1/*
2 * Generic PPP layer for Linux.
3 *
4 * Copyright 1999-2002 Paul Mackerras.
5 *
6 *  This program is free software; you can redistribute it and/or
7 *  modify it under the terms of the GNU General Public License
8 *  as published by the Free Software Foundation; either version
9 *  2 of the License, or (at your option) any later version.
10 *
11 * The generic PPP layer handles the PPP network interfaces, the
12 * /dev/ppp device, packet and VJ compression, and multilink.
13 * It talks to PPP `channels' via the interface defined in
14 * include/linux/ppp_channel.h.  Channels provide the basic means for
15 * sending and receiving PPP frames on some kind of communications
16 * channel.
17 *
18 * Part of the code in this driver was inspired by the old async-only
19 * PPP driver, written by Michael Callahan and Al Longyear, and
20 * subsequently hacked by Paul Mackerras.
21 *
22 * ==FILEVERSION 20041108==
23 */
24
25#include <linux/module.h>
26#include <linux/kernel.h>
27#include <linux/kmod.h>
28#include <linux/init.h>
29#include <linux/list.h>
30#include <linux/idr.h>
31#include <linux/netdevice.h>
32#include <linux/poll.h>
33#include <linux/ppp_defs.h>
34#include <linux/filter.h>
35#include <linux/ppp-ioctl.h>
36#include <linux/ppp_channel.h>
37#include <linux/ppp-comp.h>
38#include <linux/skbuff.h>
39#include <linux/rtnetlink.h>
40#include <linux/if_arp.h>
41#include <linux/ip.h>
42#include <linux/tcp.h>
43#include <linux/spinlock.h>
44#include <linux/rwsem.h>
45#include <linux/stddef.h>
46#include <linux/device.h>
47#include <linux/mutex.h>
48#include <linux/slab.h>
49#include <asm/unaligned.h>
50#include <net/slhc_vj.h>
51#include <linux/atomic.h>
52
53#include <linux/nsproxy.h>
54#include <net/net_namespace.h>
55#include <net/netns/generic.h>
56
57#define PPP_VERSION	"2.4.2"
58
59/*
60 * Network protocols we support.
61 */
62#define NP_IP	0		/* Internet Protocol V4 */
63#define NP_IPV6	1		/* Internet Protocol V6 */
64#define NP_IPX	2		/* IPX protocol */
65#define NP_AT	3		/* Appletalk protocol */
66#define NP_MPLS_UC 4		/* MPLS unicast */
67#define NP_MPLS_MC 5		/* MPLS multicast */
68#define NUM_NP	6		/* Number of NPs. */
69
70#define MPHDRLEN	6	/* multilink protocol header length */
71#define MPHDRLEN_SSN	4	/* ditto with short sequence numbers */
72
73/*
74 * An instance of /dev/ppp can be associated with either a ppp
75 * interface unit or a ppp channel.  In both cases, file->private_data
76 * points to one of these.
77 */
78struct ppp_file {
79	enum {
80		INTERFACE=1, CHANNEL
81	}		kind;
82	struct sk_buff_head xq;		/* pppd transmit queue */
83	struct sk_buff_head rq;		/* receive queue for pppd */
84	wait_queue_head_t rwait;	/* for poll on reading /dev/ppp */
85	atomic_t	refcnt;		/* # refs (incl /dev/ppp attached) */
86	int		hdrlen;		/* space to leave for headers */
87	int		index;		/* interface unit / channel number */
88	int		dead;		/* unit/channel has been shut down */
89};
90
91#define PF_TO_X(pf, X)		container_of(pf, X, file)
92
93#define PF_TO_PPP(pf)		PF_TO_X(pf, struct ppp)
94#define PF_TO_CHANNEL(pf)	PF_TO_X(pf, struct channel)
95
96/*
97 * Data structure to hold primary network stats for which
98 * we want to use 64 bit storage.  Other network stats
99 * are stored in dev->stats of the ppp strucute.
100 */
101struct ppp_link_stats {
102	u64 rx_packets;
103	u64 tx_packets;
104	u64 rx_bytes;
105	u64 tx_bytes;
106};
107
108/*
109 * Data structure describing one ppp unit.
110 * A ppp unit corresponds to a ppp network interface device
111 * and represents a multilink bundle.
112 * It can have 0 or more ppp channels connected to it.
113 */
114struct ppp {
115	struct ppp_file	file;		/* stuff for read/write/poll 0 */
116	struct file	*owner;		/* file that owns this unit 48 */
117	struct list_head channels;	/* list of attached channels 4c */
118	int		n_channels;	/* how many channels are attached 54 */
119	spinlock_t	rlock;		/* lock for receive side 58 */
120	spinlock_t	wlock;		/* lock for transmit side 5c */
121	int		mru;		/* max receive unit 60 */
122	unsigned int	flags;		/* control bits 64 */
123	unsigned int	xstate;		/* transmit state bits 68 */
124	unsigned int	rstate;		/* receive state bits 6c */
125	int		debug;		/* debug flags 70 */
126	struct slcompress *vj;		/* state for VJ header compression */
127	enum NPmode	npmode[NUM_NP];	/* what to do with each net proto 78 */
128	struct sk_buff	*xmit_pending;	/* a packet ready to go out 88 */
129	struct compressor *xcomp;	/* transmit packet compressor 8c */
130	void		*xc_state;	/* its internal state 90 */
131	struct compressor *rcomp;	/* receive decompressor 94 */
132	void		*rc_state;	/* its internal state 98 */
133	unsigned long	last_xmit;	/* jiffies when last pkt sent 9c */
134	unsigned long	last_recv;	/* jiffies when last pkt rcvd a0 */
135	struct net_device *dev;		/* network interface device a4 */
136	int		closing;	/* is device closing down? a8 */
137#ifdef CONFIG_PPP_MULTILINK
138	int		nxchan;		/* next channel to send something on */
139	u32		nxseq;		/* next sequence number to send */
140	int		mrru;		/* MP: max reconst. receive unit */
141	u32		nextseq;	/* MP: seq no of next packet */
142	u32		minseq;		/* MP: min of most recent seqnos */
143	struct sk_buff_head mrq;	/* MP: receive reconstruction queue */
144#endif /* CONFIG_PPP_MULTILINK */
145#ifdef CONFIG_PPP_FILTER
146	struct bpf_prog *pass_filter;	/* filter for packets to pass */
147	struct bpf_prog *active_filter; /* filter for pkts to reset idle */
148#endif /* CONFIG_PPP_FILTER */
149	struct net	*ppp_net;	/* the net we belong to */
150	struct ppp_link_stats stats64;	/* 64 bit network stats */
151};
152
153/*
154 * Bits in flags: SC_NO_TCP_CCID, SC_CCP_OPEN, SC_CCP_UP, SC_LOOP_TRAFFIC,
155 * SC_MULTILINK, SC_MP_SHORTSEQ, SC_MP_XSHORTSEQ, SC_COMP_TCP, SC_REJ_COMP_TCP,
156 * SC_MUST_COMP
157 * Bits in rstate: SC_DECOMP_RUN, SC_DC_ERROR, SC_DC_FERROR.
158 * Bits in xstate: SC_COMP_RUN
159 */
160#define SC_FLAG_BITS	(SC_NO_TCP_CCID|SC_CCP_OPEN|SC_CCP_UP|SC_LOOP_TRAFFIC \
161			 |SC_MULTILINK|SC_MP_SHORTSEQ|SC_MP_XSHORTSEQ \
162			 |SC_COMP_TCP|SC_REJ_COMP_TCP|SC_MUST_COMP)
163
164/*
165 * Private data structure for each channel.
166 * This includes the data structure used for multilink.
167 */
168struct channel {
169	struct ppp_file	file;		/* stuff for read/write/poll */
170	struct list_head list;		/* link in all/new_channels list */
171	struct ppp_channel *chan;	/* public channel data structure */
172	struct rw_semaphore chan_sem;	/* protects `chan' during chan ioctl */
173	spinlock_t	downl;		/* protects `chan', file.xq dequeue */
174	struct ppp	*ppp;		/* ppp unit we're connected to */
175	struct net	*chan_net;	/* the net channel belongs to */
176	struct list_head clist;		/* link in list of channels per unit */
177	rwlock_t	upl;		/* protects `ppp' */
178#ifdef CONFIG_PPP_MULTILINK
179	u8		avail;		/* flag used in multilink stuff */
180	u8		had_frag;	/* >= 1 fragments have been sent */
181	u32		lastseq;	/* MP: last sequence # received */
182	int		speed;		/* speed of the corresponding ppp channel*/
183#endif /* CONFIG_PPP_MULTILINK */
184};
185
186/*
187 * SMP locking issues:
188 * Both the ppp.rlock and ppp.wlock locks protect the ppp.channels
189 * list and the ppp.n_channels field, you need to take both locks
190 * before you modify them.
191 * The lock ordering is: channel.upl -> ppp.wlock -> ppp.rlock ->
192 * channel.downl.
193 */
194
195static DEFINE_MUTEX(ppp_mutex);
196static atomic_t ppp_unit_count = ATOMIC_INIT(0);
197static atomic_t channel_count = ATOMIC_INIT(0);
198
199/* per-net private data for this module */
200static int ppp_net_id __read_mostly;
201struct ppp_net {
202	/* units to ppp mapping */
203	struct idr units_idr;
204
205	/*
206	 * all_ppp_mutex protects the units_idr mapping.
207	 * It also ensures that finding a ppp unit in the units_idr
208	 * map and updating its file.refcnt field is atomic.
209	 */
210	struct mutex all_ppp_mutex;
211
212	/* channels */
213	struct list_head all_channels;
214	struct list_head new_channels;
215	int last_channel_index;
216
217	/*
218	 * all_channels_lock protects all_channels and
219	 * last_channel_index, and the atomicity of find
220	 * a channel and updating its file.refcnt field.
221	 */
222	spinlock_t all_channels_lock;
223};
224
225/* Get the PPP protocol number from a skb */
226#define PPP_PROTO(skb)	get_unaligned_be16((skb)->data)
227
228/* We limit the length of ppp->file.rq to this (arbitrary) value */
229#define PPP_MAX_RQLEN	32
230
231/*
232 * Maximum number of multilink fragments queued up.
233 * This has to be large enough to cope with the maximum latency of
234 * the slowest channel relative to the others.  Strictly it should
235 * depend on the number of channels and their characteristics.
236 */
237#define PPP_MP_MAX_QLEN	128
238
239/* Multilink header bits. */
240#define B	0x80		/* this fragment begins a packet */
241#define E	0x40		/* this fragment ends a packet */
242
243/* Compare multilink sequence numbers (assumed to be 32 bits wide) */
244#define seq_before(a, b)	((s32)((a) - (b)) < 0)
245#define seq_after(a, b)		((s32)((a) - (b)) > 0)
246
247/* Prototypes. */
248static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
249			struct file *file, unsigned int cmd, unsigned long arg);
250static void ppp_xmit_process(struct ppp *ppp);
251static void ppp_send_frame(struct ppp *ppp, struct sk_buff *skb);
252static void ppp_push(struct ppp *ppp);
253static void ppp_channel_push(struct channel *pch);
254static void ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb,
255			      struct channel *pch);
256static void ppp_receive_error(struct ppp *ppp);
257static void ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb);
258static struct sk_buff *ppp_decompress_frame(struct ppp *ppp,
259					    struct sk_buff *skb);
260#ifdef CONFIG_PPP_MULTILINK
261static void ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb,
262				struct channel *pch);
263static void ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb);
264static struct sk_buff *ppp_mp_reconstruct(struct ppp *ppp);
265static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb);
266#endif /* CONFIG_PPP_MULTILINK */
267static int ppp_set_compress(struct ppp *ppp, unsigned long arg);
268static void ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound);
269static void ppp_ccp_closed(struct ppp *ppp);
270static struct compressor *find_compressor(int type);
271static void ppp_get_stats(struct ppp *ppp, struct ppp_stats *st);
272static struct ppp *ppp_create_interface(struct net *net, int unit, int *retp);
273static void init_ppp_file(struct ppp_file *pf, int kind);
274static void ppp_shutdown_interface(struct ppp *ppp);
275static void ppp_destroy_interface(struct ppp *ppp);
276static struct ppp *ppp_find_unit(struct ppp_net *pn, int unit);
277static struct channel *ppp_find_channel(struct ppp_net *pn, int unit);
278static int ppp_connect_channel(struct channel *pch, int unit);
279static int ppp_disconnect_channel(struct channel *pch);
280static void ppp_destroy_channel(struct channel *pch);
281static int unit_get(struct idr *p, void *ptr);
282static int unit_set(struct idr *p, void *ptr, int n);
283static void unit_put(struct idr *p, int n);
284static void *unit_find(struct idr *p, int n);
285
286static struct class *ppp_class;
287
288/* per net-namespace data */
289static inline struct ppp_net *ppp_pernet(struct net *net)
290{
291	BUG_ON(!net);
292
293	return net_generic(net, ppp_net_id);
294}
295
296/* Translates a PPP protocol number to a NP index (NP == network protocol) */
297static inline int proto_to_npindex(int proto)
298{
299	switch (proto) {
300	case PPP_IP:
301		return NP_IP;
302	case PPP_IPV6:
303		return NP_IPV6;
304	case PPP_IPX:
305		return NP_IPX;
306	case PPP_AT:
307		return NP_AT;
308	case PPP_MPLS_UC:
309		return NP_MPLS_UC;
310	case PPP_MPLS_MC:
311		return NP_MPLS_MC;
312	}
313	return -EINVAL;
314}
315
316/* Translates an NP index into a PPP protocol number */
317static const int npindex_to_proto[NUM_NP] = {
318	PPP_IP,
319	PPP_IPV6,
320	PPP_IPX,
321	PPP_AT,
322	PPP_MPLS_UC,
323	PPP_MPLS_MC,
324};
325
326/* Translates an ethertype into an NP index */
327static inline int ethertype_to_npindex(int ethertype)
328{
329	switch (ethertype) {
330	case ETH_P_IP:
331		return NP_IP;
332	case ETH_P_IPV6:
333		return NP_IPV6;
334	case ETH_P_IPX:
335		return NP_IPX;
336	case ETH_P_PPPTALK:
337	case ETH_P_ATALK:
338		return NP_AT;
339	case ETH_P_MPLS_UC:
340		return NP_MPLS_UC;
341	case ETH_P_MPLS_MC:
342		return NP_MPLS_MC;
343	}
344	return -1;
345}
346
347/* Translates an NP index into an ethertype */
348static const int npindex_to_ethertype[NUM_NP] = {
349	ETH_P_IP,
350	ETH_P_IPV6,
351	ETH_P_IPX,
352	ETH_P_PPPTALK,
353	ETH_P_MPLS_UC,
354	ETH_P_MPLS_MC,
355};
356
357/*
358 * Locking shorthand.
359 */
360#define ppp_xmit_lock(ppp)	spin_lock_bh(&(ppp)->wlock)
361#define ppp_xmit_unlock(ppp)	spin_unlock_bh(&(ppp)->wlock)
362#define ppp_recv_lock(ppp)	spin_lock_bh(&(ppp)->rlock)
363#define ppp_recv_unlock(ppp)	spin_unlock_bh(&(ppp)->rlock)
364#define ppp_lock(ppp)		do { ppp_xmit_lock(ppp); \
365				     ppp_recv_lock(ppp); } while (0)
366#define ppp_unlock(ppp)		do { ppp_recv_unlock(ppp); \
367				     ppp_xmit_unlock(ppp); } while (0)
368
369/*
370 * /dev/ppp device routines.
371 * The /dev/ppp device is used by pppd to control the ppp unit.
372 * It supports the read, write, ioctl and poll functions.
373 * Open instances of /dev/ppp can be in one of three states:
374 * unattached, attached to a ppp unit, or attached to a ppp channel.
375 */
376static int ppp_open(struct inode *inode, struct file *file)
377{
378	/*
379	 * This could (should?) be enforced by the permissions on /dev/ppp.
380	 */
381	if (!capable(CAP_NET_ADMIN))
382		return -EPERM;
383	return 0;
384}
385
386static int ppp_release(struct inode *unused, struct file *file)
387{
388	struct ppp_file *pf = file->private_data;
389	struct ppp *ppp;
390
391	if (pf) {
392		file->private_data = NULL;
393		if (pf->kind == INTERFACE) {
394			ppp = PF_TO_PPP(pf);
395			if (file == ppp->owner)
396				ppp_shutdown_interface(ppp);
397		}
398		if (atomic_dec_and_test(&pf->refcnt)) {
399			switch (pf->kind) {
400			case INTERFACE:
401				ppp_destroy_interface(PF_TO_PPP(pf));
402				break;
403			case CHANNEL:
404				ppp_destroy_channel(PF_TO_CHANNEL(pf));
405				break;
406			}
407		}
408	}
409	return 0;
410}
411
412static ssize_t ppp_read(struct file *file, char __user *buf,
413			size_t count, loff_t *ppos)
414{
415	struct ppp_file *pf = file->private_data;
416	DECLARE_WAITQUEUE(wait, current);
417	ssize_t ret;
418	struct sk_buff *skb = NULL;
419	struct iovec iov;
420	struct iov_iter to;
421
422	ret = count;
423
424	if (!pf)
425		return -ENXIO;
426	add_wait_queue(&pf->rwait, &wait);
427	for (;;) {
428		set_current_state(TASK_INTERRUPTIBLE);
429		skb = skb_dequeue(&pf->rq);
430		if (skb)
431			break;
432		ret = 0;
433		if (pf->dead)
434			break;
435		if (pf->kind == INTERFACE) {
436			/*
437			 * Return 0 (EOF) on an interface that has no
438			 * channels connected, unless it is looping
439			 * network traffic (demand mode).
440			 */
441			struct ppp *ppp = PF_TO_PPP(pf);
442			if (ppp->n_channels == 0 &&
443			    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
444				break;
445		}
446		ret = -EAGAIN;
447		if (file->f_flags & O_NONBLOCK)
448			break;
449		ret = -ERESTARTSYS;
450		if (signal_pending(current))
451			break;
452		schedule();
453	}
454	set_current_state(TASK_RUNNING);
455	remove_wait_queue(&pf->rwait, &wait);
456
457	if (!skb)
458		goto out;
459
460	ret = -EOVERFLOW;
461	if (skb->len > count)
462		goto outf;
463	ret = -EFAULT;
464	iov.iov_base = buf;
465	iov.iov_len = count;
466	iov_iter_init(&to, READ, &iov, 1, count);
467	if (skb_copy_datagram_iter(skb, 0, &to, skb->len))
468		goto outf;
469	ret = skb->len;
470
471 outf:
472	kfree_skb(skb);
473 out:
474	return ret;
475}
476
477static ssize_t ppp_write(struct file *file, const char __user *buf,
478			 size_t count, loff_t *ppos)
479{
480	struct ppp_file *pf = file->private_data;
481	struct sk_buff *skb;
482	ssize_t ret;
483
484	if (!pf)
485		return -ENXIO;
486	ret = -ENOMEM;
487	skb = alloc_skb(count + pf->hdrlen, GFP_KERNEL);
488	if (!skb)
489		goto out;
490	skb_reserve(skb, pf->hdrlen);
491	ret = -EFAULT;
492	if (copy_from_user(skb_put(skb, count), buf, count)) {
493		kfree_skb(skb);
494		goto out;
495	}
496
497	skb_queue_tail(&pf->xq, skb);
498
499	switch (pf->kind) {
500	case INTERFACE:
501		ppp_xmit_process(PF_TO_PPP(pf));
502		break;
503	case CHANNEL:
504		ppp_channel_push(PF_TO_CHANNEL(pf));
505		break;
506	}
507
508	ret = count;
509
510 out:
511	return ret;
512}
513
514/* No kernel lock - fine */
515static unsigned int ppp_poll(struct file *file, poll_table *wait)
516{
517	struct ppp_file *pf = file->private_data;
518	unsigned int mask;
519
520	if (!pf)
521		return 0;
522	poll_wait(file, &pf->rwait, wait);
523	mask = POLLOUT | POLLWRNORM;
524	if (skb_peek(&pf->rq))
525		mask |= POLLIN | POLLRDNORM;
526	if (pf->dead)
527		mask |= POLLHUP;
528	else if (pf->kind == INTERFACE) {
529		/* see comment in ppp_read */
530		struct ppp *ppp = PF_TO_PPP(pf);
531		if (ppp->n_channels == 0 &&
532		    (ppp->flags & SC_LOOP_TRAFFIC) == 0)
533			mask |= POLLIN | POLLRDNORM;
534	}
535
536	return mask;
537}
538
539#ifdef CONFIG_PPP_FILTER
540static int get_filter(void __user *arg, struct sock_filter **p)
541{
542	struct sock_fprog uprog;
543	struct sock_filter *code = NULL;
544	int len;
545
546	if (copy_from_user(&uprog, arg, sizeof(uprog)))
547		return -EFAULT;
548
549	if (!uprog.len) {
550		*p = NULL;
551		return 0;
552	}
553
554	len = uprog.len * sizeof(struct sock_filter);
555	code = memdup_user(uprog.filter, len);
556	if (IS_ERR(code))
557		return PTR_ERR(code);
558
559	*p = code;
560	return uprog.len;
561}
562#endif /* CONFIG_PPP_FILTER */
563
564static long ppp_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
565{
566	struct ppp_file *pf = file->private_data;
567	struct ppp *ppp;
568	int err = -EFAULT, val, val2, i;
569	struct ppp_idle idle;
570	struct npioctl npi;
571	int unit, cflags;
572	struct slcompress *vj;
573	void __user *argp = (void __user *)arg;
574	int __user *p = argp;
575
576	if (!pf)
577		return ppp_unattached_ioctl(current->nsproxy->net_ns,
578					pf, file, cmd, arg);
579
580	if (cmd == PPPIOCDETACH) {
581		/*
582		 * We have to be careful here... if the file descriptor
583		 * has been dup'd, we could have another process in the
584		 * middle of a poll using the same file *, so we had
585		 * better not free the interface data structures -
586		 * instead we fail the ioctl.  Even in this case, we
587		 * shut down the interface if we are the owner of it.
588		 * Actually, we should get rid of PPPIOCDETACH, userland
589		 * (i.e. pppd) could achieve the same effect by closing
590		 * this fd and reopening /dev/ppp.
591		 */
592		err = -EINVAL;
593		mutex_lock(&ppp_mutex);
594		if (pf->kind == INTERFACE) {
595			ppp = PF_TO_PPP(pf);
596			if (file == ppp->owner)
597				ppp_shutdown_interface(ppp);
598		}
599		if (atomic_long_read(&file->f_count) < 2) {
600			ppp_release(NULL, file);
601			err = 0;
602		} else
603			pr_warn("PPPIOCDETACH file->f_count=%ld\n",
604				atomic_long_read(&file->f_count));
605		mutex_unlock(&ppp_mutex);
606		return err;
607	}
608
609	if (pf->kind == CHANNEL) {
610		struct channel *pch;
611		struct ppp_channel *chan;
612
613		mutex_lock(&ppp_mutex);
614		pch = PF_TO_CHANNEL(pf);
615
616		switch (cmd) {
617		case PPPIOCCONNECT:
618			if (get_user(unit, p))
619				break;
620			err = ppp_connect_channel(pch, unit);
621			break;
622
623		case PPPIOCDISCONN:
624			err = ppp_disconnect_channel(pch);
625			break;
626
627		default:
628			down_read(&pch->chan_sem);
629			chan = pch->chan;
630			err = -ENOTTY;
631			if (chan && chan->ops->ioctl)
632				err = chan->ops->ioctl(chan, cmd, arg);
633			up_read(&pch->chan_sem);
634		}
635		mutex_unlock(&ppp_mutex);
636		return err;
637	}
638
639	if (pf->kind != INTERFACE) {
640		/* can't happen */
641		pr_err("PPP: not interface or channel??\n");
642		return -EINVAL;
643	}
644
645	mutex_lock(&ppp_mutex);
646	ppp = PF_TO_PPP(pf);
647	switch (cmd) {
648	case PPPIOCSMRU:
649		if (get_user(val, p))
650			break;
651		ppp->mru = val;
652		err = 0;
653		break;
654
655	case PPPIOCSFLAGS:
656		if (get_user(val, p))
657			break;
658		ppp_lock(ppp);
659		cflags = ppp->flags & ~val;
660#ifdef CONFIG_PPP_MULTILINK
661		if (!(ppp->flags & SC_MULTILINK) && (val & SC_MULTILINK))
662			ppp->nextseq = 0;
663#endif
664		ppp->flags = val & SC_FLAG_BITS;
665		ppp_unlock(ppp);
666		if (cflags & SC_CCP_OPEN)
667			ppp_ccp_closed(ppp);
668		err = 0;
669		break;
670
671	case PPPIOCGFLAGS:
672		val = ppp->flags | ppp->xstate | ppp->rstate;
673		if (put_user(val, p))
674			break;
675		err = 0;
676		break;
677
678	case PPPIOCSCOMPRESS:
679		err = ppp_set_compress(ppp, arg);
680		break;
681
682	case PPPIOCGUNIT:
683		if (put_user(ppp->file.index, p))
684			break;
685		err = 0;
686		break;
687
688	case PPPIOCSDEBUG:
689		if (get_user(val, p))
690			break;
691		ppp->debug = val;
692		err = 0;
693		break;
694
695	case PPPIOCGDEBUG:
696		if (put_user(ppp->debug, p))
697			break;
698		err = 0;
699		break;
700
701	case PPPIOCGIDLE:
702		idle.xmit_idle = (jiffies - ppp->last_xmit) / HZ;
703		idle.recv_idle = (jiffies - ppp->last_recv) / HZ;
704		if (copy_to_user(argp, &idle, sizeof(idle)))
705			break;
706		err = 0;
707		break;
708
709	case PPPIOCSMAXCID:
710		if (get_user(val, p))
711			break;
712		val2 = 15;
713		if ((val >> 16) != 0) {
714			val2 = val >> 16;
715			val &= 0xffff;
716		}
717		vj = slhc_init(val2+1, val+1);
718		if (IS_ERR(vj)) {
719			err = PTR_ERR(vj);
720			break;
721		}
722		ppp_lock(ppp);
723		if (ppp->vj)
724			slhc_free(ppp->vj);
725		ppp->vj = vj;
726		ppp_unlock(ppp);
727		err = 0;
728		break;
729
730	case PPPIOCGNPMODE:
731	case PPPIOCSNPMODE:
732		if (copy_from_user(&npi, argp, sizeof(npi)))
733			break;
734		err = proto_to_npindex(npi.protocol);
735		if (err < 0)
736			break;
737		i = err;
738		if (cmd == PPPIOCGNPMODE) {
739			err = -EFAULT;
740			npi.mode = ppp->npmode[i];
741			if (copy_to_user(argp, &npi, sizeof(npi)))
742				break;
743		} else {
744			ppp->npmode[i] = npi.mode;
745			/* we may be able to transmit more packets now (??) */
746			netif_wake_queue(ppp->dev);
747		}
748		err = 0;
749		break;
750
751#ifdef CONFIG_PPP_FILTER
752	case PPPIOCSPASS:
753	{
754		struct sock_filter *code;
755
756		err = get_filter(argp, &code);
757		if (err >= 0) {
758			struct bpf_prog *pass_filter = NULL;
759			struct sock_fprog_kern fprog = {
760				.len = err,
761				.filter = code,
762			};
763
764			err = 0;
765			if (fprog.filter)
766				err = bpf_prog_create(&pass_filter, &fprog);
767			if (!err) {
768				ppp_lock(ppp);
769				if (ppp->pass_filter)
770					bpf_prog_destroy(ppp->pass_filter);
771				ppp->pass_filter = pass_filter;
772				ppp_unlock(ppp);
773			}
774			kfree(code);
775		}
776		break;
777	}
778	case PPPIOCSACTIVE:
779	{
780		struct sock_filter *code;
781
782		err = get_filter(argp, &code);
783		if (err >= 0) {
784			struct bpf_prog *active_filter = NULL;
785			struct sock_fprog_kern fprog = {
786				.len = err,
787				.filter = code,
788			};
789
790			err = 0;
791			if (fprog.filter)
792				err = bpf_prog_create(&active_filter, &fprog);
793			if (!err) {
794				ppp_lock(ppp);
795				if (ppp->active_filter)
796					bpf_prog_destroy(ppp->active_filter);
797				ppp->active_filter = active_filter;
798				ppp_unlock(ppp);
799			}
800			kfree(code);
801		}
802		break;
803	}
804#endif /* CONFIG_PPP_FILTER */
805
806#ifdef CONFIG_PPP_MULTILINK
807	case PPPIOCSMRRU:
808		if (get_user(val, p))
809			break;
810		ppp_recv_lock(ppp);
811		ppp->mrru = val;
812		ppp_recv_unlock(ppp);
813		err = 0;
814		break;
815#endif /* CONFIG_PPP_MULTILINK */
816
817	default:
818		err = -ENOTTY;
819	}
820	mutex_unlock(&ppp_mutex);
821	return err;
822}
823
824static int ppp_unattached_ioctl(struct net *net, struct ppp_file *pf,
825			struct file *file, unsigned int cmd, unsigned long arg)
826{
827	int unit, err = -EFAULT;
828	struct ppp *ppp;
829	struct channel *chan;
830	struct ppp_net *pn;
831	int __user *p = (int __user *)arg;
832
833	mutex_lock(&ppp_mutex);
834	switch (cmd) {
835	case PPPIOCNEWUNIT:
836		/* Create a new ppp unit */
837		if (get_user(unit, p))
838			break;
839		ppp = ppp_create_interface(net, unit, &err);
840		if (!ppp)
841			break;
842		file->private_data = &ppp->file;
843		ppp->owner = file;
844		err = -EFAULT;
845		if (put_user(ppp->file.index, p))
846			break;
847		err = 0;
848		break;
849
850	case PPPIOCATTACH:
851		/* Attach to an existing ppp unit */
852		if (get_user(unit, p))
853			break;
854		err = -ENXIO;
855		pn = ppp_pernet(net);
856		mutex_lock(&pn->all_ppp_mutex);
857		ppp = ppp_find_unit(pn, unit);
858		if (ppp) {
859			atomic_inc(&ppp->file.refcnt);
860			file->private_data = &ppp->file;
861			err = 0;
862		}
863		mutex_unlock(&pn->all_ppp_mutex);
864		break;
865
866	case PPPIOCATTCHAN:
867		if (get_user(unit, p))
868			break;
869		err = -ENXIO;
870		pn = ppp_pernet(net);
871		spin_lock_bh(&pn->all_channels_lock);
872		chan = ppp_find_channel(pn, unit);
873		if (chan) {
874			atomic_inc(&chan->file.refcnt);
875			file->private_data = &chan->file;
876			err = 0;
877		}
878		spin_unlock_bh(&pn->all_channels_lock);
879		break;
880
881	default:
882		err = -ENOTTY;
883	}
884	mutex_unlock(&ppp_mutex);
885	return err;
886}
887
888static const struct file_operations ppp_device_fops = {
889	.owner		= THIS_MODULE,
890	.read		= ppp_read,
891	.write		= ppp_write,
892	.poll		= ppp_poll,
893	.unlocked_ioctl	= ppp_ioctl,
894	.open		= ppp_open,
895	.release	= ppp_release,
896	.llseek		= noop_llseek,
897};
898
899static __net_init int ppp_init_net(struct net *net)
900{
901	struct ppp_net *pn = net_generic(net, ppp_net_id);
902
903	idr_init(&pn->units_idr);
904	mutex_init(&pn->all_ppp_mutex);
905
906	INIT_LIST_HEAD(&pn->all_channels);
907	INIT_LIST_HEAD(&pn->new_channels);
908
909	spin_lock_init(&pn->all_channels_lock);
910
911	return 0;
912}
913
914static __net_exit void ppp_exit_net(struct net *net)
915{
916	struct ppp_net *pn = net_generic(net, ppp_net_id);
917
918	idr_destroy(&pn->units_idr);
919}
920
921static struct pernet_operations ppp_net_ops = {
922	.init = ppp_init_net,
923	.exit = ppp_exit_net,
924	.id   = &ppp_net_id,
925	.size = sizeof(struct ppp_net),
926};
927
928#define PPP_MAJOR	108
929
930/* Called at boot time if ppp is compiled into the kernel,
931   or at module load time (from init_module) if compiled as a module. */
932static int __init ppp_init(void)
933{
934	int err;
935
936	pr_info("PPP generic driver version " PPP_VERSION "\n");
937
938	err = register_pernet_device(&ppp_net_ops);
939	if (err) {
940		pr_err("failed to register PPP pernet device (%d)\n", err);
941		goto out;
942	}
943
944	err = register_chrdev(PPP_MAJOR, "ppp", &ppp_device_fops);
945	if (err) {
946		pr_err("failed to register PPP device (%d)\n", err);
947		goto out_net;
948	}
949
950	ppp_class = class_create(THIS_MODULE, "ppp");
951	if (IS_ERR(ppp_class)) {
952		err = PTR_ERR(ppp_class);
953		goto out_chrdev;
954	}
955
956	/* not a big deal if we fail here :-) */
957	device_create(ppp_class, NULL, MKDEV(PPP_MAJOR, 0), NULL, "ppp");
958
959	return 0;
960
961out_chrdev:
962	unregister_chrdev(PPP_MAJOR, "ppp");
963out_net:
964	unregister_pernet_device(&ppp_net_ops);
965out:
966	return err;
967}
968
969/*
970 * Network interface unit routines.
971 */
972static netdev_tx_t
973ppp_start_xmit(struct sk_buff *skb, struct net_device *dev)
974{
975	struct ppp *ppp = netdev_priv(dev);
976	int npi, proto;
977	unsigned char *pp;
978
979	npi = ethertype_to_npindex(ntohs(skb->protocol));
980	if (npi < 0)
981		goto outf;
982
983	/* Drop, accept or reject the packet */
984	switch (ppp->npmode[npi]) {
985	case NPMODE_PASS:
986		break;
987	case NPMODE_QUEUE:
988		/* it would be nice to have a way to tell the network
989		   system to queue this one up for later. */
990		goto outf;
991	case NPMODE_DROP:
992	case NPMODE_ERROR:
993		goto outf;
994	}
995
996	/* Put the 2-byte PPP protocol number on the front,
997	   making sure there is room for the address and control fields. */
998	if (skb_cow_head(skb, PPP_HDRLEN))
999		goto outf;
1000
1001	pp = skb_push(skb, 2);
1002	proto = npindex_to_proto[npi];
1003	put_unaligned_be16(proto, pp);
1004
1005	skb_queue_tail(&ppp->file.xq, skb);
1006	ppp_xmit_process(ppp);
1007	return NETDEV_TX_OK;
1008
1009 outf:
1010	kfree_skb(skb);
1011	++dev->stats.tx_dropped;
1012	return NETDEV_TX_OK;
1013}
1014
1015static int
1016ppp_net_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1017{
1018	struct ppp *ppp = netdev_priv(dev);
1019	int err = -EFAULT;
1020	void __user *addr = (void __user *) ifr->ifr_ifru.ifru_data;
1021	struct ppp_stats stats;
1022	struct ppp_comp_stats cstats;
1023	char *vers;
1024
1025	switch (cmd) {
1026	case SIOCGPPPSTATS:
1027		ppp_get_stats(ppp, &stats);
1028		if (copy_to_user(addr, &stats, sizeof(stats)))
1029			break;
1030		err = 0;
1031		break;
1032
1033	case SIOCGPPPCSTATS:
1034		memset(&cstats, 0, sizeof(cstats));
1035		if (ppp->xc_state)
1036			ppp->xcomp->comp_stat(ppp->xc_state, &cstats.c);
1037		if (ppp->rc_state)
1038			ppp->rcomp->decomp_stat(ppp->rc_state, &cstats.d);
1039		if (copy_to_user(addr, &cstats, sizeof(cstats)))
1040			break;
1041		err = 0;
1042		break;
1043
1044	case SIOCGPPPVER:
1045		vers = PPP_VERSION;
1046		if (copy_to_user(addr, vers, strlen(vers) + 1))
1047			break;
1048		err = 0;
1049		break;
1050
1051	default:
1052		err = -EINVAL;
1053	}
1054
1055	return err;
1056}
1057
1058static struct rtnl_link_stats64*
1059ppp_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *stats64)
1060{
1061	struct ppp *ppp = netdev_priv(dev);
1062
1063	ppp_recv_lock(ppp);
1064	stats64->rx_packets = ppp->stats64.rx_packets;
1065	stats64->rx_bytes   = ppp->stats64.rx_bytes;
1066	ppp_recv_unlock(ppp);
1067
1068	ppp_xmit_lock(ppp);
1069	stats64->tx_packets = ppp->stats64.tx_packets;
1070	stats64->tx_bytes   = ppp->stats64.tx_bytes;
1071	ppp_xmit_unlock(ppp);
1072
1073	stats64->rx_errors        = dev->stats.rx_errors;
1074	stats64->tx_errors        = dev->stats.tx_errors;
1075	stats64->rx_dropped       = dev->stats.rx_dropped;
1076	stats64->tx_dropped       = dev->stats.tx_dropped;
1077	stats64->rx_length_errors = dev->stats.rx_length_errors;
1078
1079	return stats64;
1080}
1081
1082static struct lock_class_key ppp_tx_busylock;
1083static int ppp_dev_init(struct net_device *dev)
1084{
1085	dev->qdisc_tx_busylock = &ppp_tx_busylock;
1086	return 0;
1087}
1088
1089static const struct net_device_ops ppp_netdev_ops = {
1090	.ndo_init	 = ppp_dev_init,
1091	.ndo_start_xmit  = ppp_start_xmit,
1092	.ndo_do_ioctl    = ppp_net_ioctl,
1093	.ndo_get_stats64 = ppp_get_stats64,
1094};
1095
1096static void ppp_setup(struct net_device *dev)
1097{
1098	dev->netdev_ops = &ppp_netdev_ops;
1099	dev->hard_header_len = PPP_HDRLEN;
1100	dev->mtu = PPP_MRU;
1101	dev->addr_len = 0;
1102	dev->tx_queue_len = 3;
1103	dev->type = ARPHRD_PPP;
1104	dev->flags = IFF_POINTOPOINT | IFF_NOARP | IFF_MULTICAST;
1105	dev->features |= NETIF_F_NETNS_LOCAL;
1106	netif_keep_dst(dev);
1107}
1108
1109/*
1110 * Transmit-side routines.
1111 */
1112
1113/*
1114 * Called to do any work queued up on the transmit side
1115 * that can now be done.
1116 */
1117static void
1118ppp_xmit_process(struct ppp *ppp)
1119{
1120	struct sk_buff *skb;
1121
1122	ppp_xmit_lock(ppp);
1123	if (!ppp->closing) {
1124		ppp_push(ppp);
1125		while (!ppp->xmit_pending &&
1126		       (skb = skb_dequeue(&ppp->file.xq)))
1127			ppp_send_frame(ppp, skb);
1128		/* If there's no work left to do, tell the core net
1129		   code that we can accept some more. */
1130		if (!ppp->xmit_pending && !skb_peek(&ppp->file.xq))
1131			netif_wake_queue(ppp->dev);
1132		else
1133			netif_stop_queue(ppp->dev);
1134	}
1135	ppp_xmit_unlock(ppp);
1136}
1137
1138static inline struct sk_buff *
1139pad_compress_skb(struct ppp *ppp, struct sk_buff *skb)
1140{
1141	struct sk_buff *new_skb;
1142	int len;
1143	int new_skb_size = ppp->dev->mtu +
1144		ppp->xcomp->comp_extra + ppp->dev->hard_header_len;
1145	int compressor_skb_size = ppp->dev->mtu +
1146		ppp->xcomp->comp_extra + PPP_HDRLEN;
1147	new_skb = alloc_skb(new_skb_size, GFP_ATOMIC);
1148	if (!new_skb) {
1149		if (net_ratelimit())
1150			netdev_err(ppp->dev, "PPP: no memory (comp pkt)\n");
1151		return NULL;
1152	}
1153	if (ppp->dev->hard_header_len > PPP_HDRLEN)
1154		skb_reserve(new_skb,
1155			    ppp->dev->hard_header_len - PPP_HDRLEN);
1156
1157	/* compressor still expects A/C bytes in hdr */
1158	len = ppp->xcomp->compress(ppp->xc_state, skb->data - 2,
1159				   new_skb->data, skb->len + 2,
1160				   compressor_skb_size);
1161	if (len > 0 && (ppp->flags & SC_CCP_UP)) {
1162		consume_skb(skb);
1163		skb = new_skb;
1164		skb_put(skb, len);
1165		skb_pull(skb, 2);	/* pull off A/C bytes */
1166	} else if (len == 0) {
1167		/* didn't compress, or CCP not up yet */
1168		consume_skb(new_skb);
1169		new_skb = skb;
1170	} else {
1171		/*
1172		 * (len < 0)
1173		 * MPPE requires that we do not send unencrypted
1174		 * frames.  The compressor will return -1 if we
1175		 * should drop the frame.  We cannot simply test
1176		 * the compress_proto because MPPE and MPPC share
1177		 * the same number.
1178		 */
1179		if (net_ratelimit())
1180			netdev_err(ppp->dev, "ppp: compressor dropped pkt\n");
1181		kfree_skb(skb);
1182		consume_skb(new_skb);
1183		new_skb = NULL;
1184	}
1185	return new_skb;
1186}
1187
1188/*
1189 * Compress and send a frame.
1190 * The caller should have locked the xmit path,
1191 * and xmit_pending should be 0.
1192 */
1193static void
1194ppp_send_frame(struct ppp *ppp, struct sk_buff *skb)
1195{
1196	int proto = PPP_PROTO(skb);
1197	struct sk_buff *new_skb;
1198	int len;
1199	unsigned char *cp;
1200
1201	if (proto < 0x8000) {
1202#ifdef CONFIG_PPP_FILTER
1203		/* check if we should pass this packet */
1204		/* the filter instructions are constructed assuming
1205		   a four-byte PPP header on each packet */
1206		*skb_push(skb, 2) = 1;
1207		if (ppp->pass_filter &&
1208		    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1209			if (ppp->debug & 1)
1210				netdev_printk(KERN_DEBUG, ppp->dev,
1211					      "PPP: outbound frame "
1212					      "not passed\n");
1213			kfree_skb(skb);
1214			return;
1215		}
1216		/* if this packet passes the active filter, record the time */
1217		if (!(ppp->active_filter &&
1218		      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1219			ppp->last_xmit = jiffies;
1220		skb_pull(skb, 2);
1221#else
1222		/* for data packets, record the time */
1223		ppp->last_xmit = jiffies;
1224#endif /* CONFIG_PPP_FILTER */
1225	}
1226
1227	++ppp->stats64.tx_packets;
1228	ppp->stats64.tx_bytes += skb->len - 2;
1229
1230	switch (proto) {
1231	case PPP_IP:
1232		if (!ppp->vj || (ppp->flags & SC_COMP_TCP) == 0)
1233			break;
1234		/* try to do VJ TCP header compression */
1235		new_skb = alloc_skb(skb->len + ppp->dev->hard_header_len - 2,
1236				    GFP_ATOMIC);
1237		if (!new_skb) {
1238			netdev_err(ppp->dev, "PPP: no memory (VJ comp pkt)\n");
1239			goto drop;
1240		}
1241		skb_reserve(new_skb, ppp->dev->hard_header_len - 2);
1242		cp = skb->data + 2;
1243		len = slhc_compress(ppp->vj, cp, skb->len - 2,
1244				    new_skb->data + 2, &cp,
1245				    !(ppp->flags & SC_NO_TCP_CCID));
1246		if (cp == skb->data + 2) {
1247			/* didn't compress */
1248			consume_skb(new_skb);
1249		} else {
1250			if (cp[0] & SL_TYPE_COMPRESSED_TCP) {
1251				proto = PPP_VJC_COMP;
1252				cp[0] &= ~SL_TYPE_COMPRESSED_TCP;
1253			} else {
1254				proto = PPP_VJC_UNCOMP;
1255				cp[0] = skb->data[2];
1256			}
1257			consume_skb(skb);
1258			skb = new_skb;
1259			cp = skb_put(skb, len + 2);
1260			cp[0] = 0;
1261			cp[1] = proto;
1262		}
1263		break;
1264
1265	case PPP_CCP:
1266		/* peek at outbound CCP frames */
1267		ppp_ccp_peek(ppp, skb, 0);
1268		break;
1269	}
1270
1271	/* try to do packet compression */
1272	if ((ppp->xstate & SC_COMP_RUN) && ppp->xc_state &&
1273	    proto != PPP_LCP && proto != PPP_CCP) {
1274		if (!(ppp->flags & SC_CCP_UP) && (ppp->flags & SC_MUST_COMP)) {
1275			if (net_ratelimit())
1276				netdev_err(ppp->dev,
1277					   "ppp: compression required but "
1278					   "down - pkt dropped.\n");
1279			goto drop;
1280		}
1281		skb = pad_compress_skb(ppp, skb);
1282		if (!skb)
1283			goto drop;
1284	}
1285
1286	/*
1287	 * If we are waiting for traffic (demand dialling),
1288	 * queue it up for pppd to receive.
1289	 */
1290	if (ppp->flags & SC_LOOP_TRAFFIC) {
1291		if (ppp->file.rq.qlen > PPP_MAX_RQLEN)
1292			goto drop;
1293		skb_queue_tail(&ppp->file.rq, skb);
1294		wake_up_interruptible(&ppp->file.rwait);
1295		return;
1296	}
1297
1298	ppp->xmit_pending = skb;
1299	ppp_push(ppp);
1300	return;
1301
1302 drop:
1303	kfree_skb(skb);
1304	++ppp->dev->stats.tx_errors;
1305}
1306
1307/*
1308 * Try to send the frame in xmit_pending.
1309 * The caller should have the xmit path locked.
1310 */
1311static void
1312ppp_push(struct ppp *ppp)
1313{
1314	struct list_head *list;
1315	struct channel *pch;
1316	struct sk_buff *skb = ppp->xmit_pending;
1317
1318	if (!skb)
1319		return;
1320
1321	list = &ppp->channels;
1322	if (list_empty(list)) {
1323		/* nowhere to send the packet, just drop it */
1324		ppp->xmit_pending = NULL;
1325		kfree_skb(skb);
1326		return;
1327	}
1328
1329	if ((ppp->flags & SC_MULTILINK) == 0) {
1330		/* not doing multilink: send it down the first channel */
1331		list = list->next;
1332		pch = list_entry(list, struct channel, clist);
1333
1334		spin_lock_bh(&pch->downl);
1335		if (pch->chan) {
1336			if (pch->chan->ops->start_xmit(pch->chan, skb))
1337				ppp->xmit_pending = NULL;
1338		} else {
1339			/* channel got unregistered */
1340			kfree_skb(skb);
1341			ppp->xmit_pending = NULL;
1342		}
1343		spin_unlock_bh(&pch->downl);
1344		return;
1345	}
1346
1347#ifdef CONFIG_PPP_MULTILINK
1348	/* Multilink: fragment the packet over as many links
1349	   as can take the packet at the moment. */
1350	if (!ppp_mp_explode(ppp, skb))
1351		return;
1352#endif /* CONFIG_PPP_MULTILINK */
1353
1354	ppp->xmit_pending = NULL;
1355	kfree_skb(skb);
1356}
1357
1358#ifdef CONFIG_PPP_MULTILINK
1359static bool mp_protocol_compress __read_mostly = true;
1360module_param(mp_protocol_compress, bool, S_IRUGO | S_IWUSR);
1361MODULE_PARM_DESC(mp_protocol_compress,
1362		 "compress protocol id in multilink fragments");
1363
1364/*
1365 * Divide a packet to be transmitted into fragments and
1366 * send them out the individual links.
1367 */
1368static int ppp_mp_explode(struct ppp *ppp, struct sk_buff *skb)
1369{
1370	int len, totlen;
1371	int i, bits, hdrlen, mtu;
1372	int flen;
1373	int navail, nfree, nzero;
1374	int nbigger;
1375	int totspeed;
1376	int totfree;
1377	unsigned char *p, *q;
1378	struct list_head *list;
1379	struct channel *pch;
1380	struct sk_buff *frag;
1381	struct ppp_channel *chan;
1382
1383	totspeed = 0; /*total bitrate of the bundle*/
1384	nfree = 0; /* # channels which have no packet already queued */
1385	navail = 0; /* total # of usable channels (not deregistered) */
1386	nzero = 0; /* number of channels with zero speed associated*/
1387	totfree = 0; /*total # of channels available and
1388				  *having no queued packets before
1389				  *starting the fragmentation*/
1390
1391	hdrlen = (ppp->flags & SC_MP_XSHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1392	i = 0;
1393	list_for_each_entry(pch, &ppp->channels, clist) {
1394		if (pch->chan) {
1395			pch->avail = 1;
1396			navail++;
1397			pch->speed = pch->chan->speed;
1398		} else {
1399			pch->avail = 0;
1400		}
1401		if (pch->avail) {
1402			if (skb_queue_empty(&pch->file.xq) ||
1403				!pch->had_frag) {
1404					if (pch->speed == 0)
1405						nzero++;
1406					else
1407						totspeed += pch->speed;
1408
1409					pch->avail = 2;
1410					++nfree;
1411					++totfree;
1412				}
1413			if (!pch->had_frag && i < ppp->nxchan)
1414				ppp->nxchan = i;
1415		}
1416		++i;
1417	}
1418	/*
1419	 * Don't start sending this packet unless at least half of
1420	 * the channels are free.  This gives much better TCP
1421	 * performance if we have a lot of channels.
1422	 */
1423	if (nfree == 0 || nfree < navail / 2)
1424		return 0; /* can't take now, leave it in xmit_pending */
1425
1426	/* Do protocol field compression */
1427	p = skb->data;
1428	len = skb->len;
1429	if (*p == 0 && mp_protocol_compress) {
1430		++p;
1431		--len;
1432	}
1433
1434	totlen = len;
1435	nbigger = len % nfree;
1436
1437	/* skip to the channel after the one we last used
1438	   and start at that one */
1439	list = &ppp->channels;
1440	for (i = 0; i < ppp->nxchan; ++i) {
1441		list = list->next;
1442		if (list == &ppp->channels) {
1443			i = 0;
1444			break;
1445		}
1446	}
1447
1448	/* create a fragment for each channel */
1449	bits = B;
1450	while (len > 0) {
1451		list = list->next;
1452		if (list == &ppp->channels) {
1453			i = 0;
1454			continue;
1455		}
1456		pch = list_entry(list, struct channel, clist);
1457		++i;
1458		if (!pch->avail)
1459			continue;
1460
1461		/*
1462		 * Skip this channel if it has a fragment pending already and
1463		 * we haven't given a fragment to all of the free channels.
1464		 */
1465		if (pch->avail == 1) {
1466			if (nfree > 0)
1467				continue;
1468		} else {
1469			pch->avail = 1;
1470		}
1471
1472		/* check the channel's mtu and whether it is still attached. */
1473		spin_lock_bh(&pch->downl);
1474		if (pch->chan == NULL) {
1475			/* can't use this channel, it's being deregistered */
1476			if (pch->speed == 0)
1477				nzero--;
1478			else
1479				totspeed -= pch->speed;
1480
1481			spin_unlock_bh(&pch->downl);
1482			pch->avail = 0;
1483			totlen = len;
1484			totfree--;
1485			nfree--;
1486			if (--navail == 0)
1487				break;
1488			continue;
1489		}
1490
1491		/*
1492		*if the channel speed is not set divide
1493		*the packet evenly among the free channels;
1494		*otherwise divide it according to the speed
1495		*of the channel we are going to transmit on
1496		*/
1497		flen = len;
1498		if (nfree > 0) {
1499			if (pch->speed == 0) {
1500				flen = len/nfree;
1501				if (nbigger > 0) {
1502					flen++;
1503					nbigger--;
1504				}
1505			} else {
1506				flen = (((totfree - nzero)*(totlen + hdrlen*totfree)) /
1507					((totspeed*totfree)/pch->speed)) - hdrlen;
1508				if (nbigger > 0) {
1509					flen += ((totfree - nzero)*pch->speed)/totspeed;
1510					nbigger -= ((totfree - nzero)*pch->speed)/
1511							totspeed;
1512				}
1513			}
1514			nfree--;
1515		}
1516
1517		/*
1518		 *check if we are on the last channel or
1519		 *we exceded the length of the data to
1520		 *fragment
1521		 */
1522		if ((nfree <= 0) || (flen > len))
1523			flen = len;
1524		/*
1525		 *it is not worth to tx on slow channels:
1526		 *in that case from the resulting flen according to the
1527		 *above formula will be equal or less than zero.
1528		 *Skip the channel in this case
1529		 */
1530		if (flen <= 0) {
1531			pch->avail = 2;
1532			spin_unlock_bh(&pch->downl);
1533			continue;
1534		}
1535
1536		/*
1537		 * hdrlen includes the 2-byte PPP protocol field, but the
1538		 * MTU counts only the payload excluding the protocol field.
1539		 * (RFC1661 Section 2)
1540		 */
1541		mtu = pch->chan->mtu - (hdrlen - 2);
1542		if (mtu < 4)
1543			mtu = 4;
1544		if (flen > mtu)
1545			flen = mtu;
1546		if (flen == len)
1547			bits |= E;
1548		frag = alloc_skb(flen + hdrlen + (flen == 0), GFP_ATOMIC);
1549		if (!frag)
1550			goto noskb;
1551		q = skb_put(frag, flen + hdrlen);
1552
1553		/* make the MP header */
1554		put_unaligned_be16(PPP_MP, q);
1555		if (ppp->flags & SC_MP_XSHORTSEQ) {
1556			q[2] = bits + ((ppp->nxseq >> 8) & 0xf);
1557			q[3] = ppp->nxseq;
1558		} else {
1559			q[2] = bits;
1560			q[3] = ppp->nxseq >> 16;
1561			q[4] = ppp->nxseq >> 8;
1562			q[5] = ppp->nxseq;
1563		}
1564
1565		memcpy(q + hdrlen, p, flen);
1566
1567		/* try to send it down the channel */
1568		chan = pch->chan;
1569		if (!skb_queue_empty(&pch->file.xq) ||
1570			!chan->ops->start_xmit(chan, frag))
1571			skb_queue_tail(&pch->file.xq, frag);
1572		pch->had_frag = 1;
1573		p += flen;
1574		len -= flen;
1575		++ppp->nxseq;
1576		bits = 0;
1577		spin_unlock_bh(&pch->downl);
1578	}
1579	ppp->nxchan = i;
1580
1581	return 1;
1582
1583 noskb:
1584	spin_unlock_bh(&pch->downl);
1585	if (ppp->debug & 1)
1586		netdev_err(ppp->dev, "PPP: no memory (fragment)\n");
1587	++ppp->dev->stats.tx_errors;
1588	++ppp->nxseq;
1589	return 1;	/* abandon the frame */
1590}
1591#endif /* CONFIG_PPP_MULTILINK */
1592
1593/*
1594 * Try to send data out on a channel.
1595 */
1596static void
1597ppp_channel_push(struct channel *pch)
1598{
1599	struct sk_buff *skb;
1600	struct ppp *ppp;
1601
1602	spin_lock_bh(&pch->downl);
1603	if (pch->chan) {
1604		while (!skb_queue_empty(&pch->file.xq)) {
1605			skb = skb_dequeue(&pch->file.xq);
1606			if (!pch->chan->ops->start_xmit(pch->chan, skb)) {
1607				/* put the packet back and try again later */
1608				skb_queue_head(&pch->file.xq, skb);
1609				break;
1610			}
1611		}
1612	} else {
1613		/* channel got deregistered */
1614		skb_queue_purge(&pch->file.xq);
1615	}
1616	spin_unlock_bh(&pch->downl);
1617	/* see if there is anything from the attached unit to be sent */
1618	if (skb_queue_empty(&pch->file.xq)) {
1619		read_lock_bh(&pch->upl);
1620		ppp = pch->ppp;
1621		if (ppp)
1622			ppp_xmit_process(ppp);
1623		read_unlock_bh(&pch->upl);
1624	}
1625}
1626
1627/*
1628 * Receive-side routines.
1629 */
1630
1631struct ppp_mp_skb_parm {
1632	u32		sequence;
1633	u8		BEbits;
1634};
1635#define PPP_MP_CB(skb)	((struct ppp_mp_skb_parm *)((skb)->cb))
1636
1637static inline void
1638ppp_do_recv(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1639{
1640	ppp_recv_lock(ppp);
1641	if (!ppp->closing)
1642		ppp_receive_frame(ppp, skb, pch);
1643	else
1644		kfree_skb(skb);
1645	ppp_recv_unlock(ppp);
1646}
1647
1648void
1649ppp_input(struct ppp_channel *chan, struct sk_buff *skb)
1650{
1651	struct channel *pch = chan->ppp;
1652	int proto;
1653
1654	if (!pch) {
1655		kfree_skb(skb);
1656		return;
1657	}
1658
1659	read_lock_bh(&pch->upl);
1660	if (!pskb_may_pull(skb, 2)) {
1661		kfree_skb(skb);
1662		if (pch->ppp) {
1663			++pch->ppp->dev->stats.rx_length_errors;
1664			ppp_receive_error(pch->ppp);
1665		}
1666		goto done;
1667	}
1668
1669	proto = PPP_PROTO(skb);
1670	if (!pch->ppp || proto >= 0xc000 || proto == PPP_CCPFRAG) {
1671		/* put it on the channel queue */
1672		skb_queue_tail(&pch->file.rq, skb);
1673		/* drop old frames if queue too long */
1674		while (pch->file.rq.qlen > PPP_MAX_RQLEN &&
1675		       (skb = skb_dequeue(&pch->file.rq)))
1676			kfree_skb(skb);
1677		wake_up_interruptible(&pch->file.rwait);
1678	} else {
1679		ppp_do_recv(pch->ppp, skb, pch);
1680	}
1681
1682done:
1683	read_unlock_bh(&pch->upl);
1684}
1685
1686/* Put a 0-length skb in the receive queue as an error indication */
1687void
1688ppp_input_error(struct ppp_channel *chan, int code)
1689{
1690	struct channel *pch = chan->ppp;
1691	struct sk_buff *skb;
1692
1693	if (!pch)
1694		return;
1695
1696	read_lock_bh(&pch->upl);
1697	if (pch->ppp) {
1698		skb = alloc_skb(0, GFP_ATOMIC);
1699		if (skb) {
1700			skb->len = 0;		/* probably unnecessary */
1701			skb->cb[0] = code;
1702			ppp_do_recv(pch->ppp, skb, pch);
1703		}
1704	}
1705	read_unlock_bh(&pch->upl);
1706}
1707
1708/*
1709 * We come in here to process a received frame.
1710 * The receive side of the ppp unit is locked.
1711 */
1712static void
1713ppp_receive_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1714{
1715	/* note: a 0-length skb is used as an error indication */
1716	if (skb->len > 0) {
1717		skb_checksum_complete_unset(skb);
1718#ifdef CONFIG_PPP_MULTILINK
1719		/* XXX do channel-level decompression here */
1720		if (PPP_PROTO(skb) == PPP_MP)
1721			ppp_receive_mp_frame(ppp, skb, pch);
1722		else
1723#endif /* CONFIG_PPP_MULTILINK */
1724			ppp_receive_nonmp_frame(ppp, skb);
1725	} else {
1726		kfree_skb(skb);
1727		ppp_receive_error(ppp);
1728	}
1729}
1730
1731static void
1732ppp_receive_error(struct ppp *ppp)
1733{
1734	++ppp->dev->stats.rx_errors;
1735	if (ppp->vj)
1736		slhc_toss(ppp->vj);
1737}
1738
1739static void
1740ppp_receive_nonmp_frame(struct ppp *ppp, struct sk_buff *skb)
1741{
1742	struct sk_buff *ns;
1743	int proto, len, npi;
1744
1745	/*
1746	 * Decompress the frame, if compressed.
1747	 * Note that some decompressors need to see uncompressed frames
1748	 * that come in as well as compressed frames.
1749	 */
1750	if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN) &&
1751	    (ppp->rstate & (SC_DC_FERROR | SC_DC_ERROR)) == 0)
1752		skb = ppp_decompress_frame(ppp, skb);
1753
1754	if (ppp->flags & SC_MUST_COMP && ppp->rstate & SC_DC_FERROR)
1755		goto err;
1756
1757	proto = PPP_PROTO(skb);
1758	switch (proto) {
1759	case PPP_VJC_COMP:
1760		/* decompress VJ compressed packets */
1761		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1762			goto err;
1763
1764		if (skb_tailroom(skb) < 124 || skb_cloned(skb)) {
1765			/* copy to a new sk_buff with more tailroom */
1766			ns = dev_alloc_skb(skb->len + 128);
1767			if (!ns) {
1768				netdev_err(ppp->dev, "PPP: no memory "
1769					   "(VJ decomp)\n");
1770				goto err;
1771			}
1772			skb_reserve(ns, 2);
1773			skb_copy_bits(skb, 0, skb_put(ns, skb->len), skb->len);
1774			consume_skb(skb);
1775			skb = ns;
1776		}
1777		else
1778			skb->ip_summed = CHECKSUM_NONE;
1779
1780		len = slhc_uncompress(ppp->vj, skb->data + 2, skb->len - 2);
1781		if (len <= 0) {
1782			netdev_printk(KERN_DEBUG, ppp->dev,
1783				      "PPP: VJ decompression error\n");
1784			goto err;
1785		}
1786		len += 2;
1787		if (len > skb->len)
1788			skb_put(skb, len - skb->len);
1789		else if (len < skb->len)
1790			skb_trim(skb, len);
1791		proto = PPP_IP;
1792		break;
1793
1794	case PPP_VJC_UNCOMP:
1795		if (!ppp->vj || (ppp->flags & SC_REJ_COMP_TCP))
1796			goto err;
1797
1798		/* Until we fix the decompressor need to make sure
1799		 * data portion is linear.
1800		 */
1801		if (!pskb_may_pull(skb, skb->len))
1802			goto err;
1803
1804		if (slhc_remember(ppp->vj, skb->data + 2, skb->len - 2) <= 0) {
1805			netdev_err(ppp->dev, "PPP: VJ uncompressed error\n");
1806			goto err;
1807		}
1808		proto = PPP_IP;
1809		break;
1810
1811	case PPP_CCP:
1812		ppp_ccp_peek(ppp, skb, 1);
1813		break;
1814	}
1815
1816	++ppp->stats64.rx_packets;
1817	ppp->stats64.rx_bytes += skb->len - 2;
1818
1819	npi = proto_to_npindex(proto);
1820	if (npi < 0) {
1821		/* control or unknown frame - pass it to pppd */
1822		skb_queue_tail(&ppp->file.rq, skb);
1823		/* limit queue length by dropping old frames */
1824		while (ppp->file.rq.qlen > PPP_MAX_RQLEN &&
1825		       (skb = skb_dequeue(&ppp->file.rq)))
1826			kfree_skb(skb);
1827		/* wake up any process polling or blocking on read */
1828		wake_up_interruptible(&ppp->file.rwait);
1829
1830	} else {
1831		/* network protocol frame - give it to the kernel */
1832
1833#ifdef CONFIG_PPP_FILTER
1834		/* check if the packet passes the pass and active filters */
1835		/* the filter instructions are constructed assuming
1836		   a four-byte PPP header on each packet */
1837		if (ppp->pass_filter || ppp->active_filter) {
1838			if (skb_unclone(skb, GFP_ATOMIC))
1839				goto err;
1840
1841			*skb_push(skb, 2) = 0;
1842			if (ppp->pass_filter &&
1843			    BPF_PROG_RUN(ppp->pass_filter, skb) == 0) {
1844				if (ppp->debug & 1)
1845					netdev_printk(KERN_DEBUG, ppp->dev,
1846						      "PPP: inbound frame "
1847						      "not passed\n");
1848				kfree_skb(skb);
1849				return;
1850			}
1851			if (!(ppp->active_filter &&
1852			      BPF_PROG_RUN(ppp->active_filter, skb) == 0))
1853				ppp->last_recv = jiffies;
1854			__skb_pull(skb, 2);
1855		} else
1856#endif /* CONFIG_PPP_FILTER */
1857			ppp->last_recv = jiffies;
1858
1859		if ((ppp->dev->flags & IFF_UP) == 0 ||
1860		    ppp->npmode[npi] != NPMODE_PASS) {
1861			kfree_skb(skb);
1862		} else {
1863			/* chop off protocol */
1864			skb_pull_rcsum(skb, 2);
1865			skb->dev = ppp->dev;
1866			skb->protocol = htons(npindex_to_ethertype[npi]);
1867			skb_reset_mac_header(skb);
1868			netif_rx(skb);
1869		}
1870	}
1871	return;
1872
1873 err:
1874	kfree_skb(skb);
1875	ppp_receive_error(ppp);
1876}
1877
1878static struct sk_buff *
1879ppp_decompress_frame(struct ppp *ppp, struct sk_buff *skb)
1880{
1881	int proto = PPP_PROTO(skb);
1882	struct sk_buff *ns;
1883	int len;
1884
1885	/* Until we fix all the decompressor's need to make sure
1886	 * data portion is linear.
1887	 */
1888	if (!pskb_may_pull(skb, skb->len))
1889		goto err;
1890
1891	if (proto == PPP_COMP) {
1892		int obuff_size;
1893
1894		switch(ppp->rcomp->compress_proto) {
1895		case CI_MPPE:
1896			obuff_size = ppp->mru + PPP_HDRLEN + 1;
1897			break;
1898		default:
1899			obuff_size = ppp->mru + PPP_HDRLEN;
1900			break;
1901		}
1902
1903		ns = dev_alloc_skb(obuff_size);
1904		if (!ns) {
1905			netdev_err(ppp->dev, "ppp_decompress_frame: "
1906				   "no memory\n");
1907			goto err;
1908		}
1909		/* the decompressor still expects the A/C bytes in the hdr */
1910		len = ppp->rcomp->decompress(ppp->rc_state, skb->data - 2,
1911				skb->len + 2, ns->data, obuff_size);
1912		if (len < 0) {
1913			/* Pass the compressed frame to pppd as an
1914			   error indication. */
1915			if (len == DECOMP_FATALERROR)
1916				ppp->rstate |= SC_DC_FERROR;
1917			kfree_skb(ns);
1918			goto err;
1919		}
1920
1921		consume_skb(skb);
1922		skb = ns;
1923		skb_put(skb, len);
1924		skb_pull(skb, 2);	/* pull off the A/C bytes */
1925
1926	} else {
1927		/* Uncompressed frame - pass to decompressor so it
1928		   can update its dictionary if necessary. */
1929		if (ppp->rcomp->incomp)
1930			ppp->rcomp->incomp(ppp->rc_state, skb->data - 2,
1931					   skb->len + 2);
1932	}
1933
1934	return skb;
1935
1936 err:
1937	ppp->rstate |= SC_DC_ERROR;
1938	ppp_receive_error(ppp);
1939	return skb;
1940}
1941
1942#ifdef CONFIG_PPP_MULTILINK
1943/*
1944 * Receive a multilink frame.
1945 * We put it on the reconstruction queue and then pull off
1946 * as many completed frames as we can.
1947 */
1948static void
1949ppp_receive_mp_frame(struct ppp *ppp, struct sk_buff *skb, struct channel *pch)
1950{
1951	u32 mask, seq;
1952	struct channel *ch;
1953	int mphdrlen = (ppp->flags & SC_MP_SHORTSEQ)? MPHDRLEN_SSN: MPHDRLEN;
1954
1955	if (!pskb_may_pull(skb, mphdrlen + 1) || ppp->mrru == 0)
1956		goto err;		/* no good, throw it away */
1957
1958	/* Decode sequence number and begin/end bits */
1959	if (ppp->flags & SC_MP_SHORTSEQ) {
1960		seq = ((skb->data[2] & 0x0f) << 8) | skb->data[3];
1961		mask = 0xfff;
1962	} else {
1963		seq = (skb->data[3] << 16) | (skb->data[4] << 8)| skb->data[5];
1964		mask = 0xffffff;
1965	}
1966	PPP_MP_CB(skb)->BEbits = skb->data[2];
1967	skb_pull(skb, mphdrlen);	/* pull off PPP and MP headers */
1968
1969	/*
1970	 * Do protocol ID decompression on the first fragment of each packet.
1971	 */
1972	if ((PPP_MP_CB(skb)->BEbits & B) && (skb->data[0] & 1))
1973		*skb_push(skb, 1) = 0;
1974
1975	/*
1976	 * Expand sequence number to 32 bits, making it as close
1977	 * as possible to ppp->minseq.
1978	 */
1979	seq |= ppp->minseq & ~mask;
1980	if ((int)(ppp->minseq - seq) > (int)(mask >> 1))
1981		seq += mask + 1;
1982	else if ((int)(seq - ppp->minseq) > (int)(mask >> 1))
1983		seq -= mask + 1;	/* should never happen */
1984	PPP_MP_CB(skb)->sequence = seq;
1985	pch->lastseq = seq;
1986
1987	/*
1988	 * If this packet comes before the next one we were expecting,
1989	 * drop it.
1990	 */
1991	if (seq_before(seq, ppp->nextseq)) {
1992		kfree_skb(skb);
1993		++ppp->dev->stats.rx_dropped;
1994		ppp_receive_error(ppp);
1995		return;
1996	}
1997
1998	/*
1999	 * Reevaluate minseq, the minimum over all channels of the
2000	 * last sequence number received on each channel.  Because of
2001	 * the increasing sequence number rule, we know that any fragment
2002	 * before `minseq' which hasn't arrived is never going to arrive.
2003	 * The list of channels can't change because we have the receive
2004	 * side of the ppp unit locked.
2005	 */
2006	list_for_each_entry(ch, &ppp->channels, clist) {
2007		if (seq_before(ch->lastseq, seq))
2008			seq = ch->lastseq;
2009	}
2010	if (seq_before(ppp->minseq, seq))
2011		ppp->minseq = seq;
2012
2013	/* Put the fragment on the reconstruction queue */
2014	ppp_mp_insert(ppp, skb);
2015
2016	/* If the queue is getting long, don't wait any longer for packets
2017	   before the start of the queue. */
2018	if (skb_queue_len(&ppp->mrq) >= PPP_MP_MAX_QLEN) {
2019		struct sk_buff *mskb = skb_peek(&ppp->mrq);
2020		if (seq_before(ppp->minseq, PPP_MP_CB(mskb)->sequence))
2021			ppp->minseq = PPP_MP_CB(mskb)->sequence;
2022	}
2023
2024	/* Pull completed packets off the queue and receive them. */
2025	while ((skb = ppp_mp_reconstruct(ppp))) {
2026		if (pskb_may_pull(skb, 2))
2027			ppp_receive_nonmp_frame(ppp, skb);
2028		else {
2029			++ppp->dev->stats.rx_length_errors;
2030			kfree_skb(skb);
2031			ppp_receive_error(ppp);
2032		}
2033	}
2034
2035	return;
2036
2037 err:
2038	kfree_skb(skb);
2039	ppp_receive_error(ppp);
2040}
2041
2042/*
2043 * Insert a fragment on the MP reconstruction queue.
2044 * The queue is ordered by increasing sequence number.
2045 */
2046static void
2047ppp_mp_insert(struct ppp *ppp, struct sk_buff *skb)
2048{
2049	struct sk_buff *p;
2050	struct sk_buff_head *list = &ppp->mrq;
2051	u32 seq = PPP_MP_CB(skb)->sequence;
2052
2053	/* N.B. we don't need to lock the list lock because we have the
2054	   ppp unit receive-side lock. */
2055	skb_queue_walk(list, p) {
2056		if (seq_before(seq, PPP_MP_CB(p)->sequence))
2057			break;
2058	}
2059	__skb_queue_before(list, p, skb);
2060}
2061
2062/*
2063 * Reconstruct a packet from the MP fragment queue.
2064 * We go through increasing sequence numbers until we find a
2065 * complete packet, or we get to the sequence number for a fragment
2066 * which hasn't arrived but might still do so.
2067 */
2068static struct sk_buff *
2069ppp_mp_reconstruct(struct ppp *ppp)
2070{
2071	u32 seq = ppp->nextseq;
2072	u32 minseq = ppp->minseq;
2073	struct sk_buff_head *list = &ppp->mrq;
2074	struct sk_buff *p, *tmp;
2075	struct sk_buff *head, *tail;
2076	struct sk_buff *skb = NULL;
2077	int lost = 0, len = 0;
2078
2079	if (ppp->mrru == 0)	/* do nothing until mrru is set */
2080		return NULL;
2081	head = list->next;
2082	tail = NULL;
2083	skb_queue_walk_safe(list, p, tmp) {
2084	again:
2085		if (seq_before(PPP_MP_CB(p)->sequence, seq)) {
2086			/* this can't happen, anyway ignore the skb */
2087			netdev_err(ppp->dev, "ppp_mp_reconstruct bad "
2088				   "seq %u < %u\n",
2089				   PPP_MP_CB(p)->sequence, seq);
2090			__skb_unlink(p, list);
2091			kfree_skb(p);
2092			continue;
2093		}
2094		if (PPP_MP_CB(p)->sequence != seq) {
2095			u32 oldseq;
2096			/* Fragment `seq' is missing.  If it is after
2097			   minseq, it might arrive later, so stop here. */
2098			if (seq_after(seq, minseq))
2099				break;
2100			/* Fragment `seq' is lost, keep going. */
2101			lost = 1;
2102			oldseq = seq;
2103			seq = seq_before(minseq, PPP_MP_CB(p)->sequence)?
2104				minseq + 1: PPP_MP_CB(p)->sequence;
2105
2106			if (ppp->debug & 1)
2107				netdev_printk(KERN_DEBUG, ppp->dev,
2108					      "lost frag %u..%u\n",
2109					      oldseq, seq-1);
2110
2111			goto again;
2112		}
2113
2114		/*
2115		 * At this point we know that all the fragments from
2116		 * ppp->nextseq to seq are either present or lost.
2117		 * Also, there are no complete packets in the queue
2118		 * that have no missing fragments and end before this
2119		 * fragment.
2120		 */
2121
2122		/* B bit set indicates this fragment starts a packet */
2123		if (PPP_MP_CB(p)->BEbits & B) {
2124			head = p;
2125			lost = 0;
2126			len = 0;
2127		}
2128
2129		len += p->len;
2130
2131		/* Got a complete packet yet? */
2132		if (lost == 0 && (PPP_MP_CB(p)->BEbits & E) &&
2133		    (PPP_MP_CB(head)->BEbits & B)) {
2134			if (len > ppp->mrru + 2) {
2135				++ppp->dev->stats.rx_length_errors;
2136				netdev_printk(KERN_DEBUG, ppp->dev,
2137					      "PPP: reconstructed packet"
2138					      " is too long (%d)\n", len);
2139			} else {
2140				tail = p;
2141				break;
2142			}
2143			ppp->nextseq = seq + 1;
2144		}
2145
2146		/*
2147		 * If this is the ending fragment of a packet,
2148		 * and we haven't found a complete valid packet yet,
2149		 * we can discard up to and including this fragment.
2150		 */
2151		if (PPP_MP_CB(p)->BEbits & E) {
2152			struct sk_buff *tmp2;
2153
2154			skb_queue_reverse_walk_from_safe(list, p, tmp2) {
2155				if (ppp->debug & 1)
2156					netdev_printk(KERN_DEBUG, ppp->dev,
2157						      "discarding frag %u\n",
2158						      PPP_MP_CB(p)->sequence);
2159				__skb_unlink(p, list);
2160				kfree_skb(p);
2161			}
2162			head = skb_peek(list);
2163			if (!head)
2164				break;
2165		}
2166		++seq;
2167	}
2168
2169	/* If we have a complete packet, copy it all into one skb. */
2170	if (tail != NULL) {
2171		/* If we have discarded any fragments,
2172		   signal a receive error. */
2173		if (PPP_MP_CB(head)->sequence != ppp->nextseq) {
2174			skb_queue_walk_safe(list, p, tmp) {
2175				if (p == head)
2176					break;
2177				if (ppp->debug & 1)
2178					netdev_printk(KERN_DEBUG, ppp->dev,
2179						      "discarding frag %u\n",
2180						      PPP_MP_CB(p)->sequence);
2181				__skb_unlink(p, list);
2182				kfree_skb(p);
2183			}
2184
2185			if (ppp->debug & 1)
2186				netdev_printk(KERN_DEBUG, ppp->dev,
2187					      "  missed pkts %u..%u\n",
2188					      ppp->nextseq,
2189					      PPP_MP_CB(head)->sequence-1);
2190			++ppp->dev->stats.rx_dropped;
2191			ppp_receive_error(ppp);
2192		}
2193
2194		skb = head;
2195		if (head != tail) {
2196			struct sk_buff **fragpp = &skb_shinfo(skb)->frag_list;
2197			p = skb_queue_next(list, head);
2198			__skb_unlink(skb, list);
2199			skb_queue_walk_from_safe(list, p, tmp) {
2200				__skb_unlink(p, list);
2201				*fragpp = p;
2202				p->next = NULL;
2203				fragpp = &p->next;
2204
2205				skb->len += p->len;
2206				skb->data_len += p->len;
2207				skb->truesize += p->truesize;
2208
2209				if (p == tail)
2210					break;
2211			}
2212		} else {
2213			__skb_unlink(skb, list);
2214		}
2215
2216		ppp->nextseq = PPP_MP_CB(tail)->sequence + 1;
2217	}
2218
2219	return skb;
2220}
2221#endif /* CONFIG_PPP_MULTILINK */
2222
2223/*
2224 * Channel interface.
2225 */
2226
2227/* Create a new, unattached ppp channel. */
2228int ppp_register_channel(struct ppp_channel *chan)
2229{
2230	return ppp_register_net_channel(current->nsproxy->net_ns, chan);
2231}
2232
2233/* Create a new, unattached ppp channel for specified net. */
2234int ppp_register_net_channel(struct net *net, struct ppp_channel *chan)
2235{
2236	struct channel *pch;
2237	struct ppp_net *pn;
2238
2239	pch = kzalloc(sizeof(struct channel), GFP_KERNEL);
2240	if (!pch)
2241		return -ENOMEM;
2242
2243	pn = ppp_pernet(net);
2244
2245	pch->ppp = NULL;
2246	pch->chan = chan;
2247	pch->chan_net = net;
2248	chan->ppp = pch;
2249	init_ppp_file(&pch->file, CHANNEL);
2250	pch->file.hdrlen = chan->hdrlen;
2251#ifdef CONFIG_PPP_MULTILINK
2252	pch->lastseq = -1;
2253#endif /* CONFIG_PPP_MULTILINK */
2254	init_rwsem(&pch->chan_sem);
2255	spin_lock_init(&pch->downl);
2256	rwlock_init(&pch->upl);
2257
2258	spin_lock_bh(&pn->all_channels_lock);
2259	pch->file.index = ++pn->last_channel_index;
2260	list_add(&pch->list, &pn->new_channels);
2261	atomic_inc(&channel_count);
2262	spin_unlock_bh(&pn->all_channels_lock);
2263
2264	return 0;
2265}
2266
2267/*
2268 * Return the index of a channel.
2269 */
2270int ppp_channel_index(struct ppp_channel *chan)
2271{
2272	struct channel *pch = chan->ppp;
2273
2274	if (pch)
2275		return pch->file.index;
2276	return -1;
2277}
2278
2279/*
2280 * Return the PPP unit number to which a channel is connected.
2281 */
2282int ppp_unit_number(struct ppp_channel *chan)
2283{
2284	struct channel *pch = chan->ppp;
2285	int unit = -1;
2286
2287	if (pch) {
2288		read_lock_bh(&pch->upl);
2289		if (pch->ppp)
2290			unit = pch->ppp->file.index;
2291		read_unlock_bh(&pch->upl);
2292	}
2293	return unit;
2294}
2295
2296/*
2297 * Return the PPP device interface name of a channel.
2298 */
2299char *ppp_dev_name(struct ppp_channel *chan)
2300{
2301	struct channel *pch = chan->ppp;
2302	char *name = NULL;
2303
2304	if (pch) {
2305		read_lock_bh(&pch->upl);
2306		if (pch->ppp && pch->ppp->dev)
2307			name = pch->ppp->dev->name;
2308		read_unlock_bh(&pch->upl);
2309	}
2310	return name;
2311}
2312
2313
2314/*
2315 * Disconnect a channel from the generic layer.
2316 * This must be called in process context.
2317 */
2318void
2319ppp_unregister_channel(struct ppp_channel *chan)
2320{
2321	struct channel *pch = chan->ppp;
2322	struct ppp_net *pn;
2323
2324	if (!pch)
2325		return;		/* should never happen */
2326
2327	chan->ppp = NULL;
2328
2329	/*
2330	 * This ensures that we have returned from any calls into the
2331	 * the channel's start_xmit or ioctl routine before we proceed.
2332	 */
2333	down_write(&pch->chan_sem);
2334	spin_lock_bh(&pch->downl);
2335	pch->chan = NULL;
2336	spin_unlock_bh(&pch->downl);
2337	up_write(&pch->chan_sem);
2338	ppp_disconnect_channel(pch);
2339
2340	pn = ppp_pernet(pch->chan_net);
2341	spin_lock_bh(&pn->all_channels_lock);
2342	list_del(&pch->list);
2343	spin_unlock_bh(&pn->all_channels_lock);
2344
2345	pch->file.dead = 1;
2346	wake_up_interruptible(&pch->file.rwait);
2347	if (atomic_dec_and_test(&pch->file.refcnt))
2348		ppp_destroy_channel(pch);
2349}
2350
2351/*
2352 * Callback from a channel when it can accept more to transmit.
2353 * This should be called at BH/softirq level, not interrupt level.
2354 */
2355void
2356ppp_output_wakeup(struct ppp_channel *chan)
2357{
2358	struct channel *pch = chan->ppp;
2359
2360	if (!pch)
2361		return;
2362	ppp_channel_push(pch);
2363}
2364
2365/*
2366 * Compression control.
2367 */
2368
2369/* Process the PPPIOCSCOMPRESS ioctl. */
2370static int
2371ppp_set_compress(struct ppp *ppp, unsigned long arg)
2372{
2373	int err;
2374	struct compressor *cp, *ocomp;
2375	struct ppp_option_data data;
2376	void *state, *ostate;
2377	unsigned char ccp_option[CCP_MAX_OPTION_LENGTH];
2378
2379	err = -EFAULT;
2380	if (copy_from_user(&data, (void __user *) arg, sizeof(data)) ||
2381	    (data.length <= CCP_MAX_OPTION_LENGTH &&
2382	     copy_from_user(ccp_option, (void __user *) data.ptr, data.length)))
2383		goto out;
2384	err = -EINVAL;
2385	if (data.length > CCP_MAX_OPTION_LENGTH ||
2386	    ccp_option[1] < 2 || ccp_option[1] > data.length)
2387		goto out;
2388
2389	cp = try_then_request_module(
2390		find_compressor(ccp_option[0]),
2391		"ppp-compress-%d", ccp_option[0]);
2392	if (!cp)
2393		goto out;
2394
2395	err = -ENOBUFS;
2396	if (data.transmit) {
2397		state = cp->comp_alloc(ccp_option, data.length);
2398		if (state) {
2399			ppp_xmit_lock(ppp);
2400			ppp->xstate &= ~SC_COMP_RUN;
2401			ocomp = ppp->xcomp;
2402			ostate = ppp->xc_state;
2403			ppp->xcomp = cp;
2404			ppp->xc_state = state;
2405			ppp_xmit_unlock(ppp);
2406			if (ostate) {
2407				ocomp->comp_free(ostate);
2408				module_put(ocomp->owner);
2409			}
2410			err = 0;
2411		} else
2412			module_put(cp->owner);
2413
2414	} else {
2415		state = cp->decomp_alloc(ccp_option, data.length);
2416		if (state) {
2417			ppp_recv_lock(ppp);
2418			ppp->rstate &= ~SC_DECOMP_RUN;
2419			ocomp = ppp->rcomp;
2420			ostate = ppp->rc_state;
2421			ppp->rcomp = cp;
2422			ppp->rc_state = state;
2423			ppp_recv_unlock(ppp);
2424			if (ostate) {
2425				ocomp->decomp_free(ostate);
2426				module_put(ocomp->owner);
2427			}
2428			err = 0;
2429		} else
2430			module_put(cp->owner);
2431	}
2432
2433 out:
2434	return err;
2435}
2436
2437/*
2438 * Look at a CCP packet and update our state accordingly.
2439 * We assume the caller has the xmit or recv path locked.
2440 */
2441static void
2442ppp_ccp_peek(struct ppp *ppp, struct sk_buff *skb, int inbound)
2443{
2444	unsigned char *dp;
2445	int len;
2446
2447	if (!pskb_may_pull(skb, CCP_HDRLEN + 2))
2448		return;	/* no header */
2449	dp = skb->data + 2;
2450
2451	switch (CCP_CODE(dp)) {
2452	case CCP_CONFREQ:
2453
2454		/* A ConfReq starts negotiation of compression
2455		 * in one direction of transmission,
2456		 * and hence brings it down...but which way?
2457		 *
2458		 * Remember:
2459		 * A ConfReq indicates what the sender would like to receive
2460		 */
2461		if(inbound)
2462			/* He is proposing what I should send */
2463			ppp->xstate &= ~SC_COMP_RUN;
2464		else
2465			/* I am proposing to what he should send */
2466			ppp->rstate &= ~SC_DECOMP_RUN;
2467
2468		break;
2469
2470	case CCP_TERMREQ:
2471	case CCP_TERMACK:
2472		/*
2473		 * CCP is going down, both directions of transmission
2474		 */
2475		ppp->rstate &= ~SC_DECOMP_RUN;
2476		ppp->xstate &= ~SC_COMP_RUN;
2477		break;
2478
2479	case CCP_CONFACK:
2480		if ((ppp->flags & (SC_CCP_OPEN | SC_CCP_UP)) != SC_CCP_OPEN)
2481			break;
2482		len = CCP_LENGTH(dp);
2483		if (!pskb_may_pull(skb, len + 2))
2484			return;		/* too short */
2485		dp += CCP_HDRLEN;
2486		len -= CCP_HDRLEN;
2487		if (len < CCP_OPT_MINLEN || len < CCP_OPT_LENGTH(dp))
2488			break;
2489		if (inbound) {
2490			/* we will start receiving compressed packets */
2491			if (!ppp->rc_state)
2492				break;
2493			if (ppp->rcomp->decomp_init(ppp->rc_state, dp, len,
2494					ppp->file.index, 0, ppp->mru, ppp->debug)) {
2495				ppp->rstate |= SC_DECOMP_RUN;
2496				ppp->rstate &= ~(SC_DC_ERROR | SC_DC_FERROR);
2497			}
2498		} else {
2499			/* we will soon start sending compressed packets */
2500			if (!ppp->xc_state)
2501				break;
2502			if (ppp->xcomp->comp_init(ppp->xc_state, dp, len,
2503					ppp->file.index, 0, ppp->debug))
2504				ppp->xstate |= SC_COMP_RUN;
2505		}
2506		break;
2507
2508	case CCP_RESETACK:
2509		/* reset the [de]compressor */
2510		if ((ppp->flags & SC_CCP_UP) == 0)
2511			break;
2512		if (inbound) {
2513			if (ppp->rc_state && (ppp->rstate & SC_DECOMP_RUN)) {
2514				ppp->rcomp->decomp_reset(ppp->rc_state);
2515				ppp->rstate &= ~SC_DC_ERROR;
2516			}
2517		} else {
2518			if (ppp->xc_state && (ppp->xstate & SC_COMP_RUN))
2519				ppp->xcomp->comp_reset(ppp->xc_state);
2520		}
2521		break;
2522	}
2523}
2524
2525/* Free up compression resources. */
2526static void
2527ppp_ccp_closed(struct ppp *ppp)
2528{
2529	void *xstate, *rstate;
2530	struct compressor *xcomp, *rcomp;
2531
2532	ppp_lock(ppp);
2533	ppp->flags &= ~(SC_CCP_OPEN | SC_CCP_UP);
2534	ppp->xstate = 0;
2535	xcomp = ppp->xcomp;
2536	xstate = ppp->xc_state;
2537	ppp->xc_state = NULL;
2538	ppp->rstate = 0;
2539	rcomp = ppp->rcomp;
2540	rstate = ppp->rc_state;
2541	ppp->rc_state = NULL;
2542	ppp_unlock(ppp);
2543
2544	if (xstate) {
2545		xcomp->comp_free(xstate);
2546		module_put(xcomp->owner);
2547	}
2548	if (rstate) {
2549		rcomp->decomp_free(rstate);
2550		module_put(rcomp->owner);
2551	}
2552}
2553
2554/* List of compressors. */
2555static LIST_HEAD(compressor_list);
2556static DEFINE_SPINLOCK(compressor_list_lock);
2557
2558struct compressor_entry {
2559	struct list_head list;
2560	struct compressor *comp;
2561};
2562
2563static struct compressor_entry *
2564find_comp_entry(int proto)
2565{
2566	struct compressor_entry *ce;
2567
2568	list_for_each_entry(ce, &compressor_list, list) {
2569		if (ce->comp->compress_proto == proto)
2570			return ce;
2571	}
2572	return NULL;
2573}
2574
2575/* Register a compressor */
2576int
2577ppp_register_compressor(struct compressor *cp)
2578{
2579	struct compressor_entry *ce;
2580	int ret;
2581	spin_lock(&compressor_list_lock);
2582	ret = -EEXIST;
2583	if (find_comp_entry(cp->compress_proto))
2584		goto out;
2585	ret = -ENOMEM;
2586	ce = kmalloc(sizeof(struct compressor_entry), GFP_ATOMIC);
2587	if (!ce)
2588		goto out;
2589	ret = 0;
2590	ce->comp = cp;
2591	list_add(&ce->list, &compressor_list);
2592 out:
2593	spin_unlock(&compressor_list_lock);
2594	return ret;
2595}
2596
2597/* Unregister a compressor */
2598void
2599ppp_unregister_compressor(struct compressor *cp)
2600{
2601	struct compressor_entry *ce;
2602
2603	spin_lock(&compressor_list_lock);
2604	ce = find_comp_entry(cp->compress_proto);
2605	if (ce && ce->comp == cp) {
2606		list_del(&ce->list);
2607		kfree(ce);
2608	}
2609	spin_unlock(&compressor_list_lock);
2610}
2611
2612/* Find a compressor. */
2613static struct compressor *
2614find_compressor(int type)
2615{
2616	struct compressor_entry *ce;
2617	struct compressor *cp = NULL;
2618
2619	spin_lock(&compressor_list_lock);
2620	ce = find_comp_entry(type);
2621	if (ce) {
2622		cp = ce->comp;
2623		if (!try_module_get(cp->owner))
2624			cp = NULL;
2625	}
2626	spin_unlock(&compressor_list_lock);
2627	return cp;
2628}
2629
2630/*
2631 * Miscelleneous stuff.
2632 */
2633
2634static void
2635ppp_get_stats(struct ppp *ppp, struct ppp_stats *st)
2636{
2637	struct slcompress *vj = ppp->vj;
2638
2639	memset(st, 0, sizeof(*st));
2640	st->p.ppp_ipackets = ppp->stats64.rx_packets;
2641	st->p.ppp_ierrors = ppp->dev->stats.rx_errors;
2642	st->p.ppp_ibytes = ppp->stats64.rx_bytes;
2643	st->p.ppp_opackets = ppp->stats64.tx_packets;
2644	st->p.ppp_oerrors = ppp->dev->stats.tx_errors;
2645	st->p.ppp_obytes = ppp->stats64.tx_bytes;
2646	if (!vj)
2647		return;
2648	st->vj.vjs_packets = vj->sls_o_compressed + vj->sls_o_uncompressed;
2649	st->vj.vjs_compressed = vj->sls_o_compressed;
2650	st->vj.vjs_searches = vj->sls_o_searches;
2651	st->vj.vjs_misses = vj->sls_o_misses;
2652	st->vj.vjs_errorin = vj->sls_i_error;
2653	st->vj.vjs_tossed = vj->sls_i_tossed;
2654	st->vj.vjs_uncompressedin = vj->sls_i_uncompressed;
2655	st->vj.vjs_compressedin = vj->sls_i_compressed;
2656}
2657
2658/*
2659 * Stuff for handling the lists of ppp units and channels
2660 * and for initialization.
2661 */
2662
2663/*
2664 * Create a new ppp interface unit.  Fails if it can't allocate memory
2665 * or if there is already a unit with the requested number.
2666 * unit == -1 means allocate a new number.
2667 */
2668static struct ppp *
2669ppp_create_interface(struct net *net, int unit, int *retp)
2670{
2671	struct ppp *ppp;
2672	struct ppp_net *pn;
2673	struct net_device *dev = NULL;
2674	int ret = -ENOMEM;
2675	int i;
2676
2677	dev = alloc_netdev(sizeof(struct ppp), "", NET_NAME_UNKNOWN,
2678			   ppp_setup);
2679	if (!dev)
2680		goto out1;
2681
2682	pn = ppp_pernet(net);
2683
2684	ppp = netdev_priv(dev);
2685	ppp->dev = dev;
2686	ppp->mru = PPP_MRU;
2687	init_ppp_file(&ppp->file, INTERFACE);
2688	ppp->file.hdrlen = PPP_HDRLEN - 2;	/* don't count proto bytes */
2689	for (i = 0; i < NUM_NP; ++i)
2690		ppp->npmode[i] = NPMODE_PASS;
2691	INIT_LIST_HEAD(&ppp->channels);
2692	spin_lock_init(&ppp->rlock);
2693	spin_lock_init(&ppp->wlock);
2694#ifdef CONFIG_PPP_MULTILINK
2695	ppp->minseq = -1;
2696	skb_queue_head_init(&ppp->mrq);
2697#endif /* CONFIG_PPP_MULTILINK */
2698#ifdef CONFIG_PPP_FILTER
2699	ppp->pass_filter = NULL;
2700	ppp->active_filter = NULL;
2701#endif /* CONFIG_PPP_FILTER */
2702
2703	/*
2704	 * drum roll: don't forget to set
2705	 * the net device is belong to
2706	 */
2707	dev_net_set(dev, net);
2708
2709	mutex_lock(&pn->all_ppp_mutex);
2710
2711	if (unit < 0) {
2712		unit = unit_get(&pn->units_idr, ppp);
2713		if (unit < 0) {
2714			ret = unit;
2715			goto out2;
2716		}
2717	} else {
2718		ret = -EEXIST;
2719		if (unit_find(&pn->units_idr, unit))
2720			goto out2; /* unit already exists */
2721		/*
2722		 * if caller need a specified unit number
2723		 * lets try to satisfy him, otherwise --
2724		 * he should better ask us for new unit number
2725		 *
2726		 * NOTE: yes I know that returning EEXIST it's not
2727		 * fair but at least pppd will ask us to allocate
2728		 * new unit in this case so user is happy :)
2729		 */
2730		unit = unit_set(&pn->units_idr, ppp, unit);
2731		if (unit < 0)
2732			goto out2;
2733	}
2734
2735	/* Initialize the new ppp unit */
2736	ppp->file.index = unit;
2737	sprintf(dev->name, "ppp%d", unit);
2738
2739	ret = register_netdev(dev);
2740	if (ret != 0) {
2741		unit_put(&pn->units_idr, unit);
2742		netdev_err(ppp->dev, "PPP: couldn't register device %s (%d)\n",
2743			   dev->name, ret);
2744		goto out2;
2745	}
2746
2747	ppp->ppp_net = net;
2748
2749	atomic_inc(&ppp_unit_count);
2750	mutex_unlock(&pn->all_ppp_mutex);
2751
2752	*retp = 0;
2753	return ppp;
2754
2755out2:
2756	mutex_unlock(&pn->all_ppp_mutex);
2757	free_netdev(dev);
2758out1:
2759	*retp = ret;
2760	return NULL;
2761}
2762
2763/*
2764 * Initialize a ppp_file structure.
2765 */
2766static void
2767init_ppp_file(struct ppp_file *pf, int kind)
2768{
2769	pf->kind = kind;
2770	skb_queue_head_init(&pf->xq);
2771	skb_queue_head_init(&pf->rq);
2772	atomic_set(&pf->refcnt, 1);
2773	init_waitqueue_head(&pf->rwait);
2774}
2775
2776/*
2777 * Take down a ppp interface unit - called when the owning file
2778 * (the one that created the unit) is closed or detached.
2779 */
2780static void ppp_shutdown_interface(struct ppp *ppp)
2781{
2782	struct ppp_net *pn;
2783
2784	pn = ppp_pernet(ppp->ppp_net);
2785	mutex_lock(&pn->all_ppp_mutex);
2786
2787	/* This will call dev_close() for us. */
2788	ppp_lock(ppp);
2789	if (!ppp->closing) {
2790		ppp->closing = 1;
2791		ppp_unlock(ppp);
2792		unregister_netdev(ppp->dev);
2793		unit_put(&pn->units_idr, ppp->file.index);
2794	} else
2795		ppp_unlock(ppp);
2796
2797	ppp->file.dead = 1;
2798	ppp->owner = NULL;
2799	wake_up_interruptible(&ppp->file.rwait);
2800
2801	mutex_unlock(&pn->all_ppp_mutex);
2802}
2803
2804/*
2805 * Free the memory used by a ppp unit.  This is only called once
2806 * there are no channels connected to the unit and no file structs
2807 * that reference the unit.
2808 */
2809static void ppp_destroy_interface(struct ppp *ppp)
2810{
2811	atomic_dec(&ppp_unit_count);
2812
2813	if (!ppp->file.dead || ppp->n_channels) {
2814		/* "can't happen" */
2815		netdev_err(ppp->dev, "ppp: destroying ppp struct %p "
2816			   "but dead=%d n_channels=%d !\n",
2817			   ppp, ppp->file.dead, ppp->n_channels);
2818		return;
2819	}
2820
2821	ppp_ccp_closed(ppp);
2822	if (ppp->vj) {
2823		slhc_free(ppp->vj);
2824		ppp->vj = NULL;
2825	}
2826	skb_queue_purge(&ppp->file.xq);
2827	skb_queue_purge(&ppp->file.rq);
2828#ifdef CONFIG_PPP_MULTILINK
2829	skb_queue_purge(&ppp->mrq);
2830#endif /* CONFIG_PPP_MULTILINK */
2831#ifdef CONFIG_PPP_FILTER
2832	if (ppp->pass_filter) {
2833		bpf_prog_destroy(ppp->pass_filter);
2834		ppp->pass_filter = NULL;
2835	}
2836
2837	if (ppp->active_filter) {
2838		bpf_prog_destroy(ppp->active_filter);
2839		ppp->active_filter = NULL;
2840	}
2841#endif /* CONFIG_PPP_FILTER */
2842
2843	kfree_skb(ppp->xmit_pending);
2844
2845	free_netdev(ppp->dev);
2846}
2847
2848/*
2849 * Locate an existing ppp unit.
2850 * The caller should have locked the all_ppp_mutex.
2851 */
2852static struct ppp *
2853ppp_find_unit(struct ppp_net *pn, int unit)
2854{
2855	return unit_find(&pn->units_idr, unit);
2856}
2857
2858/*
2859 * Locate an existing ppp channel.
2860 * The caller should have locked the all_channels_lock.
2861 * First we look in the new_channels list, then in the
2862 * all_channels list.  If found in the new_channels list,
2863 * we move it to the all_channels list.  This is for speed
2864 * when we have a lot of channels in use.
2865 */
2866static struct channel *
2867ppp_find_channel(struct ppp_net *pn, int unit)
2868{
2869	struct channel *pch;
2870
2871	list_for_each_entry(pch, &pn->new_channels, list) {
2872		if (pch->file.index == unit) {
2873			list_move(&pch->list, &pn->all_channels);
2874			return pch;
2875		}
2876	}
2877
2878	list_for_each_entry(pch, &pn->all_channels, list) {
2879		if (pch->file.index == unit)
2880			return pch;
2881	}
2882
2883	return NULL;
2884}
2885
2886/*
2887 * Connect a PPP channel to a PPP interface unit.
2888 */
2889static int
2890ppp_connect_channel(struct channel *pch, int unit)
2891{
2892	struct ppp *ppp;
2893	struct ppp_net *pn;
2894	int ret = -ENXIO;
2895	int hdrlen;
2896
2897	pn = ppp_pernet(pch->chan_net);
2898
2899	mutex_lock(&pn->all_ppp_mutex);
2900	ppp = ppp_find_unit(pn, unit);
2901	if (!ppp)
2902		goto out;
2903	write_lock_bh(&pch->upl);
2904	ret = -EINVAL;
2905	if (pch->ppp)
2906		goto outl;
2907
2908	ppp_lock(ppp);
2909	if (pch->file.hdrlen > ppp->file.hdrlen)
2910		ppp->file.hdrlen = pch->file.hdrlen;
2911	hdrlen = pch->file.hdrlen + 2;	/* for protocol bytes */
2912	if (hdrlen > ppp->dev->hard_header_len)
2913		ppp->dev->hard_header_len = hdrlen;
2914	list_add_tail(&pch->clist, &ppp->channels);
2915	++ppp->n_channels;
2916	pch->ppp = ppp;
2917	atomic_inc(&ppp->file.refcnt);
2918	ppp_unlock(ppp);
2919	ret = 0;
2920
2921 outl:
2922	write_unlock_bh(&pch->upl);
2923 out:
2924	mutex_unlock(&pn->all_ppp_mutex);
2925	return ret;
2926}
2927
2928/*
2929 * Disconnect a channel from its ppp unit.
2930 */
2931static int
2932ppp_disconnect_channel(struct channel *pch)
2933{
2934	struct ppp *ppp;
2935	int err = -EINVAL;
2936
2937	write_lock_bh(&pch->upl);
2938	ppp = pch->ppp;
2939	pch->ppp = NULL;
2940	write_unlock_bh(&pch->upl);
2941	if (ppp) {
2942		/* remove it from the ppp unit's list */
2943		ppp_lock(ppp);
2944		list_del(&pch->clist);
2945		if (--ppp->n_channels == 0)
2946			wake_up_interruptible(&ppp->file.rwait);
2947		ppp_unlock(ppp);
2948		if (atomic_dec_and_test(&ppp->file.refcnt))
2949			ppp_destroy_interface(ppp);
2950		err = 0;
2951	}
2952	return err;
2953}
2954
2955/*
2956 * Free up the resources used by a ppp channel.
2957 */
2958static void ppp_destroy_channel(struct channel *pch)
2959{
2960	atomic_dec(&channel_count);
2961
2962	if (!pch->file.dead) {
2963		/* "can't happen" */
2964		pr_err("ppp: destroying undead channel %p !\n", pch);
2965		return;
2966	}
2967	skb_queue_purge(&pch->file.xq);
2968	skb_queue_purge(&pch->file.rq);
2969	kfree(pch);
2970}
2971
2972static void __exit ppp_cleanup(void)
2973{
2974	/* should never happen */
2975	if (atomic_read(&ppp_unit_count) || atomic_read(&channel_count))
2976		pr_err("PPP: removing module but units remain!\n");
2977	unregister_chrdev(PPP_MAJOR, "ppp");
2978	device_destroy(ppp_class, MKDEV(PPP_MAJOR, 0));
2979	class_destroy(ppp_class);
2980	unregister_pernet_device(&ppp_net_ops);
2981}
2982
2983/*
2984 * Units handling. Caller must protect concurrent access
2985 * by holding all_ppp_mutex
2986 */
2987
2988/* associate pointer with specified number */
2989static int unit_set(struct idr *p, void *ptr, int n)
2990{
2991	int unit;
2992
2993	unit = idr_alloc(p, ptr, n, n + 1, GFP_KERNEL);
2994	if (unit == -ENOSPC)
2995		unit = -EINVAL;
2996	return unit;
2997}
2998
2999/* get new free unit number and associate pointer with it */
3000static int unit_get(struct idr *p, void *ptr)
3001{
3002	return idr_alloc(p, ptr, 0, 0, GFP_KERNEL);
3003}
3004
3005/* put unit number back to a pool */
3006static void unit_put(struct idr *p, int n)
3007{
3008	idr_remove(p, n);
3009}
3010
3011/* get pointer associated with the number */
3012static void *unit_find(struct idr *p, int n)
3013{
3014	return idr_find(p, n);
3015}
3016
3017/* Module/initialization stuff */
3018
3019module_init(ppp_init);
3020module_exit(ppp_cleanup);
3021
3022EXPORT_SYMBOL(ppp_register_net_channel);
3023EXPORT_SYMBOL(ppp_register_channel);
3024EXPORT_SYMBOL(ppp_unregister_channel);
3025EXPORT_SYMBOL(ppp_channel_index);
3026EXPORT_SYMBOL(ppp_unit_number);
3027EXPORT_SYMBOL(ppp_dev_name);
3028EXPORT_SYMBOL(ppp_input);
3029EXPORT_SYMBOL(ppp_input_error);
3030EXPORT_SYMBOL(ppp_output_wakeup);
3031EXPORT_SYMBOL(ppp_register_compressor);
3032EXPORT_SYMBOL(ppp_unregister_compressor);
3033MODULE_LICENSE("GPL");
3034MODULE_ALIAS_CHARDEV(PPP_MAJOR, 0);
3035MODULE_ALIAS("devname:ppp");
3036