1/* 2 Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> 3 <http://rt2x00.serialmonkey.com> 4 5 This program is free software; you can redistribute it and/or modify 6 it under the terms of the GNU General Public License as published by 7 the Free Software Foundation; either version 2 of the License, or 8 (at your option) any later version. 9 10 This program is distributed in the hope that it will be useful, 11 but WITHOUT ANY WARRANTY; without even the implied warranty of 12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 GNU General Public License for more details. 14 15 You should have received a copy of the GNU General Public License 16 along with this program; if not, see <http://www.gnu.org/licenses/>. 17 */ 18 19/* 20 Module: rt2500usb 21 Abstract: rt2500usb device specific routines. 22 Supported chipsets: RT2570. 23 */ 24 25#include <linux/delay.h> 26#include <linux/etherdevice.h> 27#include <linux/kernel.h> 28#include <linux/module.h> 29#include <linux/slab.h> 30#include <linux/usb.h> 31 32#include "rt2x00.h" 33#include "rt2x00usb.h" 34#include "rt2500usb.h" 35 36/* 37 * Allow hardware encryption to be disabled. 38 */ 39static bool modparam_nohwcrypt; 40module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); 41MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); 42 43/* 44 * Register access. 45 * All access to the CSR registers will go through the methods 46 * rt2500usb_register_read and rt2500usb_register_write. 47 * BBP and RF register require indirect register access, 48 * and use the CSR registers BBPCSR and RFCSR to achieve this. 49 * These indirect registers work with busy bits, 50 * and we will try maximal REGISTER_USB_BUSY_COUNT times to access 51 * the register while taking a REGISTER_BUSY_DELAY us delay 52 * between each attampt. When the busy bit is still set at that time, 53 * the access attempt is considered to have failed, 54 * and we will print an error. 55 * If the csr_mutex is already held then the _lock variants must 56 * be used instead. 57 */ 58static inline void rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 59 const unsigned int offset, 60 u16 *value) 61{ 62 __le16 reg; 63 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 64 USB_VENDOR_REQUEST_IN, offset, 65 ®, sizeof(reg)); 66 *value = le16_to_cpu(reg); 67} 68 69static inline void rt2500usb_register_read_lock(struct rt2x00_dev *rt2x00dev, 70 const unsigned int offset, 71 u16 *value) 72{ 73 __le16 reg; 74 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_READ, 75 USB_VENDOR_REQUEST_IN, offset, 76 ®, sizeof(reg), REGISTER_TIMEOUT); 77 *value = le16_to_cpu(reg); 78} 79 80static inline void rt2500usb_register_multiread(struct rt2x00_dev *rt2x00dev, 81 const unsigned int offset, 82 void *value, const u16 length) 83{ 84 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_READ, 85 USB_VENDOR_REQUEST_IN, offset, 86 value, length); 87} 88 89static inline void rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 90 const unsigned int offset, 91 u16 value) 92{ 93 __le16 reg = cpu_to_le16(value); 94 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 95 USB_VENDOR_REQUEST_OUT, offset, 96 ®, sizeof(reg)); 97} 98 99static inline void rt2500usb_register_write_lock(struct rt2x00_dev *rt2x00dev, 100 const unsigned int offset, 101 u16 value) 102{ 103 __le16 reg = cpu_to_le16(value); 104 rt2x00usb_vendor_req_buff_lock(rt2x00dev, USB_MULTI_WRITE, 105 USB_VENDOR_REQUEST_OUT, offset, 106 ®, sizeof(reg), REGISTER_TIMEOUT); 107} 108 109static inline void rt2500usb_register_multiwrite(struct rt2x00_dev *rt2x00dev, 110 const unsigned int offset, 111 void *value, const u16 length) 112{ 113 rt2x00usb_vendor_request_buff(rt2x00dev, USB_MULTI_WRITE, 114 USB_VENDOR_REQUEST_OUT, offset, 115 value, length); 116} 117 118static int rt2500usb_regbusy_read(struct rt2x00_dev *rt2x00dev, 119 const unsigned int offset, 120 struct rt2x00_field16 field, 121 u16 *reg) 122{ 123 unsigned int i; 124 125 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 126 rt2500usb_register_read_lock(rt2x00dev, offset, reg); 127 if (!rt2x00_get_field16(*reg, field)) 128 return 1; 129 udelay(REGISTER_BUSY_DELAY); 130 } 131 132 rt2x00_err(rt2x00dev, "Indirect register access failed: offset=0x%.08x, value=0x%.08x\n", 133 offset, *reg); 134 *reg = ~0; 135 136 return 0; 137} 138 139#define WAIT_FOR_BBP(__dev, __reg) \ 140 rt2500usb_regbusy_read((__dev), PHY_CSR8, PHY_CSR8_BUSY, (__reg)) 141#define WAIT_FOR_RF(__dev, __reg) \ 142 rt2500usb_regbusy_read((__dev), PHY_CSR10, PHY_CSR10_RF_BUSY, (__reg)) 143 144static void rt2500usb_bbp_write(struct rt2x00_dev *rt2x00dev, 145 const unsigned int word, const u8 value) 146{ 147 u16 reg; 148 149 mutex_lock(&rt2x00dev->csr_mutex); 150 151 /* 152 * Wait until the BBP becomes available, afterwards we 153 * can safely write the new data into the register. 154 */ 155 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 156 reg = 0; 157 rt2x00_set_field16(®, PHY_CSR7_DATA, value); 158 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 159 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 0); 160 161 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 162 } 163 164 mutex_unlock(&rt2x00dev->csr_mutex); 165} 166 167static void rt2500usb_bbp_read(struct rt2x00_dev *rt2x00dev, 168 const unsigned int word, u8 *value) 169{ 170 u16 reg; 171 172 mutex_lock(&rt2x00dev->csr_mutex); 173 174 /* 175 * Wait until the BBP becomes available, afterwards we 176 * can safely write the read request into the register. 177 * After the data has been written, we wait until hardware 178 * returns the correct value, if at any time the register 179 * doesn't become available in time, reg will be 0xffffffff 180 * which means we return 0xff to the caller. 181 */ 182 if (WAIT_FOR_BBP(rt2x00dev, ®)) { 183 reg = 0; 184 rt2x00_set_field16(®, PHY_CSR7_REG_ID, word); 185 rt2x00_set_field16(®, PHY_CSR7_READ_CONTROL, 1); 186 187 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR7, reg); 188 189 if (WAIT_FOR_BBP(rt2x00dev, ®)) 190 rt2500usb_register_read_lock(rt2x00dev, PHY_CSR7, ®); 191 } 192 193 *value = rt2x00_get_field16(reg, PHY_CSR7_DATA); 194 195 mutex_unlock(&rt2x00dev->csr_mutex); 196} 197 198static void rt2500usb_rf_write(struct rt2x00_dev *rt2x00dev, 199 const unsigned int word, const u32 value) 200{ 201 u16 reg; 202 203 mutex_lock(&rt2x00dev->csr_mutex); 204 205 /* 206 * Wait until the RF becomes available, afterwards we 207 * can safely write the new data into the register. 208 */ 209 if (WAIT_FOR_RF(rt2x00dev, ®)) { 210 reg = 0; 211 rt2x00_set_field16(®, PHY_CSR9_RF_VALUE, value); 212 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR9, reg); 213 214 reg = 0; 215 rt2x00_set_field16(®, PHY_CSR10_RF_VALUE, value >> 16); 216 rt2x00_set_field16(®, PHY_CSR10_RF_NUMBER_OF_BITS, 20); 217 rt2x00_set_field16(®, PHY_CSR10_RF_IF_SELECT, 0); 218 rt2x00_set_field16(®, PHY_CSR10_RF_BUSY, 1); 219 220 rt2500usb_register_write_lock(rt2x00dev, PHY_CSR10, reg); 221 rt2x00_rf_write(rt2x00dev, word, value); 222 } 223 224 mutex_unlock(&rt2x00dev->csr_mutex); 225} 226 227#ifdef CONFIG_RT2X00_LIB_DEBUGFS 228static void _rt2500usb_register_read(struct rt2x00_dev *rt2x00dev, 229 const unsigned int offset, 230 u32 *value) 231{ 232 rt2500usb_register_read(rt2x00dev, offset, (u16 *)value); 233} 234 235static void _rt2500usb_register_write(struct rt2x00_dev *rt2x00dev, 236 const unsigned int offset, 237 u32 value) 238{ 239 rt2500usb_register_write(rt2x00dev, offset, value); 240} 241 242static const struct rt2x00debug rt2500usb_rt2x00debug = { 243 .owner = THIS_MODULE, 244 .csr = { 245 .read = _rt2500usb_register_read, 246 .write = _rt2500usb_register_write, 247 .flags = RT2X00DEBUGFS_OFFSET, 248 .word_base = CSR_REG_BASE, 249 .word_size = sizeof(u16), 250 .word_count = CSR_REG_SIZE / sizeof(u16), 251 }, 252 .eeprom = { 253 .read = rt2x00_eeprom_read, 254 .write = rt2x00_eeprom_write, 255 .word_base = EEPROM_BASE, 256 .word_size = sizeof(u16), 257 .word_count = EEPROM_SIZE / sizeof(u16), 258 }, 259 .bbp = { 260 .read = rt2500usb_bbp_read, 261 .write = rt2500usb_bbp_write, 262 .word_base = BBP_BASE, 263 .word_size = sizeof(u8), 264 .word_count = BBP_SIZE / sizeof(u8), 265 }, 266 .rf = { 267 .read = rt2x00_rf_read, 268 .write = rt2500usb_rf_write, 269 .word_base = RF_BASE, 270 .word_size = sizeof(u32), 271 .word_count = RF_SIZE / sizeof(u32), 272 }, 273}; 274#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 275 276static int rt2500usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) 277{ 278 u16 reg; 279 280 rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); 281 return rt2x00_get_field16(reg, MAC_CSR19_VAL7); 282} 283 284#ifdef CONFIG_RT2X00_LIB_LEDS 285static void rt2500usb_brightness_set(struct led_classdev *led_cdev, 286 enum led_brightness brightness) 287{ 288 struct rt2x00_led *led = 289 container_of(led_cdev, struct rt2x00_led, led_dev); 290 unsigned int enabled = brightness != LED_OFF; 291 u16 reg; 292 293 rt2500usb_register_read(led->rt2x00dev, MAC_CSR20, ®); 294 295 if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC) 296 rt2x00_set_field16(®, MAC_CSR20_LINK, enabled); 297 else if (led->type == LED_TYPE_ACTIVITY) 298 rt2x00_set_field16(®, MAC_CSR20_ACTIVITY, enabled); 299 300 rt2500usb_register_write(led->rt2x00dev, MAC_CSR20, reg); 301} 302 303static int rt2500usb_blink_set(struct led_classdev *led_cdev, 304 unsigned long *delay_on, 305 unsigned long *delay_off) 306{ 307 struct rt2x00_led *led = 308 container_of(led_cdev, struct rt2x00_led, led_dev); 309 u16 reg; 310 311 rt2500usb_register_read(led->rt2x00dev, MAC_CSR21, ®); 312 rt2x00_set_field16(®, MAC_CSR21_ON_PERIOD, *delay_on); 313 rt2x00_set_field16(®, MAC_CSR21_OFF_PERIOD, *delay_off); 314 rt2500usb_register_write(led->rt2x00dev, MAC_CSR21, reg); 315 316 return 0; 317} 318 319static void rt2500usb_init_led(struct rt2x00_dev *rt2x00dev, 320 struct rt2x00_led *led, 321 enum led_type type) 322{ 323 led->rt2x00dev = rt2x00dev; 324 led->type = type; 325 led->led_dev.brightness_set = rt2500usb_brightness_set; 326 led->led_dev.blink_set = rt2500usb_blink_set; 327 led->flags = LED_INITIALIZED; 328} 329#endif /* CONFIG_RT2X00_LIB_LEDS */ 330 331/* 332 * Configuration handlers. 333 */ 334 335/* 336 * rt2500usb does not differentiate between shared and pairwise 337 * keys, so we should use the same function for both key types. 338 */ 339static int rt2500usb_config_key(struct rt2x00_dev *rt2x00dev, 340 struct rt2x00lib_crypto *crypto, 341 struct ieee80211_key_conf *key) 342{ 343 u32 mask; 344 u16 reg; 345 enum cipher curr_cipher; 346 347 if (crypto->cmd == SET_KEY) { 348 /* 349 * Disallow to set WEP key other than with index 0, 350 * it is known that not work at least on some hardware. 351 * SW crypto will be used in that case. 352 */ 353 if ((key->cipher == WLAN_CIPHER_SUITE_WEP40 || 354 key->cipher == WLAN_CIPHER_SUITE_WEP104) && 355 key->keyidx != 0) 356 return -EOPNOTSUPP; 357 358 /* 359 * Pairwise key will always be entry 0, but this 360 * could collide with a shared key on the same 361 * position... 362 */ 363 mask = TXRX_CSR0_KEY_ID.bit_mask; 364 365 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); 366 curr_cipher = rt2x00_get_field16(reg, TXRX_CSR0_ALGORITHM); 367 reg &= mask; 368 369 if (reg && reg == mask) 370 return -ENOSPC; 371 372 reg = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 373 374 key->hw_key_idx += reg ? ffz(reg) : 0; 375 /* 376 * Hardware requires that all keys use the same cipher 377 * (e.g. TKIP-only, AES-only, but not TKIP+AES). 378 * If this is not the first key, compare the cipher with the 379 * first one and fall back to SW crypto if not the same. 380 */ 381 if (key->hw_key_idx > 0 && crypto->cipher != curr_cipher) 382 return -EOPNOTSUPP; 383 384 rt2500usb_register_multiwrite(rt2x00dev, KEY_ENTRY(key->hw_key_idx), 385 crypto->key, sizeof(crypto->key)); 386 387 /* 388 * The driver does not support the IV/EIV generation 389 * in hardware. However it demands the data to be provided 390 * both separately as well as inside the frame. 391 * We already provided the CONFIG_CRYPTO_COPY_IV to rt2x00lib 392 * to ensure rt2x00lib will not strip the data from the 393 * frame after the copy, now we must tell mac80211 394 * to generate the IV/EIV data. 395 */ 396 key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; 397 key->flags |= IEEE80211_KEY_FLAG_GENERATE_MMIC; 398 } 399 400 /* 401 * TXRX_CSR0_KEY_ID contains only single-bit fields to indicate 402 * a particular key is valid. 403 */ 404 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); 405 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, crypto->cipher); 406 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 407 408 mask = rt2x00_get_field16(reg, TXRX_CSR0_KEY_ID); 409 if (crypto->cmd == SET_KEY) 410 mask |= 1 << key->hw_key_idx; 411 else if (crypto->cmd == DISABLE_KEY) 412 mask &= ~(1 << key->hw_key_idx); 413 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, mask); 414 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 415 416 return 0; 417} 418 419static void rt2500usb_config_filter(struct rt2x00_dev *rt2x00dev, 420 const unsigned int filter_flags) 421{ 422 u16 reg; 423 424 /* 425 * Start configuration steps. 426 * Note that the version error will always be dropped 427 * and broadcast frames will always be accepted since 428 * there is no filter for it at this time. 429 */ 430 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); 431 rt2x00_set_field16(®, TXRX_CSR2_DROP_CRC, 432 !(filter_flags & FIF_FCSFAIL)); 433 rt2x00_set_field16(®, TXRX_CSR2_DROP_PHYSICAL, 434 !(filter_flags & FIF_PLCPFAIL)); 435 rt2x00_set_field16(®, TXRX_CSR2_DROP_CONTROL, 436 !(filter_flags & FIF_CONTROL)); 437 rt2x00_set_field16(®, TXRX_CSR2_DROP_NOT_TO_ME, 438 !(filter_flags & FIF_PROMISC_IN_BSS)); 439 rt2x00_set_field16(®, TXRX_CSR2_DROP_TODS, 440 !(filter_flags & FIF_PROMISC_IN_BSS) && 441 !rt2x00dev->intf_ap_count); 442 rt2x00_set_field16(®, TXRX_CSR2_DROP_VERSION_ERROR, 1); 443 rt2x00_set_field16(®, TXRX_CSR2_DROP_MULTICAST, 444 !(filter_flags & FIF_ALLMULTI)); 445 rt2x00_set_field16(®, TXRX_CSR2_DROP_BROADCAST, 0); 446 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 447} 448 449static void rt2500usb_config_intf(struct rt2x00_dev *rt2x00dev, 450 struct rt2x00_intf *intf, 451 struct rt2x00intf_conf *conf, 452 const unsigned int flags) 453{ 454 unsigned int bcn_preload; 455 u16 reg; 456 457 if (flags & CONFIG_UPDATE_TYPE) { 458 /* 459 * Enable beacon config 460 */ 461 bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20); 462 rt2500usb_register_read(rt2x00dev, TXRX_CSR20, ®); 463 rt2x00_set_field16(®, TXRX_CSR20_OFFSET, bcn_preload >> 6); 464 rt2x00_set_field16(®, TXRX_CSR20_BCN_EXPECT_WINDOW, 465 2 * (conf->type != NL80211_IFTYPE_STATION)); 466 rt2500usb_register_write(rt2x00dev, TXRX_CSR20, reg); 467 468 /* 469 * Enable synchronisation. 470 */ 471 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); 472 rt2x00_set_field16(®, TXRX_CSR18_OFFSET, 0); 473 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 474 475 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); 476 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, conf->sync); 477 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 478 } 479 480 if (flags & CONFIG_UPDATE_MAC) 481 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR2, conf->mac, 482 (3 * sizeof(__le16))); 483 484 if (flags & CONFIG_UPDATE_BSSID) 485 rt2500usb_register_multiwrite(rt2x00dev, MAC_CSR5, conf->bssid, 486 (3 * sizeof(__le16))); 487} 488 489static void rt2500usb_config_erp(struct rt2x00_dev *rt2x00dev, 490 struct rt2x00lib_erp *erp, 491 u32 changed) 492{ 493 u16 reg; 494 495 if (changed & BSS_CHANGED_ERP_PREAMBLE) { 496 rt2500usb_register_read(rt2x00dev, TXRX_CSR10, ®); 497 rt2x00_set_field16(®, TXRX_CSR10_AUTORESPOND_PREAMBLE, 498 !!erp->short_preamble); 499 rt2500usb_register_write(rt2x00dev, TXRX_CSR10, reg); 500 } 501 502 if (changed & BSS_CHANGED_BASIC_RATES) 503 rt2500usb_register_write(rt2x00dev, TXRX_CSR11, 504 erp->basic_rates); 505 506 if (changed & BSS_CHANGED_BEACON_INT) { 507 rt2500usb_register_read(rt2x00dev, TXRX_CSR18, ®); 508 rt2x00_set_field16(®, TXRX_CSR18_INTERVAL, 509 erp->beacon_int * 4); 510 rt2500usb_register_write(rt2x00dev, TXRX_CSR18, reg); 511 } 512 513 if (changed & BSS_CHANGED_ERP_SLOT) { 514 rt2500usb_register_write(rt2x00dev, MAC_CSR10, erp->slot_time); 515 rt2500usb_register_write(rt2x00dev, MAC_CSR11, erp->sifs); 516 rt2500usb_register_write(rt2x00dev, MAC_CSR12, erp->eifs); 517 } 518} 519 520static void rt2500usb_config_ant(struct rt2x00_dev *rt2x00dev, 521 struct antenna_setup *ant) 522{ 523 u8 r2; 524 u8 r14; 525 u16 csr5; 526 u16 csr6; 527 528 /* 529 * We should never come here because rt2x00lib is supposed 530 * to catch this and send us the correct antenna explicitely. 531 */ 532 BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || 533 ant->tx == ANTENNA_SW_DIVERSITY); 534 535 rt2500usb_bbp_read(rt2x00dev, 2, &r2); 536 rt2500usb_bbp_read(rt2x00dev, 14, &r14); 537 rt2500usb_register_read(rt2x00dev, PHY_CSR5, &csr5); 538 rt2500usb_register_read(rt2x00dev, PHY_CSR6, &csr6); 539 540 /* 541 * Configure the TX antenna. 542 */ 543 switch (ant->tx) { 544 case ANTENNA_HW_DIVERSITY: 545 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 1); 546 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 1); 547 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 1); 548 break; 549 case ANTENNA_A: 550 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0); 551 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 0); 552 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 0); 553 break; 554 case ANTENNA_B: 555 default: 556 rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2); 557 rt2x00_set_field16(&csr5, PHY_CSR5_CCK, 2); 558 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM, 2); 559 break; 560 } 561 562 /* 563 * Configure the RX antenna. 564 */ 565 switch (ant->rx) { 566 case ANTENNA_HW_DIVERSITY: 567 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 1); 568 break; 569 case ANTENNA_A: 570 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0); 571 break; 572 case ANTENNA_B: 573 default: 574 rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2); 575 break; 576 } 577 578 /* 579 * RT2525E and RT5222 need to flip TX I/Q 580 */ 581 if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) { 582 rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1); 583 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 1); 584 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 1); 585 586 /* 587 * RT2525E does not need RX I/Q Flip. 588 */ 589 if (rt2x00_rf(rt2x00dev, RF2525E)) 590 rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0); 591 } else { 592 rt2x00_set_field16(&csr5, PHY_CSR5_CCK_FLIP, 0); 593 rt2x00_set_field16(&csr6, PHY_CSR6_OFDM_FLIP, 0); 594 } 595 596 rt2500usb_bbp_write(rt2x00dev, 2, r2); 597 rt2500usb_bbp_write(rt2x00dev, 14, r14); 598 rt2500usb_register_write(rt2x00dev, PHY_CSR5, csr5); 599 rt2500usb_register_write(rt2x00dev, PHY_CSR6, csr6); 600} 601 602static void rt2500usb_config_channel(struct rt2x00_dev *rt2x00dev, 603 struct rf_channel *rf, const int txpower) 604{ 605 /* 606 * Set TXpower. 607 */ 608 rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 609 610 /* 611 * For RT2525E we should first set the channel to half band higher. 612 */ 613 if (rt2x00_rf(rt2x00dev, RF2525E)) { 614 static const u32 vals[] = { 615 0x000008aa, 0x000008ae, 0x000008ae, 0x000008b2, 616 0x000008b2, 0x000008b6, 0x000008b6, 0x000008ba, 617 0x000008ba, 0x000008be, 0x000008b7, 0x00000902, 618 0x00000902, 0x00000906 619 }; 620 621 rt2500usb_rf_write(rt2x00dev, 2, vals[rf->channel - 1]); 622 if (rf->rf4) 623 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 624 } 625 626 rt2500usb_rf_write(rt2x00dev, 1, rf->rf1); 627 rt2500usb_rf_write(rt2x00dev, 2, rf->rf2); 628 rt2500usb_rf_write(rt2x00dev, 3, rf->rf3); 629 if (rf->rf4) 630 rt2500usb_rf_write(rt2x00dev, 4, rf->rf4); 631} 632 633static void rt2500usb_config_txpower(struct rt2x00_dev *rt2x00dev, 634 const int txpower) 635{ 636 u32 rf3; 637 638 rt2x00_rf_read(rt2x00dev, 3, &rf3); 639 rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); 640 rt2500usb_rf_write(rt2x00dev, 3, rf3); 641} 642 643static void rt2500usb_config_ps(struct rt2x00_dev *rt2x00dev, 644 struct rt2x00lib_conf *libconf) 645{ 646 enum dev_state state = 647 (libconf->conf->flags & IEEE80211_CONF_PS) ? 648 STATE_SLEEP : STATE_AWAKE; 649 u16 reg; 650 651 if (state == STATE_SLEEP) { 652 rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); 653 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 654 rt2x00dev->beacon_int - 20); 655 rt2x00_set_field16(®, MAC_CSR18_BEACONS_BEFORE_WAKEUP, 656 libconf->conf->listen_interval - 1); 657 658 /* We must first disable autowake before it can be enabled */ 659 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 660 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 661 662 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 1); 663 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 664 } else { 665 rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); 666 rt2x00_set_field16(®, MAC_CSR18_AUTO_WAKE, 0); 667 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 668 } 669 670 rt2x00dev->ops->lib->set_device_state(rt2x00dev, state); 671} 672 673static void rt2500usb_config(struct rt2x00_dev *rt2x00dev, 674 struct rt2x00lib_conf *libconf, 675 const unsigned int flags) 676{ 677 if (flags & IEEE80211_CONF_CHANGE_CHANNEL) 678 rt2500usb_config_channel(rt2x00dev, &libconf->rf, 679 libconf->conf->power_level); 680 if ((flags & IEEE80211_CONF_CHANGE_POWER) && 681 !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) 682 rt2500usb_config_txpower(rt2x00dev, 683 libconf->conf->power_level); 684 if (flags & IEEE80211_CONF_CHANGE_PS) 685 rt2500usb_config_ps(rt2x00dev, libconf); 686} 687 688/* 689 * Link tuning 690 */ 691static void rt2500usb_link_stats(struct rt2x00_dev *rt2x00dev, 692 struct link_qual *qual) 693{ 694 u16 reg; 695 696 /* 697 * Update FCS error count from register. 698 */ 699 rt2500usb_register_read(rt2x00dev, STA_CSR0, ®); 700 qual->rx_failed = rt2x00_get_field16(reg, STA_CSR0_FCS_ERROR); 701 702 /* 703 * Update False CCA count from register. 704 */ 705 rt2500usb_register_read(rt2x00dev, STA_CSR3, ®); 706 qual->false_cca = rt2x00_get_field16(reg, STA_CSR3_FALSE_CCA_ERROR); 707} 708 709static void rt2500usb_reset_tuner(struct rt2x00_dev *rt2x00dev, 710 struct link_qual *qual) 711{ 712 u16 eeprom; 713 u16 value; 714 715 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &eeprom); 716 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R24_LOW); 717 rt2500usb_bbp_write(rt2x00dev, 24, value); 718 719 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &eeprom); 720 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R25_LOW); 721 rt2500usb_bbp_write(rt2x00dev, 25, value); 722 723 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &eeprom); 724 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_R61_LOW); 725 rt2500usb_bbp_write(rt2x00dev, 61, value); 726 727 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &eeprom); 728 value = rt2x00_get_field16(eeprom, EEPROM_BBPTUNE_VGCUPPER); 729 rt2500usb_bbp_write(rt2x00dev, 17, value); 730 731 qual->vgc_level = value; 732} 733 734/* 735 * Queue handlers. 736 */ 737static void rt2500usb_start_queue(struct data_queue *queue) 738{ 739 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 740 u16 reg; 741 742 switch (queue->qid) { 743 case QID_RX: 744 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); 745 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 0); 746 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 747 break; 748 case QID_BEACON: 749 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); 750 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 751 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 752 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 753 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 754 break; 755 default: 756 break; 757 } 758} 759 760static void rt2500usb_stop_queue(struct data_queue *queue) 761{ 762 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; 763 u16 reg; 764 765 switch (queue->qid) { 766 case QID_RX: 767 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); 768 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 769 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 770 break; 771 case QID_BEACON: 772 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); 773 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 774 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 775 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 776 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 777 break; 778 default: 779 break; 780 } 781} 782 783/* 784 * Initialization functions. 785 */ 786static int rt2500usb_init_registers(struct rt2x00_dev *rt2x00dev) 787{ 788 u16 reg; 789 790 rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0x0001, 791 USB_MODE_TEST, REGISTER_TIMEOUT); 792 rt2x00usb_vendor_request_sw(rt2x00dev, USB_SINGLE_WRITE, 0x0308, 793 0x00f0, REGISTER_TIMEOUT); 794 795 rt2500usb_register_read(rt2x00dev, TXRX_CSR2, ®); 796 rt2x00_set_field16(®, TXRX_CSR2_DISABLE_RX, 1); 797 rt2500usb_register_write(rt2x00dev, TXRX_CSR2, reg); 798 799 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x1111); 800 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x1e11); 801 802 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); 803 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 1); 804 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 1); 805 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 806 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 807 808 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); 809 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 810 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 811 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 0); 812 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 813 814 rt2500usb_register_read(rt2x00dev, TXRX_CSR5, ®); 815 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0, 13); 816 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID0_VALID, 1); 817 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1, 12); 818 rt2x00_set_field16(®, TXRX_CSR5_BBP_ID1_VALID, 1); 819 rt2500usb_register_write(rt2x00dev, TXRX_CSR5, reg); 820 821 rt2500usb_register_read(rt2x00dev, TXRX_CSR6, ®); 822 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0, 10); 823 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID0_VALID, 1); 824 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1, 11); 825 rt2x00_set_field16(®, TXRX_CSR6_BBP_ID1_VALID, 1); 826 rt2500usb_register_write(rt2x00dev, TXRX_CSR6, reg); 827 828 rt2500usb_register_read(rt2x00dev, TXRX_CSR7, ®); 829 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0, 7); 830 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID0_VALID, 1); 831 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1, 6); 832 rt2x00_set_field16(®, TXRX_CSR7_BBP_ID1_VALID, 1); 833 rt2500usb_register_write(rt2x00dev, TXRX_CSR7, reg); 834 835 rt2500usb_register_read(rt2x00dev, TXRX_CSR8, ®); 836 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0, 5); 837 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID0_VALID, 1); 838 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1, 0); 839 rt2x00_set_field16(®, TXRX_CSR8_BBP_ID1_VALID, 0); 840 rt2500usb_register_write(rt2x00dev, TXRX_CSR8, reg); 841 842 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); 843 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 0); 844 rt2x00_set_field16(®, TXRX_CSR19_TSF_SYNC, 0); 845 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 0); 846 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 847 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 848 849 rt2500usb_register_write(rt2x00dev, TXRX_CSR21, 0xe78f); 850 rt2500usb_register_write(rt2x00dev, MAC_CSR9, 0xff1d); 851 852 if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) 853 return -EBUSY; 854 855 rt2500usb_register_read(rt2x00dev, MAC_CSR1, ®); 856 rt2x00_set_field16(®, MAC_CSR1_SOFT_RESET, 0); 857 rt2x00_set_field16(®, MAC_CSR1_BBP_RESET, 0); 858 rt2x00_set_field16(®, MAC_CSR1_HOST_READY, 1); 859 rt2500usb_register_write(rt2x00dev, MAC_CSR1, reg); 860 861 if (rt2x00_rev(rt2x00dev) >= RT2570_VERSION_C) { 862 rt2500usb_register_read(rt2x00dev, PHY_CSR2, ®); 863 rt2x00_set_field16(®, PHY_CSR2_LNA, 0); 864 } else { 865 reg = 0; 866 rt2x00_set_field16(®, PHY_CSR2_LNA, 1); 867 rt2x00_set_field16(®, PHY_CSR2_LNA_MODE, 3); 868 } 869 rt2500usb_register_write(rt2x00dev, PHY_CSR2, reg); 870 871 rt2500usb_register_write(rt2x00dev, MAC_CSR11, 0x0002); 872 rt2500usb_register_write(rt2x00dev, MAC_CSR22, 0x0053); 873 rt2500usb_register_write(rt2x00dev, MAC_CSR15, 0x01ee); 874 rt2500usb_register_write(rt2x00dev, MAC_CSR16, 0x0000); 875 876 rt2500usb_register_read(rt2x00dev, MAC_CSR8, ®); 877 rt2x00_set_field16(®, MAC_CSR8_MAX_FRAME_UNIT, 878 rt2x00dev->rx->data_size); 879 rt2500usb_register_write(rt2x00dev, MAC_CSR8, reg); 880 881 rt2500usb_register_read(rt2x00dev, TXRX_CSR0, ®); 882 rt2x00_set_field16(®, TXRX_CSR0_ALGORITHM, CIPHER_NONE); 883 rt2x00_set_field16(®, TXRX_CSR0_IV_OFFSET, IEEE80211_HEADER); 884 rt2x00_set_field16(®, TXRX_CSR0_KEY_ID, 0); 885 rt2500usb_register_write(rt2x00dev, TXRX_CSR0, reg); 886 887 rt2500usb_register_read(rt2x00dev, MAC_CSR18, ®); 888 rt2x00_set_field16(®, MAC_CSR18_DELAY_AFTER_BEACON, 90); 889 rt2500usb_register_write(rt2x00dev, MAC_CSR18, reg); 890 891 rt2500usb_register_read(rt2x00dev, PHY_CSR4, ®); 892 rt2x00_set_field16(®, PHY_CSR4_LOW_RF_LE, 1); 893 rt2500usb_register_write(rt2x00dev, PHY_CSR4, reg); 894 895 rt2500usb_register_read(rt2x00dev, TXRX_CSR1, ®); 896 rt2x00_set_field16(®, TXRX_CSR1_AUTO_SEQUENCE, 1); 897 rt2500usb_register_write(rt2x00dev, TXRX_CSR1, reg); 898 899 return 0; 900} 901 902static int rt2500usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) 903{ 904 unsigned int i; 905 u8 value; 906 907 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 908 rt2500usb_bbp_read(rt2x00dev, 0, &value); 909 if ((value != 0xff) && (value != 0x00)) 910 return 0; 911 udelay(REGISTER_BUSY_DELAY); 912 } 913 914 rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n"); 915 return -EACCES; 916} 917 918static int rt2500usb_init_bbp(struct rt2x00_dev *rt2x00dev) 919{ 920 unsigned int i; 921 u16 eeprom; 922 u8 value; 923 u8 reg_id; 924 925 if (unlikely(rt2500usb_wait_bbp_ready(rt2x00dev))) 926 return -EACCES; 927 928 rt2500usb_bbp_write(rt2x00dev, 3, 0x02); 929 rt2500usb_bbp_write(rt2x00dev, 4, 0x19); 930 rt2500usb_bbp_write(rt2x00dev, 14, 0x1c); 931 rt2500usb_bbp_write(rt2x00dev, 15, 0x30); 932 rt2500usb_bbp_write(rt2x00dev, 16, 0xac); 933 rt2500usb_bbp_write(rt2x00dev, 18, 0x18); 934 rt2500usb_bbp_write(rt2x00dev, 19, 0xff); 935 rt2500usb_bbp_write(rt2x00dev, 20, 0x1e); 936 rt2500usb_bbp_write(rt2x00dev, 21, 0x08); 937 rt2500usb_bbp_write(rt2x00dev, 22, 0x08); 938 rt2500usb_bbp_write(rt2x00dev, 23, 0x08); 939 rt2500usb_bbp_write(rt2x00dev, 24, 0x80); 940 rt2500usb_bbp_write(rt2x00dev, 25, 0x50); 941 rt2500usb_bbp_write(rt2x00dev, 26, 0x08); 942 rt2500usb_bbp_write(rt2x00dev, 27, 0x23); 943 rt2500usb_bbp_write(rt2x00dev, 30, 0x10); 944 rt2500usb_bbp_write(rt2x00dev, 31, 0x2b); 945 rt2500usb_bbp_write(rt2x00dev, 32, 0xb9); 946 rt2500usb_bbp_write(rt2x00dev, 34, 0x12); 947 rt2500usb_bbp_write(rt2x00dev, 35, 0x50); 948 rt2500usb_bbp_write(rt2x00dev, 39, 0xc4); 949 rt2500usb_bbp_write(rt2x00dev, 40, 0x02); 950 rt2500usb_bbp_write(rt2x00dev, 41, 0x60); 951 rt2500usb_bbp_write(rt2x00dev, 53, 0x10); 952 rt2500usb_bbp_write(rt2x00dev, 54, 0x18); 953 rt2500usb_bbp_write(rt2x00dev, 56, 0x08); 954 rt2500usb_bbp_write(rt2x00dev, 57, 0x10); 955 rt2500usb_bbp_write(rt2x00dev, 58, 0x08); 956 rt2500usb_bbp_write(rt2x00dev, 61, 0x60); 957 rt2500usb_bbp_write(rt2x00dev, 62, 0x10); 958 rt2500usb_bbp_write(rt2x00dev, 75, 0xff); 959 960 for (i = 0; i < EEPROM_BBP_SIZE; i++) { 961 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); 962 963 if (eeprom != 0xffff && eeprom != 0x0000) { 964 reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); 965 value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); 966 rt2500usb_bbp_write(rt2x00dev, reg_id, value); 967 } 968 } 969 970 return 0; 971} 972 973/* 974 * Device state switch handlers. 975 */ 976static int rt2500usb_enable_radio(struct rt2x00_dev *rt2x00dev) 977{ 978 /* 979 * Initialize all registers. 980 */ 981 if (unlikely(rt2500usb_init_registers(rt2x00dev) || 982 rt2500usb_init_bbp(rt2x00dev))) 983 return -EIO; 984 985 return 0; 986} 987 988static void rt2500usb_disable_radio(struct rt2x00_dev *rt2x00dev) 989{ 990 rt2500usb_register_write(rt2x00dev, MAC_CSR13, 0x2121); 991 rt2500usb_register_write(rt2x00dev, MAC_CSR14, 0x2121); 992 993 /* 994 * Disable synchronisation. 995 */ 996 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, 0); 997 998 rt2x00usb_disable_radio(rt2x00dev); 999} 1000 1001static int rt2500usb_set_state(struct rt2x00_dev *rt2x00dev, 1002 enum dev_state state) 1003{ 1004 u16 reg; 1005 u16 reg2; 1006 unsigned int i; 1007 char put_to_sleep; 1008 char bbp_state; 1009 char rf_state; 1010 1011 put_to_sleep = (state != STATE_AWAKE); 1012 1013 reg = 0; 1014 rt2x00_set_field16(®, MAC_CSR17_BBP_DESIRE_STATE, state); 1015 rt2x00_set_field16(®, MAC_CSR17_RF_DESIRE_STATE, state); 1016 rt2x00_set_field16(®, MAC_CSR17_PUT_TO_SLEEP, put_to_sleep); 1017 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1018 rt2x00_set_field16(®, MAC_CSR17_SET_STATE, 1); 1019 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1020 1021 /* 1022 * Device is not guaranteed to be in the requested state yet. 1023 * We must wait until the register indicates that the 1024 * device has entered the correct state. 1025 */ 1026 for (i = 0; i < REGISTER_USB_BUSY_COUNT; i++) { 1027 rt2500usb_register_read(rt2x00dev, MAC_CSR17, ®2); 1028 bbp_state = rt2x00_get_field16(reg2, MAC_CSR17_BBP_CURR_STATE); 1029 rf_state = rt2x00_get_field16(reg2, MAC_CSR17_RF_CURR_STATE); 1030 if (bbp_state == state && rf_state == state) 1031 return 0; 1032 rt2500usb_register_write(rt2x00dev, MAC_CSR17, reg); 1033 msleep(30); 1034 } 1035 1036 return -EBUSY; 1037} 1038 1039static int rt2500usb_set_device_state(struct rt2x00_dev *rt2x00dev, 1040 enum dev_state state) 1041{ 1042 int retval = 0; 1043 1044 switch (state) { 1045 case STATE_RADIO_ON: 1046 retval = rt2500usb_enable_radio(rt2x00dev); 1047 break; 1048 case STATE_RADIO_OFF: 1049 rt2500usb_disable_radio(rt2x00dev); 1050 break; 1051 case STATE_RADIO_IRQ_ON: 1052 case STATE_RADIO_IRQ_OFF: 1053 /* No support, but no error either */ 1054 break; 1055 case STATE_DEEP_SLEEP: 1056 case STATE_SLEEP: 1057 case STATE_STANDBY: 1058 case STATE_AWAKE: 1059 retval = rt2500usb_set_state(rt2x00dev, state); 1060 break; 1061 default: 1062 retval = -ENOTSUPP; 1063 break; 1064 } 1065 1066 if (unlikely(retval)) 1067 rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n", 1068 state, retval); 1069 1070 return retval; 1071} 1072 1073/* 1074 * TX descriptor initialization 1075 */ 1076static void rt2500usb_write_tx_desc(struct queue_entry *entry, 1077 struct txentry_desc *txdesc) 1078{ 1079 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1080 __le32 *txd = (__le32 *) entry->skb->data; 1081 u32 word; 1082 1083 /* 1084 * Start writing the descriptor words. 1085 */ 1086 rt2x00_desc_read(txd, 0, &word); 1087 rt2x00_set_field32(&word, TXD_W0_RETRY_LIMIT, txdesc->retry_limit); 1088 rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, 1089 test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); 1090 rt2x00_set_field32(&word, TXD_W0_ACK, 1091 test_bit(ENTRY_TXD_ACK, &txdesc->flags)); 1092 rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, 1093 test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); 1094 rt2x00_set_field32(&word, TXD_W0_OFDM, 1095 (txdesc->rate_mode == RATE_MODE_OFDM)); 1096 rt2x00_set_field32(&word, TXD_W0_NEW_SEQ, 1097 test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags)); 1098 rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); 1099 rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); 1100 rt2x00_set_field32(&word, TXD_W0_CIPHER, !!txdesc->cipher); 1101 rt2x00_set_field32(&word, TXD_W0_KEY_ID, txdesc->key_idx); 1102 rt2x00_desc_write(txd, 0, word); 1103 1104 rt2x00_desc_read(txd, 1, &word); 1105 rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); 1106 rt2x00_set_field32(&word, TXD_W1_AIFS, entry->queue->aifs); 1107 rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); 1108 rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); 1109 rt2x00_desc_write(txd, 1, word); 1110 1111 rt2x00_desc_read(txd, 2, &word); 1112 rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); 1113 rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); 1114 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, 1115 txdesc->u.plcp.length_low); 1116 rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, 1117 txdesc->u.plcp.length_high); 1118 rt2x00_desc_write(txd, 2, word); 1119 1120 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { 1121 _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); 1122 _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); 1123 } 1124 1125 /* 1126 * Register descriptor details in skb frame descriptor. 1127 */ 1128 skbdesc->flags |= SKBDESC_DESC_IN_SKB; 1129 skbdesc->desc = txd; 1130 skbdesc->desc_len = TXD_DESC_SIZE; 1131} 1132 1133/* 1134 * TX data initialization 1135 */ 1136static void rt2500usb_beacondone(struct urb *urb); 1137 1138static void rt2500usb_write_beacon(struct queue_entry *entry, 1139 struct txentry_desc *txdesc) 1140{ 1141 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1142 struct usb_device *usb_dev = to_usb_device_intf(rt2x00dev->dev); 1143 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1144 int pipe = usb_sndbulkpipe(usb_dev, entry->queue->usb_endpoint); 1145 int length; 1146 u16 reg, reg0; 1147 1148 /* 1149 * Disable beaconing while we are reloading the beacon data, 1150 * otherwise we might be sending out invalid data. 1151 */ 1152 rt2500usb_register_read(rt2x00dev, TXRX_CSR19, ®); 1153 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 0); 1154 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1155 1156 /* 1157 * Add space for the descriptor in front of the skb. 1158 */ 1159 skb_push(entry->skb, TXD_DESC_SIZE); 1160 memset(entry->skb->data, 0, TXD_DESC_SIZE); 1161 1162 /* 1163 * Write the TX descriptor for the beacon. 1164 */ 1165 rt2500usb_write_tx_desc(entry, txdesc); 1166 1167 /* 1168 * Dump beacon to userspace through debugfs. 1169 */ 1170 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); 1171 1172 /* 1173 * USB devices cannot blindly pass the skb->len as the 1174 * length of the data to usb_fill_bulk_urb. Pass the skb 1175 * to the driver to determine what the length should be. 1176 */ 1177 length = rt2x00dev->ops->lib->get_tx_data_len(entry); 1178 1179 usb_fill_bulk_urb(bcn_priv->urb, usb_dev, pipe, 1180 entry->skb->data, length, rt2500usb_beacondone, 1181 entry); 1182 1183 /* 1184 * Second we need to create the guardian byte. 1185 * We only need a single byte, so lets recycle 1186 * the 'flags' field we are not using for beacons. 1187 */ 1188 bcn_priv->guardian_data = 0; 1189 usb_fill_bulk_urb(bcn_priv->guardian_urb, usb_dev, pipe, 1190 &bcn_priv->guardian_data, 1, rt2500usb_beacondone, 1191 entry); 1192 1193 /* 1194 * Send out the guardian byte. 1195 */ 1196 usb_submit_urb(bcn_priv->guardian_urb, GFP_ATOMIC); 1197 1198 /* 1199 * Enable beaconing again. 1200 */ 1201 rt2x00_set_field16(®, TXRX_CSR19_TSF_COUNT, 1); 1202 rt2x00_set_field16(®, TXRX_CSR19_TBCN, 1); 1203 reg0 = reg; 1204 rt2x00_set_field16(®, TXRX_CSR19_BEACON_GEN, 1); 1205 /* 1206 * Beacon generation will fail initially. 1207 * To prevent this we need to change the TXRX_CSR19 1208 * register several times (reg0 is the same as reg 1209 * except for TXRX_CSR19_BEACON_GEN, which is 0 in reg0 1210 * and 1 in reg). 1211 */ 1212 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1213 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1214 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1215 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg0); 1216 rt2500usb_register_write(rt2x00dev, TXRX_CSR19, reg); 1217} 1218 1219static int rt2500usb_get_tx_data_len(struct queue_entry *entry) 1220{ 1221 int length; 1222 1223 /* 1224 * The length _must_ be a multiple of 2, 1225 * but it must _not_ be a multiple of the USB packet size. 1226 */ 1227 length = roundup(entry->skb->len, 2); 1228 length += (2 * !(length % entry->queue->usb_maxpacket)); 1229 1230 return length; 1231} 1232 1233/* 1234 * RX control handlers 1235 */ 1236static void rt2500usb_fill_rxdone(struct queue_entry *entry, 1237 struct rxdone_entry_desc *rxdesc) 1238{ 1239 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; 1240 struct queue_entry_priv_usb *entry_priv = entry->priv_data; 1241 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); 1242 __le32 *rxd = 1243 (__le32 *)(entry->skb->data + 1244 (entry_priv->urb->actual_length - 1245 entry->queue->desc_size)); 1246 u32 word0; 1247 u32 word1; 1248 1249 /* 1250 * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of 1251 * frame data in rt2x00usb. 1252 */ 1253 memcpy(skbdesc->desc, rxd, skbdesc->desc_len); 1254 rxd = (__le32 *)skbdesc->desc; 1255 1256 /* 1257 * It is now safe to read the descriptor on all architectures. 1258 */ 1259 rt2x00_desc_read(rxd, 0, &word0); 1260 rt2x00_desc_read(rxd, 1, &word1); 1261 1262 if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) 1263 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; 1264 if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR)) 1265 rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC; 1266 1267 rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER); 1268 if (rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR)) 1269 rxdesc->cipher_status = RX_CRYPTO_FAIL_KEY; 1270 1271 if (rxdesc->cipher != CIPHER_NONE) { 1272 _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); 1273 _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); 1274 rxdesc->dev_flags |= RXDONE_CRYPTO_IV; 1275 1276 /* ICV is located at the end of frame */ 1277 1278 rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; 1279 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) 1280 rxdesc->flags |= RX_FLAG_DECRYPTED; 1281 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) 1282 rxdesc->flags |= RX_FLAG_MMIC_ERROR; 1283 } 1284 1285 /* 1286 * Obtain the status about this packet. 1287 * When frame was received with an OFDM bitrate, 1288 * the signal is the PLCP value. If it was received with 1289 * a CCK bitrate the signal is the rate in 100kbit/s. 1290 */ 1291 rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); 1292 rxdesc->rssi = 1293 rt2x00_get_field32(word1, RXD_W1_RSSI) - rt2x00dev->rssi_offset; 1294 rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); 1295 1296 if (rt2x00_get_field32(word0, RXD_W0_OFDM)) 1297 rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; 1298 else 1299 rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; 1300 if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) 1301 rxdesc->dev_flags |= RXDONE_MY_BSS; 1302 1303 /* 1304 * Adjust the skb memory window to the frame boundaries. 1305 */ 1306 skb_trim(entry->skb, rxdesc->size); 1307} 1308 1309/* 1310 * Interrupt functions. 1311 */ 1312static void rt2500usb_beacondone(struct urb *urb) 1313{ 1314 struct queue_entry *entry = (struct queue_entry *)urb->context; 1315 struct queue_entry_priv_usb_bcn *bcn_priv = entry->priv_data; 1316 1317 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &entry->queue->rt2x00dev->flags)) 1318 return; 1319 1320 /* 1321 * Check if this was the guardian beacon, 1322 * if that was the case we need to send the real beacon now. 1323 * Otherwise we should free the sk_buffer, the device 1324 * should be doing the rest of the work now. 1325 */ 1326 if (bcn_priv->guardian_urb == urb) { 1327 usb_submit_urb(bcn_priv->urb, GFP_ATOMIC); 1328 } else if (bcn_priv->urb == urb) { 1329 dev_kfree_skb(entry->skb); 1330 entry->skb = NULL; 1331 } 1332} 1333 1334/* 1335 * Device probe functions. 1336 */ 1337static int rt2500usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) 1338{ 1339 u16 word; 1340 u8 *mac; 1341 u8 bbp; 1342 1343 rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); 1344 1345 /* 1346 * Start validation of the data that has been read. 1347 */ 1348 mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); 1349 if (!is_valid_ether_addr(mac)) { 1350 eth_random_addr(mac); 1351 rt2x00_eeprom_dbg(rt2x00dev, "MAC: %pM\n", mac); 1352 } 1353 1354 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); 1355 if (word == 0xffff) { 1356 rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); 1357 rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, 1358 ANTENNA_SW_DIVERSITY); 1359 rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, 1360 ANTENNA_SW_DIVERSITY); 1361 rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE, 1362 LED_MODE_DEFAULT); 1363 rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); 1364 rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); 1365 rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522); 1366 rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); 1367 rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word); 1368 } 1369 1370 rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); 1371 if (word == 0xffff) { 1372 rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); 1373 rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0); 1374 rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0); 1375 rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); 1376 rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word); 1377 } 1378 1379 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word); 1380 if (word == 0xffff) { 1381 rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI, 1382 DEFAULT_RSSI_OFFSET); 1383 rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word); 1384 rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n", 1385 word); 1386 } 1387 1388 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE, &word); 1389 if (word == 0xffff) { 1390 rt2x00_set_field16(&word, EEPROM_BBPTUNE_THRESHOLD, 45); 1391 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE, word); 1392 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune: 0x%04x\n", word); 1393 } 1394 1395 /* 1396 * Switch lower vgc bound to current BBP R17 value, 1397 * lower the value a bit for better quality. 1398 */ 1399 rt2500usb_bbp_read(rt2x00dev, 17, &bbp); 1400 bbp -= 6; 1401 1402 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_VGC, &word); 1403 if (word == 0xffff) { 1404 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCUPPER, 0x40); 1405 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1406 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1407 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune vgc: 0x%04x\n", word); 1408 } else { 1409 rt2x00_set_field16(&word, EEPROM_BBPTUNE_VGCLOWER, bbp); 1410 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_VGC, word); 1411 } 1412 1413 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R17, &word); 1414 if (word == 0xffff) { 1415 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_LOW, 0x48); 1416 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R17_HIGH, 0x41); 1417 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R17, word); 1418 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r17: 0x%04x\n", word); 1419 } 1420 1421 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R24, &word); 1422 if (word == 0xffff) { 1423 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_LOW, 0x40); 1424 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R24_HIGH, 0x80); 1425 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R24, word); 1426 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r24: 0x%04x\n", word); 1427 } 1428 1429 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R25, &word); 1430 if (word == 0xffff) { 1431 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_LOW, 0x40); 1432 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R25_HIGH, 0x50); 1433 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R25, word); 1434 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r25: 0x%04x\n", word); 1435 } 1436 1437 rt2x00_eeprom_read(rt2x00dev, EEPROM_BBPTUNE_R61, &word); 1438 if (word == 0xffff) { 1439 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_LOW, 0x60); 1440 rt2x00_set_field16(&word, EEPROM_BBPTUNE_R61_HIGH, 0x6d); 1441 rt2x00_eeprom_write(rt2x00dev, EEPROM_BBPTUNE_R61, word); 1442 rt2x00_eeprom_dbg(rt2x00dev, "BBPtune r61: 0x%04x\n", word); 1443 } 1444 1445 return 0; 1446} 1447 1448static int rt2500usb_init_eeprom(struct rt2x00_dev *rt2x00dev) 1449{ 1450 u16 reg; 1451 u16 value; 1452 u16 eeprom; 1453 1454 /* 1455 * Read EEPROM word for configuration. 1456 */ 1457 rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); 1458 1459 /* 1460 * Identify RF chipset. 1461 */ 1462 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); 1463 rt2500usb_register_read(rt2x00dev, MAC_CSR0, ®); 1464 rt2x00_set_chip(rt2x00dev, RT2570, value, reg); 1465 1466 if (((reg & 0xfff0) != 0) || ((reg & 0x0000000f) == 0)) { 1467 rt2x00_err(rt2x00dev, "Invalid RT chipset detected\n"); 1468 return -ENODEV; 1469 } 1470 1471 if (!rt2x00_rf(rt2x00dev, RF2522) && 1472 !rt2x00_rf(rt2x00dev, RF2523) && 1473 !rt2x00_rf(rt2x00dev, RF2524) && 1474 !rt2x00_rf(rt2x00dev, RF2525) && 1475 !rt2x00_rf(rt2x00dev, RF2525E) && 1476 !rt2x00_rf(rt2x00dev, RF5222)) { 1477 rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n"); 1478 return -ENODEV; 1479 } 1480 1481 /* 1482 * Identify default antenna configuration. 1483 */ 1484 rt2x00dev->default_ant.tx = 1485 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); 1486 rt2x00dev->default_ant.rx = 1487 rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); 1488 1489 /* 1490 * When the eeprom indicates SW_DIVERSITY use HW_DIVERSITY instead. 1491 * I am not 100% sure about this, but the legacy drivers do not 1492 * indicate antenna swapping in software is required when 1493 * diversity is enabled. 1494 */ 1495 if (rt2x00dev->default_ant.tx == ANTENNA_SW_DIVERSITY) 1496 rt2x00dev->default_ant.tx = ANTENNA_HW_DIVERSITY; 1497 if (rt2x00dev->default_ant.rx == ANTENNA_SW_DIVERSITY) 1498 rt2x00dev->default_ant.rx = ANTENNA_HW_DIVERSITY; 1499 1500 /* 1501 * Store led mode, for correct led behaviour. 1502 */ 1503#ifdef CONFIG_RT2X00_LIB_LEDS 1504 value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE); 1505 1506 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); 1507 if (value == LED_MODE_TXRX_ACTIVITY || 1508 value == LED_MODE_DEFAULT || 1509 value == LED_MODE_ASUS) 1510 rt2500usb_init_led(rt2x00dev, &rt2x00dev->led_qual, 1511 LED_TYPE_ACTIVITY); 1512#endif /* CONFIG_RT2X00_LIB_LEDS */ 1513 1514 /* 1515 * Detect if this device has an hardware controlled radio. 1516 */ 1517 if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) 1518 __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); 1519 1520 /* 1521 * Read the RSSI <-> dBm offset information. 1522 */ 1523 rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom); 1524 rt2x00dev->rssi_offset = 1525 rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI); 1526 1527 return 0; 1528} 1529 1530/* 1531 * RF value list for RF2522 1532 * Supports: 2.4 GHz 1533 */ 1534static const struct rf_channel rf_vals_bg_2522[] = { 1535 { 1, 0x00002050, 0x000c1fda, 0x00000101, 0 }, 1536 { 2, 0x00002050, 0x000c1fee, 0x00000101, 0 }, 1537 { 3, 0x00002050, 0x000c2002, 0x00000101, 0 }, 1538 { 4, 0x00002050, 0x000c2016, 0x00000101, 0 }, 1539 { 5, 0x00002050, 0x000c202a, 0x00000101, 0 }, 1540 { 6, 0x00002050, 0x000c203e, 0x00000101, 0 }, 1541 { 7, 0x00002050, 0x000c2052, 0x00000101, 0 }, 1542 { 8, 0x00002050, 0x000c2066, 0x00000101, 0 }, 1543 { 9, 0x00002050, 0x000c207a, 0x00000101, 0 }, 1544 { 10, 0x00002050, 0x000c208e, 0x00000101, 0 }, 1545 { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 }, 1546 { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 }, 1547 { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 }, 1548 { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 }, 1549}; 1550 1551/* 1552 * RF value list for RF2523 1553 * Supports: 2.4 GHz 1554 */ 1555static const struct rf_channel rf_vals_bg_2523[] = { 1556 { 1, 0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b }, 1557 { 2, 0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b }, 1558 { 3, 0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b }, 1559 { 4, 0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b }, 1560 { 5, 0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b }, 1561 { 6, 0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b }, 1562 { 7, 0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b }, 1563 { 8, 0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b }, 1564 { 9, 0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b }, 1565 { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b }, 1566 { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b }, 1567 { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b }, 1568 { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b }, 1569 { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 }, 1570}; 1571 1572/* 1573 * RF value list for RF2524 1574 * Supports: 2.4 GHz 1575 */ 1576static const struct rf_channel rf_vals_bg_2524[] = { 1577 { 1, 0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b }, 1578 { 2, 0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b }, 1579 { 3, 0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b }, 1580 { 4, 0x00032020, 0x00000caa, 0x00000101, 0x00000a1b }, 1581 { 5, 0x00032020, 0x00000cae, 0x00000101, 0x00000a1b }, 1582 { 6, 0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b }, 1583 { 7, 0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b }, 1584 { 8, 0x00032020, 0x00000cba, 0x00000101, 0x00000a1b }, 1585 { 9, 0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b }, 1586 { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b }, 1587 { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b }, 1588 { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b }, 1589 { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b }, 1590 { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 }, 1591}; 1592 1593/* 1594 * RF value list for RF2525 1595 * Supports: 2.4 GHz 1596 */ 1597static const struct rf_channel rf_vals_bg_2525[] = { 1598 { 1, 0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b }, 1599 { 2, 0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b }, 1600 { 3, 0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b }, 1601 { 4, 0x00022020, 0x00080caa, 0x00060111, 0x00000a1b }, 1602 { 5, 0x00022020, 0x00080cae, 0x00060111, 0x00000a1b }, 1603 { 6, 0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b }, 1604 { 7, 0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b }, 1605 { 8, 0x00022020, 0x00080cba, 0x00060111, 0x00000a1b }, 1606 { 9, 0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b }, 1607 { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b }, 1608 { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b }, 1609 { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b }, 1610 { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b }, 1611 { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 }, 1612}; 1613 1614/* 1615 * RF value list for RF2525e 1616 * Supports: 2.4 GHz 1617 */ 1618static const struct rf_channel rf_vals_bg_2525e[] = { 1619 { 1, 0x00022010, 0x0000089a, 0x00060111, 0x00000e1b }, 1620 { 2, 0x00022010, 0x0000089e, 0x00060111, 0x00000e07 }, 1621 { 3, 0x00022010, 0x0000089e, 0x00060111, 0x00000e1b }, 1622 { 4, 0x00022010, 0x000008a2, 0x00060111, 0x00000e07 }, 1623 { 5, 0x00022010, 0x000008a2, 0x00060111, 0x00000e1b }, 1624 { 6, 0x00022010, 0x000008a6, 0x00060111, 0x00000e07 }, 1625 { 7, 0x00022010, 0x000008a6, 0x00060111, 0x00000e1b }, 1626 { 8, 0x00022010, 0x000008aa, 0x00060111, 0x00000e07 }, 1627 { 9, 0x00022010, 0x000008aa, 0x00060111, 0x00000e1b }, 1628 { 10, 0x00022010, 0x000008ae, 0x00060111, 0x00000e07 }, 1629 { 11, 0x00022010, 0x000008ae, 0x00060111, 0x00000e1b }, 1630 { 12, 0x00022010, 0x000008b2, 0x00060111, 0x00000e07 }, 1631 { 13, 0x00022010, 0x000008b2, 0x00060111, 0x00000e1b }, 1632 { 14, 0x00022010, 0x000008b6, 0x00060111, 0x00000e23 }, 1633}; 1634 1635/* 1636 * RF value list for RF5222 1637 * Supports: 2.4 GHz & 5.2 GHz 1638 */ 1639static const struct rf_channel rf_vals_5222[] = { 1640 { 1, 0x00022020, 0x00001136, 0x00000101, 0x00000a0b }, 1641 { 2, 0x00022020, 0x0000113a, 0x00000101, 0x00000a0b }, 1642 { 3, 0x00022020, 0x0000113e, 0x00000101, 0x00000a0b }, 1643 { 4, 0x00022020, 0x00001182, 0x00000101, 0x00000a0b }, 1644 { 5, 0x00022020, 0x00001186, 0x00000101, 0x00000a0b }, 1645 { 6, 0x00022020, 0x0000118a, 0x00000101, 0x00000a0b }, 1646 { 7, 0x00022020, 0x0000118e, 0x00000101, 0x00000a0b }, 1647 { 8, 0x00022020, 0x00001192, 0x00000101, 0x00000a0b }, 1648 { 9, 0x00022020, 0x00001196, 0x00000101, 0x00000a0b }, 1649 { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b }, 1650 { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b }, 1651 { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b }, 1652 { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b }, 1653 { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b }, 1654 1655 /* 802.11 UNI / HyperLan 2 */ 1656 { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f }, 1657 { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f }, 1658 { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f }, 1659 { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f }, 1660 { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f }, 1661 { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f }, 1662 { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f }, 1663 { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f }, 1664 1665 /* 802.11 HyperLan 2 */ 1666 { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f }, 1667 { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f }, 1668 { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f }, 1669 { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f }, 1670 { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f }, 1671 { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f }, 1672 { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f }, 1673 { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f }, 1674 { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f }, 1675 { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f }, 1676 1677 /* 802.11 UNII */ 1678 { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f }, 1679 { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 }, 1680 { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 }, 1681 { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 }, 1682 { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 }, 1683}; 1684 1685static int rt2500usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) 1686{ 1687 struct hw_mode_spec *spec = &rt2x00dev->spec; 1688 struct channel_info *info; 1689 char *tx_power; 1690 unsigned int i; 1691 1692 /* 1693 * Initialize all hw fields. 1694 * 1695 * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are 1696 * capable of sending the buffered frames out after the DTIM 1697 * transmission using rt2x00lib_beacondone. This will send out 1698 * multicast and broadcast traffic immediately instead of buffering it 1699 * infinitly and thus dropping it after some time. 1700 */ 1701 rt2x00dev->hw->flags = 1702 IEEE80211_HW_RX_INCLUDES_FCS | 1703 IEEE80211_HW_SIGNAL_DBM | 1704 IEEE80211_HW_SUPPORTS_PS | 1705 IEEE80211_HW_PS_NULLFUNC_STACK; 1706 1707 /* 1708 * Disable powersaving as default. 1709 */ 1710 rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; 1711 1712 SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); 1713 SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, 1714 rt2x00_eeprom_addr(rt2x00dev, 1715 EEPROM_MAC_ADDR_0)); 1716 1717 /* 1718 * Initialize hw_mode information. 1719 */ 1720 spec->supported_bands = SUPPORT_BAND_2GHZ; 1721 spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; 1722 1723 if (rt2x00_rf(rt2x00dev, RF2522)) { 1724 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522); 1725 spec->channels = rf_vals_bg_2522; 1726 } else if (rt2x00_rf(rt2x00dev, RF2523)) { 1727 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523); 1728 spec->channels = rf_vals_bg_2523; 1729 } else if (rt2x00_rf(rt2x00dev, RF2524)) { 1730 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524); 1731 spec->channels = rf_vals_bg_2524; 1732 } else if (rt2x00_rf(rt2x00dev, RF2525)) { 1733 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525); 1734 spec->channels = rf_vals_bg_2525; 1735 } else if (rt2x00_rf(rt2x00dev, RF2525E)) { 1736 spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e); 1737 spec->channels = rf_vals_bg_2525e; 1738 } else if (rt2x00_rf(rt2x00dev, RF5222)) { 1739 spec->supported_bands |= SUPPORT_BAND_5GHZ; 1740 spec->num_channels = ARRAY_SIZE(rf_vals_5222); 1741 spec->channels = rf_vals_5222; 1742 } 1743 1744 /* 1745 * Create channel information array 1746 */ 1747 info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); 1748 if (!info) 1749 return -ENOMEM; 1750 1751 spec->channels_info = info; 1752 1753 tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START); 1754 for (i = 0; i < 14; i++) { 1755 info[i].max_power = MAX_TXPOWER; 1756 info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); 1757 } 1758 1759 if (spec->num_channels > 14) { 1760 for (i = 14; i < spec->num_channels; i++) { 1761 info[i].max_power = MAX_TXPOWER; 1762 info[i].default_power1 = DEFAULT_TXPOWER; 1763 } 1764 } 1765 1766 return 0; 1767} 1768 1769static int rt2500usb_probe_hw(struct rt2x00_dev *rt2x00dev) 1770{ 1771 int retval; 1772 u16 reg; 1773 1774 /* 1775 * Allocate eeprom data. 1776 */ 1777 retval = rt2500usb_validate_eeprom(rt2x00dev); 1778 if (retval) 1779 return retval; 1780 1781 retval = rt2500usb_init_eeprom(rt2x00dev); 1782 if (retval) 1783 return retval; 1784 1785 /* 1786 * Enable rfkill polling by setting GPIO direction of the 1787 * rfkill switch GPIO pin correctly. 1788 */ 1789 rt2500usb_register_read(rt2x00dev, MAC_CSR19, ®); 1790 rt2x00_set_field16(®, MAC_CSR19_DIR0, 0); 1791 rt2500usb_register_write(rt2x00dev, MAC_CSR19, reg); 1792 1793 /* 1794 * Initialize hw specifications. 1795 */ 1796 retval = rt2500usb_probe_hw_mode(rt2x00dev); 1797 if (retval) 1798 return retval; 1799 1800 /* 1801 * This device requires the atim queue 1802 */ 1803 __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags); 1804 __set_bit(REQUIRE_BEACON_GUARD, &rt2x00dev->cap_flags); 1805 if (!modparam_nohwcrypt) { 1806 __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); 1807 __set_bit(REQUIRE_COPY_IV, &rt2x00dev->cap_flags); 1808 } 1809 __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags); 1810 __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); 1811 1812 /* 1813 * Set the rssi offset. 1814 */ 1815 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; 1816 1817 return 0; 1818} 1819 1820static const struct ieee80211_ops rt2500usb_mac80211_ops = { 1821 .tx = rt2x00mac_tx, 1822 .start = rt2x00mac_start, 1823 .stop = rt2x00mac_stop, 1824 .add_interface = rt2x00mac_add_interface, 1825 .remove_interface = rt2x00mac_remove_interface, 1826 .config = rt2x00mac_config, 1827 .configure_filter = rt2x00mac_configure_filter, 1828 .set_tim = rt2x00mac_set_tim, 1829 .set_key = rt2x00mac_set_key, 1830 .sw_scan_start = rt2x00mac_sw_scan_start, 1831 .sw_scan_complete = rt2x00mac_sw_scan_complete, 1832 .get_stats = rt2x00mac_get_stats, 1833 .bss_info_changed = rt2x00mac_bss_info_changed, 1834 .conf_tx = rt2x00mac_conf_tx, 1835 .rfkill_poll = rt2x00mac_rfkill_poll, 1836 .flush = rt2x00mac_flush, 1837 .set_antenna = rt2x00mac_set_antenna, 1838 .get_antenna = rt2x00mac_get_antenna, 1839 .get_ringparam = rt2x00mac_get_ringparam, 1840 .tx_frames_pending = rt2x00mac_tx_frames_pending, 1841}; 1842 1843static const struct rt2x00lib_ops rt2500usb_rt2x00_ops = { 1844 .probe_hw = rt2500usb_probe_hw, 1845 .initialize = rt2x00usb_initialize, 1846 .uninitialize = rt2x00usb_uninitialize, 1847 .clear_entry = rt2x00usb_clear_entry, 1848 .set_device_state = rt2500usb_set_device_state, 1849 .rfkill_poll = rt2500usb_rfkill_poll, 1850 .link_stats = rt2500usb_link_stats, 1851 .reset_tuner = rt2500usb_reset_tuner, 1852 .watchdog = rt2x00usb_watchdog, 1853 .start_queue = rt2500usb_start_queue, 1854 .kick_queue = rt2x00usb_kick_queue, 1855 .stop_queue = rt2500usb_stop_queue, 1856 .flush_queue = rt2x00usb_flush_queue, 1857 .write_tx_desc = rt2500usb_write_tx_desc, 1858 .write_beacon = rt2500usb_write_beacon, 1859 .get_tx_data_len = rt2500usb_get_tx_data_len, 1860 .fill_rxdone = rt2500usb_fill_rxdone, 1861 .config_shared_key = rt2500usb_config_key, 1862 .config_pairwise_key = rt2500usb_config_key, 1863 .config_filter = rt2500usb_config_filter, 1864 .config_intf = rt2500usb_config_intf, 1865 .config_erp = rt2500usb_config_erp, 1866 .config_ant = rt2500usb_config_ant, 1867 .config = rt2500usb_config, 1868}; 1869 1870static void rt2500usb_queue_init(struct data_queue *queue) 1871{ 1872 switch (queue->qid) { 1873 case QID_RX: 1874 queue->limit = 32; 1875 queue->data_size = DATA_FRAME_SIZE; 1876 queue->desc_size = RXD_DESC_SIZE; 1877 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1878 break; 1879 1880 case QID_AC_VO: 1881 case QID_AC_VI: 1882 case QID_AC_BE: 1883 case QID_AC_BK: 1884 queue->limit = 32; 1885 queue->data_size = DATA_FRAME_SIZE; 1886 queue->desc_size = TXD_DESC_SIZE; 1887 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1888 break; 1889 1890 case QID_BEACON: 1891 queue->limit = 1; 1892 queue->data_size = MGMT_FRAME_SIZE; 1893 queue->desc_size = TXD_DESC_SIZE; 1894 queue->priv_size = sizeof(struct queue_entry_priv_usb_bcn); 1895 break; 1896 1897 case QID_ATIM: 1898 queue->limit = 8; 1899 queue->data_size = DATA_FRAME_SIZE; 1900 queue->desc_size = TXD_DESC_SIZE; 1901 queue->priv_size = sizeof(struct queue_entry_priv_usb); 1902 break; 1903 1904 default: 1905 BUG(); 1906 break; 1907 } 1908} 1909 1910static const struct rt2x00_ops rt2500usb_ops = { 1911 .name = KBUILD_MODNAME, 1912 .max_ap_intf = 1, 1913 .eeprom_size = EEPROM_SIZE, 1914 .rf_size = RF_SIZE, 1915 .tx_queues = NUM_TX_QUEUES, 1916 .queue_init = rt2500usb_queue_init, 1917 .lib = &rt2500usb_rt2x00_ops, 1918 .hw = &rt2500usb_mac80211_ops, 1919#ifdef CONFIG_RT2X00_LIB_DEBUGFS 1920 .debugfs = &rt2500usb_rt2x00debug, 1921#endif /* CONFIG_RT2X00_LIB_DEBUGFS */ 1922}; 1923 1924/* 1925 * rt2500usb module information. 1926 */ 1927static struct usb_device_id rt2500usb_device_table[] = { 1928 /* ASUS */ 1929 { USB_DEVICE(0x0b05, 0x1706) }, 1930 { USB_DEVICE(0x0b05, 0x1707) }, 1931 /* Belkin */ 1932 { USB_DEVICE(0x050d, 0x7050) }, /* FCC ID: K7SF5D7050A ver. 2.x */ 1933 { USB_DEVICE(0x050d, 0x7051) }, 1934 /* Cisco Systems */ 1935 { USB_DEVICE(0x13b1, 0x000d) }, 1936 { USB_DEVICE(0x13b1, 0x0011) }, 1937 { USB_DEVICE(0x13b1, 0x001a) }, 1938 /* Conceptronic */ 1939 { USB_DEVICE(0x14b2, 0x3c02) }, 1940 /* D-LINK */ 1941 { USB_DEVICE(0x2001, 0x3c00) }, 1942 /* Gigabyte */ 1943 { USB_DEVICE(0x1044, 0x8001) }, 1944 { USB_DEVICE(0x1044, 0x8007) }, 1945 /* Hercules */ 1946 { USB_DEVICE(0x06f8, 0xe000) }, 1947 /* Melco */ 1948 { USB_DEVICE(0x0411, 0x005e) }, 1949 { USB_DEVICE(0x0411, 0x0066) }, 1950 { USB_DEVICE(0x0411, 0x0067) }, 1951 { USB_DEVICE(0x0411, 0x008b) }, 1952 { USB_DEVICE(0x0411, 0x0097) }, 1953 /* MSI */ 1954 { USB_DEVICE(0x0db0, 0x6861) }, 1955 { USB_DEVICE(0x0db0, 0x6865) }, 1956 { USB_DEVICE(0x0db0, 0x6869) }, 1957 /* Ralink */ 1958 { USB_DEVICE(0x148f, 0x1706) }, 1959 { USB_DEVICE(0x148f, 0x2570) }, 1960 { USB_DEVICE(0x148f, 0x9020) }, 1961 /* Sagem */ 1962 { USB_DEVICE(0x079b, 0x004b) }, 1963 /* Siemens */ 1964 { USB_DEVICE(0x0681, 0x3c06) }, 1965 /* SMC */ 1966 { USB_DEVICE(0x0707, 0xee13) }, 1967 /* Spairon */ 1968 { USB_DEVICE(0x114b, 0x0110) }, 1969 /* SURECOM */ 1970 { USB_DEVICE(0x0769, 0x11f3) }, 1971 /* Trust */ 1972 { USB_DEVICE(0x0eb0, 0x9020) }, 1973 /* VTech */ 1974 { USB_DEVICE(0x0f88, 0x3012) }, 1975 /* Zinwell */ 1976 { USB_DEVICE(0x5a57, 0x0260) }, 1977 { 0, } 1978}; 1979 1980MODULE_AUTHOR(DRV_PROJECT); 1981MODULE_VERSION(DRV_VERSION); 1982MODULE_DESCRIPTION("Ralink RT2500 USB Wireless LAN driver."); 1983MODULE_SUPPORTED_DEVICE("Ralink RT2570 USB chipset based cards"); 1984MODULE_DEVICE_TABLE(usb, rt2500usb_device_table); 1985MODULE_LICENSE("GPL"); 1986 1987static int rt2500usb_probe(struct usb_interface *usb_intf, 1988 const struct usb_device_id *id) 1989{ 1990 return rt2x00usb_probe(usb_intf, &rt2500usb_ops); 1991} 1992 1993static struct usb_driver rt2500usb_driver = { 1994 .name = KBUILD_MODNAME, 1995 .id_table = rt2500usb_device_table, 1996 .probe = rt2500usb_probe, 1997 .disconnect = rt2x00usb_disconnect, 1998 .suspend = rt2x00usb_suspend, 1999 .resume = rt2x00usb_resume, 2000 .reset_resume = rt2x00usb_resume, 2001 .disable_hub_initiated_lpm = 1, 2002}; 2003 2004module_usb_driver(rt2500usb_driver); 2005