1/**
2 * Copyright (c) 2014 Redpine Signals Inc.
3 *
4 * Permission to use, copy, modify, and/or distribute this software for any
5 * purpose with or without fee is hereby granted, provided that the above
6 * copyright notice and this permission notice appear in all copies.
7 *
8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15 */
16
17#include <linux/etherdevice.h>
18#include "rsi_mgmt.h"
19#include "rsi_common.h"
20
21static struct bootup_params boot_params_20 = {
22	.magic_number = cpu_to_le16(0x5aa5),
23	.crystal_good_time = 0x0,
24	.valid = cpu_to_le32(VALID_20),
25	.reserved_for_valids = 0x0,
26	.bootup_mode_info = 0x0,
27	.digital_loop_back_params = 0x0,
28	.rtls_timestamp_en = 0x0,
29	.host_spi_intr_cfg = 0x0,
30	.device_clk_info = {{
31		.pll_config_g = {
32			.tapll_info_g = {
33				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
34					      (TA_PLL_M_VAL_20)),
35				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
36			},
37			.pll960_info_g = {
38				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
39							 (PLL960_N_VAL_20)),
40				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
41				.pll_reg_3 = 0x0,
42			},
43			.afepll_info_g = {
44				.pll_reg = cpu_to_le16(0x9f0),
45			}
46		},
47		.switch_clk_g = {
48			.switch_clk_info = cpu_to_le16(BIT(3)),
49			.bbp_lmac_clk_reg_val = cpu_to_le16(0x121),
50			.umac_clock_reg_config = 0x0,
51			.qspi_uart_clock_reg_config = 0x0
52		}
53	},
54	{
55		.pll_config_g = {
56			.tapll_info_g = {
57				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
58							 (TA_PLL_M_VAL_20)),
59				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
60			},
61			.pll960_info_g = {
62				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
63							 (PLL960_N_VAL_20)),
64				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
65				.pll_reg_3 = 0x0,
66			},
67			.afepll_info_g = {
68				.pll_reg = cpu_to_le16(0x9f0),
69			}
70		},
71		.switch_clk_g = {
72			.switch_clk_info = 0x0,
73			.bbp_lmac_clk_reg_val = 0x0,
74			.umac_clock_reg_config = 0x0,
75			.qspi_uart_clock_reg_config = 0x0
76		}
77	},
78	{
79		.pll_config_g = {
80			.tapll_info_g = {
81				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_20 << 8)|
82							 (TA_PLL_M_VAL_20)),
83				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_20),
84			},
85			.pll960_info_g = {
86				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_20 << 8)|
87							 (PLL960_N_VAL_20)),
88				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_20),
89				.pll_reg_3 = 0x0,
90			},
91			.afepll_info_g = {
92				.pll_reg = cpu_to_le16(0x9f0),
93			}
94		},
95		.switch_clk_g = {
96			.switch_clk_info = 0x0,
97			.bbp_lmac_clk_reg_val = 0x0,
98			.umac_clock_reg_config = 0x0,
99			.qspi_uart_clock_reg_config = 0x0
100		}
101	} },
102	.buckboost_wakeup_cnt = 0x0,
103	.pmu_wakeup_wait = 0x0,
104	.shutdown_wait_time = 0x0,
105	.pmu_slp_clkout_sel = 0x0,
106	.wdt_prog_value = 0x0,
107	.wdt_soc_rst_delay = 0x0,
108	.dcdc_operation_mode = 0x0,
109	.soc_reset_wait_cnt = 0x0
110};
111
112static struct bootup_params boot_params_40 = {
113	.magic_number = cpu_to_le16(0x5aa5),
114	.crystal_good_time = 0x0,
115	.valid = cpu_to_le32(VALID_40),
116	.reserved_for_valids = 0x0,
117	.bootup_mode_info = 0x0,
118	.digital_loop_back_params = 0x0,
119	.rtls_timestamp_en = 0x0,
120	.host_spi_intr_cfg = 0x0,
121	.device_clk_info = {{
122		.pll_config_g = {
123			.tapll_info_g = {
124				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
125							 (TA_PLL_M_VAL_40)),
126				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
127			},
128			.pll960_info_g = {
129				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
130							 (PLL960_N_VAL_40)),
131				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
132				.pll_reg_3 = 0x0,
133			},
134			.afepll_info_g = {
135				.pll_reg = cpu_to_le16(0x9f0),
136			}
137		},
138		.switch_clk_g = {
139			.switch_clk_info = cpu_to_le16(0x09),
140			.bbp_lmac_clk_reg_val = cpu_to_le16(0x1121),
141			.umac_clock_reg_config = cpu_to_le16(0x48),
142			.qspi_uart_clock_reg_config = 0x0
143		}
144	},
145	{
146		.pll_config_g = {
147			.tapll_info_g = {
148				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
149							 (TA_PLL_M_VAL_40)),
150				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
151			},
152			.pll960_info_g = {
153				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
154							 (PLL960_N_VAL_40)),
155				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
156				.pll_reg_3 = 0x0,
157			},
158			.afepll_info_g = {
159				.pll_reg = cpu_to_le16(0x9f0),
160			}
161		},
162		.switch_clk_g = {
163			.switch_clk_info = 0x0,
164			.bbp_lmac_clk_reg_val = 0x0,
165			.umac_clock_reg_config = 0x0,
166			.qspi_uart_clock_reg_config = 0x0
167		}
168	},
169	{
170		.pll_config_g = {
171			.tapll_info_g = {
172				.pll_reg_1 = cpu_to_le16((TA_PLL_N_VAL_40 << 8)|
173							 (TA_PLL_M_VAL_40)),
174				.pll_reg_2 = cpu_to_le16(TA_PLL_P_VAL_40),
175			},
176			.pll960_info_g = {
177				.pll_reg_1 = cpu_to_le16((PLL960_P_VAL_40 << 8)|
178							 (PLL960_N_VAL_40)),
179				.pll_reg_2 = cpu_to_le16(PLL960_M_VAL_40),
180				.pll_reg_3 = 0x0,
181			},
182			.afepll_info_g = {
183				.pll_reg = cpu_to_le16(0x9f0),
184			}
185		},
186		.switch_clk_g = {
187			.switch_clk_info = 0x0,
188			.bbp_lmac_clk_reg_val = 0x0,
189			.umac_clock_reg_config = 0x0,
190			.qspi_uart_clock_reg_config = 0x0
191		}
192	} },
193	.buckboost_wakeup_cnt = 0x0,
194	.pmu_wakeup_wait = 0x0,
195	.shutdown_wait_time = 0x0,
196	.pmu_slp_clkout_sel = 0x0,
197	.wdt_prog_value = 0x0,
198	.wdt_soc_rst_delay = 0x0,
199	.dcdc_operation_mode = 0x0,
200	.soc_reset_wait_cnt = 0x0
201};
202
203static u16 mcs[] = {13, 26, 39, 52, 78, 104, 117, 130};
204
205/**
206 * rsi_set_default_parameters() - This function sets default parameters.
207 * @common: Pointer to the driver private structure.
208 *
209 * Return: none
210 */
211static void rsi_set_default_parameters(struct rsi_common *common)
212{
213	common->band = IEEE80211_BAND_2GHZ;
214	common->channel_width = BW_20MHZ;
215	common->rts_threshold = IEEE80211_MAX_RTS_THRESHOLD;
216	common->channel = 1;
217	common->min_rate = 0xffff;
218	common->fsm_state = FSM_CARD_NOT_READY;
219	common->iface_down = true;
220	common->endpoint = EP_2GHZ_20MHZ;
221}
222
223/**
224 * rsi_set_contention_vals() - This function sets the contention values for the
225 *			       backoff procedure.
226 * @common: Pointer to the driver private structure.
227 *
228 * Return: None.
229 */
230static void rsi_set_contention_vals(struct rsi_common *common)
231{
232	u8 ii = 0;
233
234	for (; ii < NUM_EDCA_QUEUES; ii++) {
235		common->tx_qinfo[ii].wme_params =
236			(((common->edca_params[ii].cw_min / 2) +
237			  (common->edca_params[ii].aifs)) *
238			  WMM_SHORT_SLOT_TIME + SIFS_DURATION);
239		common->tx_qinfo[ii].weight = common->tx_qinfo[ii].wme_params;
240		common->tx_qinfo[ii].pkt_contended = 0;
241	}
242}
243
244/**
245 * rsi_send_internal_mgmt_frame() - This function sends management frames to
246 *				    firmware.Also schedules packet to queue
247 *				    for transmission.
248 * @common: Pointer to the driver private structure.
249 * @skb: Pointer to the socket buffer structure.
250 *
251 * Return: 0 on success, -1 on failure.
252 */
253static int rsi_send_internal_mgmt_frame(struct rsi_common *common,
254					struct sk_buff *skb)
255{
256	struct skb_info *tx_params;
257
258	if (skb == NULL) {
259		rsi_dbg(ERR_ZONE, "%s: Unable to allocate skb\n", __func__);
260		return -ENOMEM;
261	}
262	tx_params = (struct skb_info *)&IEEE80211_SKB_CB(skb)->driver_data;
263	tx_params->flags |= INTERNAL_MGMT_PKT;
264	skb_queue_tail(&common->tx_queue[MGMT_SOFT_Q], skb);
265	rsi_set_event(&common->tx_thread.event);
266	return 0;
267}
268
269/**
270 * rsi_load_radio_caps() - This function is used to send radio capabilities
271 *			   values to firmware.
272 * @common: Pointer to the driver private structure.
273 *
274 * Return: 0 on success, corresponding negative error code on failure.
275 */
276static int rsi_load_radio_caps(struct rsi_common *common)
277{
278	struct rsi_radio_caps *radio_caps;
279	struct rsi_hw *adapter = common->priv;
280	u16 inx = 0;
281	u8 ii;
282	u8 radio_id = 0;
283	u16 gc[20] = {0xf0, 0xf0, 0xf0, 0xf0,
284		      0xf0, 0xf0, 0xf0, 0xf0,
285		      0xf0, 0xf0, 0xf0, 0xf0,
286		      0xf0, 0xf0, 0xf0, 0xf0,
287		      0xf0, 0xf0, 0xf0, 0xf0};
288	struct sk_buff *skb;
289
290	rsi_dbg(INFO_ZONE, "%s: Sending rate symbol req frame\n", __func__);
291
292	skb = dev_alloc_skb(sizeof(struct rsi_radio_caps));
293
294	if (!skb) {
295		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
296			__func__);
297		return -ENOMEM;
298	}
299
300	memset(skb->data, 0, sizeof(struct rsi_radio_caps));
301	radio_caps = (struct rsi_radio_caps *)skb->data;
302
303	radio_caps->desc_word[1] = cpu_to_le16(RADIO_CAPABILITIES);
304	radio_caps->desc_word[4] = cpu_to_le16(RSI_RF_TYPE << 8);
305
306	if (common->channel_width == BW_40MHZ) {
307		radio_caps->desc_word[7] |= cpu_to_le16(RSI_LMAC_CLOCK_80MHZ);
308		radio_caps->desc_word[7] |= cpu_to_le16(RSI_ENABLE_40MHZ);
309
310		if (common->fsm_state == FSM_MAC_INIT_DONE) {
311			struct ieee80211_hw *hw = adapter->hw;
312			struct ieee80211_conf *conf = &hw->conf;
313			if (conf_is_ht40_plus(conf)) {
314				radio_caps->desc_word[5] =
315					cpu_to_le16(LOWER_20_ENABLE);
316				radio_caps->desc_word[5] |=
317					cpu_to_le16(LOWER_20_ENABLE >> 12);
318			} else if (conf_is_ht40_minus(conf)) {
319				radio_caps->desc_word[5] =
320					cpu_to_le16(UPPER_20_ENABLE);
321				radio_caps->desc_word[5] |=
322					cpu_to_le16(UPPER_20_ENABLE >> 12);
323			} else {
324				radio_caps->desc_word[5] =
325					cpu_to_le16(BW_40MHZ << 12);
326				radio_caps->desc_word[5] |=
327					cpu_to_le16(FULL40M_ENABLE);
328			}
329		}
330	}
331
332	radio_caps->sifs_tx_11n = cpu_to_le16(SIFS_TX_11N_VALUE);
333	radio_caps->sifs_tx_11b = cpu_to_le16(SIFS_TX_11B_VALUE);
334	radio_caps->slot_rx_11n = cpu_to_le16(SHORT_SLOT_VALUE);
335	radio_caps->ofdm_ack_tout = cpu_to_le16(OFDM_ACK_TOUT_VALUE);
336	radio_caps->cck_ack_tout = cpu_to_le16(CCK_ACK_TOUT_VALUE);
337	radio_caps->preamble_type = cpu_to_le16(LONG_PREAMBLE);
338
339	radio_caps->desc_word[7] |= cpu_to_le16(radio_id << 8);
340
341	for (ii = 0; ii < MAX_HW_QUEUES; ii++) {
342		radio_caps->qos_params[ii].cont_win_min_q = cpu_to_le16(3);
343		radio_caps->qos_params[ii].cont_win_max_q = cpu_to_le16(0x3f);
344		radio_caps->qos_params[ii].aifsn_val_q = cpu_to_le16(2);
345		radio_caps->qos_params[ii].txop_q = 0;
346	}
347
348	for (ii = 0; ii < MAX_HW_QUEUES - 4; ii++) {
349		radio_caps->qos_params[ii].cont_win_min_q =
350			cpu_to_le16(common->edca_params[ii].cw_min);
351		radio_caps->qos_params[ii].cont_win_max_q =
352			cpu_to_le16(common->edca_params[ii].cw_max);
353		radio_caps->qos_params[ii].aifsn_val_q =
354			cpu_to_le16((common->edca_params[ii].aifs) << 8);
355		radio_caps->qos_params[ii].txop_q =
356			cpu_to_le16(common->edca_params[ii].txop);
357	}
358
359	memcpy(&common->rate_pwr[0], &gc[0], 40);
360	for (ii = 0; ii < 20; ii++)
361		radio_caps->gcpd_per_rate[inx++] =
362			cpu_to_le16(common->rate_pwr[ii]  & 0x00FF);
363
364	radio_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_radio_caps) -
365						FRAME_DESC_SZ) |
366					       (RSI_WIFI_MGMT_Q << 12));
367
368
369	skb_put(skb, (sizeof(struct rsi_radio_caps)));
370
371	return rsi_send_internal_mgmt_frame(common, skb);
372}
373
374/**
375 * rsi_mgmt_pkt_to_core() - This function is the entry point for Mgmt module.
376 * @common: Pointer to the driver private structure.
377 * @msg: Pointer to received packet.
378 * @msg_len: Length of the recieved packet.
379 * @type: Type of recieved packet.
380 *
381 * Return: 0 on success, -1 on failure.
382 */
383static int rsi_mgmt_pkt_to_core(struct rsi_common *common,
384				u8 *msg,
385				s32 msg_len,
386				u8 type)
387{
388	struct rsi_hw *adapter = common->priv;
389	struct ieee80211_tx_info *info;
390	struct skb_info *rx_params;
391	u8 pad_bytes = msg[4];
392	u8 pkt_recv;
393	struct sk_buff *skb;
394	char *buffer;
395
396	if (type == RX_DOT11_MGMT) {
397		if (!adapter->sc_nvifs)
398			return -ENOLINK;
399
400		msg_len -= pad_bytes;
401		if ((msg_len <= 0) || (!msg)) {
402			rsi_dbg(MGMT_RX_ZONE,
403				"%s: Invalid rx msg of len = %d\n",
404				__func__, msg_len);
405			return -EINVAL;
406		}
407
408		skb = dev_alloc_skb(msg_len);
409		if (!skb) {
410			rsi_dbg(ERR_ZONE, "%s: Failed to allocate skb\n",
411				__func__);
412			return -ENOMEM;
413		}
414
415		buffer = skb_put(skb, msg_len);
416
417		memcpy(buffer,
418		       (u8 *)(msg +  FRAME_DESC_SZ + pad_bytes),
419		       msg_len);
420
421		pkt_recv = buffer[0];
422
423		info = IEEE80211_SKB_CB(skb);
424		rx_params = (struct skb_info *)info->driver_data;
425		rx_params->rssi = rsi_get_rssi(msg);
426		rx_params->channel = rsi_get_channel(msg);
427		rsi_indicate_pkt_to_os(common, skb);
428	} else {
429		rsi_dbg(MGMT_TX_ZONE, "%s: Internal Packet\n", __func__);
430	}
431
432	return 0;
433}
434
435/**
436 * rsi_hal_send_sta_notify_frame() - This function sends the station notify
437 *				     frame to firmware.
438 * @common: Pointer to the driver private structure.
439 * @opmode: Operating mode of device.
440 * @notify_event: Notification about station connection.
441 * @bssid: bssid.
442 * @qos_enable: Qos is enabled.
443 * @aid: Aid (unique for all STA).
444 *
445 * Return: status: 0 on success, corresponding negative error code on failure.
446 */
447static int rsi_hal_send_sta_notify_frame(struct rsi_common *common,
448					 u8 opmode,
449					 u8 notify_event,
450					 const unsigned char *bssid,
451					 u8 qos_enable,
452					 u16 aid)
453{
454	struct sk_buff *skb = NULL;
455	struct rsi_peer_notify *peer_notify;
456	u16 vap_id = 0;
457	int status;
458
459	rsi_dbg(MGMT_TX_ZONE, "%s: Sending sta notify frame\n", __func__);
460
461	skb = dev_alloc_skb(sizeof(struct rsi_peer_notify));
462
463	if (!skb) {
464		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
465			__func__);
466		return -ENOMEM;
467	}
468
469	memset(skb->data, 0, sizeof(struct rsi_peer_notify));
470	peer_notify = (struct rsi_peer_notify *)skb->data;
471
472	peer_notify->command = cpu_to_le16(opmode << 1);
473
474	switch (notify_event) {
475	case STA_CONNECTED:
476		peer_notify->command |= cpu_to_le16(RSI_ADD_PEER);
477		break;
478	case STA_DISCONNECTED:
479		peer_notify->command |= cpu_to_le16(RSI_DELETE_PEER);
480		break;
481	default:
482		break;
483	}
484
485	peer_notify->command |= cpu_to_le16((aid & 0xfff) << 4);
486	ether_addr_copy(peer_notify->mac_addr, bssid);
487
488	peer_notify->sta_flags = cpu_to_le32((qos_enable) ? 1 : 0);
489
490	peer_notify->desc_word[0] =
491		cpu_to_le16((sizeof(struct rsi_peer_notify) - FRAME_DESC_SZ) |
492			    (RSI_WIFI_MGMT_Q << 12));
493	peer_notify->desc_word[1] = cpu_to_le16(PEER_NOTIFY);
494	peer_notify->desc_word[7] |= cpu_to_le16(vap_id << 8);
495
496	skb_put(skb, sizeof(struct rsi_peer_notify));
497
498	status = rsi_send_internal_mgmt_frame(common, skb);
499
500	if (!status && qos_enable) {
501		rsi_set_contention_vals(common);
502		status = rsi_load_radio_caps(common);
503	}
504	return status;
505}
506
507/**
508 * rsi_send_aggregation_params_frame() - This function sends the ampdu
509 *					 indication frame to firmware.
510 * @common: Pointer to the driver private structure.
511 * @tid: traffic identifier.
512 * @ssn: ssn.
513 * @buf_size: buffer size.
514 * @event: notification about station connection.
515 *
516 * Return: 0 on success, corresponding negative error code on failure.
517 */
518int rsi_send_aggregation_params_frame(struct rsi_common *common,
519				      u16 tid,
520				      u16 ssn,
521				      u8 buf_size,
522				      u8 event)
523{
524	struct sk_buff *skb = NULL;
525	struct rsi_mac_frame *mgmt_frame;
526	u8 peer_id = 0;
527
528	skb = dev_alloc_skb(FRAME_DESC_SZ);
529
530	if (!skb) {
531		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
532			__func__);
533		return -ENOMEM;
534	}
535
536	memset(skb->data, 0, FRAME_DESC_SZ);
537	mgmt_frame = (struct rsi_mac_frame *)skb->data;
538
539	rsi_dbg(MGMT_TX_ZONE, "%s: Sending AMPDU indication frame\n", __func__);
540
541	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
542	mgmt_frame->desc_word[1] = cpu_to_le16(AMPDU_IND);
543
544	if (event == STA_TX_ADDBA_DONE) {
545		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
546		mgmt_frame->desc_word[5] = cpu_to_le16(buf_size);
547		mgmt_frame->desc_word[7] =
548		cpu_to_le16((tid | (START_AMPDU_AGGR << 4) | (peer_id << 8)));
549	} else if (event == STA_RX_ADDBA_DONE) {
550		mgmt_frame->desc_word[4] = cpu_to_le16(ssn);
551		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
552						       (START_AMPDU_AGGR << 4) |
553						       (RX_BA_INDICATION << 5) |
554						       (peer_id << 8));
555	} else if (event == STA_TX_DELBA) {
556		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
557						       (STOP_AMPDU_AGGR << 4) |
558						       (peer_id << 8));
559	} else if (event == STA_RX_DELBA) {
560		mgmt_frame->desc_word[7] = cpu_to_le16(tid |
561						       (STOP_AMPDU_AGGR << 4) |
562						       (RX_BA_INDICATION << 5) |
563						       (peer_id << 8));
564	}
565
566	skb_put(skb, FRAME_DESC_SZ);
567
568	return rsi_send_internal_mgmt_frame(common, skb);
569}
570
571/**
572 * rsi_program_bb_rf() - This function starts base band and RF programming.
573 *			 This is called after initial configurations are done.
574 * @common: Pointer to the driver private structure.
575 *
576 * Return: 0 on success, corresponding negative error code on failure.
577 */
578static int rsi_program_bb_rf(struct rsi_common *common)
579{
580	struct sk_buff *skb;
581	struct rsi_mac_frame *mgmt_frame;
582
583	rsi_dbg(MGMT_TX_ZONE, "%s: Sending program BB/RF frame\n", __func__);
584
585	skb = dev_alloc_skb(FRAME_DESC_SZ);
586	if (!skb) {
587		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
588			__func__);
589		return -ENOMEM;
590	}
591
592	memset(skb->data, 0, FRAME_DESC_SZ);
593	mgmt_frame = (struct rsi_mac_frame *)skb->data;
594
595	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
596	mgmt_frame->desc_word[1] = cpu_to_le16(BBP_PROG_IN_TA);
597	mgmt_frame->desc_word[4] = cpu_to_le16(common->endpoint);
598
599	if (common->rf_reset) {
600		mgmt_frame->desc_word[7] =  cpu_to_le16(RF_RESET_ENABLE);
601		rsi_dbg(MGMT_TX_ZONE, "%s: ===> RF RESET REQUEST SENT <===\n",
602			__func__);
603		common->rf_reset = 0;
604	}
605	common->bb_rf_prog_count = 1;
606	mgmt_frame->desc_word[7] |= cpu_to_le16(PUT_BBP_RESET |
607				     BBP_REG_WRITE | (RSI_RF_TYPE << 4));
608	skb_put(skb, FRAME_DESC_SZ);
609
610	return rsi_send_internal_mgmt_frame(common, skb);
611}
612
613/**
614 * rsi_set_vap_capabilities() - This function send vap capability to firmware.
615 * @common: Pointer to the driver private structure.
616 * @opmode: Operating mode of device.
617 *
618 * Return: 0 on success, corresponding negative error code on failure.
619 */
620int rsi_set_vap_capabilities(struct rsi_common *common, enum opmode mode)
621{
622	struct sk_buff *skb = NULL;
623	struct rsi_vap_caps *vap_caps;
624	struct rsi_hw *adapter = common->priv;
625	struct ieee80211_hw *hw = adapter->hw;
626	struct ieee80211_conf *conf = &hw->conf;
627	u16 vap_id = 0;
628
629	rsi_dbg(MGMT_TX_ZONE, "%s: Sending VAP capabilities frame\n", __func__);
630
631	skb = dev_alloc_skb(sizeof(struct rsi_vap_caps));
632	if (!skb) {
633		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
634			__func__);
635		return -ENOMEM;
636	}
637
638	memset(skb->data, 0, sizeof(struct rsi_vap_caps));
639	vap_caps = (struct rsi_vap_caps *)skb->data;
640
641	vap_caps->desc_word[0] = cpu_to_le16((sizeof(struct rsi_vap_caps) -
642					     FRAME_DESC_SZ) |
643					     (RSI_WIFI_MGMT_Q << 12));
644	vap_caps->desc_word[1] = cpu_to_le16(VAP_CAPABILITIES);
645	vap_caps->desc_word[4] = cpu_to_le16(mode |
646					     (common->channel_width << 8));
647	vap_caps->desc_word[7] = cpu_to_le16((vap_id << 8) |
648					     (common->mac_id << 4) |
649					     common->radio_id);
650
651	memcpy(vap_caps->mac_addr, common->mac_addr, IEEE80211_ADDR_LEN);
652	vap_caps->keep_alive_period = cpu_to_le16(90);
653	vap_caps->frag_threshold = cpu_to_le16(IEEE80211_MAX_FRAG_THRESHOLD);
654
655	vap_caps->rts_threshold = cpu_to_le16(common->rts_threshold);
656	vap_caps->default_mgmt_rate = cpu_to_le32(RSI_RATE_6);
657
658	if (common->band == IEEE80211_BAND_5GHZ) {
659		vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_6);
660		if (conf_is_ht40(&common->priv->hw->conf)) {
661			vap_caps->default_ctrl_rate |=
662				cpu_to_le32(FULL40M_ENABLE << 16);
663		}
664	} else {
665		vap_caps->default_ctrl_rate = cpu_to_le32(RSI_RATE_1);
666		if (conf_is_ht40_minus(conf))
667			vap_caps->default_ctrl_rate |=
668				cpu_to_le32(UPPER_20_ENABLE << 16);
669		else if (conf_is_ht40_plus(conf))
670			vap_caps->default_ctrl_rate |=
671				cpu_to_le32(LOWER_20_ENABLE << 16);
672	}
673
674	vap_caps->default_data_rate = 0;
675	vap_caps->beacon_interval = cpu_to_le16(200);
676	vap_caps->dtim_period = cpu_to_le16(4);
677
678	skb_put(skb, sizeof(*vap_caps));
679
680	return rsi_send_internal_mgmt_frame(common, skb);
681}
682
683/**
684 * rsi_hal_load_key() - This function is used to load keys within the firmware.
685 * @common: Pointer to the driver private structure.
686 * @data: Pointer to the key data.
687 * @key_len: Key length to be loaded.
688 * @key_type: Type of key: GROUP/PAIRWISE.
689 * @key_id: Key index.
690 * @cipher: Type of cipher used.
691 *
692 * Return: 0 on success, -1 on failure.
693 */
694int rsi_hal_load_key(struct rsi_common *common,
695		     u8 *data,
696		     u16 key_len,
697		     u8 key_type,
698		     u8 key_id,
699		     u32 cipher)
700{
701	struct sk_buff *skb = NULL;
702	struct rsi_set_key *set_key;
703	u16 key_descriptor = 0;
704
705	rsi_dbg(MGMT_TX_ZONE, "%s: Sending load key frame\n", __func__);
706
707	skb = dev_alloc_skb(sizeof(struct rsi_set_key));
708	if (!skb) {
709		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
710			__func__);
711		return -ENOMEM;
712	}
713
714	memset(skb->data, 0, sizeof(struct rsi_set_key));
715	set_key = (struct rsi_set_key *)skb->data;
716
717	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
718	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
719		key_len += 1;
720		key_descriptor |= BIT(2);
721		if (key_len >= 13)
722			key_descriptor |= BIT(3);
723	} else if (cipher != KEY_TYPE_CLEAR) {
724		key_descriptor |= BIT(4);
725		if (key_type == RSI_PAIRWISE_KEY)
726			key_id = 0;
727		if (cipher == WLAN_CIPHER_SUITE_TKIP)
728			key_descriptor |= BIT(5);
729	}
730	key_descriptor |= (key_type | BIT(13) | (key_id << 14));
731
732	set_key->desc_word[0] = cpu_to_le16((sizeof(struct rsi_set_key) -
733					    FRAME_DESC_SZ) |
734					    (RSI_WIFI_MGMT_Q << 12));
735	set_key->desc_word[1] = cpu_to_le16(SET_KEY_REQ);
736	set_key->desc_word[4] = cpu_to_le16(key_descriptor);
737
738	if ((cipher == WLAN_CIPHER_SUITE_WEP40) ||
739	    (cipher == WLAN_CIPHER_SUITE_WEP104)) {
740		memcpy(&set_key->key[key_id][1],
741		       data,
742		       key_len * 2);
743	} else {
744		memcpy(&set_key->key[0][0], data, key_len);
745	}
746
747	memcpy(set_key->tx_mic_key, &data[16], 8);
748	memcpy(set_key->rx_mic_key, &data[24], 8);
749
750	skb_put(skb, sizeof(struct rsi_set_key));
751
752	return rsi_send_internal_mgmt_frame(common, skb);
753}
754
755/*
756 * rsi_load_bootup_params() - This function send bootup params to the firmware.
757 * @common: Pointer to the driver private structure.
758 *
759 * Return: 0 on success, corresponding error code on failure.
760 */
761static int rsi_load_bootup_params(struct rsi_common *common)
762{
763	struct sk_buff *skb;
764	struct rsi_boot_params *boot_params;
765
766	rsi_dbg(MGMT_TX_ZONE, "%s: Sending boot params frame\n", __func__);
767	skb = dev_alloc_skb(sizeof(struct rsi_boot_params));
768	if (!skb) {
769		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
770			__func__);
771		return -ENOMEM;
772	}
773
774	memset(skb->data, 0, sizeof(struct rsi_boot_params));
775	boot_params = (struct rsi_boot_params *)skb->data;
776
777	rsi_dbg(MGMT_TX_ZONE, "%s:\n", __func__);
778
779	if (common->channel_width == BW_40MHZ) {
780		memcpy(&boot_params->bootup_params,
781		       &boot_params_40,
782		       sizeof(struct bootup_params));
783		rsi_dbg(MGMT_TX_ZONE, "%s: Packet 40MHZ <=== %d\n", __func__,
784			UMAC_CLK_40BW);
785		boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40BW);
786	} else {
787		memcpy(&boot_params->bootup_params,
788		       &boot_params_20,
789		       sizeof(struct bootup_params));
790		if (boot_params_20.valid != cpu_to_le32(VALID_20)) {
791			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_20BW);
792			rsi_dbg(MGMT_TX_ZONE,
793				"%s: Packet 20MHZ <=== %d\n", __func__,
794				UMAC_CLK_20BW);
795		} else {
796			boot_params->desc_word[7] = cpu_to_le16(UMAC_CLK_40MHZ);
797			rsi_dbg(MGMT_TX_ZONE,
798				"%s: Packet 20MHZ <=== %d\n", __func__,
799				UMAC_CLK_40MHZ);
800		}
801	}
802
803	/**
804	 * Bit{0:11} indicates length of the Packet
805	 * Bit{12:15} indicates host queue number
806	 */
807	boot_params->desc_word[0] = cpu_to_le16(sizeof(struct bootup_params) |
808				    (RSI_WIFI_MGMT_Q << 12));
809	boot_params->desc_word[1] = cpu_to_le16(BOOTUP_PARAMS_REQUEST);
810
811	skb_put(skb, sizeof(struct rsi_boot_params));
812
813	return rsi_send_internal_mgmt_frame(common, skb);
814}
815
816/**
817 * rsi_send_reset_mac() - This function prepares reset MAC request and sends an
818 *			  internal management frame to indicate it to firmware.
819 * @common: Pointer to the driver private structure.
820 *
821 * Return: 0 on success, corresponding error code on failure.
822 */
823static int rsi_send_reset_mac(struct rsi_common *common)
824{
825	struct sk_buff *skb;
826	struct rsi_mac_frame *mgmt_frame;
827
828	rsi_dbg(MGMT_TX_ZONE, "%s: Sending reset MAC frame\n", __func__);
829
830	skb = dev_alloc_skb(FRAME_DESC_SZ);
831	if (!skb) {
832		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
833			__func__);
834		return -ENOMEM;
835	}
836
837	memset(skb->data, 0, FRAME_DESC_SZ);
838	mgmt_frame = (struct rsi_mac_frame *)skb->data;
839
840	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
841	mgmt_frame->desc_word[1] = cpu_to_le16(RESET_MAC_REQ);
842	mgmt_frame->desc_word[4] = cpu_to_le16(RETRY_COUNT << 8);
843
844	skb_put(skb, FRAME_DESC_SZ);
845
846	return rsi_send_internal_mgmt_frame(common, skb);
847}
848
849/**
850 * rsi_band_check() - This function programs the band
851 * @common: Pointer to the driver private structure.
852 *
853 * Return: 0 on success, corresponding error code on failure.
854 */
855int rsi_band_check(struct rsi_common *common)
856{
857	struct rsi_hw *adapter = common->priv;
858	struct ieee80211_hw *hw = adapter->hw;
859	u8 prev_bw = common->channel_width;
860	u8 prev_ep = common->endpoint;
861	struct ieee80211_channel *curchan = hw->conf.chandef.chan;
862	int status = 0;
863
864	if (common->band != curchan->band) {
865		common->rf_reset = 1;
866		common->band = curchan->band;
867	}
868
869	if ((hw->conf.chandef.width == NL80211_CHAN_WIDTH_20_NOHT) ||
870	    (hw->conf.chandef.width == NL80211_CHAN_WIDTH_20))
871		common->channel_width = BW_20MHZ;
872	else
873		common->channel_width = BW_40MHZ;
874
875	if (common->band == IEEE80211_BAND_2GHZ) {
876		if (common->channel_width)
877			common->endpoint = EP_2GHZ_40MHZ;
878		else
879			common->endpoint = EP_2GHZ_20MHZ;
880	} else {
881		if (common->channel_width)
882			common->endpoint = EP_5GHZ_40MHZ;
883		else
884			common->endpoint = EP_5GHZ_20MHZ;
885	}
886
887	if (common->endpoint != prev_ep) {
888		status = rsi_program_bb_rf(common);
889		if (status)
890			return status;
891	}
892
893	if (common->channel_width != prev_bw) {
894		status = rsi_load_bootup_params(common);
895		if (status)
896			return status;
897
898		status = rsi_load_radio_caps(common);
899		if (status)
900			return status;
901	}
902
903	return status;
904}
905
906/**
907 * rsi_set_channel() - This function programs the channel.
908 * @common: Pointer to the driver private structure.
909 * @channel: Channel value to be set.
910 *
911 * Return: 0 on success, corresponding error code on failure.
912 */
913int rsi_set_channel(struct rsi_common *common, u16 channel)
914{
915	struct sk_buff *skb = NULL;
916	struct rsi_mac_frame *mgmt_frame;
917
918	rsi_dbg(MGMT_TX_ZONE,
919		"%s: Sending scan req frame\n", __func__);
920
921	skb = dev_alloc_skb(FRAME_DESC_SZ);
922	if (!skb) {
923		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
924			__func__);
925		return -ENOMEM;
926	}
927
928	memset(skb->data, 0, FRAME_DESC_SZ);
929	mgmt_frame = (struct rsi_mac_frame *)skb->data;
930
931	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
932	mgmt_frame->desc_word[1] = cpu_to_le16(SCAN_REQUEST);
933	mgmt_frame->desc_word[4] = cpu_to_le16(channel);
934
935	mgmt_frame->desc_word[7] = cpu_to_le16(PUT_BBP_RESET |
936					       BBP_REG_WRITE |
937					       (RSI_RF_TYPE << 4));
938
939	mgmt_frame->desc_word[5] = cpu_to_le16(0x01);
940	mgmt_frame->desc_word[6] = cpu_to_le16(0x12);
941
942	if (common->channel_width == BW_40MHZ)
943		mgmt_frame->desc_word[5] |= cpu_to_le16(0x1 << 8);
944
945	common->channel = channel;
946
947	skb_put(skb, FRAME_DESC_SZ);
948
949	return rsi_send_internal_mgmt_frame(common, skb);
950}
951
952/**
953 * rsi_compare() - This function is used to compare two integers
954 * @a: pointer to the first integer
955 * @b: pointer to the second integer
956 *
957 * Return: 0 if both are equal, -1 if the first is smaller, else 1
958 */
959static int rsi_compare(const void *a, const void *b)
960{
961	u16 _a = *(const u16 *)(a);
962	u16 _b = *(const u16 *)(b);
963
964	if (_a > _b)
965		return -1;
966
967	if (_a < _b)
968		return 1;
969
970	return 0;
971}
972
973/**
974 * rsi_map_rates() - This function is used to map selected rates to hw rates.
975 * @rate: The standard rate to be mapped.
976 * @offset: Offset that will be returned.
977 *
978 * Return: 0 if it is a mcs rate, else 1
979 */
980static bool rsi_map_rates(u16 rate, int *offset)
981{
982	int kk;
983	for (kk = 0; kk < ARRAY_SIZE(rsi_mcsrates); kk++) {
984		if (rate == mcs[kk]) {
985			*offset = kk;
986			return false;
987		}
988	}
989
990	for (kk = 0; kk < ARRAY_SIZE(rsi_rates); kk++) {
991		if (rate == rsi_rates[kk].bitrate / 5) {
992			*offset = kk;
993			break;
994		}
995	}
996	return true;
997}
998
999/**
1000 * rsi_send_auto_rate_request() - This function is to set rates for connection
1001 *				  and send autorate request to firmware.
1002 * @common: Pointer to the driver private structure.
1003 *
1004 * Return: 0 on success, corresponding error code on failure.
1005 */
1006static int rsi_send_auto_rate_request(struct rsi_common *common)
1007{
1008	struct sk_buff *skb;
1009	struct rsi_auto_rate *auto_rate;
1010	int ii = 0, jj = 0, kk = 0;
1011	struct ieee80211_hw *hw = common->priv->hw;
1012	u8 band = hw->conf.chandef.chan->band;
1013	u8 num_supported_rates = 0;
1014	u8 rate_table_offset, rate_offset = 0;
1015	u32 rate_bitmap = common->bitrate_mask[band];
1016
1017	u16 *selected_rates, min_rate;
1018
1019	skb = dev_alloc_skb(sizeof(struct rsi_auto_rate));
1020	if (!skb) {
1021		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1022			__func__);
1023		return -ENOMEM;
1024	}
1025
1026	selected_rates = kmalloc(2 * RSI_TBL_SZ, GFP_KERNEL);
1027	if (!selected_rates) {
1028		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of mem\n",
1029			__func__);
1030		dev_kfree_skb(skb);
1031		return -ENOMEM;
1032	}
1033
1034	memset(skb->data, 0, sizeof(struct rsi_auto_rate));
1035	memset(selected_rates, 0, 2 * RSI_TBL_SZ);
1036
1037	auto_rate = (struct rsi_auto_rate *)skb->data;
1038
1039	auto_rate->aarf_rssi = cpu_to_le16(((u16)3 << 6) | (u16)(18 & 0x3f));
1040	auto_rate->collision_tolerance = cpu_to_le16(3);
1041	auto_rate->failure_limit = cpu_to_le16(3);
1042	auto_rate->initial_boundary = cpu_to_le16(3);
1043	auto_rate->max_threshold_limt = cpu_to_le16(27);
1044
1045	auto_rate->desc_word[1] = cpu_to_le16(AUTO_RATE_IND);
1046
1047	if (common->channel_width == BW_40MHZ)
1048		auto_rate->desc_word[7] |= cpu_to_le16(1);
1049
1050	if (band == IEEE80211_BAND_2GHZ) {
1051		min_rate = RSI_RATE_1;
1052		rate_table_offset = 0;
1053	} else {
1054		min_rate = RSI_RATE_6;
1055		rate_table_offset = 4;
1056	}
1057
1058	for (ii = 0, jj = 0;
1059	     ii < (ARRAY_SIZE(rsi_rates) - rate_table_offset); ii++) {
1060		if (rate_bitmap & BIT(ii)) {
1061			selected_rates[jj++] =
1062			(rsi_rates[ii + rate_table_offset].bitrate / 5);
1063			rate_offset++;
1064		}
1065	}
1066	num_supported_rates = jj;
1067
1068	if (common->vif_info[0].is_ht) {
1069		for (ii = 0; ii < ARRAY_SIZE(mcs); ii++)
1070			selected_rates[jj++] = mcs[ii];
1071		num_supported_rates += ARRAY_SIZE(mcs);
1072		rate_offset += ARRAY_SIZE(mcs);
1073	}
1074
1075	sort(selected_rates, jj, sizeof(u16), &rsi_compare, NULL);
1076
1077	/* mapping the rates to RSI rates */
1078	for (ii = 0; ii < jj; ii++) {
1079		if (rsi_map_rates(selected_rates[ii], &kk)) {
1080			auto_rate->supported_rates[ii] =
1081				cpu_to_le16(rsi_rates[kk].hw_value);
1082		} else {
1083			auto_rate->supported_rates[ii] =
1084				cpu_to_le16(rsi_mcsrates[kk]);
1085		}
1086	}
1087
1088	/* loading HT rates in the bottom half of the auto rate table */
1089	if (common->vif_info[0].is_ht) {
1090		for (ii = rate_offset, kk = ARRAY_SIZE(rsi_mcsrates) - 1;
1091		     ii < rate_offset + 2 * ARRAY_SIZE(rsi_mcsrates); ii++) {
1092			if (common->vif_info[0].sgi ||
1093			    conf_is_ht40(&common->priv->hw->conf))
1094				auto_rate->supported_rates[ii++] =
1095					cpu_to_le16(rsi_mcsrates[kk] | BIT(9));
1096			auto_rate->supported_rates[ii] =
1097				cpu_to_le16(rsi_mcsrates[kk--]);
1098		}
1099
1100		for (; ii < (RSI_TBL_SZ - 1); ii++) {
1101			auto_rate->supported_rates[ii] =
1102				cpu_to_le16(rsi_mcsrates[0]);
1103		}
1104	}
1105
1106	for (; ii < RSI_TBL_SZ; ii++)
1107		auto_rate->supported_rates[ii] = cpu_to_le16(min_rate);
1108
1109	auto_rate->num_supported_rates = cpu_to_le16(num_supported_rates * 2);
1110	auto_rate->moderate_rate_inx = cpu_to_le16(num_supported_rates / 2);
1111	auto_rate->desc_word[7] |= cpu_to_le16(0 << 8);
1112	num_supported_rates *= 2;
1113
1114	auto_rate->desc_word[0] = cpu_to_le16((sizeof(*auto_rate) -
1115					       FRAME_DESC_SZ) |
1116					       (RSI_WIFI_MGMT_Q << 12));
1117
1118	skb_put(skb,
1119		sizeof(struct rsi_auto_rate));
1120	kfree(selected_rates);
1121
1122	return rsi_send_internal_mgmt_frame(common, skb);
1123}
1124
1125/**
1126 * rsi_inform_bss_status() - This function informs about bss status with the
1127 *			     help of sta notify params by sending an internal
1128 *			     management frame to firmware.
1129 * @common: Pointer to the driver private structure.
1130 * @status: Bss status type.
1131 * @bssid: Bssid.
1132 * @qos_enable: Qos is enabled.
1133 * @aid: Aid (unique for all STAs).
1134 *
1135 * Return: None.
1136 */
1137void rsi_inform_bss_status(struct rsi_common *common,
1138			   u8 status,
1139			   const unsigned char *bssid,
1140			   u8 qos_enable,
1141			   u16 aid)
1142{
1143	if (status) {
1144		rsi_hal_send_sta_notify_frame(common,
1145					      RSI_IFTYPE_STATION,
1146					      STA_CONNECTED,
1147					      bssid,
1148					      qos_enable,
1149					      aid);
1150		if (common->min_rate == 0xffff)
1151			rsi_send_auto_rate_request(common);
1152	} else {
1153		rsi_hal_send_sta_notify_frame(common,
1154					      RSI_IFTYPE_STATION,
1155					      STA_DISCONNECTED,
1156					      bssid,
1157					      qos_enable,
1158					      aid);
1159	}
1160}
1161
1162/**
1163 * rsi_eeprom_read() - This function sends a frame to read the mac address
1164 *		       from the eeprom.
1165 * @common: Pointer to the driver private structure.
1166 *
1167 * Return: 0 on success, -1 on failure.
1168 */
1169static int rsi_eeprom_read(struct rsi_common *common)
1170{
1171	struct rsi_mac_frame *mgmt_frame;
1172	struct sk_buff *skb;
1173
1174	rsi_dbg(MGMT_TX_ZONE, "%s: Sending EEPROM read req frame\n", __func__);
1175
1176	skb = dev_alloc_skb(FRAME_DESC_SZ);
1177	if (!skb) {
1178		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1179			__func__);
1180		return -ENOMEM;
1181	}
1182
1183	memset(skb->data, 0, FRAME_DESC_SZ);
1184	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1185
1186	/* FrameType */
1187	mgmt_frame->desc_word[1] = cpu_to_le16(EEPROM_READ_TYPE);
1188	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1189	/* Number of bytes to read */
1190	mgmt_frame->desc_word[3] = cpu_to_le16(ETH_ALEN +
1191					       WLAN_MAC_MAGIC_WORD_LEN +
1192					       WLAN_HOST_MODE_LEN +
1193					       WLAN_FW_VERSION_LEN);
1194	/* Address to read */
1195	mgmt_frame->desc_word[4] = cpu_to_le16(WLAN_MAC_EEPROM_ADDR);
1196
1197	skb_put(skb, FRAME_DESC_SZ);
1198
1199	return rsi_send_internal_mgmt_frame(common, skb);
1200}
1201
1202/**
1203 * This function sends a frame to block/unblock
1204 * data queues in the firmware
1205 *
1206 * @param common Pointer to the driver private structure.
1207 * @param block event - block if true, unblock if false
1208 * @return 0 on success, -1 on failure.
1209 */
1210int rsi_send_block_unblock_frame(struct rsi_common *common, bool block_event)
1211{
1212	struct rsi_mac_frame *mgmt_frame;
1213	struct sk_buff *skb;
1214
1215	rsi_dbg(MGMT_TX_ZONE, "%s: Sending block/unblock frame\n", __func__);
1216
1217	skb = dev_alloc_skb(FRAME_DESC_SZ);
1218	if (!skb) {
1219		rsi_dbg(ERR_ZONE, "%s: Failed in allocation of skb\n",
1220			__func__);
1221		return -ENOMEM;
1222	}
1223
1224	memset(skb->data, 0, FRAME_DESC_SZ);
1225	mgmt_frame = (struct rsi_mac_frame *)skb->data;
1226
1227	mgmt_frame->desc_word[0] = cpu_to_le16(RSI_WIFI_MGMT_Q << 12);
1228	mgmt_frame->desc_word[1] = cpu_to_le16(BLOCK_HW_QUEUE);
1229
1230	if (block_event == true) {
1231		rsi_dbg(INFO_ZONE, "blocking the data qs\n");
1232		mgmt_frame->desc_word[4] = cpu_to_le16(0xf);
1233	} else {
1234		rsi_dbg(INFO_ZONE, "unblocking the data qs\n");
1235		mgmt_frame->desc_word[5] = cpu_to_le16(0xf);
1236	}
1237
1238	skb_put(skb, FRAME_DESC_SZ);
1239
1240	return rsi_send_internal_mgmt_frame(common, skb);
1241
1242}
1243
1244
1245/**
1246 * rsi_handle_ta_confirm_type() - This function handles the confirm frames.
1247 * @common: Pointer to the driver private structure.
1248 * @msg: Pointer to received packet.
1249 *
1250 * Return: 0 on success, -1 on failure.
1251 */
1252static int rsi_handle_ta_confirm_type(struct rsi_common *common,
1253				      u8 *msg)
1254{
1255	u8 sub_type = (msg[15] & 0xff);
1256
1257	switch (sub_type) {
1258	case BOOTUP_PARAMS_REQUEST:
1259		rsi_dbg(FSM_ZONE, "%s: Boot up params confirm received\n",
1260			__func__);
1261		if (common->fsm_state == FSM_BOOT_PARAMS_SENT) {
1262			if (rsi_eeprom_read(common)) {
1263				common->fsm_state = FSM_CARD_NOT_READY;
1264				goto out;
1265			} else {
1266				common->fsm_state = FSM_EEPROM_READ_MAC_ADDR;
1267			}
1268		} else {
1269			rsi_dbg(INFO_ZONE,
1270				"%s: Received bootup params cfm in %d state\n",
1271				 __func__, common->fsm_state);
1272			return 0;
1273		}
1274		break;
1275
1276	case EEPROM_READ_TYPE:
1277		if (common->fsm_state == FSM_EEPROM_READ_MAC_ADDR) {
1278			if (msg[16] == MAGIC_WORD) {
1279				u8 offset = (FRAME_DESC_SZ + WLAN_HOST_MODE_LEN
1280					     + WLAN_MAC_MAGIC_WORD_LEN);
1281				memcpy(common->mac_addr,
1282				       &msg[offset],
1283				       ETH_ALEN);
1284				memcpy(&common->fw_ver,
1285				       &msg[offset + ETH_ALEN],
1286				       sizeof(struct version_info));
1287
1288			} else {
1289				common->fsm_state = FSM_CARD_NOT_READY;
1290				break;
1291			}
1292			if (rsi_send_reset_mac(common))
1293				goto out;
1294			else
1295				common->fsm_state = FSM_RESET_MAC_SENT;
1296		} else {
1297			rsi_dbg(ERR_ZONE,
1298				"%s: Received eeprom mac addr in %d state\n",
1299				__func__, common->fsm_state);
1300			return 0;
1301		}
1302		break;
1303
1304	case RESET_MAC_REQ:
1305		if (common->fsm_state == FSM_RESET_MAC_SENT) {
1306			rsi_dbg(FSM_ZONE, "%s: Reset MAC cfm received\n",
1307				__func__);
1308
1309			if (rsi_load_radio_caps(common))
1310				goto out;
1311			else
1312				common->fsm_state = FSM_RADIO_CAPS_SENT;
1313		} else {
1314			rsi_dbg(ERR_ZONE,
1315				"%s: Received reset mac cfm in %d state\n",
1316				 __func__, common->fsm_state);
1317			return 0;
1318		}
1319		break;
1320
1321	case RADIO_CAPABILITIES:
1322		if (common->fsm_state == FSM_RADIO_CAPS_SENT) {
1323			common->rf_reset = 1;
1324			if (rsi_program_bb_rf(common)) {
1325				goto out;
1326			} else {
1327				common->fsm_state = FSM_BB_RF_PROG_SENT;
1328				rsi_dbg(FSM_ZONE, "%s: Radio cap cfm received\n",
1329					__func__);
1330			}
1331		} else {
1332			rsi_dbg(INFO_ZONE,
1333				"%s: Received radio caps cfm in %d state\n",
1334				 __func__, common->fsm_state);
1335			return 0;
1336		}
1337		break;
1338
1339	case BB_PROG_VALUES_REQUEST:
1340	case RF_PROG_VALUES_REQUEST:
1341	case BBP_PROG_IN_TA:
1342		rsi_dbg(FSM_ZONE, "%s: BB/RF cfm received\n", __func__);
1343		if (common->fsm_state == FSM_BB_RF_PROG_SENT) {
1344			common->bb_rf_prog_count--;
1345			if (!common->bb_rf_prog_count) {
1346				common->fsm_state = FSM_MAC_INIT_DONE;
1347				return rsi_mac80211_attach(common);
1348			}
1349		} else {
1350			rsi_dbg(INFO_ZONE,
1351				"%s: Received bbb_rf cfm in %d state\n",
1352				 __func__, common->fsm_state);
1353			return 0;
1354		}
1355		break;
1356
1357	default:
1358		rsi_dbg(INFO_ZONE, "%s: Invalid TA confirm pkt received\n",
1359			__func__);
1360		break;
1361	}
1362	return 0;
1363out:
1364	rsi_dbg(ERR_ZONE, "%s: Unable to send pkt/Invalid frame received\n",
1365		__func__);
1366	return -EINVAL;
1367}
1368
1369/**
1370 * rsi_mgmt_pkt_recv() - This function processes the management packets
1371 *			 recieved from the hardware.
1372 * @common: Pointer to the driver private structure.
1373 * @msg: Pointer to the received packet.
1374 *
1375 * Return: 0 on success, -1 on failure.
1376 */
1377int rsi_mgmt_pkt_recv(struct rsi_common *common, u8 *msg)
1378{
1379	s32 msg_len = (le16_to_cpu(*(__le16 *)&msg[0]) & 0x0fff);
1380	u16 msg_type = (msg[2]);
1381	int ret;
1382
1383	rsi_dbg(FSM_ZONE, "%s: Msg Len: %d, Msg Type: %4x\n",
1384		__func__, msg_len, msg_type);
1385
1386	if (msg_type == TA_CONFIRM_TYPE) {
1387		return rsi_handle_ta_confirm_type(common, msg);
1388	} else if (msg_type == CARD_READY_IND) {
1389		rsi_dbg(FSM_ZONE, "%s: Card ready indication received\n",
1390			__func__);
1391		if (common->fsm_state == FSM_CARD_NOT_READY) {
1392			rsi_set_default_parameters(common);
1393
1394			ret = rsi_load_bootup_params(common);
1395			if (ret)
1396				return ret;
1397			else
1398				common->fsm_state = FSM_BOOT_PARAMS_SENT;
1399		} else {
1400			return -EINVAL;
1401		}
1402	} else if (msg_type == TX_STATUS_IND) {
1403		if (msg[15] == PROBEREQ_CONFIRM) {
1404			common->mgmt_q_block = false;
1405			rsi_dbg(FSM_ZONE, "%s: Probe confirm received\n",
1406				__func__);
1407		}
1408	} else {
1409		return rsi_mgmt_pkt_to_core(common, msg, msg_len, msg_type);
1410	}
1411	return 0;
1412}
1413