1/*
2 * Intel Wireless WiMAX Connection 2400m
3 * Generic probe/disconnect, reset and message passing
4 *
5 *
6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com>
7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License version
11 * 2 as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
22 *
23 *
24 * See i2400m.h for driver documentation. This contains helpers for
25 * the driver model glue [_setup()/_release()], handling device resets
26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops
27 * reset [_op_reset()] and message from user [_op_msg_from_user()].
28 *
29 * ROADMAP:
30 *
31 * i2400m_op_msg_from_user()
32 *   i2400m_msg_to_dev()
33 *   wimax_msg_to_user_send()
34 *
35 * i2400m_op_reset()
36 *   i240m->bus_reset()
37 *
38 * i2400m_dev_reset_handle()
39 *   __i2400m_dev_reset_handle()
40 *     __i2400m_dev_stop()
41 *     __i2400m_dev_start()
42 *
43 * i2400m_setup()
44 *   i2400m->bus_setup()
45 *   i2400m_bootrom_init()
46 *   register_netdev()
47 *   wimax_dev_add()
48 *   i2400m_dev_start()
49 *     __i2400m_dev_start()
50 *       i2400m_dev_bootstrap()
51 *       i2400m_tx_setup()
52 *       i2400m->bus_dev_start()
53 *       i2400m_firmware_check()
54 *       i2400m_check_mac_addr()
55 *
56 * i2400m_release()
57 *   i2400m_dev_stop()
58 *     __i2400m_dev_stop()
59 *       i2400m_dev_shutdown()
60 *       i2400m->bus_dev_stop()
61 *       i2400m_tx_release()
62 *   i2400m->bus_release()
63 *   wimax_dev_rm()
64 *   unregister_netdev()
65 */
66#include "i2400m.h"
67#include <linux/etherdevice.h>
68#include <linux/wimax/i2400m.h>
69#include <linux/module.h>
70#include <linux/moduleparam.h>
71#include <linux/suspend.h>
72#include <linux/slab.h>
73
74#define D_SUBMODULE driver
75#include "debug-levels.h"
76
77
78static char i2400m_debug_params[128];
79module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params),
80		    0644);
81MODULE_PARM_DESC(debug,
82		 "String of space-separated NAME:VALUE pairs, where NAMEs "
83		 "are the different debug submodules and VALUE are the "
84		 "initial debug value to set.");
85
86static char i2400m_barkers_params[128];
87module_param_string(barkers, i2400m_barkers_params,
88		    sizeof(i2400m_barkers_params), 0644);
89MODULE_PARM_DESC(barkers,
90		 "String of comma-separated 32-bit values; each is "
91		 "recognized as the value the device sends as a reboot "
92		 "signal; values are appended to a list--setting one value "
93		 "as zero cleans the existing list and starts a new one.");
94
95/*
96 * WiMAX stack operation: relay a message from user space
97 *
98 * @wimax_dev: device descriptor
99 * @pipe_name: named pipe the message is for
100 * @msg_buf: pointer to the message bytes
101 * @msg_len: length of the buffer
102 * @genl_info: passed by the generic netlink layer
103 *
104 * The WiMAX stack will call this function when a message was received
105 * from user space.
106 *
107 * For the i2400m, this is an L3L4 message, as specified in
108 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct
109 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be
110 * coded in Little Endian.
111 *
112 * This function just verifies that the header declaration and the
113 * payload are consistent and then deals with it, either forwarding it
114 * to the device or procesing it locally.
115 *
116 * In the i2400m, messages are basically commands that will carry an
117 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to
118 * user space. The rx.c code might intercept the response and use it
119 * to update the driver's state, but then it will pass it on so it can
120 * be relayed back to user space.
121 *
122 * Note that asynchronous events from the device are processed and
123 * sent to user space in rx.c.
124 */
125static
126int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev,
127			    const char *pipe_name,
128			    const void *msg_buf, size_t msg_len,
129			    const struct genl_info *genl_info)
130{
131	int result;
132	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
133	struct device *dev = i2400m_dev(i2400m);
134	struct sk_buff *ack_skb;
135
136	d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p "
137		  "msg_len %zu genl_info %p)\n", wimax_dev, i2400m,
138		  msg_buf, msg_len, genl_info);
139	ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len);
140	result = PTR_ERR(ack_skb);
141	if (IS_ERR(ack_skb))
142		goto error_msg_to_dev;
143	result = wimax_msg_send(&i2400m->wimax_dev, ack_skb);
144error_msg_to_dev:
145	d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu "
146		"genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len,
147		genl_info, result);
148	return result;
149}
150
151
152/*
153 * Context to wait for a reset to finalize
154 */
155struct i2400m_reset_ctx {
156	struct completion completion;
157	int result;
158};
159
160
161/*
162 * WiMAX stack operation: reset a device
163 *
164 * @wimax_dev: device descriptor
165 *
166 * See the documentation for wimax_reset() and wimax_dev->op_reset for
167 * the requirements of this function. The WiMAX stack guarantees
168 * serialization on calls to this function.
169 *
170 * Do a warm reset on the device; if it fails, resort to a cold reset
171 * and return -ENODEV. On successful warm reset, we need to block
172 * until it is complete.
173 *
174 * The bus-driver implementation of reset takes care of falling back
175 * to cold reset if warm fails.
176 */
177static
178int i2400m_op_reset(struct wimax_dev *wimax_dev)
179{
180	int result;
181	struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev);
182	struct device *dev = i2400m_dev(i2400m);
183	struct i2400m_reset_ctx ctx = {
184		.completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion),
185		.result = 0,
186	};
187
188	d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev);
189	mutex_lock(&i2400m->init_mutex);
190	i2400m->reset_ctx = &ctx;
191	mutex_unlock(&i2400m->init_mutex);
192	result = i2400m_reset(i2400m, I2400M_RT_WARM);
193	if (result < 0)
194		goto out;
195	result = wait_for_completion_timeout(&ctx.completion, 4*HZ);
196	if (result == 0)
197		result = -ETIMEDOUT;
198	else if (result > 0)
199		result = ctx.result;
200	/* if result < 0, pass it on */
201	mutex_lock(&i2400m->init_mutex);
202	i2400m->reset_ctx = NULL;
203	mutex_unlock(&i2400m->init_mutex);
204out:
205	d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result);
206	return result;
207}
208
209
210/*
211 * Check the MAC address we got from boot mode is ok
212 *
213 * @i2400m: device descriptor
214 *
215 * Returns: 0 if ok, < 0 errno code on error.
216 */
217static
218int i2400m_check_mac_addr(struct i2400m *i2400m)
219{
220	int result;
221	struct device *dev = i2400m_dev(i2400m);
222	struct sk_buff *skb;
223	const struct i2400m_tlv_detailed_device_info *ddi;
224	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
225
226	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
227	skb = i2400m_get_device_info(i2400m);
228	if (IS_ERR(skb)) {
229		result = PTR_ERR(skb);
230		dev_err(dev, "Cannot verify MAC address, error reading: %d\n",
231			result);
232		goto error;
233	}
234	/* Extract MAC address */
235	ddi = (void *) skb->data;
236	BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address));
237	d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n",
238		 ddi->mac_address);
239	if (!memcmp(net_dev->perm_addr, ddi->mac_address,
240		   sizeof(ddi->mac_address)))
241		goto ok;
242	dev_warn(dev, "warning: device reports a different MAC address "
243		 "to that of boot mode's\n");
244	dev_warn(dev, "device reports     %pM\n", ddi->mac_address);
245	dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr);
246	if (is_zero_ether_addr(ddi->mac_address))
247		dev_err(dev, "device reports an invalid MAC address, "
248			"not updating\n");
249	else {
250		dev_warn(dev, "updating MAC address\n");
251		net_dev->addr_len = ETH_ALEN;
252		memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN);
253		memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN);
254	}
255ok:
256	result = 0;
257	kfree_skb(skb);
258error:
259	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
260	return result;
261}
262
263
264/**
265 * __i2400m_dev_start - Bring up driver communication with the device
266 *
267 * @i2400m: device descriptor
268 * @flags: boot mode flags
269 *
270 * Returns: 0 if ok, < 0 errno code on error.
271 *
272 * Uploads firmware and brings up all the resources needed to be able
273 * to communicate with the device.
274 *
275 * The workqueue has to be setup early, at least before RX handling
276 * (it's only real user for now) so it can process reports as they
277 * arrive. We also want to destroy it if we retry, to make sure it is
278 * flushed...easier like this.
279 *
280 * TX needs to be setup before the bus-specific code (otherwise on
281 * shutdown, the bus-tx code could try to access it).
282 */
283static
284int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags)
285{
286	int result;
287	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
288	struct net_device *net_dev = wimax_dev->net_dev;
289	struct device *dev = i2400m_dev(i2400m);
290	int times = i2400m->bus_bm_retries;
291
292	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
293retry:
294	result = i2400m_dev_bootstrap(i2400m, flags);
295	if (result < 0) {
296		dev_err(dev, "cannot bootstrap device: %d\n", result);
297		goto error_bootstrap;
298	}
299	result = i2400m_tx_setup(i2400m);
300	if (result < 0)
301		goto error_tx_setup;
302	result = i2400m_rx_setup(i2400m);
303	if (result < 0)
304		goto error_rx_setup;
305	i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name);
306	if (i2400m->work_queue == NULL) {
307		result = -ENOMEM;
308		dev_err(dev, "cannot create workqueue\n");
309		goto error_create_workqueue;
310	}
311	if (i2400m->bus_dev_start) {
312		result = i2400m->bus_dev_start(i2400m);
313		if (result < 0)
314			goto error_bus_dev_start;
315	}
316	i2400m->ready = 1;
317	wmb();		/* see i2400m->ready's documentation  */
318	/* process pending reports from the device */
319	queue_work(i2400m->work_queue, &i2400m->rx_report_ws);
320	result = i2400m_firmware_check(i2400m);	/* fw versions ok? */
321	if (result < 0)
322		goto error_fw_check;
323	/* At this point is ok to send commands to the device */
324	result = i2400m_check_mac_addr(i2400m);
325	if (result < 0)
326		goto error_check_mac_addr;
327	result = i2400m_dev_initialize(i2400m);
328	if (result < 0)
329		goto error_dev_initialize;
330
331	/* We don't want any additional unwanted error recovery triggered
332	 * from any other context so if anything went wrong before we come
333	 * here, let's keep i2400m->error_recovery untouched and leave it to
334	 * dev_reset_handle(). See dev_reset_handle(). */
335
336	atomic_dec(&i2400m->error_recovery);
337	/* Every thing works so far, ok, now we are ready to
338	 * take error recovery if it's required. */
339
340	/* At this point, reports will come for the device and set it
341	 * to the right state if it is different than UNINITIALIZED */
342	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
343		net_dev, i2400m, result);
344	return result;
345
346error_dev_initialize:
347error_check_mac_addr:
348error_fw_check:
349	i2400m->ready = 0;
350	wmb();		/* see i2400m->ready's documentation  */
351	flush_workqueue(i2400m->work_queue);
352	if (i2400m->bus_dev_stop)
353		i2400m->bus_dev_stop(i2400m);
354error_bus_dev_start:
355	destroy_workqueue(i2400m->work_queue);
356error_create_workqueue:
357	i2400m_rx_release(i2400m);
358error_rx_setup:
359	i2400m_tx_release(i2400m);
360error_tx_setup:
361error_bootstrap:
362	if (result == -EL3RST && times-- > 0) {
363		flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT;
364		goto retry;
365	}
366	d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n",
367		net_dev, i2400m, result);
368	return result;
369}
370
371
372static
373int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags)
374{
375	int result = 0;
376	mutex_lock(&i2400m->init_mutex);	/* Well, start the device */
377	if (i2400m->updown == 0) {
378		result = __i2400m_dev_start(i2400m, bm_flags);
379		if (result >= 0) {
380			i2400m->updown = 1;
381			i2400m->alive = 1;
382			wmb();/* see i2400m->updown and i2400m->alive's doc */
383		}
384	}
385	mutex_unlock(&i2400m->init_mutex);
386	return result;
387}
388
389
390/**
391 * i2400m_dev_stop - Tear down driver communication with the device
392 *
393 * @i2400m: device descriptor
394 *
395 * Returns: 0 if ok, < 0 errno code on error.
396 *
397 * Releases all the resources allocated to communicate with the
398 * device. Note we cannot destroy the workqueue earlier as until RX is
399 * fully destroyed, it could still try to schedule jobs.
400 */
401static
402void __i2400m_dev_stop(struct i2400m *i2400m)
403{
404	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
405	struct device *dev = i2400m_dev(i2400m);
406
407	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
408	wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING);
409	i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
410	complete(&i2400m->msg_completion);
411	i2400m_net_wake_stop(i2400m);
412	i2400m_dev_shutdown(i2400m);
413	/*
414	 * Make sure no report hooks are running *before* we stop the
415	 * communication infrastructure with the device.
416	 */
417	i2400m->ready = 0;	/* nobody can queue work anymore */
418	wmb();		/* see i2400m->ready's documentation  */
419	flush_workqueue(i2400m->work_queue);
420
421	if (i2400m->bus_dev_stop)
422		i2400m->bus_dev_stop(i2400m);
423	destroy_workqueue(i2400m->work_queue);
424	i2400m_rx_release(i2400m);
425	i2400m_tx_release(i2400m);
426	wimax_state_change(wimax_dev, WIMAX_ST_DOWN);
427	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
428}
429
430
431/*
432 * Watch out -- we only need to stop if there is a need for it. The
433 * device could have reset itself and failed to come up again (see
434 * _i2400m_dev_reset_handle()).
435 */
436static
437void i2400m_dev_stop(struct i2400m *i2400m)
438{
439	mutex_lock(&i2400m->init_mutex);
440	if (i2400m->updown) {
441		__i2400m_dev_stop(i2400m);
442		i2400m->updown = 0;
443		i2400m->alive = 0;
444		wmb();	/* see i2400m->updown and i2400m->alive's doc */
445	}
446	mutex_unlock(&i2400m->init_mutex);
447}
448
449
450/*
451 * Listen to PM events to cache the firmware before suspend/hibernation
452 *
453 * When the device comes out of suspend, it might go into reset and
454 * firmware has to be uploaded again. At resume, most of the times, we
455 * can't load firmware images from disk, so we need to cache it.
456 *
457 * i2400m_fw_cache() will allocate a kobject and attach the firmware
458 * to it; that way we don't have to worry too much about the fw loader
459 * hitting a race condition.
460 *
461 * Note: modus operandi stolen from the Orinoco driver; thx.
462 */
463static
464int i2400m_pm_notifier(struct notifier_block *notifier,
465		       unsigned long pm_event,
466		       void *unused)
467{
468	struct i2400m *i2400m =
469		container_of(notifier, struct i2400m, pm_notifier);
470	struct device *dev = i2400m_dev(i2400m);
471
472	d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event);
473	switch (pm_event) {
474	case PM_HIBERNATION_PREPARE:
475	case PM_SUSPEND_PREPARE:
476		i2400m_fw_cache(i2400m);
477		break;
478	case PM_POST_RESTORE:
479		/* Restore from hibernation failed. We need to clean
480		 * up in exactly the same way, so fall through. */
481	case PM_POST_HIBERNATION:
482	case PM_POST_SUSPEND:
483		i2400m_fw_uncache(i2400m);
484		break;
485
486	case PM_RESTORE_PREPARE:
487	default:
488		break;
489	}
490	d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event);
491	return NOTIFY_DONE;
492}
493
494
495/*
496 * pre-reset is called before a device is going on reset
497 *
498 * This has to be followed by a call to i2400m_post_reset(), otherwise
499 * bad things might happen.
500 */
501int i2400m_pre_reset(struct i2400m *i2400m)
502{
503	struct device *dev = i2400m_dev(i2400m);
504
505	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
506	d_printf(1, dev, "pre-reset shut down\n");
507
508	mutex_lock(&i2400m->init_mutex);
509	if (i2400m->updown) {
510		netif_tx_disable(i2400m->wimax_dev.net_dev);
511		__i2400m_dev_stop(i2400m);
512		/* down't set updown to zero -- this way
513		 * post_reset can restore properly */
514	}
515	mutex_unlock(&i2400m->init_mutex);
516	if (i2400m->bus_release)
517		i2400m->bus_release(i2400m);
518	d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m);
519	return 0;
520}
521EXPORT_SYMBOL_GPL(i2400m_pre_reset);
522
523
524/*
525 * Restore device state after a reset
526 *
527 * Do the work needed after a device reset to bring it up to the same
528 * state as it was before the reset.
529 *
530 * NOTE: this requires i2400m->init_mutex taken
531 */
532int i2400m_post_reset(struct i2400m *i2400m)
533{
534	int result = 0;
535	struct device *dev = i2400m_dev(i2400m);
536
537	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
538	d_printf(1, dev, "post-reset start\n");
539	if (i2400m->bus_setup) {
540		result = i2400m->bus_setup(i2400m);
541		if (result < 0) {
542			dev_err(dev, "bus-specific setup failed: %d\n",
543				result);
544			goto error_bus_setup;
545		}
546	}
547	mutex_lock(&i2400m->init_mutex);
548	if (i2400m->updown) {
549		result = __i2400m_dev_start(
550			i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
551		if (result < 0)
552			goto error_dev_start;
553	}
554	mutex_unlock(&i2400m->init_mutex);
555	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
556	return result;
557
558error_dev_start:
559	if (i2400m->bus_release)
560		i2400m->bus_release(i2400m);
561	/* even if the device was up, it could not be recovered, so we
562	 * mark it as down. */
563	i2400m->updown = 0;
564	wmb();		/* see i2400m->updown's documentation  */
565	mutex_unlock(&i2400m->init_mutex);
566error_bus_setup:
567	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
568	return result;
569}
570EXPORT_SYMBOL_GPL(i2400m_post_reset);
571
572
573/*
574 * The device has rebooted; fix up the device and the driver
575 *
576 * Tear down the driver communication with the device, reload the
577 * firmware and reinitialize the communication with the device.
578 *
579 * If someone calls a reset when the device's firmware is down, in
580 * theory we won't see it because we are not listening. However, just
581 * in case, leave the code to handle it.
582 *
583 * If there is a reset context, use it; this means someone is waiting
584 * for us to tell him when the reset operation is complete and the
585 * device is ready to rock again.
586 *
587 * NOTE: if we are in the process of bringing up or down the
588 *       communication with the device [running i2400m_dev_start() or
589 *       _stop()], don't do anything, let it fail and handle it.
590 *
591 * This function is ran always in a thread context
592 *
593 * This function gets passed, as payload to i2400m_work() a 'const
594 * char *' ptr with a "reason" why the reset happened (for messages).
595 */
596static
597void __i2400m_dev_reset_handle(struct work_struct *ws)
598{
599	struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws);
600	const char *reason = i2400m->reset_reason;
601	struct device *dev = i2400m_dev(i2400m);
602	struct i2400m_reset_ctx *ctx = i2400m->reset_ctx;
603	int result;
604
605	d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason);
606
607	i2400m->boot_mode = 1;
608	wmb();		/* Make sure i2400m_msg_to_dev() sees boot_mode */
609
610	result = 0;
611	if (mutex_trylock(&i2400m->init_mutex) == 0) {
612		/* We are still in i2400m_dev_start() [let it fail] or
613		 * i2400m_dev_stop() [we are shutting down anyway, so
614		 * ignore it] or we are resetting somewhere else. */
615		dev_err(dev, "device rebooted somewhere else?\n");
616		i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST);
617		complete(&i2400m->msg_completion);
618		goto out;
619	}
620
621	dev_err(dev, "%s: reinitializing driver\n", reason);
622	rmb();
623	if (i2400m->updown) {
624		__i2400m_dev_stop(i2400m);
625		i2400m->updown = 0;
626		wmb();		/* see i2400m->updown's documentation  */
627	}
628
629	if (i2400m->alive) {
630		result = __i2400m_dev_start(i2400m,
631				    I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT);
632		if (result < 0) {
633			dev_err(dev, "%s: cannot start the device: %d\n",
634				reason, result);
635			result = -EUCLEAN;
636			if (atomic_read(&i2400m->bus_reset_retries)
637					>= I2400M_BUS_RESET_RETRIES) {
638				result = -ENODEV;
639				dev_err(dev, "tried too many times to "
640					"reset the device, giving up\n");
641			}
642		}
643	}
644
645	if (i2400m->reset_ctx) {
646		ctx->result = result;
647		complete(&ctx->completion);
648	}
649	mutex_unlock(&i2400m->init_mutex);
650	if (result == -EUCLEAN) {
651		/*
652		 * We come here because the reset during operational mode
653		 * wasn't successfully done and need to proceed to a bus
654		 * reset. For the dev_reset_handle() to be able to handle
655		 * the reset event later properly, we restore boot_mode back
656		 * to the state before previous reset. ie: just like we are
657		 * issuing the bus reset for the first time
658		 */
659		i2400m->boot_mode = 0;
660		wmb();
661
662		atomic_inc(&i2400m->bus_reset_retries);
663		/* ops, need to clean up [w/ init_mutex not held] */
664		result = i2400m_reset(i2400m, I2400M_RT_BUS);
665		if (result >= 0)
666			result = -ENODEV;
667	} else {
668		rmb();
669		if (i2400m->alive) {
670			/* great, we expect the device state up and
671			 * dev_start() actually brings the device state up */
672			i2400m->updown = 1;
673			wmb();
674			atomic_set(&i2400m->bus_reset_retries, 0);
675		}
676	}
677out:
678	d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n",
679		ws, i2400m, reason);
680}
681
682
683/**
684 * i2400m_dev_reset_handle - Handle a device's reset in a thread context
685 *
686 * Schedule a device reset handling out on a thread context, so it
687 * is safe to call from atomic context. We can't use the i2400m's
688 * queue as we are going to destroy it and reinitialize it as part of
689 * the driver bringup/bringup process.
690 *
691 * See __i2400m_dev_reset_handle() for details; that takes care of
692 * reinitializing the driver to handle the reset, calling into the
693 * bus-specific functions ops as needed.
694 */
695int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason)
696{
697	i2400m->reset_reason = reason;
698	return schedule_work(&i2400m->reset_ws);
699}
700EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle);
701
702
703 /*
704 * The actual work of error recovery.
705 *
706 * The current implementation of error recovery is to trigger a bus reset.
707 */
708static
709void __i2400m_error_recovery(struct work_struct *ws)
710{
711	struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws);
712
713	i2400m_reset(i2400m, I2400M_RT_BUS);
714}
715
716/*
717 * Schedule a work struct for error recovery.
718 *
719 * The intention of error recovery is to bring back the device to some
720 * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to
721 * the device. The TX failure could mean a device bus stuck, so the current
722 * error recovery implementation is to trigger a bus reset to the device
723 * and hopefully it can bring back the device.
724 *
725 * The actual work of error recovery has to be in a thread context because
726 * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be
727 * destroyed by the error recovery mechanism (currently a bus reset).
728 *
729 * Also, there may be already a queue of TX works that all hit
730 * the -ETIMEOUT error condition because the device is stuck already.
731 * Since bus reset is used as the error recovery mechanism and we don't
732 * want consecutive bus resets simply because the multiple TX works
733 * in the queue all hit the same device erratum, the flag "error_recovery"
734 * is introduced for preventing unwanted consecutive bus resets.
735 *
736 * Error recovery shall only be invoked again if previous one was completed.
737 * The flag error_recovery is set when error recovery mechanism is scheduled,
738 * and is checked when we need to schedule another error recovery. If it is
739 * in place already, then we shouldn't schedule another one.
740 */
741void i2400m_error_recovery(struct i2400m *i2400m)
742{
743	if (atomic_add_return(1, &i2400m->error_recovery) == 1)
744		schedule_work(&i2400m->recovery_ws);
745	else
746		atomic_dec(&i2400m->error_recovery);
747}
748EXPORT_SYMBOL_GPL(i2400m_error_recovery);
749
750/*
751 * Alloc the command and ack buffers for boot mode
752 *
753 * Get the buffers needed to deal with boot mode messages.
754 */
755static
756int i2400m_bm_buf_alloc(struct i2400m *i2400m)
757{
758	int result;
759
760	result = -ENOMEM;
761	i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL);
762	if (i2400m->bm_cmd_buf == NULL)
763		goto error_bm_cmd_kzalloc;
764	i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL);
765	if (i2400m->bm_ack_buf == NULL)
766		goto error_bm_ack_buf_kzalloc;
767	return 0;
768
769error_bm_ack_buf_kzalloc:
770	kfree(i2400m->bm_cmd_buf);
771error_bm_cmd_kzalloc:
772	return result;
773}
774
775
776/*
777 * Free boot mode command and ack buffers.
778 */
779static
780void i2400m_bm_buf_free(struct i2400m *i2400m)
781{
782	kfree(i2400m->bm_ack_buf);
783	kfree(i2400m->bm_cmd_buf);
784}
785
786
787/**
788 * i2400m_init - Initialize a 'struct i2400m' from all zeroes
789 *
790 * This is a bus-generic API call.
791 */
792void i2400m_init(struct i2400m *i2400m)
793{
794	wimax_dev_init(&i2400m->wimax_dev);
795
796	i2400m->boot_mode = 1;
797	i2400m->rx_reorder = 1;
798	init_waitqueue_head(&i2400m->state_wq);
799
800	spin_lock_init(&i2400m->tx_lock);
801	i2400m->tx_pl_min = UINT_MAX;
802	i2400m->tx_size_min = UINT_MAX;
803
804	spin_lock_init(&i2400m->rx_lock);
805	i2400m->rx_pl_min = UINT_MAX;
806	i2400m->rx_size_min = UINT_MAX;
807	INIT_LIST_HEAD(&i2400m->rx_reports);
808	INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work);
809
810	mutex_init(&i2400m->msg_mutex);
811	init_completion(&i2400m->msg_completion);
812
813	mutex_init(&i2400m->init_mutex);
814	/* wake_tx_ws is initialized in i2400m_tx_setup() */
815
816	INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle);
817	INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery);
818
819	atomic_set(&i2400m->bus_reset_retries, 0);
820
821	i2400m->alive = 0;
822
823	/* initialize error_recovery to 1 for denoting we
824	 * are not yet ready to take any error recovery */
825	atomic_set(&i2400m->error_recovery, 1);
826}
827EXPORT_SYMBOL_GPL(i2400m_init);
828
829
830int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt)
831{
832	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
833
834	/*
835	 * Make sure we stop TXs and down the carrier before
836	 * resetting; this is needed to avoid things like
837	 * i2400m_wake_tx() scheduling stuff in parallel.
838	 */
839	if (net_dev->reg_state == NETREG_REGISTERED) {
840		netif_tx_disable(net_dev);
841		netif_carrier_off(net_dev);
842	}
843	return i2400m->bus_reset(i2400m, rt);
844}
845EXPORT_SYMBOL_GPL(i2400m_reset);
846
847
848/**
849 * i2400m_setup - bus-generic setup function for the i2400m device
850 *
851 * @i2400m: device descriptor (bus-specific parts have been initialized)
852 *
853 * Returns: 0 if ok, < 0 errno code on error.
854 *
855 * Sets up basic device comunication infrastructure, boots the ROM to
856 * read the MAC address, registers with the WiMAX and network stacks
857 * and then brings up the device.
858 */
859int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags)
860{
861	int result = -ENODEV;
862	struct device *dev = i2400m_dev(i2400m);
863	struct wimax_dev *wimax_dev = &i2400m->wimax_dev;
864	struct net_device *net_dev = i2400m->wimax_dev.net_dev;
865
866	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
867
868	snprintf(wimax_dev->name, sizeof(wimax_dev->name),
869		 "i2400m-%s:%s", dev->bus->name, dev_name(dev));
870
871	result = i2400m_bm_buf_alloc(i2400m);
872	if (result < 0) {
873		dev_err(dev, "cannot allocate bootmode scratch buffers\n");
874		goto error_bm_buf_alloc;
875	}
876
877	if (i2400m->bus_setup) {
878		result = i2400m->bus_setup(i2400m);
879		if (result < 0) {
880			dev_err(dev, "bus-specific setup failed: %d\n",
881				result);
882			goto error_bus_setup;
883		}
884	}
885
886	result = i2400m_bootrom_init(i2400m, bm_flags);
887	if (result < 0) {
888		dev_err(dev, "read mac addr: bootrom init "
889			"failed: %d\n", result);
890		goto error_bootrom_init;
891	}
892	result = i2400m_read_mac_addr(i2400m);
893	if (result < 0)
894		goto error_read_mac_addr;
895	eth_random_addr(i2400m->src_mac_addr);
896
897	i2400m->pm_notifier.notifier_call = i2400m_pm_notifier;
898	register_pm_notifier(&i2400m->pm_notifier);
899
900	result = register_netdev(net_dev);	/* Okey dokey, bring it up */
901	if (result < 0) {
902		dev_err(dev, "cannot register i2400m network device: %d\n",
903			result);
904		goto error_register_netdev;
905	}
906	netif_carrier_off(net_dev);
907
908	i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user;
909	i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle;
910	i2400m->wimax_dev.op_reset = i2400m_op_reset;
911
912	result = wimax_dev_add(&i2400m->wimax_dev, net_dev);
913	if (result < 0)
914		goto error_wimax_dev_add;
915
916	/* Now setup all that requires a registered net and wimax device. */
917	result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group);
918	if (result < 0) {
919		dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result);
920		goto error_sysfs_setup;
921	}
922
923	result = i2400m_debugfs_add(i2400m);
924	if (result < 0) {
925		dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result);
926		goto error_debugfs_setup;
927	}
928
929	result = i2400m_dev_start(i2400m, bm_flags);
930	if (result < 0)
931		goto error_dev_start;
932	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
933	return result;
934
935error_dev_start:
936	i2400m_debugfs_rm(i2400m);
937error_debugfs_setup:
938	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
939			   &i2400m_dev_attr_group);
940error_sysfs_setup:
941	wimax_dev_rm(&i2400m->wimax_dev);
942error_wimax_dev_add:
943	unregister_netdev(net_dev);
944error_register_netdev:
945	unregister_pm_notifier(&i2400m->pm_notifier);
946error_read_mac_addr:
947error_bootrom_init:
948	if (i2400m->bus_release)
949		i2400m->bus_release(i2400m);
950error_bus_setup:
951	i2400m_bm_buf_free(i2400m);
952error_bm_buf_alloc:
953	d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result);
954	return result;
955}
956EXPORT_SYMBOL_GPL(i2400m_setup);
957
958
959/**
960 * i2400m_release - release the bus-generic driver resources
961 *
962 * Sends a disconnect message and undoes any setup done by i2400m_setup()
963 */
964void i2400m_release(struct i2400m *i2400m)
965{
966	struct device *dev = i2400m_dev(i2400m);
967
968	d_fnstart(3, dev, "(i2400m %p)\n", i2400m);
969	netif_stop_queue(i2400m->wimax_dev.net_dev);
970
971	i2400m_dev_stop(i2400m);
972
973	cancel_work_sync(&i2400m->reset_ws);
974	cancel_work_sync(&i2400m->recovery_ws);
975
976	i2400m_debugfs_rm(i2400m);
977	sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj,
978			   &i2400m_dev_attr_group);
979	wimax_dev_rm(&i2400m->wimax_dev);
980	unregister_netdev(i2400m->wimax_dev.net_dev);
981	unregister_pm_notifier(&i2400m->pm_notifier);
982	if (i2400m->bus_release)
983		i2400m->bus_release(i2400m);
984	i2400m_bm_buf_free(i2400m);
985	d_fnend(3, dev, "(i2400m %p) = void\n", i2400m);
986}
987EXPORT_SYMBOL_GPL(i2400m_release);
988
989
990/*
991 * Debug levels control; see debug.h
992 */
993struct d_level D_LEVEL[] = {
994	D_SUBMODULE_DEFINE(control),
995	D_SUBMODULE_DEFINE(driver),
996	D_SUBMODULE_DEFINE(debugfs),
997	D_SUBMODULE_DEFINE(fw),
998	D_SUBMODULE_DEFINE(netdev),
999	D_SUBMODULE_DEFINE(rfkill),
1000	D_SUBMODULE_DEFINE(rx),
1001	D_SUBMODULE_DEFINE(sysfs),
1002	D_SUBMODULE_DEFINE(tx),
1003};
1004size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL);
1005
1006
1007static
1008int __init i2400m_driver_init(void)
1009{
1010	d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params,
1011		       "i2400m.debug");
1012	return i2400m_barker_db_init(i2400m_barkers_params);
1013}
1014module_init(i2400m_driver_init);
1015
1016static
1017void __exit i2400m_driver_exit(void)
1018{
1019	i2400m_barker_db_exit();
1020}
1021module_exit(i2400m_driver_exit);
1022
1023MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>");
1024MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver");
1025MODULE_LICENSE("GPL");
1026