1/* 2 * Intel Wireless WiMAX Connection 2400m 3 * Generic probe/disconnect, reset and message passing 4 * 5 * 6 * Copyright (C) 2007-2008 Intel Corporation <linux-wimax@intel.com> 7 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com> 8 * 9 * This program is free software; you can redistribute it and/or 10 * modify it under the terms of the GNU General Public License version 11 * 2 as published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 * 18 * You should have received a copy of the GNU General Public License 19 * along with this program; if not, write to the Free Software 20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 21 * 02110-1301, USA. 22 * 23 * 24 * See i2400m.h for driver documentation. This contains helpers for 25 * the driver model glue [_setup()/_release()], handling device resets 26 * [_dev_reset_handle()], and the backends for the WiMAX stack ops 27 * reset [_op_reset()] and message from user [_op_msg_from_user()]. 28 * 29 * ROADMAP: 30 * 31 * i2400m_op_msg_from_user() 32 * i2400m_msg_to_dev() 33 * wimax_msg_to_user_send() 34 * 35 * i2400m_op_reset() 36 * i240m->bus_reset() 37 * 38 * i2400m_dev_reset_handle() 39 * __i2400m_dev_reset_handle() 40 * __i2400m_dev_stop() 41 * __i2400m_dev_start() 42 * 43 * i2400m_setup() 44 * i2400m->bus_setup() 45 * i2400m_bootrom_init() 46 * register_netdev() 47 * wimax_dev_add() 48 * i2400m_dev_start() 49 * __i2400m_dev_start() 50 * i2400m_dev_bootstrap() 51 * i2400m_tx_setup() 52 * i2400m->bus_dev_start() 53 * i2400m_firmware_check() 54 * i2400m_check_mac_addr() 55 * 56 * i2400m_release() 57 * i2400m_dev_stop() 58 * __i2400m_dev_stop() 59 * i2400m_dev_shutdown() 60 * i2400m->bus_dev_stop() 61 * i2400m_tx_release() 62 * i2400m->bus_release() 63 * wimax_dev_rm() 64 * unregister_netdev() 65 */ 66#include "i2400m.h" 67#include <linux/etherdevice.h> 68#include <linux/wimax/i2400m.h> 69#include <linux/module.h> 70#include <linux/moduleparam.h> 71#include <linux/suspend.h> 72#include <linux/slab.h> 73 74#define D_SUBMODULE driver 75#include "debug-levels.h" 76 77 78static char i2400m_debug_params[128]; 79module_param_string(debug, i2400m_debug_params, sizeof(i2400m_debug_params), 80 0644); 81MODULE_PARM_DESC(debug, 82 "String of space-separated NAME:VALUE pairs, where NAMEs " 83 "are the different debug submodules and VALUE are the " 84 "initial debug value to set."); 85 86static char i2400m_barkers_params[128]; 87module_param_string(barkers, i2400m_barkers_params, 88 sizeof(i2400m_barkers_params), 0644); 89MODULE_PARM_DESC(barkers, 90 "String of comma-separated 32-bit values; each is " 91 "recognized as the value the device sends as a reboot " 92 "signal; values are appended to a list--setting one value " 93 "as zero cleans the existing list and starts a new one."); 94 95/* 96 * WiMAX stack operation: relay a message from user space 97 * 98 * @wimax_dev: device descriptor 99 * @pipe_name: named pipe the message is for 100 * @msg_buf: pointer to the message bytes 101 * @msg_len: length of the buffer 102 * @genl_info: passed by the generic netlink layer 103 * 104 * The WiMAX stack will call this function when a message was received 105 * from user space. 106 * 107 * For the i2400m, this is an L3L4 message, as specified in 108 * include/linux/wimax/i2400m.h, and thus prefixed with a 'struct 109 * i2400m_l3l4_hdr'. Driver (and device) expect the messages to be 110 * coded in Little Endian. 111 * 112 * This function just verifies that the header declaration and the 113 * payload are consistent and then deals with it, either forwarding it 114 * to the device or procesing it locally. 115 * 116 * In the i2400m, messages are basically commands that will carry an 117 * ack, so we use i2400m_msg_to_dev() and then deliver the ack back to 118 * user space. The rx.c code might intercept the response and use it 119 * to update the driver's state, but then it will pass it on so it can 120 * be relayed back to user space. 121 * 122 * Note that asynchronous events from the device are processed and 123 * sent to user space in rx.c. 124 */ 125static 126int i2400m_op_msg_from_user(struct wimax_dev *wimax_dev, 127 const char *pipe_name, 128 const void *msg_buf, size_t msg_len, 129 const struct genl_info *genl_info) 130{ 131 int result; 132 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); 133 struct device *dev = i2400m_dev(i2400m); 134 struct sk_buff *ack_skb; 135 136 d_fnstart(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p " 137 "msg_len %zu genl_info %p)\n", wimax_dev, i2400m, 138 msg_buf, msg_len, genl_info); 139 ack_skb = i2400m_msg_to_dev(i2400m, msg_buf, msg_len); 140 result = PTR_ERR(ack_skb); 141 if (IS_ERR(ack_skb)) 142 goto error_msg_to_dev; 143 result = wimax_msg_send(&i2400m->wimax_dev, ack_skb); 144error_msg_to_dev: 145 d_fnend(4, dev, "(wimax_dev %p [i2400m %p] msg_buf %p msg_len %zu " 146 "genl_info %p) = %d\n", wimax_dev, i2400m, msg_buf, msg_len, 147 genl_info, result); 148 return result; 149} 150 151 152/* 153 * Context to wait for a reset to finalize 154 */ 155struct i2400m_reset_ctx { 156 struct completion completion; 157 int result; 158}; 159 160 161/* 162 * WiMAX stack operation: reset a device 163 * 164 * @wimax_dev: device descriptor 165 * 166 * See the documentation for wimax_reset() and wimax_dev->op_reset for 167 * the requirements of this function. The WiMAX stack guarantees 168 * serialization on calls to this function. 169 * 170 * Do a warm reset on the device; if it fails, resort to a cold reset 171 * and return -ENODEV. On successful warm reset, we need to block 172 * until it is complete. 173 * 174 * The bus-driver implementation of reset takes care of falling back 175 * to cold reset if warm fails. 176 */ 177static 178int i2400m_op_reset(struct wimax_dev *wimax_dev) 179{ 180 int result; 181 struct i2400m *i2400m = wimax_dev_to_i2400m(wimax_dev); 182 struct device *dev = i2400m_dev(i2400m); 183 struct i2400m_reset_ctx ctx = { 184 .completion = COMPLETION_INITIALIZER_ONSTACK(ctx.completion), 185 .result = 0, 186 }; 187 188 d_fnstart(4, dev, "(wimax_dev %p)\n", wimax_dev); 189 mutex_lock(&i2400m->init_mutex); 190 i2400m->reset_ctx = &ctx; 191 mutex_unlock(&i2400m->init_mutex); 192 result = i2400m_reset(i2400m, I2400M_RT_WARM); 193 if (result < 0) 194 goto out; 195 result = wait_for_completion_timeout(&ctx.completion, 4*HZ); 196 if (result == 0) 197 result = -ETIMEDOUT; 198 else if (result > 0) 199 result = ctx.result; 200 /* if result < 0, pass it on */ 201 mutex_lock(&i2400m->init_mutex); 202 i2400m->reset_ctx = NULL; 203 mutex_unlock(&i2400m->init_mutex); 204out: 205 d_fnend(4, dev, "(wimax_dev %p) = %d\n", wimax_dev, result); 206 return result; 207} 208 209 210/* 211 * Check the MAC address we got from boot mode is ok 212 * 213 * @i2400m: device descriptor 214 * 215 * Returns: 0 if ok, < 0 errno code on error. 216 */ 217static 218int i2400m_check_mac_addr(struct i2400m *i2400m) 219{ 220 int result; 221 struct device *dev = i2400m_dev(i2400m); 222 struct sk_buff *skb; 223 const struct i2400m_tlv_detailed_device_info *ddi; 224 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 225 226 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 227 skb = i2400m_get_device_info(i2400m); 228 if (IS_ERR(skb)) { 229 result = PTR_ERR(skb); 230 dev_err(dev, "Cannot verify MAC address, error reading: %d\n", 231 result); 232 goto error; 233 } 234 /* Extract MAC address */ 235 ddi = (void *) skb->data; 236 BUILD_BUG_ON(ETH_ALEN != sizeof(ddi->mac_address)); 237 d_printf(2, dev, "GET DEVICE INFO: mac addr %pM\n", 238 ddi->mac_address); 239 if (!memcmp(net_dev->perm_addr, ddi->mac_address, 240 sizeof(ddi->mac_address))) 241 goto ok; 242 dev_warn(dev, "warning: device reports a different MAC address " 243 "to that of boot mode's\n"); 244 dev_warn(dev, "device reports %pM\n", ddi->mac_address); 245 dev_warn(dev, "boot mode reported %pM\n", net_dev->perm_addr); 246 if (is_zero_ether_addr(ddi->mac_address)) 247 dev_err(dev, "device reports an invalid MAC address, " 248 "not updating\n"); 249 else { 250 dev_warn(dev, "updating MAC address\n"); 251 net_dev->addr_len = ETH_ALEN; 252 memcpy(net_dev->perm_addr, ddi->mac_address, ETH_ALEN); 253 memcpy(net_dev->dev_addr, ddi->mac_address, ETH_ALEN); 254 } 255ok: 256 result = 0; 257 kfree_skb(skb); 258error: 259 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); 260 return result; 261} 262 263 264/** 265 * __i2400m_dev_start - Bring up driver communication with the device 266 * 267 * @i2400m: device descriptor 268 * @flags: boot mode flags 269 * 270 * Returns: 0 if ok, < 0 errno code on error. 271 * 272 * Uploads firmware and brings up all the resources needed to be able 273 * to communicate with the device. 274 * 275 * The workqueue has to be setup early, at least before RX handling 276 * (it's only real user for now) so it can process reports as they 277 * arrive. We also want to destroy it if we retry, to make sure it is 278 * flushed...easier like this. 279 * 280 * TX needs to be setup before the bus-specific code (otherwise on 281 * shutdown, the bus-tx code could try to access it). 282 */ 283static 284int __i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri flags) 285{ 286 int result; 287 struct wimax_dev *wimax_dev = &i2400m->wimax_dev; 288 struct net_device *net_dev = wimax_dev->net_dev; 289 struct device *dev = i2400m_dev(i2400m); 290 int times = i2400m->bus_bm_retries; 291 292 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 293retry: 294 result = i2400m_dev_bootstrap(i2400m, flags); 295 if (result < 0) { 296 dev_err(dev, "cannot bootstrap device: %d\n", result); 297 goto error_bootstrap; 298 } 299 result = i2400m_tx_setup(i2400m); 300 if (result < 0) 301 goto error_tx_setup; 302 result = i2400m_rx_setup(i2400m); 303 if (result < 0) 304 goto error_rx_setup; 305 i2400m->work_queue = create_singlethread_workqueue(wimax_dev->name); 306 if (i2400m->work_queue == NULL) { 307 result = -ENOMEM; 308 dev_err(dev, "cannot create workqueue\n"); 309 goto error_create_workqueue; 310 } 311 if (i2400m->bus_dev_start) { 312 result = i2400m->bus_dev_start(i2400m); 313 if (result < 0) 314 goto error_bus_dev_start; 315 } 316 i2400m->ready = 1; 317 wmb(); /* see i2400m->ready's documentation */ 318 /* process pending reports from the device */ 319 queue_work(i2400m->work_queue, &i2400m->rx_report_ws); 320 result = i2400m_firmware_check(i2400m); /* fw versions ok? */ 321 if (result < 0) 322 goto error_fw_check; 323 /* At this point is ok to send commands to the device */ 324 result = i2400m_check_mac_addr(i2400m); 325 if (result < 0) 326 goto error_check_mac_addr; 327 result = i2400m_dev_initialize(i2400m); 328 if (result < 0) 329 goto error_dev_initialize; 330 331 /* We don't want any additional unwanted error recovery triggered 332 * from any other context so if anything went wrong before we come 333 * here, let's keep i2400m->error_recovery untouched and leave it to 334 * dev_reset_handle(). See dev_reset_handle(). */ 335 336 atomic_dec(&i2400m->error_recovery); 337 /* Every thing works so far, ok, now we are ready to 338 * take error recovery if it's required. */ 339 340 /* At this point, reports will come for the device and set it 341 * to the right state if it is different than UNINITIALIZED */ 342 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", 343 net_dev, i2400m, result); 344 return result; 345 346error_dev_initialize: 347error_check_mac_addr: 348error_fw_check: 349 i2400m->ready = 0; 350 wmb(); /* see i2400m->ready's documentation */ 351 flush_workqueue(i2400m->work_queue); 352 if (i2400m->bus_dev_stop) 353 i2400m->bus_dev_stop(i2400m); 354error_bus_dev_start: 355 destroy_workqueue(i2400m->work_queue); 356error_create_workqueue: 357 i2400m_rx_release(i2400m); 358error_rx_setup: 359 i2400m_tx_release(i2400m); 360error_tx_setup: 361error_bootstrap: 362 if (result == -EL3RST && times-- > 0) { 363 flags = I2400M_BRI_SOFT|I2400M_BRI_MAC_REINIT; 364 goto retry; 365 } 366 d_fnend(3, dev, "(net_dev %p [i2400m %p]) = %d\n", 367 net_dev, i2400m, result); 368 return result; 369} 370 371 372static 373int i2400m_dev_start(struct i2400m *i2400m, enum i2400m_bri bm_flags) 374{ 375 int result = 0; 376 mutex_lock(&i2400m->init_mutex); /* Well, start the device */ 377 if (i2400m->updown == 0) { 378 result = __i2400m_dev_start(i2400m, bm_flags); 379 if (result >= 0) { 380 i2400m->updown = 1; 381 i2400m->alive = 1; 382 wmb();/* see i2400m->updown and i2400m->alive's doc */ 383 } 384 } 385 mutex_unlock(&i2400m->init_mutex); 386 return result; 387} 388 389 390/** 391 * i2400m_dev_stop - Tear down driver communication with the device 392 * 393 * @i2400m: device descriptor 394 * 395 * Returns: 0 if ok, < 0 errno code on error. 396 * 397 * Releases all the resources allocated to communicate with the 398 * device. Note we cannot destroy the workqueue earlier as until RX is 399 * fully destroyed, it could still try to schedule jobs. 400 */ 401static 402void __i2400m_dev_stop(struct i2400m *i2400m) 403{ 404 struct wimax_dev *wimax_dev = &i2400m->wimax_dev; 405 struct device *dev = i2400m_dev(i2400m); 406 407 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 408 wimax_state_change(wimax_dev, __WIMAX_ST_QUIESCING); 409 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); 410 complete(&i2400m->msg_completion); 411 i2400m_net_wake_stop(i2400m); 412 i2400m_dev_shutdown(i2400m); 413 /* 414 * Make sure no report hooks are running *before* we stop the 415 * communication infrastructure with the device. 416 */ 417 i2400m->ready = 0; /* nobody can queue work anymore */ 418 wmb(); /* see i2400m->ready's documentation */ 419 flush_workqueue(i2400m->work_queue); 420 421 if (i2400m->bus_dev_stop) 422 i2400m->bus_dev_stop(i2400m); 423 destroy_workqueue(i2400m->work_queue); 424 i2400m_rx_release(i2400m); 425 i2400m_tx_release(i2400m); 426 wimax_state_change(wimax_dev, WIMAX_ST_DOWN); 427 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); 428} 429 430 431/* 432 * Watch out -- we only need to stop if there is a need for it. The 433 * device could have reset itself and failed to come up again (see 434 * _i2400m_dev_reset_handle()). 435 */ 436static 437void i2400m_dev_stop(struct i2400m *i2400m) 438{ 439 mutex_lock(&i2400m->init_mutex); 440 if (i2400m->updown) { 441 __i2400m_dev_stop(i2400m); 442 i2400m->updown = 0; 443 i2400m->alive = 0; 444 wmb(); /* see i2400m->updown and i2400m->alive's doc */ 445 } 446 mutex_unlock(&i2400m->init_mutex); 447} 448 449 450/* 451 * Listen to PM events to cache the firmware before suspend/hibernation 452 * 453 * When the device comes out of suspend, it might go into reset and 454 * firmware has to be uploaded again. At resume, most of the times, we 455 * can't load firmware images from disk, so we need to cache it. 456 * 457 * i2400m_fw_cache() will allocate a kobject and attach the firmware 458 * to it; that way we don't have to worry too much about the fw loader 459 * hitting a race condition. 460 * 461 * Note: modus operandi stolen from the Orinoco driver; thx. 462 */ 463static 464int i2400m_pm_notifier(struct notifier_block *notifier, 465 unsigned long pm_event, 466 void *unused) 467{ 468 struct i2400m *i2400m = 469 container_of(notifier, struct i2400m, pm_notifier); 470 struct device *dev = i2400m_dev(i2400m); 471 472 d_fnstart(3, dev, "(i2400m %p pm_event %lx)\n", i2400m, pm_event); 473 switch (pm_event) { 474 case PM_HIBERNATION_PREPARE: 475 case PM_SUSPEND_PREPARE: 476 i2400m_fw_cache(i2400m); 477 break; 478 case PM_POST_RESTORE: 479 /* Restore from hibernation failed. We need to clean 480 * up in exactly the same way, so fall through. */ 481 case PM_POST_HIBERNATION: 482 case PM_POST_SUSPEND: 483 i2400m_fw_uncache(i2400m); 484 break; 485 486 case PM_RESTORE_PREPARE: 487 default: 488 break; 489 } 490 d_fnend(3, dev, "(i2400m %p pm_event %lx) = void\n", i2400m, pm_event); 491 return NOTIFY_DONE; 492} 493 494 495/* 496 * pre-reset is called before a device is going on reset 497 * 498 * This has to be followed by a call to i2400m_post_reset(), otherwise 499 * bad things might happen. 500 */ 501int i2400m_pre_reset(struct i2400m *i2400m) 502{ 503 struct device *dev = i2400m_dev(i2400m); 504 505 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 506 d_printf(1, dev, "pre-reset shut down\n"); 507 508 mutex_lock(&i2400m->init_mutex); 509 if (i2400m->updown) { 510 netif_tx_disable(i2400m->wimax_dev.net_dev); 511 __i2400m_dev_stop(i2400m); 512 /* down't set updown to zero -- this way 513 * post_reset can restore properly */ 514 } 515 mutex_unlock(&i2400m->init_mutex); 516 if (i2400m->bus_release) 517 i2400m->bus_release(i2400m); 518 d_fnend(3, dev, "(i2400m %p) = 0\n", i2400m); 519 return 0; 520} 521EXPORT_SYMBOL_GPL(i2400m_pre_reset); 522 523 524/* 525 * Restore device state after a reset 526 * 527 * Do the work needed after a device reset to bring it up to the same 528 * state as it was before the reset. 529 * 530 * NOTE: this requires i2400m->init_mutex taken 531 */ 532int i2400m_post_reset(struct i2400m *i2400m) 533{ 534 int result = 0; 535 struct device *dev = i2400m_dev(i2400m); 536 537 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 538 d_printf(1, dev, "post-reset start\n"); 539 if (i2400m->bus_setup) { 540 result = i2400m->bus_setup(i2400m); 541 if (result < 0) { 542 dev_err(dev, "bus-specific setup failed: %d\n", 543 result); 544 goto error_bus_setup; 545 } 546 } 547 mutex_lock(&i2400m->init_mutex); 548 if (i2400m->updown) { 549 result = __i2400m_dev_start( 550 i2400m, I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); 551 if (result < 0) 552 goto error_dev_start; 553 } 554 mutex_unlock(&i2400m->init_mutex); 555 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); 556 return result; 557 558error_dev_start: 559 if (i2400m->bus_release) 560 i2400m->bus_release(i2400m); 561 /* even if the device was up, it could not be recovered, so we 562 * mark it as down. */ 563 i2400m->updown = 0; 564 wmb(); /* see i2400m->updown's documentation */ 565 mutex_unlock(&i2400m->init_mutex); 566error_bus_setup: 567 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); 568 return result; 569} 570EXPORT_SYMBOL_GPL(i2400m_post_reset); 571 572 573/* 574 * The device has rebooted; fix up the device and the driver 575 * 576 * Tear down the driver communication with the device, reload the 577 * firmware and reinitialize the communication with the device. 578 * 579 * If someone calls a reset when the device's firmware is down, in 580 * theory we won't see it because we are not listening. However, just 581 * in case, leave the code to handle it. 582 * 583 * If there is a reset context, use it; this means someone is waiting 584 * for us to tell him when the reset operation is complete and the 585 * device is ready to rock again. 586 * 587 * NOTE: if we are in the process of bringing up or down the 588 * communication with the device [running i2400m_dev_start() or 589 * _stop()], don't do anything, let it fail and handle it. 590 * 591 * This function is ran always in a thread context 592 * 593 * This function gets passed, as payload to i2400m_work() a 'const 594 * char *' ptr with a "reason" why the reset happened (for messages). 595 */ 596static 597void __i2400m_dev_reset_handle(struct work_struct *ws) 598{ 599 struct i2400m *i2400m = container_of(ws, struct i2400m, reset_ws); 600 const char *reason = i2400m->reset_reason; 601 struct device *dev = i2400m_dev(i2400m); 602 struct i2400m_reset_ctx *ctx = i2400m->reset_ctx; 603 int result; 604 605 d_fnstart(3, dev, "(ws %p i2400m %p reason %s)\n", ws, i2400m, reason); 606 607 i2400m->boot_mode = 1; 608 wmb(); /* Make sure i2400m_msg_to_dev() sees boot_mode */ 609 610 result = 0; 611 if (mutex_trylock(&i2400m->init_mutex) == 0) { 612 /* We are still in i2400m_dev_start() [let it fail] or 613 * i2400m_dev_stop() [we are shutting down anyway, so 614 * ignore it] or we are resetting somewhere else. */ 615 dev_err(dev, "device rebooted somewhere else?\n"); 616 i2400m_msg_to_dev_cancel_wait(i2400m, -EL3RST); 617 complete(&i2400m->msg_completion); 618 goto out; 619 } 620 621 dev_err(dev, "%s: reinitializing driver\n", reason); 622 rmb(); 623 if (i2400m->updown) { 624 __i2400m_dev_stop(i2400m); 625 i2400m->updown = 0; 626 wmb(); /* see i2400m->updown's documentation */ 627 } 628 629 if (i2400m->alive) { 630 result = __i2400m_dev_start(i2400m, 631 I2400M_BRI_SOFT | I2400M_BRI_MAC_REINIT); 632 if (result < 0) { 633 dev_err(dev, "%s: cannot start the device: %d\n", 634 reason, result); 635 result = -EUCLEAN; 636 if (atomic_read(&i2400m->bus_reset_retries) 637 >= I2400M_BUS_RESET_RETRIES) { 638 result = -ENODEV; 639 dev_err(dev, "tried too many times to " 640 "reset the device, giving up\n"); 641 } 642 } 643 } 644 645 if (i2400m->reset_ctx) { 646 ctx->result = result; 647 complete(&ctx->completion); 648 } 649 mutex_unlock(&i2400m->init_mutex); 650 if (result == -EUCLEAN) { 651 /* 652 * We come here because the reset during operational mode 653 * wasn't successfully done and need to proceed to a bus 654 * reset. For the dev_reset_handle() to be able to handle 655 * the reset event later properly, we restore boot_mode back 656 * to the state before previous reset. ie: just like we are 657 * issuing the bus reset for the first time 658 */ 659 i2400m->boot_mode = 0; 660 wmb(); 661 662 atomic_inc(&i2400m->bus_reset_retries); 663 /* ops, need to clean up [w/ init_mutex not held] */ 664 result = i2400m_reset(i2400m, I2400M_RT_BUS); 665 if (result >= 0) 666 result = -ENODEV; 667 } else { 668 rmb(); 669 if (i2400m->alive) { 670 /* great, we expect the device state up and 671 * dev_start() actually brings the device state up */ 672 i2400m->updown = 1; 673 wmb(); 674 atomic_set(&i2400m->bus_reset_retries, 0); 675 } 676 } 677out: 678 d_fnend(3, dev, "(ws %p i2400m %p reason %s) = void\n", 679 ws, i2400m, reason); 680} 681 682 683/** 684 * i2400m_dev_reset_handle - Handle a device's reset in a thread context 685 * 686 * Schedule a device reset handling out on a thread context, so it 687 * is safe to call from atomic context. We can't use the i2400m's 688 * queue as we are going to destroy it and reinitialize it as part of 689 * the driver bringup/bringup process. 690 * 691 * See __i2400m_dev_reset_handle() for details; that takes care of 692 * reinitializing the driver to handle the reset, calling into the 693 * bus-specific functions ops as needed. 694 */ 695int i2400m_dev_reset_handle(struct i2400m *i2400m, const char *reason) 696{ 697 i2400m->reset_reason = reason; 698 return schedule_work(&i2400m->reset_ws); 699} 700EXPORT_SYMBOL_GPL(i2400m_dev_reset_handle); 701 702 703 /* 704 * The actual work of error recovery. 705 * 706 * The current implementation of error recovery is to trigger a bus reset. 707 */ 708static 709void __i2400m_error_recovery(struct work_struct *ws) 710{ 711 struct i2400m *i2400m = container_of(ws, struct i2400m, recovery_ws); 712 713 i2400m_reset(i2400m, I2400M_RT_BUS); 714} 715 716/* 717 * Schedule a work struct for error recovery. 718 * 719 * The intention of error recovery is to bring back the device to some 720 * known state whenever TX sees -110 (-ETIMEOUT) on copying the data to 721 * the device. The TX failure could mean a device bus stuck, so the current 722 * error recovery implementation is to trigger a bus reset to the device 723 * and hopefully it can bring back the device. 724 * 725 * The actual work of error recovery has to be in a thread context because 726 * it is kicked off in the TX thread (i2400ms->tx_workqueue) which is to be 727 * destroyed by the error recovery mechanism (currently a bus reset). 728 * 729 * Also, there may be already a queue of TX works that all hit 730 * the -ETIMEOUT error condition because the device is stuck already. 731 * Since bus reset is used as the error recovery mechanism and we don't 732 * want consecutive bus resets simply because the multiple TX works 733 * in the queue all hit the same device erratum, the flag "error_recovery" 734 * is introduced for preventing unwanted consecutive bus resets. 735 * 736 * Error recovery shall only be invoked again if previous one was completed. 737 * The flag error_recovery is set when error recovery mechanism is scheduled, 738 * and is checked when we need to schedule another error recovery. If it is 739 * in place already, then we shouldn't schedule another one. 740 */ 741void i2400m_error_recovery(struct i2400m *i2400m) 742{ 743 if (atomic_add_return(1, &i2400m->error_recovery) == 1) 744 schedule_work(&i2400m->recovery_ws); 745 else 746 atomic_dec(&i2400m->error_recovery); 747} 748EXPORT_SYMBOL_GPL(i2400m_error_recovery); 749 750/* 751 * Alloc the command and ack buffers for boot mode 752 * 753 * Get the buffers needed to deal with boot mode messages. 754 */ 755static 756int i2400m_bm_buf_alloc(struct i2400m *i2400m) 757{ 758 int result; 759 760 result = -ENOMEM; 761 i2400m->bm_cmd_buf = kzalloc(I2400M_BM_CMD_BUF_SIZE, GFP_KERNEL); 762 if (i2400m->bm_cmd_buf == NULL) 763 goto error_bm_cmd_kzalloc; 764 i2400m->bm_ack_buf = kzalloc(I2400M_BM_ACK_BUF_SIZE, GFP_KERNEL); 765 if (i2400m->bm_ack_buf == NULL) 766 goto error_bm_ack_buf_kzalloc; 767 return 0; 768 769error_bm_ack_buf_kzalloc: 770 kfree(i2400m->bm_cmd_buf); 771error_bm_cmd_kzalloc: 772 return result; 773} 774 775 776/* 777 * Free boot mode command and ack buffers. 778 */ 779static 780void i2400m_bm_buf_free(struct i2400m *i2400m) 781{ 782 kfree(i2400m->bm_ack_buf); 783 kfree(i2400m->bm_cmd_buf); 784} 785 786 787/** 788 * i2400m_init - Initialize a 'struct i2400m' from all zeroes 789 * 790 * This is a bus-generic API call. 791 */ 792void i2400m_init(struct i2400m *i2400m) 793{ 794 wimax_dev_init(&i2400m->wimax_dev); 795 796 i2400m->boot_mode = 1; 797 i2400m->rx_reorder = 1; 798 init_waitqueue_head(&i2400m->state_wq); 799 800 spin_lock_init(&i2400m->tx_lock); 801 i2400m->tx_pl_min = UINT_MAX; 802 i2400m->tx_size_min = UINT_MAX; 803 804 spin_lock_init(&i2400m->rx_lock); 805 i2400m->rx_pl_min = UINT_MAX; 806 i2400m->rx_size_min = UINT_MAX; 807 INIT_LIST_HEAD(&i2400m->rx_reports); 808 INIT_WORK(&i2400m->rx_report_ws, i2400m_report_hook_work); 809 810 mutex_init(&i2400m->msg_mutex); 811 init_completion(&i2400m->msg_completion); 812 813 mutex_init(&i2400m->init_mutex); 814 /* wake_tx_ws is initialized in i2400m_tx_setup() */ 815 816 INIT_WORK(&i2400m->reset_ws, __i2400m_dev_reset_handle); 817 INIT_WORK(&i2400m->recovery_ws, __i2400m_error_recovery); 818 819 atomic_set(&i2400m->bus_reset_retries, 0); 820 821 i2400m->alive = 0; 822 823 /* initialize error_recovery to 1 for denoting we 824 * are not yet ready to take any error recovery */ 825 atomic_set(&i2400m->error_recovery, 1); 826} 827EXPORT_SYMBOL_GPL(i2400m_init); 828 829 830int i2400m_reset(struct i2400m *i2400m, enum i2400m_reset_type rt) 831{ 832 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 833 834 /* 835 * Make sure we stop TXs and down the carrier before 836 * resetting; this is needed to avoid things like 837 * i2400m_wake_tx() scheduling stuff in parallel. 838 */ 839 if (net_dev->reg_state == NETREG_REGISTERED) { 840 netif_tx_disable(net_dev); 841 netif_carrier_off(net_dev); 842 } 843 return i2400m->bus_reset(i2400m, rt); 844} 845EXPORT_SYMBOL_GPL(i2400m_reset); 846 847 848/** 849 * i2400m_setup - bus-generic setup function for the i2400m device 850 * 851 * @i2400m: device descriptor (bus-specific parts have been initialized) 852 * 853 * Returns: 0 if ok, < 0 errno code on error. 854 * 855 * Sets up basic device comunication infrastructure, boots the ROM to 856 * read the MAC address, registers with the WiMAX and network stacks 857 * and then brings up the device. 858 */ 859int i2400m_setup(struct i2400m *i2400m, enum i2400m_bri bm_flags) 860{ 861 int result = -ENODEV; 862 struct device *dev = i2400m_dev(i2400m); 863 struct wimax_dev *wimax_dev = &i2400m->wimax_dev; 864 struct net_device *net_dev = i2400m->wimax_dev.net_dev; 865 866 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 867 868 snprintf(wimax_dev->name, sizeof(wimax_dev->name), 869 "i2400m-%s:%s", dev->bus->name, dev_name(dev)); 870 871 result = i2400m_bm_buf_alloc(i2400m); 872 if (result < 0) { 873 dev_err(dev, "cannot allocate bootmode scratch buffers\n"); 874 goto error_bm_buf_alloc; 875 } 876 877 if (i2400m->bus_setup) { 878 result = i2400m->bus_setup(i2400m); 879 if (result < 0) { 880 dev_err(dev, "bus-specific setup failed: %d\n", 881 result); 882 goto error_bus_setup; 883 } 884 } 885 886 result = i2400m_bootrom_init(i2400m, bm_flags); 887 if (result < 0) { 888 dev_err(dev, "read mac addr: bootrom init " 889 "failed: %d\n", result); 890 goto error_bootrom_init; 891 } 892 result = i2400m_read_mac_addr(i2400m); 893 if (result < 0) 894 goto error_read_mac_addr; 895 eth_random_addr(i2400m->src_mac_addr); 896 897 i2400m->pm_notifier.notifier_call = i2400m_pm_notifier; 898 register_pm_notifier(&i2400m->pm_notifier); 899 900 result = register_netdev(net_dev); /* Okey dokey, bring it up */ 901 if (result < 0) { 902 dev_err(dev, "cannot register i2400m network device: %d\n", 903 result); 904 goto error_register_netdev; 905 } 906 netif_carrier_off(net_dev); 907 908 i2400m->wimax_dev.op_msg_from_user = i2400m_op_msg_from_user; 909 i2400m->wimax_dev.op_rfkill_sw_toggle = i2400m_op_rfkill_sw_toggle; 910 i2400m->wimax_dev.op_reset = i2400m_op_reset; 911 912 result = wimax_dev_add(&i2400m->wimax_dev, net_dev); 913 if (result < 0) 914 goto error_wimax_dev_add; 915 916 /* Now setup all that requires a registered net and wimax device. */ 917 result = sysfs_create_group(&net_dev->dev.kobj, &i2400m_dev_attr_group); 918 if (result < 0) { 919 dev_err(dev, "cannot setup i2400m's sysfs: %d\n", result); 920 goto error_sysfs_setup; 921 } 922 923 result = i2400m_debugfs_add(i2400m); 924 if (result < 0) { 925 dev_err(dev, "cannot setup i2400m's debugfs: %d\n", result); 926 goto error_debugfs_setup; 927 } 928 929 result = i2400m_dev_start(i2400m, bm_flags); 930 if (result < 0) 931 goto error_dev_start; 932 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); 933 return result; 934 935error_dev_start: 936 i2400m_debugfs_rm(i2400m); 937error_debugfs_setup: 938 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, 939 &i2400m_dev_attr_group); 940error_sysfs_setup: 941 wimax_dev_rm(&i2400m->wimax_dev); 942error_wimax_dev_add: 943 unregister_netdev(net_dev); 944error_register_netdev: 945 unregister_pm_notifier(&i2400m->pm_notifier); 946error_read_mac_addr: 947error_bootrom_init: 948 if (i2400m->bus_release) 949 i2400m->bus_release(i2400m); 950error_bus_setup: 951 i2400m_bm_buf_free(i2400m); 952error_bm_buf_alloc: 953 d_fnend(3, dev, "(i2400m %p) = %d\n", i2400m, result); 954 return result; 955} 956EXPORT_SYMBOL_GPL(i2400m_setup); 957 958 959/** 960 * i2400m_release - release the bus-generic driver resources 961 * 962 * Sends a disconnect message and undoes any setup done by i2400m_setup() 963 */ 964void i2400m_release(struct i2400m *i2400m) 965{ 966 struct device *dev = i2400m_dev(i2400m); 967 968 d_fnstart(3, dev, "(i2400m %p)\n", i2400m); 969 netif_stop_queue(i2400m->wimax_dev.net_dev); 970 971 i2400m_dev_stop(i2400m); 972 973 cancel_work_sync(&i2400m->reset_ws); 974 cancel_work_sync(&i2400m->recovery_ws); 975 976 i2400m_debugfs_rm(i2400m); 977 sysfs_remove_group(&i2400m->wimax_dev.net_dev->dev.kobj, 978 &i2400m_dev_attr_group); 979 wimax_dev_rm(&i2400m->wimax_dev); 980 unregister_netdev(i2400m->wimax_dev.net_dev); 981 unregister_pm_notifier(&i2400m->pm_notifier); 982 if (i2400m->bus_release) 983 i2400m->bus_release(i2400m); 984 i2400m_bm_buf_free(i2400m); 985 d_fnend(3, dev, "(i2400m %p) = void\n", i2400m); 986} 987EXPORT_SYMBOL_GPL(i2400m_release); 988 989 990/* 991 * Debug levels control; see debug.h 992 */ 993struct d_level D_LEVEL[] = { 994 D_SUBMODULE_DEFINE(control), 995 D_SUBMODULE_DEFINE(driver), 996 D_SUBMODULE_DEFINE(debugfs), 997 D_SUBMODULE_DEFINE(fw), 998 D_SUBMODULE_DEFINE(netdev), 999 D_SUBMODULE_DEFINE(rfkill), 1000 D_SUBMODULE_DEFINE(rx), 1001 D_SUBMODULE_DEFINE(sysfs), 1002 D_SUBMODULE_DEFINE(tx), 1003}; 1004size_t D_LEVEL_SIZE = ARRAY_SIZE(D_LEVEL); 1005 1006 1007static 1008int __init i2400m_driver_init(void) 1009{ 1010 d_parse_params(D_LEVEL, D_LEVEL_SIZE, i2400m_debug_params, 1011 "i2400m.debug"); 1012 return i2400m_barker_db_init(i2400m_barkers_params); 1013} 1014module_init(i2400m_driver_init); 1015 1016static 1017void __exit i2400m_driver_exit(void) 1018{ 1019 i2400m_barker_db_exit(); 1020} 1021module_exit(i2400m_driver_exit); 1022 1023MODULE_AUTHOR("Intel Corporation <linux-wimax@intel.com>"); 1024MODULE_DESCRIPTION("Intel 2400M WiMAX networking bus-generic driver"); 1025MODULE_LICENSE("GPL"); 1026