tx_queue);
683}
684
685/* RX data path */
686static inline int efx_nic_probe_rx(struct efx_rx_queue *rx_queue)
687{
688	return rx_queue->efx->type->rx_probe(rx_queue);
689}
690static inline void efx_nic_init_rx(struct efx_rx_queue *rx_queue)
691{
692	rx_queue->efx->type->rx_init(rx_queue);
693}
694static inline void efx_nic_remove_rx(struct efx_rx_queue *rx_queue)
695{
696	rx_queue->efx->type->rx_remove(rx_queue);
697}
698static inline void efx_nic_notify_rx_desc(struct efx_rx_queue *rx_queue)
699{
700	rx_queue->efx->type->rx_write(rx_queue);
701}
702static inline void efx_nic_generate_fill_event(struct efx_rx_queue *rx_queue)
703{
704	rx_queue->efx->type->rx_defer_refill(rx_queue);
705}
706
707/* Event data path */
708static inline int efx_nic_probe_eventq(struct efx_channel *channel)
709{
710	return channel->efx->type->ev_probe(channel);
711}
712static inline int efx_nic_init_eventq(struct efx_channel *channel)
713{
714	return channel->efx->type->ev_init(channel);
715}
716static inline void efx_nic_fini_eventq(struct efx_channel *channel)
717{
718	channel->efx->type->ev_fini(channel);
719}
720static inline void efx_nic_remove_eventq(struct efx_channel *channel)
721{
722	channel->efx->type->ev_remove(channel);
723}
724static inline int
725efx_nic_process_eventq(struct efx_channel *channel, int quota)
726{
727	return channel->efx->type->ev_process(channel, quota);
728}
729static inline void efx_nic_eventq_read_ack(struct efx_channel *channel)
730{
731	channel->efx->type->ev_read_ack(channel);
732}
733void efx_nic_event_test_start(struct efx_channel *channel);
734
735/* Falcon/Siena queue operations */
736int efx_farch_tx_probe(struct efx_tx_queue *tx_queue);
737void efx_farch_tx_init(struct efx_tx_queue *tx_queue);
738void efx_farch_tx_fini(struct efx_tx_queue *tx_queue);
739void efx_farch_tx_remove(struct efx_tx_queue *tx_queue);
740void efx_farch_tx_write(struct efx_tx_queue *tx_queue);
741int efx_farch_rx_probe(struct efx_rx_queue *rx_queue);
742void efx_farch_rx_init(struct efx_rx_queue *rx_queue);
743void efx_farch_rx_fini(struct efx_rx_queue *rx_queue);
744void efx_farch_rx_remove(struct efx_rx_queue *rx_queue);
745void efx_farch_rx_write(struct efx_rx_queue *rx_queue);
746void efx_farch_rx_defer_refill(struct efx_rx_queue *rx_queue);
747int efx_farch_ev_probe(struct efx_channel *channel);
748int efx_farch_ev_init(struct efx_channel *channel);
749void efx_farch_ev_fini(struct efx_channel *channel);
750void efx_farch_ev_remove(struct efx_channel *channel);
751int efx_farch_ev_process(struct efx_channel *channel, int quota);
752void efx_farch_ev_read_ack(struct efx_channel *channel);
753void efx_farch_ev_test_generate(struct efx_channel *channel);
754
755/* Falcon/Siena filter operations */
756int efx_farch_filter_table_probe(struct efx_nic *efx);
757void efx_farch_filter_table_restore(struct efx_nic *efx);
758void efx_farch_filter_table_remove(struct efx_nic *efx);
759void efx_farch_filter_update_rx_scatter(struct efx_nic *efx);
760s32 efx_farch_filter_insert(struct efx_nic *efx, struct efx_filter_spec *spec,
761			    bool replace);
762int efx_farch_filter_remove_safe(struct efx_nic *efx,
763				 enum efx_filter_priority priority,
764				 u32 filter_id);
765int efx_farch_filter_get_safe(struct efx_nic *efx,
766			      enum efx_filter_priority priority, u32 filter_id,
767			      struct efx_filter_spec *);
768int efx_farch_filter_clear_rx(struct efx_nic *efx,
769			      enum efx_filter_priority priority);
770u32 efx_farch_filter_count_rx_used(struct efx_nic *efx,
771				   enum efx_filter_priority priority);
772u32 efx_farch_filter_get_rx_id_limit(struct efx_nic *efx);
773s32 efx_farch_filter_get_rx_ids(struct efx_nic *efx,
774				enum efx_filter_priority priority, u32 *buf,
775				u32 size);
776#ifdef CONFIG_RFS_ACCEL
777s32 efx_farch_filter_rfs_insert(struct efx_nic *efx,
778				struct efx_filter_spec *spec);
779bool efx_farch_filter_rfs_expire_one(struct efx_nic *efx, u32 flow_id,
780				     unsigned int index);
781#endif
782void efx_farch_filter_sync_rx_mode(struct efx_nic *efx);
783
784bool efx_nic_event_present(struct efx_channel *channel);
785
786/* Some statistics are computed as A - B where A and B each increase
787 * linearly with some hardware counter(s) and the counters are read
788 * asynchronously.  If the counters contributing to B are always read
789 * after those contributing to A, the computed value may be lower than
790 * the true value by some variable amount, and may decrease between
791 * subsequent computations.
792 *
793 * We should never allow statistics to decrease or to exceed the true
794 * value.  Since the computed value will never be greater than the
795 * true value, we can achieve this by only storing the computed value
796 * when it increases.
797 */
798static inline void efx_update_diff_stat(u64 *stat, u64 diff)
799{
800	if ((s64)(diff - *stat) > 0)
801		*stat = diff;
802}
803
804/* Interrupts */
805int efx_nic_init_interrupt(struct efx_nic *efx);
806void efx_nic_irq_test_start(struct efx_nic *efx);
807void efx_nic_fini_interrupt(struct efx_nic *efx);
808
809/* Falcon/Siena interrupts */
810void efx_farch_irq_enable_master(struct efx_nic *efx);
811void efx_farch_irq_test_generate(struct efx_nic *efx);
812void efx_farch_irq_disable_master(struct efx_nic *efx);
813irqreturn_t efx_farch_msi_interrupt(int irq, void *dev_id);
814irqreturn_t efx_farch_legacy_interrupt(int irq, void *dev_id);
815irqreturn_t efx_farch_fatal_interrupt(struct efx_nic *efx);
816
817static inline int efx_nic_event_test_irq_cpu(struct efx_channel *channel)
818{
819	return ACCESS_ONCE(channel->event_test_cpu);
820}
821static inline int efx_nic_irq_test_irq_cpu(struct efx_nic *efx)
822{
823	return ACCESS_ONCE(efx->last_irq_cpu);
824}
825
826/* Global Resources */
827int efx_nic_flush_queues(struct efx_nic *efx);
828void siena_prepare_flush(struct efx_nic *efx);
829int efx_farch_fini_dmaq(struct efx_nic *efx);
830void efx_farch_finish_flr(struct efx_nic *efx);
831void siena_finish_flush(struct efx_nic *efx);
832void falcon_start_nic_stats(struct efx_nic *efx);
833void falcon_stop_nic_stats(struct efx_nic *efx);
834int falcon_reset_xaui(struct efx_nic *efx);
835void efx_farch_dimension_resources(struct efx_nic *efx, unsigned sram_lim_qw);
836void efx_farch_init_common(struct efx_nic *efx);
837void efx_ef10_handle_drain_event(struct efx_nic *efx);
838void efx_farch_rx_push_indir_table(struct efx_nic *efx);
839
840int efx_nic_alloc_buffer(struct efx_nic *efx, struct efx_buffer *buffer,
841			 unsigned int len, gfp_t gfp_flags);
842void efx_nic_free_buffer(struct efx_nic *efx, struct efx_buffer *buffer);
843
844/* Tests */
845struct efx_farch_register_test {
846	unsigned address;
847	efx_oword_t mask;
848};
849int efx_farch_test_registers(struct efx_nic *efx,
850			     const struct efx_farch_register_test *regs,
851			     size_t n_regs);
852
853size_t efx_nic_get_regs_len(struct efx_nic *efx);
854void efx_nic_get_regs(struct efx_nic *efx, void *buf);
855
856size_t efx_nic_describe_stats(const struct efx_hw_stat_desc *desc, size_t count,
857			      const unsigned long *mask, u8 *names);
858void efx_nic_update_stats(const struct efx_hw_stat_desc *desc, size_t count,
859			  const unsigned long *mask, u64 *stats,
860			  const void *dma_buf, bool accumulate);
861void efx_nic_fix_nodesc_drop_stat(struct efx_nic *efx, u64 *stat);
862
863#define EFX_MAX_FLUSH_TIME 5000
864
865void efx_farch_generate_event(struct efx_nic *efx, unsigned int evq,
866			      efx_qword_t *event);
867
868#endif /* EFX_NIC_H */
869