1/*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
4 *
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 *	Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 *	Unified SMC91x driver by Nicolas Pitre
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, see <http://www.gnu.org/licenses/>.
23 *
24 * Arguments:
25 * 	io	= for the base address
26 *	irq	= for the IRQ
27 *	nowait	= 0 for normal wait states, 1 eliminates additional wait states
28 *
29 * original author:
30 * 	Erik Stahlman <erik@vt.edu>
31 *
32 * hardware multicast code:
33 *    Peter Cammaert <pc@denkart.be>
34 *
35 * contributors:
36 * 	Daris A Nevil <dnevil@snmc.com>
37 *      Nicolas Pitre <nico@fluxnic.net>
38 *	Russell King <rmk@arm.linux.org.uk>
39 *
40 * History:
41 *   08/20/00  Arnaldo Melo       fix kfree(skb) in smc_hardware_send_packet
42 *   12/15/00  Christian Jullien  fix "Warning: kfree_skb on hard IRQ"
43 *   03/16/01  Daris A Nevil      modified smc9194.c for use with LAN91C111
44 *   08/22/01  Scott Anderson     merge changes from smc9194 to smc91111
45 *   08/21/01  Pramod B Bhardwaj  added support for RevB of LAN91C111
46 *   12/20/01  Jeff Sutherland    initial port to Xscale PXA with DMA support
47 *   04/07/03  Nicolas Pitre      unified SMC91x driver, killed irq races,
48 *                                more bus abstraction, big cleanup, etc.
49 *   29/09/03  Russell King       - add driver model support
50 *                                - ethtool support
51 *                                - convert to use generic MII interface
52 *                                - add link up/down notification
53 *                                - don't try to handle full negotiation in
54 *                                  smc_phy_configure
55 *                                - clean up (and fix stack overrun) in PHY
56 *                                  MII read/write functions
57 *   22/09/04  Nicolas Pitre      big update (see commit log for details)
58 */
59static const char version[] =
60	"smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>";
61
62/* Debugging level */
63#ifndef SMC_DEBUG
64#define SMC_DEBUG		0
65#endif
66
67
68#include <linux/module.h>
69#include <linux/kernel.h>
70#include <linux/sched.h>
71#include <linux/delay.h>
72#include <linux/interrupt.h>
73#include <linux/irq.h>
74#include <linux/errno.h>
75#include <linux/ioport.h>
76#include <linux/crc32.h>
77#include <linux/platform_device.h>
78#include <linux/spinlock.h>
79#include <linux/ethtool.h>
80#include <linux/mii.h>
81#include <linux/workqueue.h>
82#include <linux/of.h>
83#include <linux/of_device.h>
84#include <linux/of_gpio.h>
85
86#include <linux/netdevice.h>
87#include <linux/etherdevice.h>
88#include <linux/skbuff.h>
89
90#include <asm/io.h>
91
92#include "smc91x.h"
93
94#if defined(CONFIG_ASSABET_NEPONSET)
95#include <mach/assabet.h>
96#include <mach/neponset.h>
97#endif
98
99#ifndef SMC_NOWAIT
100# define SMC_NOWAIT		0
101#endif
102static int nowait = SMC_NOWAIT;
103module_param(nowait, int, 0400);
104MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
105
106/*
107 * Transmit timeout, default 5 seconds.
108 */
109static int watchdog = 1000;
110module_param(watchdog, int, 0400);
111MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
112
113MODULE_LICENSE("GPL");
114MODULE_ALIAS("platform:smc91x");
115
116/*
117 * The internal workings of the driver.  If you are changing anything
118 * here with the SMC stuff, you should have the datasheet and know
119 * what you are doing.
120 */
121#define CARDNAME "smc91x"
122
123/*
124 * Use power-down feature of the chip
125 */
126#define POWER_DOWN		1
127
128/*
129 * Wait time for memory to be free.  This probably shouldn't be
130 * tuned that much, as waiting for this means nothing else happens
131 * in the system
132 */
133#define MEMORY_WAIT_TIME	16
134
135/*
136 * The maximum number of processing loops allowed for each call to the
137 * IRQ handler.
138 */
139#define MAX_IRQ_LOOPS		8
140
141/*
142 * This selects whether TX packets are sent one by one to the SMC91x internal
143 * memory and throttled until transmission completes.  This may prevent
144 * RX overruns a litle by keeping much of the memory free for RX packets
145 * but to the expense of reduced TX throughput and increased IRQ overhead.
146 * Note this is not a cure for a too slow data bus or too high IRQ latency.
147 */
148#define THROTTLE_TX_PKTS	0
149
150/*
151 * The MII clock high/low times.  2x this number gives the MII clock period
152 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
153 */
154#define MII_DELAY		1
155
156#define DBG(n, dev, fmt, ...)					\
157	do {							\
158		if (SMC_DEBUG >= (n))				\
159			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
160	} while (0)
161
162#define PRINTK(dev, fmt, ...)					\
163	do {							\
164		if (SMC_DEBUG > 0)				\
165			netdev_info(dev, fmt, ##__VA_ARGS__);	\
166		else						\
167			netdev_dbg(dev, fmt, ##__VA_ARGS__);	\
168	} while (0)
169
170#if SMC_DEBUG > 3
171static void PRINT_PKT(u_char *buf, int length)
172{
173	int i;
174	int remainder;
175	int lines;
176
177	lines = length / 16;
178	remainder = length % 16;
179
180	for (i = 0; i < lines ; i ++) {
181		int cur;
182		printk(KERN_DEBUG);
183		for (cur = 0; cur < 8; cur++) {
184			u_char a, b;
185			a = *buf++;
186			b = *buf++;
187			pr_cont("%02x%02x ", a, b);
188		}
189		pr_cont("\n");
190	}
191	printk(KERN_DEBUG);
192	for (i = 0; i < remainder/2 ; i++) {
193		u_char a, b;
194		a = *buf++;
195		b = *buf++;
196		pr_cont("%02x%02x ", a, b);
197	}
198	pr_cont("\n");
199}
200#else
201static inline void PRINT_PKT(u_char *buf, int length) { }
202#endif
203
204
205/* this enables an interrupt in the interrupt mask register */
206#define SMC_ENABLE_INT(lp, x) do {					\
207	unsigned char mask;						\
208	unsigned long smc_enable_flags;					\
209	spin_lock_irqsave(&lp->lock, smc_enable_flags);			\
210	mask = SMC_GET_INT_MASK(lp);					\
211	mask |= (x);							\
212	SMC_SET_INT_MASK(lp, mask);					\
213	spin_unlock_irqrestore(&lp->lock, smc_enable_flags);		\
214} while (0)
215
216/* this disables an interrupt from the interrupt mask register */
217#define SMC_DISABLE_INT(lp, x) do {					\
218	unsigned char mask;						\
219	unsigned long smc_disable_flags;				\
220	spin_lock_irqsave(&lp->lock, smc_disable_flags);		\
221	mask = SMC_GET_INT_MASK(lp);					\
222	mask &= ~(x);							\
223	SMC_SET_INT_MASK(lp, mask);					\
224	spin_unlock_irqrestore(&lp->lock, smc_disable_flags);		\
225} while (0)
226
227/*
228 * Wait while MMU is busy.  This is usually in the order of a few nanosecs
229 * if at all, but let's avoid deadlocking the system if the hardware
230 * decides to go south.
231 */
232#define SMC_WAIT_MMU_BUSY(lp) do {					\
233	if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) {		\
234		unsigned long timeout = jiffies + 2;			\
235		while (SMC_GET_MMU_CMD(lp) & MC_BUSY) {		\
236			if (time_after(jiffies, timeout)) {		\
237				netdev_dbg(dev, "timeout %s line %d\n",	\
238					   __FILE__, __LINE__);		\
239				break;					\
240			}						\
241			cpu_relax();					\
242		}							\
243	}								\
244} while (0)
245
246
247/*
248 * this does a soft reset on the device
249 */
250static void smc_reset(struct net_device *dev)
251{
252	struct smc_local *lp = netdev_priv(dev);
253	void __iomem *ioaddr = lp->base;
254	unsigned int ctl, cfg;
255	struct sk_buff *pending_skb;
256
257	DBG(2, dev, "%s\n", __func__);
258
259	/* Disable all interrupts, block TX tasklet */
260	spin_lock_irq(&lp->lock);
261	SMC_SELECT_BANK(lp, 2);
262	SMC_SET_INT_MASK(lp, 0);
263	pending_skb = lp->pending_tx_skb;
264	lp->pending_tx_skb = NULL;
265	spin_unlock_irq(&lp->lock);
266
267	/* free any pending tx skb */
268	if (pending_skb) {
269		dev_kfree_skb(pending_skb);
270		dev->stats.tx_errors++;
271		dev->stats.tx_aborted_errors++;
272	}
273
274	/*
275	 * This resets the registers mostly to defaults, but doesn't
276	 * affect EEPROM.  That seems unnecessary
277	 */
278	SMC_SELECT_BANK(lp, 0);
279	SMC_SET_RCR(lp, RCR_SOFTRST);
280
281	/*
282	 * Setup the Configuration Register
283	 * This is necessary because the CONFIG_REG is not affected
284	 * by a soft reset
285	 */
286	SMC_SELECT_BANK(lp, 1);
287
288	cfg = CONFIG_DEFAULT;
289
290	/*
291	 * Setup for fast accesses if requested.  If the card/system
292	 * can't handle it then there will be no recovery except for
293	 * a hard reset or power cycle
294	 */
295	if (lp->cfg.flags & SMC91X_NOWAIT)
296		cfg |= CONFIG_NO_WAIT;
297
298	/*
299	 * Release from possible power-down state
300	 * Configuration register is not affected by Soft Reset
301	 */
302	cfg |= CONFIG_EPH_POWER_EN;
303
304	SMC_SET_CONFIG(lp, cfg);
305
306	/* this should pause enough for the chip to be happy */
307	/*
308	 * elaborate?  What does the chip _need_? --jgarzik
309	 *
310	 * This seems to be undocumented, but something the original
311	 * driver(s) have always done.  Suspect undocumented timing
312	 * info/determined empirically. --rmk
313	 */
314	udelay(1);
315
316	/* Disable transmit and receive functionality */
317	SMC_SELECT_BANK(lp, 0);
318	SMC_SET_RCR(lp, RCR_CLEAR);
319	SMC_SET_TCR(lp, TCR_CLEAR);
320
321	SMC_SELECT_BANK(lp, 1);
322	ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
323
324	/*
325	 * Set the control register to automatically release successfully
326	 * transmitted packets, to make the best use out of our limited
327	 * memory
328	 */
329	if(!THROTTLE_TX_PKTS)
330		ctl |= CTL_AUTO_RELEASE;
331	else
332		ctl &= ~CTL_AUTO_RELEASE;
333	SMC_SET_CTL(lp, ctl);
334
335	/* Reset the MMU */
336	SMC_SELECT_BANK(lp, 2);
337	SMC_SET_MMU_CMD(lp, MC_RESET);
338	SMC_WAIT_MMU_BUSY(lp);
339}
340
341/*
342 * Enable Interrupts, Receive, and Transmit
343 */
344static void smc_enable(struct net_device *dev)
345{
346	struct smc_local *lp = netdev_priv(dev);
347	void __iomem *ioaddr = lp->base;
348	int mask;
349
350	DBG(2, dev, "%s\n", __func__);
351
352	/* see the header file for options in TCR/RCR DEFAULT */
353	SMC_SELECT_BANK(lp, 0);
354	SMC_SET_TCR(lp, lp->tcr_cur_mode);
355	SMC_SET_RCR(lp, lp->rcr_cur_mode);
356
357	SMC_SELECT_BANK(lp, 1);
358	SMC_SET_MAC_ADDR(lp, dev->dev_addr);
359
360	/* now, enable interrupts */
361	mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
362	if (lp->version >= (CHIP_91100 << 4))
363		mask |= IM_MDINT;
364	SMC_SELECT_BANK(lp, 2);
365	SMC_SET_INT_MASK(lp, mask);
366
367	/*
368	 * From this point the register bank must _NOT_ be switched away
369	 * to something else than bank 2 without proper locking against
370	 * races with any tasklet or interrupt handlers until smc_shutdown()
371	 * or smc_reset() is called.
372	 */
373}
374
375/*
376 * this puts the device in an inactive state
377 */
378static void smc_shutdown(struct net_device *dev)
379{
380	struct smc_local *lp = netdev_priv(dev);
381	void __iomem *ioaddr = lp->base;
382	struct sk_buff *pending_skb;
383
384	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
385
386	/* no more interrupts for me */
387	spin_lock_irq(&lp->lock);
388	SMC_SELECT_BANK(lp, 2);
389	SMC_SET_INT_MASK(lp, 0);
390	pending_skb = lp->pending_tx_skb;
391	lp->pending_tx_skb = NULL;
392	spin_unlock_irq(&lp->lock);
393	if (pending_skb)
394		dev_kfree_skb(pending_skb);
395
396	/* and tell the card to stay away from that nasty outside world */
397	SMC_SELECT_BANK(lp, 0);
398	SMC_SET_RCR(lp, RCR_CLEAR);
399	SMC_SET_TCR(lp, TCR_CLEAR);
400
401#ifdef POWER_DOWN
402	/* finally, shut the chip down */
403	SMC_SELECT_BANK(lp, 1);
404	SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
405#endif
406}
407
408/*
409 * This is the procedure to handle the receipt of a packet.
410 */
411static inline void  smc_rcv(struct net_device *dev)
412{
413	struct smc_local *lp = netdev_priv(dev);
414	void __iomem *ioaddr = lp->base;
415	unsigned int packet_number, status, packet_len;
416
417	DBG(3, dev, "%s\n", __func__);
418
419	packet_number = SMC_GET_RXFIFO(lp);
420	if (unlikely(packet_number & RXFIFO_REMPTY)) {
421		PRINTK(dev, "smc_rcv with nothing on FIFO.\n");
422		return;
423	}
424
425	/* read from start of packet */
426	SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
427
428	/* First two words are status and packet length */
429	SMC_GET_PKT_HDR(lp, status, packet_len);
430	packet_len &= 0x07ff;  /* mask off top bits */
431	DBG(2, dev, "RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
432	    packet_number, status, packet_len, packet_len);
433
434	back:
435	if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
436		if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
437			/* accept VLAN packets */
438			status &= ~RS_TOOLONG;
439			goto back;
440		}
441		if (packet_len < 6) {
442			/* bloody hardware */
443			netdev_err(dev, "fubar (rxlen %u status %x\n",
444				   packet_len, status);
445			status |= RS_TOOSHORT;
446		}
447		SMC_WAIT_MMU_BUSY(lp);
448		SMC_SET_MMU_CMD(lp, MC_RELEASE);
449		dev->stats.rx_errors++;
450		if (status & RS_ALGNERR)
451			dev->stats.rx_frame_errors++;
452		if (status & (RS_TOOSHORT | RS_TOOLONG))
453			dev->stats.rx_length_errors++;
454		if (status & RS_BADCRC)
455			dev->stats.rx_crc_errors++;
456	} else {
457		struct sk_buff *skb;
458		unsigned char *data;
459		unsigned int data_len;
460
461		/* set multicast stats */
462		if (status & RS_MULTICAST)
463			dev->stats.multicast++;
464
465		/*
466		 * Actual payload is packet_len - 6 (or 5 if odd byte).
467		 * We want skb_reserve(2) and the final ctrl word
468		 * (2 bytes, possibly containing the payload odd byte).
469		 * Furthermore, we add 2 bytes to allow rounding up to
470		 * multiple of 4 bytes on 32 bit buses.
471		 * Hence packet_len - 6 + 2 + 2 + 2.
472		 */
473		skb = netdev_alloc_skb(dev, packet_len);
474		if (unlikely(skb == NULL)) {
475			SMC_WAIT_MMU_BUSY(lp);
476			SMC_SET_MMU_CMD(lp, MC_RELEASE);
477			dev->stats.rx_dropped++;
478			return;
479		}
480
481		/* Align IP header to 32 bits */
482		skb_reserve(skb, 2);
483
484		/* BUG: the LAN91C111 rev A never sets this bit. Force it. */
485		if (lp->version == 0x90)
486			status |= RS_ODDFRAME;
487
488		/*
489		 * If odd length: packet_len - 5,
490		 * otherwise packet_len - 6.
491		 * With the trailing ctrl byte it's packet_len - 4.
492		 */
493		data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
494		data = skb_put(skb, data_len);
495		SMC_PULL_DATA(lp, data, packet_len - 4);
496
497		SMC_WAIT_MMU_BUSY(lp);
498		SMC_SET_MMU_CMD(lp, MC_RELEASE);
499
500		PRINT_PKT(data, packet_len - 4);
501
502		skb->protocol = eth_type_trans(skb, dev);
503		netif_rx(skb);
504		dev->stats.rx_packets++;
505		dev->stats.rx_bytes += data_len;
506	}
507}
508
509#ifdef CONFIG_SMP
510/*
511 * On SMP we have the following problem:
512 *
513 * 	A = smc_hardware_send_pkt()
514 * 	B = smc_hard_start_xmit()
515 * 	C = smc_interrupt()
516 *
517 * A and B can never be executed simultaneously.  However, at least on UP,
518 * it is possible (and even desirable) for C to interrupt execution of
519 * A or B in order to have better RX reliability and avoid overruns.
520 * C, just like A and B, must have exclusive access to the chip and
521 * each of them must lock against any other concurrent access.
522 * Unfortunately this is not possible to have C suspend execution of A or
523 * B taking place on another CPU. On UP this is no an issue since A and B
524 * are run from softirq context and C from hard IRQ context, and there is
525 * no other CPU where concurrent access can happen.
526 * If ever there is a way to force at least B and C to always be executed
527 * on the same CPU then we could use read/write locks to protect against
528 * any other concurrent access and C would always interrupt B. But life
529 * isn't that easy in a SMP world...
530 */
531#define smc_special_trylock(lock, flags)				\
532({									\
533	int __ret;							\
534	local_irq_save(flags);						\
535	__ret = spin_trylock(lock);					\
536	if (!__ret)							\
537		local_irq_restore(flags);				\
538	__ret;								\
539})
540#define smc_special_lock(lock, flags)		spin_lock_irqsave(lock, flags)
541#define smc_special_unlock(lock, flags) 	spin_unlock_irqrestore(lock, flags)
542#else
543#define smc_special_trylock(lock, flags)	(flags == flags)
544#define smc_special_lock(lock, flags)   	do { flags = 0; } while (0)
545#define smc_special_unlock(lock, flags)	do { flags = 0; } while (0)
546#endif
547
548/*
549 * This is called to actually send a packet to the chip.
550 */
551static void smc_hardware_send_pkt(unsigned long data)
552{
553	struct net_device *dev = (struct net_device *)data;
554	struct smc_local *lp = netdev_priv(dev);
555	void __iomem *ioaddr = lp->base;
556	struct sk_buff *skb;
557	unsigned int packet_no, len;
558	unsigned char *buf;
559	unsigned long flags;
560
561	DBG(3, dev, "%s\n", __func__);
562
563	if (!smc_special_trylock(&lp->lock, flags)) {
564		netif_stop_queue(dev);
565		tasklet_schedule(&lp->tx_task);
566		return;
567	}
568
569	skb = lp->pending_tx_skb;
570	if (unlikely(!skb)) {
571		smc_special_unlock(&lp->lock, flags);
572		return;
573	}
574	lp->pending_tx_skb = NULL;
575
576	packet_no = SMC_GET_AR(lp);
577	if (unlikely(packet_no & AR_FAILED)) {
578		netdev_err(dev, "Memory allocation failed.\n");
579		dev->stats.tx_errors++;
580		dev->stats.tx_fifo_errors++;
581		smc_special_unlock(&lp->lock, flags);
582		goto done;
583	}
584
585	/* point to the beginning of the packet */
586	SMC_SET_PN(lp, packet_no);
587	SMC_SET_PTR(lp, PTR_AUTOINC);
588
589	buf = skb->data;
590	len = skb->len;
591	DBG(2, dev, "TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
592	    packet_no, len, len, buf);
593	PRINT_PKT(buf, len);
594
595	/*
596	 * Send the packet length (+6 for status words, length, and ctl.
597	 * The card will pad to 64 bytes with zeroes if packet is too small.
598	 */
599	SMC_PUT_PKT_HDR(lp, 0, len + 6);
600
601	/* send the actual data */
602	SMC_PUSH_DATA(lp, buf, len & ~1);
603
604	/* Send final ctl word with the last byte if there is one */
605	SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
606
607	/*
608	 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
609	 * have the effect of having at most one packet queued for TX
610	 * in the chip's memory at all time.
611	 *
612	 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
613	 * when memory allocation (MC_ALLOC) does not succeed right away.
614	 */
615	if (THROTTLE_TX_PKTS)
616		netif_stop_queue(dev);
617
618	/* queue the packet for TX */
619	SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
620	smc_special_unlock(&lp->lock, flags);
621
622	dev->trans_start = jiffies;
623	dev->stats.tx_packets++;
624	dev->stats.tx_bytes += len;
625
626	SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
627
628done:	if (!THROTTLE_TX_PKTS)
629		netif_wake_queue(dev);
630
631	dev_consume_skb_any(skb);
632}
633
634/*
635 * Since I am not sure if I will have enough room in the chip's ram
636 * to store the packet, I call this routine which either sends it
637 * now, or set the card to generates an interrupt when ready
638 * for the packet.
639 */
640static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
641{
642	struct smc_local *lp = netdev_priv(dev);
643	void __iomem *ioaddr = lp->base;
644	unsigned int numPages, poll_count, status;
645	unsigned long flags;
646
647	DBG(3, dev, "%s\n", __func__);
648
649	BUG_ON(lp->pending_tx_skb != NULL);
650
651	/*
652	 * The MMU wants the number of pages to be the number of 256 bytes
653	 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
654	 *
655	 * The 91C111 ignores the size bits, but earlier models don't.
656	 *
657	 * Pkt size for allocating is data length +6 (for additional status
658	 * words, length and ctl)
659	 *
660	 * If odd size then last byte is included in ctl word.
661	 */
662	numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
663	if (unlikely(numPages > 7)) {
664		netdev_warn(dev, "Far too big packet error.\n");
665		dev->stats.tx_errors++;
666		dev->stats.tx_dropped++;
667		dev_kfree_skb_any(skb);
668		return NETDEV_TX_OK;
669	}
670
671	smc_special_lock(&lp->lock, flags);
672
673	/* now, try to allocate the memory */
674	SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
675
676	/*
677	 * Poll the chip for a short amount of time in case the
678	 * allocation succeeds quickly.
679	 */
680	poll_count = MEMORY_WAIT_TIME;
681	do {
682		status = SMC_GET_INT(lp);
683		if (status & IM_ALLOC_INT) {
684			SMC_ACK_INT(lp, IM_ALLOC_INT);
685  			break;
686		}
687   	} while (--poll_count);
688
689	smc_special_unlock(&lp->lock, flags);
690
691	lp->pending_tx_skb = skb;
692   	if (!poll_count) {
693		/* oh well, wait until the chip finds memory later */
694		netif_stop_queue(dev);
695		DBG(2, dev, "TX memory allocation deferred.\n");
696		SMC_ENABLE_INT(lp, IM_ALLOC_INT);
697   	} else {
698		/*
699		 * Allocation succeeded: push packet to the chip's own memory
700		 * immediately.
701		 */
702		smc_hardware_send_pkt((unsigned long)dev);
703	}
704
705	return NETDEV_TX_OK;
706}
707
708/*
709 * This handles a TX interrupt, which is only called when:
710 * - a TX error occurred, or
711 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
712 */
713static void smc_tx(struct net_device *dev)
714{
715	struct smc_local *lp = netdev_priv(dev);
716	void __iomem *ioaddr = lp->base;
717	unsigned int saved_packet, packet_no, tx_status, pkt_len;
718
719	DBG(3, dev, "%s\n", __func__);
720
721	/* If the TX FIFO is empty then nothing to do */
722	packet_no = SMC_GET_TXFIFO(lp);
723	if (unlikely(packet_no & TXFIFO_TEMPTY)) {
724		PRINTK(dev, "smc_tx with nothing on FIFO.\n");
725		return;
726	}
727
728	/* select packet to read from */
729	saved_packet = SMC_GET_PN(lp);
730	SMC_SET_PN(lp, packet_no);
731
732	/* read the first word (status word) from this packet */
733	SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
734	SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
735	DBG(2, dev, "TX STATUS 0x%04x PNR 0x%02x\n",
736	    tx_status, packet_no);
737
738	if (!(tx_status & ES_TX_SUC))
739		dev->stats.tx_errors++;
740
741	if (tx_status & ES_LOSTCARR)
742		dev->stats.tx_carrier_errors++;
743
744	if (tx_status & (ES_LATCOL | ES_16COL)) {
745		PRINTK(dev, "%s occurred on last xmit\n",
746		       (tx_status & ES_LATCOL) ?
747			"late collision" : "too many collisions");
748		dev->stats.tx_window_errors++;
749		if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
750			netdev_info(dev, "unexpectedly large number of bad collisions. Please check duplex setting.\n");
751		}
752	}
753
754	/* kill the packet */
755	SMC_WAIT_MMU_BUSY(lp);
756	SMC_SET_MMU_CMD(lp, MC_FREEPKT);
757
758	/* Don't restore Packet Number Reg until busy bit is cleared */
759	SMC_WAIT_MMU_BUSY(lp);
760	SMC_SET_PN(lp, saved_packet);
761
762	/* re-enable transmit */
763	SMC_SELECT_BANK(lp, 0);
764	SMC_SET_TCR(lp, lp->tcr_cur_mode);
765	SMC_SELECT_BANK(lp, 2);
766}
767
768
769/*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
770
771static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
772{
773	struct smc_local *lp = netdev_priv(dev);
774	void __iomem *ioaddr = lp->base;
775	unsigned int mii_reg, mask;
776
777	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
778	mii_reg |= MII_MDOE;
779
780	for (mask = 1 << (bits - 1); mask; mask >>= 1) {
781		if (val & mask)
782			mii_reg |= MII_MDO;
783		else
784			mii_reg &= ~MII_MDO;
785
786		SMC_SET_MII(lp, mii_reg);
787		udelay(MII_DELAY);
788		SMC_SET_MII(lp, mii_reg | MII_MCLK);
789		udelay(MII_DELAY);
790	}
791}
792
793static unsigned int smc_mii_in(struct net_device *dev, int bits)
794{
795	struct smc_local *lp = netdev_priv(dev);
796	void __iomem *ioaddr = lp->base;
797	unsigned int mii_reg, mask, val;
798
799	mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
800	SMC_SET_MII(lp, mii_reg);
801
802	for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
803		if (SMC_GET_MII(lp) & MII_MDI)
804			val |= mask;
805
806		SMC_SET_MII(lp, mii_reg);
807		udelay(MII_DELAY);
808		SMC_SET_MII(lp, mii_reg | MII_MCLK);
809		udelay(MII_DELAY);
810	}
811
812	return val;
813}
814
815/*
816 * Reads a register from the MII Management serial interface
817 */
818static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
819{
820	struct smc_local *lp = netdev_priv(dev);
821	void __iomem *ioaddr = lp->base;
822	unsigned int phydata;
823
824	SMC_SELECT_BANK(lp, 3);
825
826	/* Idle - 32 ones */
827	smc_mii_out(dev, 0xffffffff, 32);
828
829	/* Start code (01) + read (10) + phyaddr + phyreg */
830	smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
831
832	/* Turnaround (2bits) + phydata */
833	phydata = smc_mii_in(dev, 18);
834
835	/* Return to idle state */
836	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
837
838	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
839	    __func__, phyaddr, phyreg, phydata);
840
841	SMC_SELECT_BANK(lp, 2);
842	return phydata;
843}
844
845/*
846 * Writes a register to the MII Management serial interface
847 */
848static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
849			  int phydata)
850{
851	struct smc_local *lp = netdev_priv(dev);
852	void __iomem *ioaddr = lp->base;
853
854	SMC_SELECT_BANK(lp, 3);
855
856	/* Idle - 32 ones */
857	smc_mii_out(dev, 0xffffffff, 32);
858
859	/* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
860	smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
861
862	/* Return to idle state */
863	SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
864
865	DBG(3, dev, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
866	    __func__, phyaddr, phyreg, phydata);
867
868	SMC_SELECT_BANK(lp, 2);
869}
870
871/*
872 * Finds and reports the PHY address
873 */
874static void smc_phy_detect(struct net_device *dev)
875{
876	struct smc_local *lp = netdev_priv(dev);
877	int phyaddr;
878
879	DBG(2, dev, "%s\n", __func__);
880
881	lp->phy_type = 0;
882
883	/*
884	 * Scan all 32 PHY addresses if necessary, starting at
885	 * PHY#1 to PHY#31, and then PHY#0 last.
886	 */
887	for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
888		unsigned int id1, id2;
889
890		/* Read the PHY identifiers */
891		id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
892		id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
893
894		DBG(3, dev, "phy_id1=0x%x, phy_id2=0x%x\n",
895		    id1, id2);
896
897		/* Make sure it is a valid identifier */
898		if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
899		    id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
900			/* Save the PHY's address */
901			lp->mii.phy_id = phyaddr & 31;
902			lp->phy_type = id1 << 16 | id2;
903			break;
904		}
905	}
906}
907
908/*
909 * Sets the PHY to a configuration as determined by the user
910 */
911static int smc_phy_fixed(struct net_device *dev)
912{
913	struct smc_local *lp = netdev_priv(dev);
914	void __iomem *ioaddr = lp->base;
915	int phyaddr = lp->mii.phy_id;
916	int bmcr, cfg1;
917
918	DBG(3, dev, "%s\n", __func__);
919
920	/* Enter Link Disable state */
921	cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
922	cfg1 |= PHY_CFG1_LNKDIS;
923	smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
924
925	/*
926	 * Set our fixed capabilities
927	 * Disable auto-negotiation
928	 */
929	bmcr = 0;
930
931	if (lp->ctl_rfduplx)
932		bmcr |= BMCR_FULLDPLX;
933
934	if (lp->ctl_rspeed == 100)
935		bmcr |= BMCR_SPEED100;
936
937	/* Write our capabilities to the phy control register */
938	smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
939
940	/* Re-Configure the Receive/Phy Control register */
941	SMC_SELECT_BANK(lp, 0);
942	SMC_SET_RPC(lp, lp->rpc_cur_mode);
943	SMC_SELECT_BANK(lp, 2);
944
945	return 1;
946}
947
948/**
949 * smc_phy_reset - reset the phy
950 * @dev: net device
951 * @phy: phy address
952 *
953 * Issue a software reset for the specified PHY and
954 * wait up to 100ms for the reset to complete.  We should
955 * not access the PHY for 50ms after issuing the reset.
956 *
957 * The time to wait appears to be dependent on the PHY.
958 *
959 * Must be called with lp->lock locked.
960 */
961static int smc_phy_reset(struct net_device *dev, int phy)
962{
963	struct smc_local *lp = netdev_priv(dev);
964	unsigned int bmcr;
965	int timeout;
966
967	smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
968
969	for (timeout = 2; timeout; timeout--) {
970		spin_unlock_irq(&lp->lock);
971		msleep(50);
972		spin_lock_irq(&lp->lock);
973
974		bmcr = smc_phy_read(dev, phy, MII_BMCR);
975		if (!(bmcr & BMCR_RESET))
976			break;
977	}
978
979	return bmcr & BMCR_RESET;
980}
981
982/**
983 * smc_phy_powerdown - powerdown phy
984 * @dev: net device
985 *
986 * Power down the specified PHY
987 */
988static void smc_phy_powerdown(struct net_device *dev)
989{
990	struct smc_local *lp = netdev_priv(dev);
991	unsigned int bmcr;
992	int phy = lp->mii.phy_id;
993
994	if (lp->phy_type == 0)
995		return;
996
997	/* We need to ensure that no calls to smc_phy_configure are
998	   pending.
999	*/
1000	cancel_work_sync(&lp->phy_configure);
1001
1002	bmcr = smc_phy_read(dev, phy, MII_BMCR);
1003	smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1004}
1005
1006/**
1007 * smc_phy_check_media - check the media status and adjust TCR
1008 * @dev: net device
1009 * @init: set true for initialisation
1010 *
1011 * Select duplex mode depending on negotiation state.  This
1012 * also updates our carrier state.
1013 */
1014static void smc_phy_check_media(struct net_device *dev, int init)
1015{
1016	struct smc_local *lp = netdev_priv(dev);
1017	void __iomem *ioaddr = lp->base;
1018
1019	if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1020		/* duplex state has changed */
1021		if (lp->mii.full_duplex) {
1022			lp->tcr_cur_mode |= TCR_SWFDUP;
1023		} else {
1024			lp->tcr_cur_mode &= ~TCR_SWFDUP;
1025		}
1026
1027		SMC_SELECT_BANK(lp, 0);
1028		SMC_SET_TCR(lp, lp->tcr_cur_mode);
1029	}
1030}
1031
1032/*
1033 * Configures the specified PHY through the MII management interface
1034 * using Autonegotiation.
1035 * Calls smc_phy_fixed() if the user has requested a certain config.
1036 * If RPC ANEG bit is set, the media selection is dependent purely on
1037 * the selection by the MII (either in the MII BMCR reg or the result
1038 * of autonegotiation.)  If the RPC ANEG bit is cleared, the selection
1039 * is controlled by the RPC SPEED and RPC DPLX bits.
1040 */
1041static void smc_phy_configure(struct work_struct *work)
1042{
1043	struct smc_local *lp =
1044		container_of(work, struct smc_local, phy_configure);
1045	struct net_device *dev = lp->dev;
1046	void __iomem *ioaddr = lp->base;
1047	int phyaddr = lp->mii.phy_id;
1048	int my_phy_caps; /* My PHY capabilities */
1049	int my_ad_caps; /* My Advertised capabilities */
1050	int status;
1051
1052	DBG(3, dev, "smc_program_phy()\n");
1053
1054	spin_lock_irq(&lp->lock);
1055
1056	/*
1057	 * We should not be called if phy_type is zero.
1058	 */
1059	if (lp->phy_type == 0)
1060		goto smc_phy_configure_exit;
1061
1062	if (smc_phy_reset(dev, phyaddr)) {
1063		netdev_info(dev, "PHY reset timed out\n");
1064		goto smc_phy_configure_exit;
1065	}
1066
1067	/*
1068	 * Enable PHY Interrupts (for register 18)
1069	 * Interrupts listed here are disabled
1070	 */
1071	smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1072		PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1073		PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1074		PHY_INT_SPDDET | PHY_INT_DPLXDET);
1075
1076	/* Configure the Receive/Phy Control register */
1077	SMC_SELECT_BANK(lp, 0);
1078	SMC_SET_RPC(lp, lp->rpc_cur_mode);
1079
1080	/* If the user requested no auto neg, then go set his request */
1081	if (lp->mii.force_media) {
1082		smc_phy_fixed(dev);
1083		goto smc_phy_configure_exit;
1084	}
1085
1086	/* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1087	my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1088
1089	if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1090		netdev_info(dev, "Auto negotiation NOT supported\n");
1091		smc_phy_fixed(dev);
1092		goto smc_phy_configure_exit;
1093	}
1094
1095	my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1096
1097	if (my_phy_caps & BMSR_100BASE4)
1098		my_ad_caps |= ADVERTISE_100BASE4;
1099	if (my_phy_caps & BMSR_100FULL)
1100		my_ad_caps |= ADVERTISE_100FULL;
1101	if (my_phy_caps & BMSR_100HALF)
1102		my_ad_caps |= ADVERTISE_100HALF;
1103	if (my_phy_caps & BMSR_10FULL)
1104		my_ad_caps |= ADVERTISE_10FULL;
1105	if (my_phy_caps & BMSR_10HALF)
1106		my_ad_caps |= ADVERTISE_10HALF;
1107
1108	/* Disable capabilities not selected by our user */
1109	if (lp->ctl_rspeed != 100)
1110		my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1111
1112	if (!lp->ctl_rfduplx)
1113		my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1114
1115	/* Update our Auto-Neg Advertisement Register */
1116	smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1117	lp->mii.advertising = my_ad_caps;
1118
1119	/*
1120	 * Read the register back.  Without this, it appears that when
1121	 * auto-negotiation is restarted, sometimes it isn't ready and
1122	 * the link does not come up.
1123	 */
1124	status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1125
1126	DBG(2, dev, "phy caps=%x\n", my_phy_caps);
1127	DBG(2, dev, "phy advertised caps=%x\n", my_ad_caps);
1128
1129	/* Restart auto-negotiation process in order to advertise my caps */
1130	smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1131
1132	smc_phy_check_media(dev, 1);
1133
1134smc_phy_configure_exit:
1135	SMC_SELECT_BANK(lp, 2);
1136	spin_unlock_irq(&lp->lock);
1137}
1138
1139/*
1140 * smc_phy_interrupt
1141 *
1142 * Purpose:  Handle interrupts relating to PHY register 18. This is
1143 *  called from the "hard" interrupt handler under our private spinlock.
1144 */
1145static void smc_phy_interrupt(struct net_device *dev)
1146{
1147	struct smc_local *lp = netdev_priv(dev);
1148	int phyaddr = lp->mii.phy_id;
1149	int phy18;
1150
1151	DBG(2, dev, "%s\n", __func__);
1152
1153	if (lp->phy_type == 0)
1154		return;
1155
1156	for(;;) {
1157		smc_phy_check_media(dev, 0);
1158
1159		/* Read PHY Register 18, Status Output */
1160		phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1161		if ((phy18 & PHY_INT_INT) == 0)
1162			break;
1163	}
1164}
1165
1166/*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1167
1168static void smc_10bt_check_media(struct net_device *dev, int init)
1169{
1170	struct smc_local *lp = netdev_priv(dev);
1171	void __iomem *ioaddr = lp->base;
1172	unsigned int old_carrier, new_carrier;
1173
1174	old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1175
1176	SMC_SELECT_BANK(lp, 0);
1177	new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1178	SMC_SELECT_BANK(lp, 2);
1179
1180	if (init || (old_carrier != new_carrier)) {
1181		if (!new_carrier) {
1182			netif_carrier_off(dev);
1183		} else {
1184			netif_carrier_on(dev);
1185		}
1186		if (netif_msg_link(lp))
1187			netdev_info(dev, "link %s\n",
1188				    new_carrier ? "up" : "down");
1189	}
1190}
1191
1192static void smc_eph_interrupt(struct net_device *dev)
1193{
1194	struct smc_local *lp = netdev_priv(dev);
1195	void __iomem *ioaddr = lp->base;
1196	unsigned int ctl;
1197
1198	smc_10bt_check_media(dev, 0);
1199
1200	SMC_SELECT_BANK(lp, 1);
1201	ctl = SMC_GET_CTL(lp);
1202	SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1203	SMC_SET_CTL(lp, ctl);
1204	SMC_SELECT_BANK(lp, 2);
1205}
1206
1207/*
1208 * This is the main routine of the driver, to handle the device when
1209 * it needs some attention.
1210 */
1211static irqreturn_t smc_interrupt(int irq, void *dev_id)
1212{
1213	struct net_device *dev = dev_id;
1214	struct smc_local *lp = netdev_priv(dev);
1215	void __iomem *ioaddr = lp->base;
1216	int status, mask, timeout, card_stats;
1217	int saved_pointer;
1218
1219	DBG(3, dev, "%s\n", __func__);
1220
1221	spin_lock(&lp->lock);
1222
1223	/* A preamble may be used when there is a potential race
1224	 * between the interruptible transmit functions and this
1225	 * ISR. */
1226	SMC_INTERRUPT_PREAMBLE;
1227
1228	saved_pointer = SMC_GET_PTR(lp);
1229	mask = SMC_GET_INT_MASK(lp);
1230	SMC_SET_INT_MASK(lp, 0);
1231
1232	/* set a timeout value, so I don't stay here forever */
1233	timeout = MAX_IRQ_LOOPS;
1234
1235	do {
1236		status = SMC_GET_INT(lp);
1237
1238		DBG(2, dev, "INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1239		    status, mask,
1240		    ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1241		       meminfo = SMC_GET_MIR(lp);
1242		       SMC_SELECT_BANK(lp, 2); meminfo; }),
1243		    SMC_GET_FIFO(lp));
1244
1245		status &= mask;
1246		if (!status)
1247			break;
1248
1249		if (status & IM_TX_INT) {
1250			/* do this before RX as it will free memory quickly */
1251			DBG(3, dev, "TX int\n");
1252			smc_tx(dev);
1253			SMC_ACK_INT(lp, IM_TX_INT);
1254			if (THROTTLE_TX_PKTS)
1255				netif_wake_queue(dev);
1256		} else if (status & IM_RCV_INT) {
1257			DBG(3, dev, "RX irq\n");
1258			smc_rcv(dev);
1259		} else if (status & IM_ALLOC_INT) {
1260			DBG(3, dev, "Allocation irq\n");
1261			tasklet_hi_schedule(&lp->tx_task);
1262			mask &= ~IM_ALLOC_INT;
1263		} else if (status & IM_TX_EMPTY_INT) {
1264			DBG(3, dev, "TX empty\n");
1265			mask &= ~IM_TX_EMPTY_INT;
1266
1267			/* update stats */
1268			SMC_SELECT_BANK(lp, 0);
1269			card_stats = SMC_GET_COUNTER(lp);
1270			SMC_SELECT_BANK(lp, 2);
1271
1272			/* single collisions */
1273			dev->stats.collisions += card_stats & 0xF;
1274			card_stats >>= 4;
1275
1276			/* multiple collisions */
1277			dev->stats.collisions += card_stats & 0xF;
1278		} else if (status & IM_RX_OVRN_INT) {
1279			DBG(1, dev, "RX overrun (EPH_ST 0x%04x)\n",
1280			    ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1281			       eph_st = SMC_GET_EPH_STATUS(lp);
1282			       SMC_SELECT_BANK(lp, 2); eph_st; }));
1283			SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1284			dev->stats.rx_errors++;
1285			dev->stats.rx_fifo_errors++;
1286		} else if (status & IM_EPH_INT) {
1287			smc_eph_interrupt(dev);
1288		} else if (status & IM_MDINT) {
1289			SMC_ACK_INT(lp, IM_MDINT);
1290			smc_phy_interrupt(dev);
1291		} else if (status & IM_ERCV_INT) {
1292			SMC_ACK_INT(lp, IM_ERCV_INT);
1293			PRINTK(dev, "UNSUPPORTED: ERCV INTERRUPT\n");
1294		}
1295	} while (--timeout);
1296
1297	/* restore register states */
1298	SMC_SET_PTR(lp, saved_pointer);
1299	SMC_SET_INT_MASK(lp, mask);
1300	spin_unlock(&lp->lock);
1301
1302#ifndef CONFIG_NET_POLL_CONTROLLER
1303	if (timeout == MAX_IRQ_LOOPS)
1304		PRINTK(dev, "spurious interrupt (mask = 0x%02x)\n",
1305		       mask);
1306#endif
1307	DBG(3, dev, "Interrupt done (%d loops)\n",
1308	    MAX_IRQ_LOOPS - timeout);
1309
1310	/*
1311	 * We return IRQ_HANDLED unconditionally here even if there was
1312	 * nothing to do.  There is a possibility that a packet might
1313	 * get enqueued into the chip right after TX_EMPTY_INT is raised
1314	 * but just before the CPU acknowledges the IRQ.
1315	 * Better take an unneeded IRQ in some occasions than complexifying
1316	 * the code for all cases.
1317	 */
1318	return IRQ_HANDLED;
1319}
1320
1321#ifdef CONFIG_NET_POLL_CONTROLLER
1322/*
1323 * Polling receive - used by netconsole and other diagnostic tools
1324 * to allow network i/o with interrupts disabled.
1325 */
1326static void smc_poll_controller(struct net_device *dev)
1327{
1328	disable_irq(dev->irq);
1329	smc_interrupt(dev->irq, dev);
1330	enable_irq(dev->irq);
1331}
1332#endif
1333
1334/* Our watchdog timed out. Called by the networking layer */
1335static void smc_timeout(struct net_device *dev)
1336{
1337	struct smc_local *lp = netdev_priv(dev);
1338	void __iomem *ioaddr = lp->base;
1339	int status, mask, eph_st, meminfo, fifo;
1340
1341	DBG(2, dev, "%s\n", __func__);
1342
1343	spin_lock_irq(&lp->lock);
1344	status = SMC_GET_INT(lp);
1345	mask = SMC_GET_INT_MASK(lp);
1346	fifo = SMC_GET_FIFO(lp);
1347	SMC_SELECT_BANK(lp, 0);
1348	eph_st = SMC_GET_EPH_STATUS(lp);
1349	meminfo = SMC_GET_MIR(lp);
1350	SMC_SELECT_BANK(lp, 2);
1351	spin_unlock_irq(&lp->lock);
1352	PRINTK(dev, "TX timeout (INT 0x%02x INTMASK 0x%02x MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1353	       status, mask, meminfo, fifo, eph_st);
1354
1355	smc_reset(dev);
1356	smc_enable(dev);
1357
1358	/*
1359	 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1360	 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1361	 * which calls schedule().  Hence we use a work queue.
1362	 */
1363	if (lp->phy_type != 0)
1364		schedule_work(&lp->phy_configure);
1365
1366	/* We can accept TX packets again */
1367	dev->trans_start = jiffies; /* prevent tx timeout */
1368	netif_wake_queue(dev);
1369}
1370
1371/*
1372 * This routine will, depending on the values passed to it,
1373 * either make it accept multicast packets, go into
1374 * promiscuous mode (for TCPDUMP and cousins) or accept
1375 * a select set of multicast packets
1376 */
1377static void smc_set_multicast_list(struct net_device *dev)
1378{
1379	struct smc_local *lp = netdev_priv(dev);
1380	void __iomem *ioaddr = lp->base;
1381	unsigned char multicast_table[8];
1382	int update_multicast = 0;
1383
1384	DBG(2, dev, "%s\n", __func__);
1385
1386	if (dev->flags & IFF_PROMISC) {
1387		DBG(2, dev, "RCR_PRMS\n");
1388		lp->rcr_cur_mode |= RCR_PRMS;
1389	}
1390
1391/* BUG?  I never disable promiscuous mode if multicasting was turned on.
1392   Now, I turn off promiscuous mode, but I don't do anything to multicasting
1393   when promiscuous mode is turned on.
1394*/
1395
1396	/*
1397	 * Here, I am setting this to accept all multicast packets.
1398	 * I don't need to zero the multicast table, because the flag is
1399	 * checked before the table is
1400	 */
1401	else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1402		DBG(2, dev, "RCR_ALMUL\n");
1403		lp->rcr_cur_mode |= RCR_ALMUL;
1404	}
1405
1406	/*
1407	 * This sets the internal hardware table to filter out unwanted
1408	 * multicast packets before they take up memory.
1409	 *
1410	 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1411	 * address are the offset into the table.  If that bit is 1, then the
1412	 * multicast packet is accepted.  Otherwise, it's dropped silently.
1413	 *
1414	 * To use the 6 bits as an offset into the table, the high 3 bits are
1415	 * the number of the 8 bit register, while the low 3 bits are the bit
1416	 * within that register.
1417	 */
1418	else if (!netdev_mc_empty(dev)) {
1419		struct netdev_hw_addr *ha;
1420
1421		/* table for flipping the order of 3 bits */
1422		static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1423
1424		/* start with a table of all zeros: reject all */
1425		memset(multicast_table, 0, sizeof(multicast_table));
1426
1427		netdev_for_each_mc_addr(ha, dev) {
1428			int position;
1429
1430			/* only use the low order bits */
1431			position = crc32_le(~0, ha->addr, 6) & 0x3f;
1432
1433			/* do some messy swapping to put the bit in the right spot */
1434			multicast_table[invert3[position&7]] |=
1435				(1<<invert3[(position>>3)&7]);
1436		}
1437
1438		/* be sure I get rid of flags I might have set */
1439		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1440
1441		/* now, the table can be loaded into the chipset */
1442		update_multicast = 1;
1443	} else  {
1444		DBG(2, dev, "~(RCR_PRMS|RCR_ALMUL)\n");
1445		lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1446
1447		/*
1448		 * since I'm disabling all multicast entirely, I need to
1449		 * clear the multicast list
1450		 */
1451		memset(multicast_table, 0, sizeof(multicast_table));
1452		update_multicast = 1;
1453	}
1454
1455	spin_lock_irq(&lp->lock);
1456	SMC_SELECT_BANK(lp, 0);
1457	SMC_SET_RCR(lp, lp->rcr_cur_mode);
1458	if (update_multicast) {
1459		SMC_SELECT_BANK(lp, 3);
1460		SMC_SET_MCAST(lp, multicast_table);
1461	}
1462	SMC_SELECT_BANK(lp, 2);
1463	spin_unlock_irq(&lp->lock);
1464}
1465
1466
1467/*
1468 * Open and Initialize the board
1469 *
1470 * Set up everything, reset the card, etc..
1471 */
1472static int
1473smc_open(struct net_device *dev)
1474{
1475	struct smc_local *lp = netdev_priv(dev);
1476
1477	DBG(2, dev, "%s\n", __func__);
1478
1479	/* Setup the default Register Modes */
1480	lp->tcr_cur_mode = TCR_DEFAULT;
1481	lp->rcr_cur_mode = RCR_DEFAULT;
1482	lp->rpc_cur_mode = RPC_DEFAULT |
1483				lp->cfg.leda << RPC_LSXA_SHFT |
1484				lp->cfg.ledb << RPC_LSXB_SHFT;
1485
1486	/*
1487	 * If we are not using a MII interface, we need to
1488	 * monitor our own carrier signal to detect faults.
1489	 */
1490	if (lp->phy_type == 0)
1491		lp->tcr_cur_mode |= TCR_MON_CSN;
1492
1493	/* reset the hardware */
1494	smc_reset(dev);
1495	smc_enable(dev);
1496
1497	/* Configure the PHY, initialize the link state */
1498	if (lp->phy_type != 0)
1499		smc_phy_configure(&lp->phy_configure);
1500	else {
1501		spin_lock_irq(&lp->lock);
1502		smc_10bt_check_media(dev, 1);
1503		spin_unlock_irq(&lp->lock);
1504	}
1505
1506	netif_start_queue(dev);
1507	return 0;
1508}
1509
1510/*
1511 * smc_close
1512 *
1513 * this makes the board clean up everything that it can
1514 * and not talk to the outside world.   Caused by
1515 * an 'ifconfig ethX down'
1516 */
1517static int smc_close(struct net_device *dev)
1518{
1519	struct smc_local *lp = netdev_priv(dev);
1520
1521	DBG(2, dev, "%s\n", __func__);
1522
1523	netif_stop_queue(dev);
1524	netif_carrier_off(dev);
1525
1526	/* clear everything */
1527	smc_shutdown(dev);
1528	tasklet_kill(&lp->tx_task);
1529	smc_phy_powerdown(dev);
1530	return 0;
1531}
1532
1533/*
1534 * Ethtool support
1535 */
1536static int
1537smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1538{
1539	struct smc_local *lp = netdev_priv(dev);
1540	int ret;
1541
1542	cmd->maxtxpkt = 1;
1543	cmd->maxrxpkt = 1;
1544
1545	if (lp->phy_type != 0) {
1546		spin_lock_irq(&lp->lock);
1547		ret = mii_ethtool_gset(&lp->mii, cmd);
1548		spin_unlock_irq(&lp->lock);
1549	} else {
1550		cmd->supported = SUPPORTED_10baseT_Half |
1551				 SUPPORTED_10baseT_Full |
1552				 SUPPORTED_TP | SUPPORTED_AUI;
1553
1554		if (lp->ctl_rspeed == 10)
1555			ethtool_cmd_speed_set(cmd, SPEED_10);
1556		else if (lp->ctl_rspeed == 100)
1557			ethtool_cmd_speed_set(cmd, SPEED_100);
1558
1559		cmd->autoneg = AUTONEG_DISABLE;
1560		cmd->transceiver = XCVR_INTERNAL;
1561		cmd->port = 0;
1562		cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1563
1564		ret = 0;
1565	}
1566
1567	return ret;
1568}
1569
1570static int
1571smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1572{
1573	struct smc_local *lp = netdev_priv(dev);
1574	int ret;
1575
1576	if (lp->phy_type != 0) {
1577		spin_lock_irq(&lp->lock);
1578		ret = mii_ethtool_sset(&lp->mii, cmd);
1579		spin_unlock_irq(&lp->lock);
1580	} else {
1581		if (cmd->autoneg != AUTONEG_DISABLE ||
1582		    cmd->speed != SPEED_10 ||
1583		    (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1584		    (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1585			return -EINVAL;
1586
1587//		lp->port = cmd->port;
1588		lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1589
1590//		if (netif_running(dev))
1591//			smc_set_port(dev);
1592
1593		ret = 0;
1594	}
1595
1596	return ret;
1597}
1598
1599static void
1600smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1601{
1602	strlcpy(info->driver, CARDNAME, sizeof(info->driver));
1603	strlcpy(info->version, version, sizeof(info->version));
1604	strlcpy(info->bus_info, dev_name(dev->dev.parent),
1605		sizeof(info->bus_info));
1606}
1607
1608static int smc_ethtool_nwayreset(struct net_device *dev)
1609{
1610	struct smc_local *lp = netdev_priv(dev);
1611	int ret = -EINVAL;
1612
1613	if (lp->phy_type != 0) {
1614		spin_lock_irq(&lp->lock);
1615		ret = mii_nway_restart(&lp->mii);
1616		spin_unlock_irq(&lp->lock);
1617	}
1618
1619	return ret;
1620}
1621
1622static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1623{
1624	struct smc_local *lp = netdev_priv(dev);
1625	return lp->msg_enable;
1626}
1627
1628static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1629{
1630	struct smc_local *lp = netdev_priv(dev);
1631	lp->msg_enable = level;
1632}
1633
1634static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1635{
1636	u16 ctl;
1637	struct smc_local *lp = netdev_priv(dev);
1638	void __iomem *ioaddr = lp->base;
1639
1640	spin_lock_irq(&lp->lock);
1641	/* load word into GP register */
1642	SMC_SELECT_BANK(lp, 1);
1643	SMC_SET_GP(lp, word);
1644	/* set the address to put the data in EEPROM */
1645	SMC_SELECT_BANK(lp, 2);
1646	SMC_SET_PTR(lp, addr);
1647	/* tell it to write */
1648	SMC_SELECT_BANK(lp, 1);
1649	ctl = SMC_GET_CTL(lp);
1650	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1651	/* wait for it to finish */
1652	do {
1653		udelay(1);
1654	} while (SMC_GET_CTL(lp) & CTL_STORE);
1655	/* clean up */
1656	SMC_SET_CTL(lp, ctl);
1657	SMC_SELECT_BANK(lp, 2);
1658	spin_unlock_irq(&lp->lock);
1659	return 0;
1660}
1661
1662static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1663{
1664	u16 ctl;
1665	struct smc_local *lp = netdev_priv(dev);
1666	void __iomem *ioaddr = lp->base;
1667
1668	spin_lock_irq(&lp->lock);
1669	/* set the EEPROM address to get the data from */
1670	SMC_SELECT_BANK(lp, 2);
1671	SMC_SET_PTR(lp, addr | PTR_READ);
1672	/* tell it to load */
1673	SMC_SELECT_BANK(lp, 1);
1674	SMC_SET_GP(lp, 0xffff);	/* init to known */
1675	ctl = SMC_GET_CTL(lp);
1676	SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1677	/* wait for it to finish */
1678	do {
1679		udelay(1);
1680	} while (SMC_GET_CTL(lp) & CTL_RELOAD);
1681	/* read word from GP register */
1682	*word = SMC_GET_GP(lp);
1683	/* clean up */
1684	SMC_SET_CTL(lp, ctl);
1685	SMC_SELECT_BANK(lp, 2);
1686	spin_unlock_irq(&lp->lock);
1687	return 0;
1688}
1689
1690static int smc_ethtool_geteeprom_len(struct net_device *dev)
1691{
1692	return 0x23 * 2;
1693}
1694
1695static int smc_ethtool_geteeprom(struct net_device *dev,
1696		struct ethtool_eeprom *eeprom, u8 *data)
1697{
1698	int i;
1699	int imax;
1700
1701	DBG(1, dev, "Reading %d bytes at %d(0x%x)\n",
1702		eeprom->len, eeprom->offset, eeprom->offset);
1703	imax = smc_ethtool_geteeprom_len(dev);
1704	for (i = 0; i < eeprom->len; i += 2) {
1705		int ret;
1706		u16 wbuf;
1707		int offset = i + eeprom->offset;
1708		if (offset > imax)
1709			break;
1710		ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1711		if (ret != 0)
1712			return ret;
1713		DBG(2, dev, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1714		data[i] = (wbuf >> 8) & 0xff;
1715		data[i+1] = wbuf & 0xff;
1716	}
1717	return 0;
1718}
1719
1720static int smc_ethtool_seteeprom(struct net_device *dev,
1721		struct ethtool_eeprom *eeprom, u8 *data)
1722{
1723	int i;
1724	int imax;
1725
1726	DBG(1, dev, "Writing %d bytes to %d(0x%x)\n",
1727	    eeprom->len, eeprom->offset, eeprom->offset);
1728	imax = smc_ethtool_geteeprom_len(dev);
1729	for (i = 0; i < eeprom->len; i += 2) {
1730		int ret;
1731		u16 wbuf;
1732		int offset = i + eeprom->offset;
1733		if (offset > imax)
1734			break;
1735		wbuf = (data[i] << 8) | data[i + 1];
1736		DBG(2, dev, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1737		ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1738		if (ret != 0)
1739			return ret;
1740	}
1741	return 0;
1742}
1743
1744
1745static const struct ethtool_ops smc_ethtool_ops = {
1746	.get_settings	= smc_ethtool_getsettings,
1747	.set_settings	= smc_ethtool_setsettings,
1748	.get_drvinfo	= smc_ethtool_getdrvinfo,
1749
1750	.get_msglevel	= smc_ethtool_getmsglevel,
1751	.set_msglevel	= smc_ethtool_setmsglevel,
1752	.nway_reset	= smc_ethtool_nwayreset,
1753	.get_link	= ethtool_op_get_link,
1754	.get_eeprom_len = smc_ethtool_geteeprom_len,
1755	.get_eeprom	= smc_ethtool_geteeprom,
1756	.set_eeprom	= smc_ethtool_seteeprom,
1757};
1758
1759static const struct net_device_ops smc_netdev_ops = {
1760	.ndo_open		= smc_open,
1761	.ndo_stop		= smc_close,
1762	.ndo_start_xmit		= smc_hard_start_xmit,
1763	.ndo_tx_timeout		= smc_timeout,
1764	.ndo_set_rx_mode	= smc_set_multicast_list,
1765	.ndo_change_mtu		= eth_change_mtu,
1766	.ndo_validate_addr	= eth_validate_addr,
1767	.ndo_set_mac_address 	= eth_mac_addr,
1768#ifdef CONFIG_NET_POLL_CONTROLLER
1769	.ndo_poll_controller	= smc_poll_controller,
1770#endif
1771};
1772
1773/*
1774 * smc_findirq
1775 *
1776 * This routine has a simple purpose -- make the SMC chip generate an
1777 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1778 */
1779/*
1780 * does this still work?
1781 *
1782 * I just deleted auto_irq.c, since it was never built...
1783 *   --jgarzik
1784 */
1785static int smc_findirq(struct smc_local *lp)
1786{
1787	void __iomem *ioaddr = lp->base;
1788	int timeout = 20;
1789	unsigned long cookie;
1790
1791	DBG(2, lp->dev, "%s: %s\n", CARDNAME, __func__);
1792
1793	cookie = probe_irq_on();
1794
1795	/*
1796	 * What I try to do here is trigger an ALLOC_INT. This is done
1797	 * by allocating a small chunk of memory, which will give an interrupt
1798	 * when done.
1799	 */
1800	/* enable ALLOCation interrupts ONLY */
1801	SMC_SELECT_BANK(lp, 2);
1802	SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1803
1804	/*
1805 	 * Allocate 512 bytes of memory.  Note that the chip was just
1806	 * reset so all the memory is available
1807	 */
1808	SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1809
1810	/*
1811	 * Wait until positive that the interrupt has been generated
1812	 */
1813	do {
1814		int int_status;
1815		udelay(10);
1816		int_status = SMC_GET_INT(lp);
1817		if (int_status & IM_ALLOC_INT)
1818			break;		/* got the interrupt */
1819	} while (--timeout);
1820
1821	/*
1822	 * there is really nothing that I can do here if timeout fails,
1823	 * as autoirq_report will return a 0 anyway, which is what I
1824	 * want in this case.   Plus, the clean up is needed in both
1825	 * cases.
1826	 */
1827
1828	/* and disable all interrupts again */
1829	SMC_SET_INT_MASK(lp, 0);
1830
1831	/* and return what I found */
1832	return probe_irq_off(cookie);
1833}
1834
1835/*
1836 * Function: smc_probe(unsigned long ioaddr)
1837 *
1838 * Purpose:
1839 *	Tests to see if a given ioaddr points to an SMC91x chip.
1840 *	Returns a 0 on success
1841 *
1842 * Algorithm:
1843 *	(1) see if the high byte of BANK_SELECT is 0x33
1844 * 	(2) compare the ioaddr with the base register's address
1845 *	(3) see if I recognize the chip ID in the appropriate register
1846 *
1847 * Here I do typical initialization tasks.
1848 *
1849 * o  Initialize the structure if needed
1850 * o  print out my vanity message if not done so already
1851 * o  print out what type of hardware is detected
1852 * o  print out the ethernet address
1853 * o  find the IRQ
1854 * o  set up my private data
1855 * o  configure the dev structure with my subroutines
1856 * o  actually GRAB the irq.
1857 * o  GRAB the region
1858 */
1859static int smc_probe(struct net_device *dev, void __iomem *ioaddr,
1860		     unsigned long irq_flags)
1861{
1862	struct smc_local *lp = netdev_priv(dev);
1863	int retval;
1864	unsigned int val, revision_register;
1865	const char *version_string;
1866
1867	DBG(2, dev, "%s: %s\n", CARDNAME, __func__);
1868
1869	/* First, see if the high byte is 0x33 */
1870	val = SMC_CURRENT_BANK(lp);
1871	DBG(2, dev, "%s: bank signature probe returned 0x%04x\n",
1872	    CARDNAME, val);
1873	if ((val & 0xFF00) != 0x3300) {
1874		if ((val & 0xFF) == 0x33) {
1875			netdev_warn(dev,
1876				    "%s: Detected possible byte-swapped interface at IOADDR %p\n",
1877				    CARDNAME, ioaddr);
1878		}
1879		retval = -ENODEV;
1880		goto err_out;
1881	}
1882
1883	/*
1884	 * The above MIGHT indicate a device, but I need to write to
1885	 * further test this.
1886	 */
1887	SMC_SELECT_BANK(lp, 0);
1888	val = SMC_CURRENT_BANK(lp);
1889	if ((val & 0xFF00) != 0x3300) {
1890		retval = -ENODEV;
1891		goto err_out;
1892	}
1893
1894	/*
1895	 * well, we've already written once, so hopefully another
1896	 * time won't hurt.  This time, I need to switch the bank
1897	 * register to bank 1, so I can access the base address
1898	 * register
1899	 */
1900	SMC_SELECT_BANK(lp, 1);
1901	val = SMC_GET_BASE(lp);
1902	val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1903	if (((unsigned long)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1904		netdev_warn(dev, "%s: IOADDR %p doesn't match configuration (%x).\n",
1905			    CARDNAME, ioaddr, val);
1906	}
1907
1908	/*
1909	 * check if the revision register is something that I
1910	 * recognize.  These might need to be added to later,
1911	 * as future revisions could be added.
1912	 */
1913	SMC_SELECT_BANK(lp, 3);
1914	revision_register = SMC_GET_REV(lp);
1915	DBG(2, dev, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1916	version_string = chip_ids[ (revision_register >> 4) & 0xF];
1917	if (!version_string || (revision_register & 0xff00) != 0x3300) {
1918		/* I don't recognize this chip, so... */
1919		netdev_warn(dev, "%s: IO %p: Unrecognized revision register 0x%04x, Contact author.\n",
1920			    CARDNAME, ioaddr, revision_register);
1921
1922		retval = -ENODEV;
1923		goto err_out;
1924	}
1925
1926	/* At this point I'll assume that the chip is an SMC91x. */
1927	pr_info_once("%s\n", version);
1928
1929	/* fill in some of the fields */
1930	dev->base_addr = (unsigned long)ioaddr;
1931	lp->base = ioaddr;
1932	lp->version = revision_register & 0xff;
1933	spin_lock_init(&lp->lock);
1934
1935	/* Get the MAC address */
1936	SMC_SELECT_BANK(lp, 1);
1937	SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1938
1939	/* now, reset the chip, and put it into a known state */
1940	smc_reset(dev);
1941
1942	/*
1943	 * If dev->irq is 0, then the device has to be banged on to see
1944	 * what the IRQ is.
1945	 *
1946	 * This banging doesn't always detect the IRQ, for unknown reasons.
1947	 * a workaround is to reset the chip and try again.
1948	 *
1949	 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1950	 * be what is requested on the command line.   I don't do that, mostly
1951	 * because the card that I have uses a non-standard method of accessing
1952	 * the IRQs, and because this _should_ work in most configurations.
1953	 *
1954	 * Specifying an IRQ is done with the assumption that the user knows
1955	 * what (s)he is doing.  No checking is done!!!!
1956	 */
1957	if (dev->irq < 1) {
1958		int trials;
1959
1960		trials = 3;
1961		while (trials--) {
1962			dev->irq = smc_findirq(lp);
1963			if (dev->irq)
1964				break;
1965			/* kick the card and try again */
1966			smc_reset(dev);
1967		}
1968	}
1969	if (dev->irq == 0) {
1970		netdev_warn(dev, "Couldn't autodetect your IRQ. Use irq=xx.\n");
1971		retval = -ENODEV;
1972		goto err_out;
1973	}
1974	dev->irq = irq_canonicalize(dev->irq);
1975
1976	dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1977	dev->netdev_ops = &smc_netdev_ops;
1978	dev->ethtool_ops = &smc_ethtool_ops;
1979
1980	tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1981	INIT_WORK(&lp->phy_configure, smc_phy_configure);
1982	lp->dev = dev;
1983	lp->mii.phy_id_mask = 0x1f;
1984	lp->mii.reg_num_mask = 0x1f;
1985	lp->mii.force_media = 0;
1986	lp->mii.full_duplex = 0;
1987	lp->mii.dev = dev;
1988	lp->mii.mdio_read = smc_phy_read;
1989	lp->mii.mdio_write = smc_phy_write;
1990
1991	/*
1992	 * Locate the phy, if any.
1993	 */
1994	if (lp->version >= (CHIP_91100 << 4))
1995		smc_phy_detect(dev);
1996
1997	/* then shut everything down to save power */
1998	smc_shutdown(dev);
1999	smc_phy_powerdown(dev);
2000
2001	/* Set default parameters */
2002	lp->msg_enable = NETIF_MSG_LINK;
2003	lp->ctl_rfduplx = 0;
2004	lp->ctl_rspeed = 10;
2005
2006	if (lp->version >= (CHIP_91100 << 4)) {
2007		lp->ctl_rfduplx = 1;
2008		lp->ctl_rspeed = 100;
2009	}
2010
2011	/* Grab the IRQ */
2012	retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2013      	if (retval)
2014      		goto err_out;
2015
2016#ifdef CONFIG_ARCH_PXA
2017#  ifdef SMC_USE_PXA_DMA
2018	lp->cfg.flags |= SMC91X_USE_DMA;
2019#  endif
2020	if (lp->cfg.flags & SMC91X_USE_DMA) {
2021		int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2022					  smc_pxa_dma_irq, NULL);
2023		if (dma >= 0)
2024			dev->dma = dma;
2025	}
2026#endif
2027
2028	retval = register_netdev(dev);
2029	if (retval == 0) {
2030		/* now, print out the card info, in a short format.. */
2031		netdev_info(dev, "%s (rev %d) at %p IRQ %d",
2032			    version_string, revision_register & 0x0f,
2033			    lp->base, dev->irq);
2034
2035		if (dev->dma != (unsigned char)-1)
2036			pr_cont(" DMA %d", dev->dma);
2037
2038		pr_cont("%s%s\n",
2039			lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2040			THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2041
2042		if (!is_valid_ether_addr(dev->dev_addr)) {
2043			netdev_warn(dev, "Invalid ethernet MAC address. Please set using ifconfig\n");
2044		} else {
2045			/* Print the Ethernet address */
2046			netdev_info(dev, "Ethernet addr: %pM\n",
2047				    dev->dev_addr);
2048		}
2049
2050		if (lp->phy_type == 0) {
2051			PRINTK(dev, "No PHY found\n");
2052		} else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2053			PRINTK(dev, "PHY LAN83C183 (LAN91C111 Internal)\n");
2054		} else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2055			PRINTK(dev, "PHY LAN83C180\n");
2056		}
2057	}
2058
2059err_out:
2060#ifdef CONFIG_ARCH_PXA
2061	if (retval && dev->dma != (unsigned char)-1)
2062		pxa_free_dma(dev->dma);
2063#endif
2064	return retval;
2065}
2066
2067static int smc_enable_device(struct platform_device *pdev)
2068{
2069	struct net_device *ndev = platform_get_drvdata(pdev);
2070	struct smc_local *lp = netdev_priv(ndev);
2071	unsigned long flags;
2072	unsigned char ecor, ecsr;
2073	void __iomem *addr;
2074	struct resource * res;
2075
2076	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2077	if (!res)
2078		return 0;
2079
2080	/*
2081	 * Map the attribute space.  This is overkill, but clean.
2082	 */
2083	addr = ioremap(res->start, ATTRIB_SIZE);
2084	if (!addr)
2085		return -ENOMEM;
2086
2087	/*
2088	 * Reset the device.  We must disable IRQs around this
2089	 * since a reset causes the IRQ line become active.
2090	 */
2091	local_irq_save(flags);
2092	ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2093	writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2094	readb(addr + (ECOR << SMC_IO_SHIFT));
2095
2096	/*
2097	 * Wait 100us for the chip to reset.
2098	 */
2099	udelay(100);
2100
2101	/*
2102	 * The device will ignore all writes to the enable bit while
2103	 * reset is asserted, even if the reset bit is cleared in the
2104	 * same write.  Must clear reset first, then enable the device.
2105	 */
2106	writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2107	writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2108
2109	/*
2110	 * Set the appropriate byte/word mode.
2111	 */
2112	ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2113	if (!SMC_16BIT(lp))
2114		ecsr |= ECSR_IOIS8;
2115	writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2116	local_irq_restore(flags);
2117
2118	iounmap(addr);
2119
2120	/*
2121	 * Wait for the chip to wake up.  We could poll the control
2122	 * register in the main register space, but that isn't mapped
2123	 * yet.  We know this is going to take 750us.
2124	 */
2125	msleep(1);
2126
2127	return 0;
2128}
2129
2130static int smc_request_attrib(struct platform_device *pdev,
2131			      struct net_device *ndev)
2132{
2133	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2134	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2135
2136	if (!res)
2137		return 0;
2138
2139	if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2140		return -EBUSY;
2141
2142	return 0;
2143}
2144
2145static void smc_release_attrib(struct platform_device *pdev,
2146			       struct net_device *ndev)
2147{
2148	struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2149	struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2150
2151	if (res)
2152		release_mem_region(res->start, ATTRIB_SIZE);
2153}
2154
2155static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2156{
2157	if (SMC_CAN_USE_DATACS) {
2158		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2159		struct smc_local *lp = netdev_priv(ndev);
2160
2161		if (!res)
2162			return;
2163
2164		if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2165			netdev_info(ndev, "%s: failed to request datacs memory region.\n",
2166				    CARDNAME);
2167			return;
2168		}
2169
2170		lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2171	}
2172}
2173
2174static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2175{
2176	if (SMC_CAN_USE_DATACS) {
2177		struct smc_local *lp = netdev_priv(ndev);
2178		struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2179
2180		if (lp->datacs)
2181			iounmap(lp->datacs);
2182
2183		lp->datacs = NULL;
2184
2185		if (res)
2186			release_mem_region(res->start, SMC_DATA_EXTENT);
2187	}
2188}
2189
2190#if IS_BUILTIN(CONFIG_OF)
2191static const struct of_device_id smc91x_match[] = {
2192	{ .compatible = "smsc,lan91c94", },
2193	{ .compatible = "smsc,lan91c111", },
2194	{},
2195};
2196MODULE_DEVICE_TABLE(of, smc91x_match);
2197
2198/**
2199 * of_try_set_control_gpio - configure a gpio if it exists
2200 */
2201static int try_toggle_control_gpio(struct device *dev,
2202				   struct gpio_desc **desc,
2203				   const char *name, int index,
2204				   int value, unsigned int nsdelay)
2205{
2206	struct gpio_desc *gpio = *desc;
2207	enum gpiod_flags flags = value ? GPIOD_OUT_LOW : GPIOD_OUT_HIGH;
2208
2209	gpio = devm_gpiod_get_index_optional(dev, name, index, flags);
2210	if (IS_ERR(gpio))
2211		return PTR_ERR(gpio);
2212
2213	if (gpio) {
2214		if (nsdelay)
2215			usleep_range(nsdelay, 2 * nsdelay);
2216		gpiod_set_value_cansleep(gpio, value);
2217	}
2218	*desc = gpio;
2219
2220	return 0;
2221}
2222#endif
2223
2224/*
2225 * smc_init(void)
2226 *   Input parameters:
2227 *	dev->base_addr == 0, try to find all possible locations
2228 *	dev->base_addr > 0x1ff, this is the address to check
2229 *	dev->base_addr == <anything else>, return failure code
2230 *
2231 *   Output:
2232 *	0 --> there is a device
2233 *	anything else, error
2234 */
2235static int smc_drv_probe(struct platform_device *pdev)
2236{
2237	struct smc91x_platdata *pd = dev_get_platdata(&pdev->dev);
2238	const struct of_device_id *match = NULL;
2239	struct smc_local *lp;
2240	struct net_device *ndev;
2241	struct resource *res;
2242	unsigned int __iomem *addr;
2243	unsigned long irq_flags = SMC_IRQ_FLAGS;
2244	unsigned long irq_resflags;
2245	int ret;
2246
2247	ndev = alloc_etherdev(sizeof(struct smc_local));
2248	if (!ndev) {
2249		ret = -ENOMEM;
2250		goto out;
2251	}
2252	SET_NETDEV_DEV(ndev, &pdev->dev);
2253
2254	/* get configuration from platform data, only allow use of
2255	 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2256	 */
2257
2258	lp = netdev_priv(ndev);
2259	lp->cfg.flags = 0;
2260
2261	if (pd) {
2262		memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2263		lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2264	}
2265
2266#if IS_BUILTIN(CONFIG_OF)
2267	match = of_match_device(of_match_ptr(smc91x_match), &pdev->dev);
2268	if (match) {
2269		struct device_node *np = pdev->dev.of_node;
2270		u32 val;
2271
2272		/* Optional pwrdwn GPIO configured? */
2273		ret = try_toggle_control_gpio(&pdev->dev, &lp->power_gpio,
2274					      "power", 0, 0, 100);
2275		if (ret)
2276			return ret;
2277
2278		/*
2279		 * Optional reset GPIO configured? Minimum 100 ns reset needed
2280		 * according to LAN91C96 datasheet page 14.
2281		 */
2282		ret = try_toggle_control_gpio(&pdev->dev, &lp->reset_gpio,
2283					      "reset", 0, 0, 100);
2284		if (ret)
2285			return ret;
2286
2287		/*
2288		 * Need to wait for optional EEPROM to load, max 750 us according
2289		 * to LAN91C96 datasheet page 55.
2290		 */
2291		if (lp->reset_gpio)
2292			usleep_range(750, 1000);
2293
2294		/* Combination of IO widths supported, default to 16-bit */
2295		if (!of_property_read_u32(np, "reg-io-width", &val)) {
2296			if (val & 1)
2297				lp->cfg.flags |= SMC91X_USE_8BIT;
2298			if ((val == 0) || (val & 2))
2299				lp->cfg.flags |= SMC91X_USE_16BIT;
2300			if (val & 4)
2301				lp->cfg.flags |= SMC91X_USE_32BIT;
2302		} else {
2303			lp->cfg.flags |= SMC91X_USE_16BIT;
2304		}
2305	}
2306#endif
2307
2308	if (!pd && !match) {
2309		lp->cfg.flags |= (SMC_CAN_USE_8BIT)  ? SMC91X_USE_8BIT  : 0;
2310		lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2311		lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2312		lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2313	}
2314
2315	if (!lp->cfg.leda && !lp->cfg.ledb) {
2316		lp->cfg.leda = RPC_LSA_DEFAULT;
2317		lp->cfg.ledb = RPC_LSB_DEFAULT;
2318	}
2319
2320	ndev->dma = (unsigned char)-1;
2321
2322	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2323	if (!res)
2324		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2325	if (!res) {
2326		ret = -ENODEV;
2327		goto out_free_netdev;
2328	}
2329
2330
2331	if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2332		ret = -EBUSY;
2333		goto out_free_netdev;
2334	}
2335
2336	ndev->irq = platform_get_irq(pdev, 0);
2337	if (ndev->irq <= 0) {
2338		ret = -ENODEV;
2339		goto out_release_io;
2340	}
2341	/*
2342	 * If this platform does not specify any special irqflags, or if
2343	 * the resource supplies a trigger, override the irqflags with
2344	 * the trigger flags from the resource.
2345	 */
2346	irq_resflags = irqd_get_trigger_type(irq_get_irq_data(ndev->irq));
2347	if (irq_flags == -1 || irq_resflags & IRQF_TRIGGER_MASK)
2348		irq_flags = irq_resflags & IRQF_TRIGGER_MASK;
2349
2350	ret = smc_request_attrib(pdev, ndev);
2351	if (ret)
2352		goto out_release_io;
2353#if defined(CONFIG_ASSABET_NEPONSET)
2354	if (machine_is_assabet() && machine_has_neponset())
2355		neponset_ncr_set(NCR_ENET_OSC_EN);
2356#endif
2357	platform_set_drvdata(pdev, ndev);
2358	ret = smc_enable_device(pdev);
2359	if (ret)
2360		goto out_release_attrib;
2361
2362	addr = ioremap(res->start, SMC_IO_EXTENT);
2363	if (!addr) {
2364		ret = -ENOMEM;
2365		goto out_release_attrib;
2366	}
2367
2368#ifdef CONFIG_ARCH_PXA
2369	{
2370		struct smc_local *lp = netdev_priv(ndev);
2371		lp->device = &pdev->dev;
2372		lp->physaddr = res->start;
2373	}
2374#endif
2375
2376	ret = smc_probe(ndev, addr, irq_flags);
2377	if (ret != 0)
2378		goto out_iounmap;
2379
2380	smc_request_datacs(pdev, ndev);
2381
2382	return 0;
2383
2384 out_iounmap:
2385	iounmap(addr);
2386 out_release_attrib:
2387	smc_release_attrib(pdev, ndev);
2388 out_release_io:
2389	release_mem_region(res->start, SMC_IO_EXTENT);
2390 out_free_netdev:
2391	free_netdev(ndev);
2392 out:
2393	pr_info("%s: not found (%d).\n", CARDNAME, ret);
2394
2395	return ret;
2396}
2397
2398static int smc_drv_remove(struct platform_device *pdev)
2399{
2400	struct net_device *ndev = platform_get_drvdata(pdev);
2401	struct smc_local *lp = netdev_priv(ndev);
2402	struct resource *res;
2403
2404	unregister_netdev(ndev);
2405
2406	free_irq(ndev->irq, ndev);
2407
2408#ifdef CONFIG_ARCH_PXA
2409	if (ndev->dma != (unsigned char)-1)
2410		pxa_free_dma(ndev->dma);
2411#endif
2412	iounmap(lp->base);
2413
2414	smc_release_datacs(pdev,ndev);
2415	smc_release_attrib(pdev,ndev);
2416
2417	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2418	if (!res)
2419		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2420	release_mem_region(res->start, SMC_IO_EXTENT);
2421
2422	free_netdev(ndev);
2423
2424	return 0;
2425}
2426
2427static int smc_drv_suspend(struct device *dev)
2428{
2429	struct platform_device *pdev = to_platform_device(dev);
2430	struct net_device *ndev = platform_get_drvdata(pdev);
2431
2432	if (ndev) {
2433		if (netif_running(ndev)) {
2434			netif_device_detach(ndev);
2435			smc_shutdown(ndev);
2436			smc_phy_powerdown(ndev);
2437		}
2438	}
2439	return 0;
2440}
2441
2442static int smc_drv_resume(struct device *dev)
2443{
2444	struct platform_device *pdev = to_platform_device(dev);
2445	struct net_device *ndev = platform_get_drvdata(pdev);
2446
2447	if (ndev) {
2448		struct smc_local *lp = netdev_priv(ndev);
2449		smc_enable_device(pdev);
2450		if (netif_running(ndev)) {
2451			smc_reset(ndev);
2452			smc_enable(ndev);
2453			if (lp->phy_type != 0)
2454				smc_phy_configure(&lp->phy_configure);
2455			netif_device_attach(ndev);
2456		}
2457	}
2458	return 0;
2459}
2460
2461static struct dev_pm_ops smc_drv_pm_ops = {
2462	.suspend	= smc_drv_suspend,
2463	.resume		= smc_drv_resume,
2464};
2465
2466static struct platform_driver smc_driver = {
2467	.probe		= smc_drv_probe,
2468	.remove		= smc_drv_remove,
2469	.driver		= {
2470		.name	= CARDNAME,
2471		.pm	= &smc_drv_pm_ops,
2472		.of_match_table = of_match_ptr(smc91x_match),
2473	},
2474};
2475
2476module_platform_driver(smc_driver);
2477