1/*
2	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4	<http://rt2x00.serialmonkey.com>
5
6	This program is free software; you can redistribute it and/or modify
7	it under the terms of the GNU General Public License as published by
8	the Free Software Foundation; either version 2 of the License, or
9	(at your option) any later version.
10
11	This program is distributed in the hope that it will be useful,
12	but WITHOUT ANY WARRANTY; without even the implied warranty of
13	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14	GNU General Public License for more details.
15
16	You should have received a copy of the GNU General Public License
17	along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20/*
21	Module: rt2x00lib
22	Abstract: rt2x00 generic device routines.
23 */
24
25#include <linux/kernel.h>
26#include <linux/module.h>
27#include <linux/slab.h>
28#include <linux/log2.h>
29
30#include "rt2x00.h"
31#include "rt2x00lib.h"
32
33/*
34 * Utility functions.
35 */
36u32 rt2x00lib_get_bssidx(struct rt2x00_dev *rt2x00dev,
37			 struct ieee80211_vif *vif)
38{
39	/*
40	 * When in STA mode, bssidx is always 0 otherwise local_address[5]
41	 * contains the bss number, see BSS_ID_MASK comments for details.
42	 */
43	if (rt2x00dev->intf_sta_count)
44		return 0;
45	return vif->addr[5] & (rt2x00dev->ops->max_ap_intf - 1);
46}
47EXPORT_SYMBOL_GPL(rt2x00lib_get_bssidx);
48
49/*
50 * Radio control handlers.
51 */
52int rt2x00lib_enable_radio(struct rt2x00_dev *rt2x00dev)
53{
54	int status;
55
56	/*
57	 * Don't enable the radio twice.
58	 * And check if the hardware button has been disabled.
59	 */
60	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
61		return 0;
62
63	/*
64	 * Initialize all data queues.
65	 */
66	rt2x00queue_init_queues(rt2x00dev);
67
68	/*
69	 * Enable radio.
70	 */
71	status =
72	    rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_ON);
73	if (status)
74		return status;
75
76	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_ON);
77
78	rt2x00leds_led_radio(rt2x00dev, true);
79	rt2x00led_led_activity(rt2x00dev, true);
80
81	set_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags);
82
83	/*
84	 * Enable queues.
85	 */
86	rt2x00queue_start_queues(rt2x00dev);
87	rt2x00link_start_tuner(rt2x00dev);
88	rt2x00link_start_agc(rt2x00dev);
89	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
90		rt2x00link_start_vcocal(rt2x00dev);
91
92	/*
93	 * Start watchdog monitoring.
94	 */
95	rt2x00link_start_watchdog(rt2x00dev);
96
97	return 0;
98}
99
100void rt2x00lib_disable_radio(struct rt2x00_dev *rt2x00dev)
101{
102	if (!test_and_clear_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
103		return;
104
105	/*
106	 * Stop watchdog monitoring.
107	 */
108	rt2x00link_stop_watchdog(rt2x00dev);
109
110	/*
111	 * Stop all queues
112	 */
113	rt2x00link_stop_agc(rt2x00dev);
114	if (rt2x00_has_cap_vco_recalibration(rt2x00dev))
115		rt2x00link_stop_vcocal(rt2x00dev);
116	rt2x00link_stop_tuner(rt2x00dev);
117	rt2x00queue_stop_queues(rt2x00dev);
118	rt2x00queue_flush_queues(rt2x00dev, true);
119
120	/*
121	 * Disable radio.
122	 */
123	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_OFF);
124	rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
125	rt2x00led_led_activity(rt2x00dev, false);
126	rt2x00leds_led_radio(rt2x00dev, false);
127}
128
129static void rt2x00lib_intf_scheduled_iter(void *data, u8 *mac,
130					  struct ieee80211_vif *vif)
131{
132	struct rt2x00_dev *rt2x00dev = data;
133	struct rt2x00_intf *intf = vif_to_intf(vif);
134
135	/*
136	 * It is possible the radio was disabled while the work had been
137	 * scheduled. If that happens we should return here immediately,
138	 * note that in the spinlock protected area above the delayed_flags
139	 * have been cleared correctly.
140	 */
141	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
142		return;
143
144	if (test_and_clear_bit(DELAYED_UPDATE_BEACON, &intf->delayed_flags)) {
145		mutex_lock(&intf->beacon_skb_mutex);
146		rt2x00queue_update_beacon(rt2x00dev, vif);
147		mutex_unlock(&intf->beacon_skb_mutex);
148	}
149}
150
151static void rt2x00lib_intf_scheduled(struct work_struct *work)
152{
153	struct rt2x00_dev *rt2x00dev =
154	    container_of(work, struct rt2x00_dev, intf_work);
155
156	/*
157	 * Iterate over each interface and perform the
158	 * requested configurations.
159	 */
160	ieee80211_iterate_active_interfaces(rt2x00dev->hw,
161					    IEEE80211_IFACE_ITER_RESUME_ALL,
162					    rt2x00lib_intf_scheduled_iter,
163					    rt2x00dev);
164}
165
166static void rt2x00lib_autowakeup(struct work_struct *work)
167{
168	struct rt2x00_dev *rt2x00dev =
169	    container_of(work, struct rt2x00_dev, autowakeup_work.work);
170
171	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
172		return;
173
174	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
175		rt2x00_err(rt2x00dev, "Device failed to wakeup\n");
176	clear_bit(CONFIG_POWERSAVING, &rt2x00dev->flags);
177}
178
179/*
180 * Interrupt context handlers.
181 */
182static void rt2x00lib_bc_buffer_iter(void *data, u8 *mac,
183				     struct ieee80211_vif *vif)
184{
185	struct ieee80211_tx_control control = {};
186	struct rt2x00_dev *rt2x00dev = data;
187	struct sk_buff *skb;
188
189	/*
190	 * Only AP mode interfaces do broad- and multicast buffering
191	 */
192	if (vif->type != NL80211_IFTYPE_AP)
193		return;
194
195	/*
196	 * Send out buffered broad- and multicast frames
197	 */
198	skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
199	while (skb) {
200		rt2x00mac_tx(rt2x00dev->hw, &control, skb);
201		skb = ieee80211_get_buffered_bc(rt2x00dev->hw, vif);
202	}
203}
204
205static void rt2x00lib_beaconupdate_iter(void *data, u8 *mac,
206					struct ieee80211_vif *vif)
207{
208	struct rt2x00_dev *rt2x00dev = data;
209
210	if (vif->type != NL80211_IFTYPE_AP &&
211	    vif->type != NL80211_IFTYPE_ADHOC &&
212	    vif->type != NL80211_IFTYPE_MESH_POINT &&
213	    vif->type != NL80211_IFTYPE_WDS)
214		return;
215
216	/*
217	 * Update the beacon without locking. This is safe on PCI devices
218	 * as they only update the beacon periodically here. This should
219	 * never be called for USB devices.
220	 */
221	WARN_ON(rt2x00_is_usb(rt2x00dev));
222	rt2x00queue_update_beacon(rt2x00dev, vif);
223}
224
225void rt2x00lib_beacondone(struct rt2x00_dev *rt2x00dev)
226{
227	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
228		return;
229
230	/* send buffered bc/mc frames out for every bssid */
231	ieee80211_iterate_active_interfaces_atomic(
232		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
233		rt2x00lib_bc_buffer_iter, rt2x00dev);
234	/*
235	 * Devices with pre tbtt interrupt don't need to update the beacon
236	 * here as they will fetch the next beacon directly prior to
237	 * transmission.
238	 */
239	if (rt2x00_has_cap_pre_tbtt_interrupt(rt2x00dev))
240		return;
241
242	/* fetch next beacon */
243	ieee80211_iterate_active_interfaces_atomic(
244		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
245		rt2x00lib_beaconupdate_iter, rt2x00dev);
246}
247EXPORT_SYMBOL_GPL(rt2x00lib_beacondone);
248
249void rt2x00lib_pretbtt(struct rt2x00_dev *rt2x00dev)
250{
251	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
252		return;
253
254	/* fetch next beacon */
255	ieee80211_iterate_active_interfaces_atomic(
256		rt2x00dev->hw, IEEE80211_IFACE_ITER_RESUME_ALL,
257		rt2x00lib_beaconupdate_iter, rt2x00dev);
258}
259EXPORT_SYMBOL_GPL(rt2x00lib_pretbtt);
260
261void rt2x00lib_dmastart(struct queue_entry *entry)
262{
263	set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
264	rt2x00queue_index_inc(entry, Q_INDEX);
265}
266EXPORT_SYMBOL_GPL(rt2x00lib_dmastart);
267
268void rt2x00lib_dmadone(struct queue_entry *entry)
269{
270	set_bit(ENTRY_DATA_STATUS_PENDING, &entry->flags);
271	clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
272	rt2x00queue_index_inc(entry, Q_INDEX_DMA_DONE);
273}
274EXPORT_SYMBOL_GPL(rt2x00lib_dmadone);
275
276static inline int rt2x00lib_txdone_bar_status(struct queue_entry *entry)
277{
278	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
279	struct ieee80211_bar *bar = (void *) entry->skb->data;
280	struct rt2x00_bar_list_entry *bar_entry;
281	int ret;
282
283	if (likely(!ieee80211_is_back_req(bar->frame_control)))
284		return 0;
285
286	/*
287	 * Unlike all other frames, the status report for BARs does
288	 * not directly come from the hardware as it is incapable of
289	 * matching a BA to a previously send BAR. The hardware will
290	 * report all BARs as if they weren't acked at all.
291	 *
292	 * Instead the RX-path will scan for incoming BAs and set the
293	 * block_acked flag if it sees one that was likely caused by
294	 * a BAR from us.
295	 *
296	 * Remove remaining BARs here and return their status for
297	 * TX done processing.
298	 */
299	ret = 0;
300	rcu_read_lock();
301	list_for_each_entry_rcu(bar_entry, &rt2x00dev->bar_list, list) {
302		if (bar_entry->entry != entry)
303			continue;
304
305		spin_lock_bh(&rt2x00dev->bar_list_lock);
306		/* Return whether this BAR was blockacked or not */
307		ret = bar_entry->block_acked;
308		/* Remove the BAR from our checklist */
309		list_del_rcu(&bar_entry->list);
310		spin_unlock_bh(&rt2x00dev->bar_list_lock);
311		kfree_rcu(bar_entry, head);
312
313		break;
314	}
315	rcu_read_unlock();
316
317	return ret;
318}
319
320void rt2x00lib_txdone(struct queue_entry *entry,
321		      struct txdone_entry_desc *txdesc)
322{
323	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
324	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
325	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
326	unsigned int header_length, i;
327	u8 rate_idx, rate_flags, retry_rates;
328	u8 skbdesc_flags = skbdesc->flags;
329	bool success;
330
331	/*
332	 * Unmap the skb.
333	 */
334	rt2x00queue_unmap_skb(entry);
335
336	/*
337	 * Remove the extra tx headroom from the skb.
338	 */
339	skb_pull(entry->skb, rt2x00dev->extra_tx_headroom);
340
341	/*
342	 * Signal that the TX descriptor is no longer in the skb.
343	 */
344	skbdesc->flags &= ~SKBDESC_DESC_IN_SKB;
345
346	/*
347	 * Determine the length of 802.11 header.
348	 */
349	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
350
351	/*
352	 * Remove L2 padding which was added during
353	 */
354	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
355		rt2x00queue_remove_l2pad(entry->skb, header_length);
356
357	/*
358	 * If the IV/EIV data was stripped from the frame before it was
359	 * passed to the hardware, we should now reinsert it again because
360	 * mac80211 will expect the same data to be present it the
361	 * frame as it was passed to us.
362	 */
363	if (rt2x00_has_cap_hw_crypto(rt2x00dev))
364		rt2x00crypto_tx_insert_iv(entry->skb, header_length);
365
366	/*
367	 * Send frame to debugfs immediately, after this call is completed
368	 * we are going to overwrite the skb->cb array.
369	 */
370	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TXDONE, entry->skb);
371
372	/*
373	 * Determine if the frame has been successfully transmitted and
374	 * remove BARs from our check list while checking for their
375	 * TX status.
376	 */
377	success =
378	    rt2x00lib_txdone_bar_status(entry) ||
379	    test_bit(TXDONE_SUCCESS, &txdesc->flags) ||
380	    test_bit(TXDONE_UNKNOWN, &txdesc->flags);
381
382	/*
383	 * Update TX statistics.
384	 */
385	rt2x00dev->link.qual.tx_success += success;
386	rt2x00dev->link.qual.tx_failed += !success;
387
388	rate_idx = skbdesc->tx_rate_idx;
389	rate_flags = skbdesc->tx_rate_flags;
390	retry_rates = test_bit(TXDONE_FALLBACK, &txdesc->flags) ?
391	    (txdesc->retry + 1) : 1;
392
393	/*
394	 * Initialize TX status
395	 */
396	memset(&tx_info->status, 0, sizeof(tx_info->status));
397	tx_info->status.ack_signal = 0;
398
399	/*
400	 * Frame was send with retries, hardware tried
401	 * different rates to send out the frame, at each
402	 * retry it lowered the rate 1 step except when the
403	 * lowest rate was used.
404	 */
405	for (i = 0; i < retry_rates && i < IEEE80211_TX_MAX_RATES; i++) {
406		tx_info->status.rates[i].idx = rate_idx - i;
407		tx_info->status.rates[i].flags = rate_flags;
408
409		if (rate_idx - i == 0) {
410			/*
411			 * The lowest rate (index 0) was used until the
412			 * number of max retries was reached.
413			 */
414			tx_info->status.rates[i].count = retry_rates - i;
415			i++;
416			break;
417		}
418		tx_info->status.rates[i].count = 1;
419	}
420	if (i < (IEEE80211_TX_MAX_RATES - 1))
421		tx_info->status.rates[i].idx = -1; /* terminate */
422
423	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK)) {
424		if (success)
425			tx_info->flags |= IEEE80211_TX_STAT_ACK;
426		else
427			rt2x00dev->low_level_stats.dot11ACKFailureCount++;
428	}
429
430	/*
431	 * Every single frame has it's own tx status, hence report
432	 * every frame as ampdu of size 1.
433	 *
434	 * TODO: if we can find out how many frames were aggregated
435	 * by the hw we could provide the real ampdu_len to mac80211
436	 * which would allow the rc algorithm to better decide on
437	 * which rates are suitable.
438	 */
439	if (test_bit(TXDONE_AMPDU, &txdesc->flags) ||
440	    tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
441		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
442		tx_info->status.ampdu_len = 1;
443		tx_info->status.ampdu_ack_len = success ? 1 : 0;
444
445		if (!success)
446			tx_info->flags |= IEEE80211_TX_STAT_AMPDU_NO_BACK;
447	}
448
449	if (rate_flags & IEEE80211_TX_RC_USE_RTS_CTS) {
450		if (success)
451			rt2x00dev->low_level_stats.dot11RTSSuccessCount++;
452		else
453			rt2x00dev->low_level_stats.dot11RTSFailureCount++;
454	}
455
456	/*
457	 * Only send the status report to mac80211 when it's a frame
458	 * that originated in mac80211. If this was a extra frame coming
459	 * through a mac80211 library call (RTS/CTS) then we should not
460	 * send the status report back.
461	 */
462	if (!(skbdesc_flags & SKBDESC_NOT_MAC80211)) {
463		if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TASKLET_CONTEXT))
464			ieee80211_tx_status(rt2x00dev->hw, entry->skb);
465		else
466			ieee80211_tx_status_ni(rt2x00dev->hw, entry->skb);
467	} else
468		dev_kfree_skb_any(entry->skb);
469
470	/*
471	 * Make this entry available for reuse.
472	 */
473	entry->skb = NULL;
474	entry->flags = 0;
475
476	rt2x00dev->ops->lib->clear_entry(entry);
477
478	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
479
480	/*
481	 * If the data queue was below the threshold before the txdone
482	 * handler we must make sure the packet queue in the mac80211 stack
483	 * is reenabled when the txdone handler has finished. This has to be
484	 * serialized with rt2x00mac_tx(), otherwise we can wake up queue
485	 * before it was stopped.
486	 */
487	spin_lock_bh(&entry->queue->tx_lock);
488	if (!rt2x00queue_threshold(entry->queue))
489		rt2x00queue_unpause_queue(entry->queue);
490	spin_unlock_bh(&entry->queue->tx_lock);
491}
492EXPORT_SYMBOL_GPL(rt2x00lib_txdone);
493
494void rt2x00lib_txdone_noinfo(struct queue_entry *entry, u32 status)
495{
496	struct txdone_entry_desc txdesc;
497
498	txdesc.flags = 0;
499	__set_bit(status, &txdesc.flags);
500	txdesc.retry = 0;
501
502	rt2x00lib_txdone(entry, &txdesc);
503}
504EXPORT_SYMBOL_GPL(rt2x00lib_txdone_noinfo);
505
506static u8 *rt2x00lib_find_ie(u8 *data, unsigned int len, u8 ie)
507{
508	struct ieee80211_mgmt *mgmt = (void *)data;
509	u8 *pos, *end;
510
511	pos = (u8 *)mgmt->u.beacon.variable;
512	end = data + len;
513	while (pos < end) {
514		if (pos + 2 + pos[1] > end)
515			return NULL;
516
517		if (pos[0] == ie)
518			return pos;
519
520		pos += 2 + pos[1];
521	}
522
523	return NULL;
524}
525
526static void rt2x00lib_sleep(struct work_struct *work)
527{
528	struct rt2x00_dev *rt2x00dev =
529	    container_of(work, struct rt2x00_dev, sleep_work);
530
531	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
532		return;
533
534	/*
535	 * Check again is powersaving is enabled, to prevent races from delayed
536	 * work execution.
537	 */
538	if (!test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
539		rt2x00lib_config(rt2x00dev, &rt2x00dev->hw->conf,
540				 IEEE80211_CONF_CHANGE_PS);
541}
542
543static void rt2x00lib_rxdone_check_ba(struct rt2x00_dev *rt2x00dev,
544				      struct sk_buff *skb,
545				      struct rxdone_entry_desc *rxdesc)
546{
547	struct rt2x00_bar_list_entry *entry;
548	struct ieee80211_bar *ba = (void *)skb->data;
549
550	if (likely(!ieee80211_is_back(ba->frame_control)))
551		return;
552
553	if (rxdesc->size < sizeof(*ba) + FCS_LEN)
554		return;
555
556	rcu_read_lock();
557	list_for_each_entry_rcu(entry, &rt2x00dev->bar_list, list) {
558
559		if (ba->start_seq_num != entry->start_seq_num)
560			continue;
561
562#define TID_CHECK(a, b) (						\
563	((a) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)) ==	\
564	((b) & cpu_to_le16(IEEE80211_BAR_CTRL_TID_INFO_MASK)))		\
565
566		if (!TID_CHECK(ba->control, entry->control))
567			continue;
568
569#undef TID_CHECK
570
571		if (!ether_addr_equal_64bits(ba->ra, entry->ta))
572			continue;
573
574		if (!ether_addr_equal_64bits(ba->ta, entry->ra))
575			continue;
576
577		/* Mark BAR since we received the according BA */
578		spin_lock_bh(&rt2x00dev->bar_list_lock);
579		entry->block_acked = 1;
580		spin_unlock_bh(&rt2x00dev->bar_list_lock);
581		break;
582	}
583	rcu_read_unlock();
584
585}
586
587static void rt2x00lib_rxdone_check_ps(struct rt2x00_dev *rt2x00dev,
588				      struct sk_buff *skb,
589				      struct rxdone_entry_desc *rxdesc)
590{
591	struct ieee80211_hdr *hdr = (void *) skb->data;
592	struct ieee80211_tim_ie *tim_ie;
593	u8 *tim;
594	u8 tim_len;
595	bool cam;
596
597	/* If this is not a beacon, or if mac80211 has no powersaving
598	 * configured, or if the device is already in powersaving mode
599	 * we can exit now. */
600	if (likely(!ieee80211_is_beacon(hdr->frame_control) ||
601		   !(rt2x00dev->hw->conf.flags & IEEE80211_CONF_PS)))
602		return;
603
604	/* min. beacon length + FCS_LEN */
605	if (skb->len <= 40 + FCS_LEN)
606		return;
607
608	/* and only beacons from the associated BSSID, please */
609	if (!(rxdesc->dev_flags & RXDONE_MY_BSS) ||
610	    !rt2x00dev->aid)
611		return;
612
613	rt2x00dev->last_beacon = jiffies;
614
615	tim = rt2x00lib_find_ie(skb->data, skb->len - FCS_LEN, WLAN_EID_TIM);
616	if (!tim)
617		return;
618
619	if (tim[1] < sizeof(*tim_ie))
620		return;
621
622	tim_len = tim[1];
623	tim_ie = (struct ieee80211_tim_ie *) &tim[2];
624
625	/* Check whenever the PHY can be turned off again. */
626
627	/* 1. What about buffered unicast traffic for our AID? */
628	cam = ieee80211_check_tim(tim_ie, tim_len, rt2x00dev->aid);
629
630	/* 2. Maybe the AP wants to send multicast/broadcast data? */
631	cam |= (tim_ie->bitmap_ctrl & 0x01);
632
633	if (!cam && !test_bit(CONFIG_POWERSAVING, &rt2x00dev->flags))
634		queue_work(rt2x00dev->workqueue, &rt2x00dev->sleep_work);
635}
636
637static int rt2x00lib_rxdone_read_signal(struct rt2x00_dev *rt2x00dev,
638					struct rxdone_entry_desc *rxdesc)
639{
640	struct ieee80211_supported_band *sband;
641	const struct rt2x00_rate *rate;
642	unsigned int i;
643	int signal = rxdesc->signal;
644	int type = (rxdesc->dev_flags & RXDONE_SIGNAL_MASK);
645
646	switch (rxdesc->rate_mode) {
647	case RATE_MODE_CCK:
648	case RATE_MODE_OFDM:
649		/*
650		 * For non-HT rates the MCS value needs to contain the
651		 * actually used rate modulation (CCK or OFDM).
652		 */
653		if (rxdesc->dev_flags & RXDONE_SIGNAL_MCS)
654			signal = RATE_MCS(rxdesc->rate_mode, signal);
655
656		sband = &rt2x00dev->bands[rt2x00dev->curr_band];
657		for (i = 0; i < sband->n_bitrates; i++) {
658			rate = rt2x00_get_rate(sband->bitrates[i].hw_value);
659			if (((type == RXDONE_SIGNAL_PLCP) &&
660			     (rate->plcp == signal)) ||
661			    ((type == RXDONE_SIGNAL_BITRATE) &&
662			      (rate->bitrate == signal)) ||
663			    ((type == RXDONE_SIGNAL_MCS) &&
664			      (rate->mcs == signal))) {
665				return i;
666			}
667		}
668		break;
669	case RATE_MODE_HT_MIX:
670	case RATE_MODE_HT_GREENFIELD:
671		if (signal >= 0 && signal <= 76)
672			return signal;
673		break;
674	default:
675		break;
676	}
677
678	rt2x00_warn(rt2x00dev, "Frame received with unrecognized signal, mode=0x%.4x, signal=0x%.4x, type=%d\n",
679		    rxdesc->rate_mode, signal, type);
680	return 0;
681}
682
683void rt2x00lib_rxdone(struct queue_entry *entry, gfp_t gfp)
684{
685	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
686	struct rxdone_entry_desc rxdesc;
687	struct sk_buff *skb;
688	struct ieee80211_rx_status *rx_status;
689	unsigned int header_length;
690	int rate_idx;
691
692	if (!test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) ||
693	    !test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
694		goto submit_entry;
695
696	if (test_bit(ENTRY_DATA_IO_FAILED, &entry->flags))
697		goto submit_entry;
698
699	/*
700	 * Allocate a new sk_buffer. If no new buffer available, drop the
701	 * received frame and reuse the existing buffer.
702	 */
703	skb = rt2x00queue_alloc_rxskb(entry, gfp);
704	if (!skb)
705		goto submit_entry;
706
707	/*
708	 * Unmap the skb.
709	 */
710	rt2x00queue_unmap_skb(entry);
711
712	/*
713	 * Extract the RXD details.
714	 */
715	memset(&rxdesc, 0, sizeof(rxdesc));
716	rt2x00dev->ops->lib->fill_rxdone(entry, &rxdesc);
717
718	/*
719	 * Check for valid size in case we get corrupted descriptor from
720	 * hardware.
721	 */
722	if (unlikely(rxdesc.size == 0 ||
723		     rxdesc.size > entry->queue->data_size)) {
724		rt2x00_err(rt2x00dev, "Wrong frame size %d max %d\n",
725			   rxdesc.size, entry->queue->data_size);
726		dev_kfree_skb(entry->skb);
727		goto renew_skb;
728	}
729
730	/*
731	 * The data behind the ieee80211 header must be
732	 * aligned on a 4 byte boundary.
733	 */
734	header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
735
736	/*
737	 * Hardware might have stripped the IV/EIV/ICV data,
738	 * in that case it is possible that the data was
739	 * provided separately (through hardware descriptor)
740	 * in which case we should reinsert the data into the frame.
741	 */
742	if ((rxdesc.dev_flags & RXDONE_CRYPTO_IV) &&
743	    (rxdesc.flags & RX_FLAG_IV_STRIPPED))
744		rt2x00crypto_rx_insert_iv(entry->skb, header_length,
745					  &rxdesc);
746	else if (header_length &&
747		 (rxdesc.size > header_length) &&
748		 (rxdesc.dev_flags & RXDONE_L2PAD))
749		rt2x00queue_remove_l2pad(entry->skb, header_length);
750
751	/* Trim buffer to correct size */
752	skb_trim(entry->skb, rxdesc.size);
753
754	/*
755	 * Translate the signal to the correct bitrate index.
756	 */
757	rate_idx = rt2x00lib_rxdone_read_signal(rt2x00dev, &rxdesc);
758	if (rxdesc.rate_mode == RATE_MODE_HT_MIX ||
759	    rxdesc.rate_mode == RATE_MODE_HT_GREENFIELD)
760		rxdesc.flags |= RX_FLAG_HT;
761
762	/*
763	 * Check if this is a beacon, and more frames have been
764	 * buffered while we were in powersaving mode.
765	 */
766	rt2x00lib_rxdone_check_ps(rt2x00dev, entry->skb, &rxdesc);
767
768	/*
769	 * Check for incoming BlockAcks to match to the BlockAckReqs
770	 * we've send out.
771	 */
772	rt2x00lib_rxdone_check_ba(rt2x00dev, entry->skb, &rxdesc);
773
774	/*
775	 * Update extra components
776	 */
777	rt2x00link_update_stats(rt2x00dev, entry->skb, &rxdesc);
778	rt2x00debug_update_crypto(rt2x00dev, &rxdesc);
779	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_RXDONE, entry->skb);
780
781	/*
782	 * Initialize RX status information, and send frame
783	 * to mac80211.
784	 */
785	rx_status = IEEE80211_SKB_RXCB(entry->skb);
786
787	/* Ensure that all fields of rx_status are initialized
788	 * properly. The skb->cb array was used for driver
789	 * specific informations, so rx_status might contain
790	 * garbage.
791	 */
792	memset(rx_status, 0, sizeof(*rx_status));
793
794	rx_status->mactime = rxdesc.timestamp;
795	rx_status->band = rt2x00dev->curr_band;
796	rx_status->freq = rt2x00dev->curr_freq;
797	rx_status->rate_idx = rate_idx;
798	rx_status->signal = rxdesc.rssi;
799	rx_status->flag = rxdesc.flags;
800	rx_status->antenna = rt2x00dev->link.ant.active.rx;
801
802	ieee80211_rx_ni(rt2x00dev->hw, entry->skb);
803
804renew_skb:
805	/*
806	 * Replace the skb with the freshly allocated one.
807	 */
808	entry->skb = skb;
809
810submit_entry:
811	entry->flags = 0;
812	rt2x00queue_index_inc(entry, Q_INDEX_DONE);
813	if (test_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags) &&
814	    test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
815		rt2x00dev->ops->lib->clear_entry(entry);
816}
817EXPORT_SYMBOL_GPL(rt2x00lib_rxdone);
818
819/*
820 * Driver initialization handlers.
821 */
822const struct rt2x00_rate rt2x00_supported_rates[12] = {
823	{
824		.flags = DEV_RATE_CCK,
825		.bitrate = 10,
826		.ratemask = BIT(0),
827		.plcp = 0x00,
828		.mcs = RATE_MCS(RATE_MODE_CCK, 0),
829	},
830	{
831		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
832		.bitrate = 20,
833		.ratemask = BIT(1),
834		.plcp = 0x01,
835		.mcs = RATE_MCS(RATE_MODE_CCK, 1),
836	},
837	{
838		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
839		.bitrate = 55,
840		.ratemask = BIT(2),
841		.plcp = 0x02,
842		.mcs = RATE_MCS(RATE_MODE_CCK, 2),
843	},
844	{
845		.flags = DEV_RATE_CCK | DEV_RATE_SHORT_PREAMBLE,
846		.bitrate = 110,
847		.ratemask = BIT(3),
848		.plcp = 0x03,
849		.mcs = RATE_MCS(RATE_MODE_CCK, 3),
850	},
851	{
852		.flags = DEV_RATE_OFDM,
853		.bitrate = 60,
854		.ratemask = BIT(4),
855		.plcp = 0x0b,
856		.mcs = RATE_MCS(RATE_MODE_OFDM, 0),
857	},
858	{
859		.flags = DEV_RATE_OFDM,
860		.bitrate = 90,
861		.ratemask = BIT(5),
862		.plcp = 0x0f,
863		.mcs = RATE_MCS(RATE_MODE_OFDM, 1),
864	},
865	{
866		.flags = DEV_RATE_OFDM,
867		.bitrate = 120,
868		.ratemask = BIT(6),
869		.plcp = 0x0a,
870		.mcs = RATE_MCS(RATE_MODE_OFDM, 2),
871	},
872	{
873		.flags = DEV_RATE_OFDM,
874		.bitrate = 180,
875		.ratemask = BIT(7),
876		.plcp = 0x0e,
877		.mcs = RATE_MCS(RATE_MODE_OFDM, 3),
878	},
879	{
880		.flags = DEV_RATE_OFDM,
881		.bitrate = 240,
882		.ratemask = BIT(8),
883		.plcp = 0x09,
884		.mcs = RATE_MCS(RATE_MODE_OFDM, 4),
885	},
886	{
887		.flags = DEV_RATE_OFDM,
888		.bitrate = 360,
889		.ratemask = BIT(9),
890		.plcp = 0x0d,
891		.mcs = RATE_MCS(RATE_MODE_OFDM, 5),
892	},
893	{
894		.flags = DEV_RATE_OFDM,
895		.bitrate = 480,
896		.ratemask = BIT(10),
897		.plcp = 0x08,
898		.mcs = RATE_MCS(RATE_MODE_OFDM, 6),
899	},
900	{
901		.flags = DEV_RATE_OFDM,
902		.bitrate = 540,
903		.ratemask = BIT(11),
904		.plcp = 0x0c,
905		.mcs = RATE_MCS(RATE_MODE_OFDM, 7),
906	},
907};
908
909static void rt2x00lib_channel(struct ieee80211_channel *entry,
910			      const int channel, const int tx_power,
911			      const int value)
912{
913	/* XXX: this assumption about the band is wrong for 802.11j */
914	entry->band = channel <= 14 ? IEEE80211_BAND_2GHZ : IEEE80211_BAND_5GHZ;
915	entry->center_freq = ieee80211_channel_to_frequency(channel,
916							    entry->band);
917	entry->hw_value = value;
918	entry->max_power = tx_power;
919	entry->max_antenna_gain = 0xff;
920}
921
922static void rt2x00lib_rate(struct ieee80211_rate *entry,
923			   const u16 index, const struct rt2x00_rate *rate)
924{
925	entry->flags = 0;
926	entry->bitrate = rate->bitrate;
927	entry->hw_value = index;
928	entry->hw_value_short = index;
929
930	if (rate->flags & DEV_RATE_SHORT_PREAMBLE)
931		entry->flags |= IEEE80211_RATE_SHORT_PREAMBLE;
932}
933
934static int rt2x00lib_probe_hw_modes(struct rt2x00_dev *rt2x00dev,
935				    struct hw_mode_spec *spec)
936{
937	struct ieee80211_hw *hw = rt2x00dev->hw;
938	struct ieee80211_channel *channels;
939	struct ieee80211_rate *rates;
940	unsigned int num_rates;
941	unsigned int i;
942
943	num_rates = 0;
944	if (spec->supported_rates & SUPPORT_RATE_CCK)
945		num_rates += 4;
946	if (spec->supported_rates & SUPPORT_RATE_OFDM)
947		num_rates += 8;
948
949	channels = kcalloc(spec->num_channels, sizeof(*channels), GFP_KERNEL);
950	if (!channels)
951		return -ENOMEM;
952
953	rates = kcalloc(num_rates, sizeof(*rates), GFP_KERNEL);
954	if (!rates)
955		goto exit_free_channels;
956
957	/*
958	 * Initialize Rate list.
959	 */
960	for (i = 0; i < num_rates; i++)
961		rt2x00lib_rate(&rates[i], i, rt2x00_get_rate(i));
962
963	/*
964	 * Initialize Channel list.
965	 */
966	for (i = 0; i < spec->num_channels; i++) {
967		rt2x00lib_channel(&channels[i],
968				  spec->channels[i].channel,
969				  spec->channels_info[i].max_power, i);
970	}
971
972	/*
973	 * Intitialize 802.11b, 802.11g
974	 * Rates: CCK, OFDM.
975	 * Channels: 2.4 GHz
976	 */
977	if (spec->supported_bands & SUPPORT_BAND_2GHZ) {
978		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_channels = 14;
979		rt2x00dev->bands[IEEE80211_BAND_2GHZ].n_bitrates = num_rates;
980		rt2x00dev->bands[IEEE80211_BAND_2GHZ].channels = channels;
981		rt2x00dev->bands[IEEE80211_BAND_2GHZ].bitrates = rates;
982		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
983		    &rt2x00dev->bands[IEEE80211_BAND_2GHZ];
984		memcpy(&rt2x00dev->bands[IEEE80211_BAND_2GHZ].ht_cap,
985		       &spec->ht, sizeof(spec->ht));
986	}
987
988	/*
989	 * Intitialize 802.11a
990	 * Rates: OFDM.
991	 * Channels: OFDM, UNII, HiperLAN2.
992	 */
993	if (spec->supported_bands & SUPPORT_BAND_5GHZ) {
994		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_channels =
995		    spec->num_channels - 14;
996		rt2x00dev->bands[IEEE80211_BAND_5GHZ].n_bitrates =
997		    num_rates - 4;
998		rt2x00dev->bands[IEEE80211_BAND_5GHZ].channels = &channels[14];
999		rt2x00dev->bands[IEEE80211_BAND_5GHZ].bitrates = &rates[4];
1000		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
1001		    &rt2x00dev->bands[IEEE80211_BAND_5GHZ];
1002		memcpy(&rt2x00dev->bands[IEEE80211_BAND_5GHZ].ht_cap,
1003		       &spec->ht, sizeof(spec->ht));
1004	}
1005
1006	return 0;
1007
1008 exit_free_channels:
1009	kfree(channels);
1010	rt2x00_err(rt2x00dev, "Allocation ieee80211 modes failed\n");
1011	return -ENOMEM;
1012}
1013
1014static void rt2x00lib_remove_hw(struct rt2x00_dev *rt2x00dev)
1015{
1016	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1017		ieee80211_unregister_hw(rt2x00dev->hw);
1018
1019	if (likely(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ])) {
1020		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->channels);
1021		kfree(rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ]->bitrates);
1022		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_2GHZ] = NULL;
1023		rt2x00dev->hw->wiphy->bands[IEEE80211_BAND_5GHZ] = NULL;
1024	}
1025
1026	kfree(rt2x00dev->spec.channels_info);
1027}
1028
1029static int rt2x00lib_probe_hw(struct rt2x00_dev *rt2x00dev)
1030{
1031	struct hw_mode_spec *spec = &rt2x00dev->spec;
1032	int status;
1033
1034	if (test_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags))
1035		return 0;
1036
1037	/*
1038	 * Initialize HW modes.
1039	 */
1040	status = rt2x00lib_probe_hw_modes(rt2x00dev, spec);
1041	if (status)
1042		return status;
1043
1044	/*
1045	 * Initialize HW fields.
1046	 */
1047	rt2x00dev->hw->queues = rt2x00dev->ops->tx_queues;
1048
1049	/*
1050	 * Initialize extra TX headroom required.
1051	 */
1052	rt2x00dev->hw->extra_tx_headroom =
1053		max_t(unsigned int, IEEE80211_TX_STATUS_HEADROOM,
1054		      rt2x00dev->extra_tx_headroom);
1055
1056	/*
1057	 * Take TX headroom required for alignment into account.
1058	 */
1059	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_L2PAD))
1060		rt2x00dev->hw->extra_tx_headroom += RT2X00_L2PAD_SIZE;
1061	else if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA))
1062		rt2x00dev->hw->extra_tx_headroom += RT2X00_ALIGN_SIZE;
1063
1064	/*
1065	 * Tell mac80211 about the size of our private STA structure.
1066	 */
1067	rt2x00dev->hw->sta_data_size = sizeof(struct rt2x00_sta);
1068
1069	/*
1070	 * Allocate tx status FIFO for driver use.
1071	 */
1072	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_TXSTATUS_FIFO)) {
1073		/*
1074		 * Allocate the txstatus fifo. In the worst case the tx
1075		 * status fifo has to hold the tx status of all entries
1076		 * in all tx queues. Hence, calculate the kfifo size as
1077		 * tx_queues * entry_num and round up to the nearest
1078		 * power of 2.
1079		 */
1080		int kfifo_size =
1081			roundup_pow_of_two(rt2x00dev->ops->tx_queues *
1082					   rt2x00dev->tx->limit *
1083					   sizeof(u32));
1084
1085		status = kfifo_alloc(&rt2x00dev->txstatus_fifo, kfifo_size,
1086				     GFP_KERNEL);
1087		if (status)
1088			return status;
1089	}
1090
1091	/*
1092	 * Initialize tasklets if used by the driver. Tasklets are
1093	 * disabled until the interrupts are turned on. The driver
1094	 * has to handle that.
1095	 */
1096#define RT2X00_TASKLET_INIT(taskletname) \
1097	if (rt2x00dev->ops->lib->taskletname) { \
1098		tasklet_init(&rt2x00dev->taskletname, \
1099			     rt2x00dev->ops->lib->taskletname, \
1100			     (unsigned long)rt2x00dev); \
1101	}
1102
1103	RT2X00_TASKLET_INIT(txstatus_tasklet);
1104	RT2X00_TASKLET_INIT(pretbtt_tasklet);
1105	RT2X00_TASKLET_INIT(tbtt_tasklet);
1106	RT2X00_TASKLET_INIT(rxdone_tasklet);
1107	RT2X00_TASKLET_INIT(autowake_tasklet);
1108
1109#undef RT2X00_TASKLET_INIT
1110
1111	/*
1112	 * Register HW.
1113	 */
1114	status = ieee80211_register_hw(rt2x00dev->hw);
1115	if (status)
1116		return status;
1117
1118	set_bit(DEVICE_STATE_REGISTERED_HW, &rt2x00dev->flags);
1119
1120	return 0;
1121}
1122
1123/*
1124 * Initialization/uninitialization handlers.
1125 */
1126static void rt2x00lib_uninitialize(struct rt2x00_dev *rt2x00dev)
1127{
1128	if (!test_and_clear_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1129		return;
1130
1131	/*
1132	 * Stop rfkill polling.
1133	 */
1134	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1135		rt2x00rfkill_unregister(rt2x00dev);
1136
1137	/*
1138	 * Allow the HW to uninitialize.
1139	 */
1140	rt2x00dev->ops->lib->uninitialize(rt2x00dev);
1141
1142	/*
1143	 * Free allocated queue entries.
1144	 */
1145	rt2x00queue_uninitialize(rt2x00dev);
1146}
1147
1148static int rt2x00lib_initialize(struct rt2x00_dev *rt2x00dev)
1149{
1150	int status;
1151
1152	if (test_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags))
1153		return 0;
1154
1155	/*
1156	 * Allocate all queue entries.
1157	 */
1158	status = rt2x00queue_initialize(rt2x00dev);
1159	if (status)
1160		return status;
1161
1162	/*
1163	 * Initialize the device.
1164	 */
1165	status = rt2x00dev->ops->lib->initialize(rt2x00dev);
1166	if (status) {
1167		rt2x00queue_uninitialize(rt2x00dev);
1168		return status;
1169	}
1170
1171	set_bit(DEVICE_STATE_INITIALIZED, &rt2x00dev->flags);
1172
1173	/*
1174	 * Start rfkill polling.
1175	 */
1176	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1177		rt2x00rfkill_register(rt2x00dev);
1178
1179	return 0;
1180}
1181
1182int rt2x00lib_start(struct rt2x00_dev *rt2x00dev)
1183{
1184	int retval;
1185
1186	if (test_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1187		return 0;
1188
1189	/*
1190	 * If this is the first interface which is added,
1191	 * we should load the firmware now.
1192	 */
1193	retval = rt2x00lib_load_firmware(rt2x00dev);
1194	if (retval)
1195		return retval;
1196
1197	/*
1198	 * Initialize the device.
1199	 */
1200	retval = rt2x00lib_initialize(rt2x00dev);
1201	if (retval)
1202		return retval;
1203
1204	rt2x00dev->intf_ap_count = 0;
1205	rt2x00dev->intf_sta_count = 0;
1206	rt2x00dev->intf_associated = 0;
1207
1208	/* Enable the radio */
1209	retval = rt2x00lib_enable_radio(rt2x00dev);
1210	if (retval)
1211		return retval;
1212
1213	set_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags);
1214
1215	return 0;
1216}
1217
1218void rt2x00lib_stop(struct rt2x00_dev *rt2x00dev)
1219{
1220	if (!test_and_clear_bit(DEVICE_STATE_STARTED, &rt2x00dev->flags))
1221		return;
1222
1223	/*
1224	 * Perhaps we can add something smarter here,
1225	 * but for now just disabling the radio should do.
1226	 */
1227	rt2x00lib_disable_radio(rt2x00dev);
1228
1229	rt2x00dev->intf_ap_count = 0;
1230	rt2x00dev->intf_sta_count = 0;
1231	rt2x00dev->intf_associated = 0;
1232}
1233
1234static inline void rt2x00lib_set_if_combinations(struct rt2x00_dev *rt2x00dev)
1235{
1236	struct ieee80211_iface_limit *if_limit;
1237	struct ieee80211_iface_combination *if_combination;
1238
1239	if (rt2x00dev->ops->max_ap_intf < 2)
1240		return;
1241
1242	/*
1243	 * Build up AP interface limits structure.
1244	 */
1245	if_limit = &rt2x00dev->if_limits_ap;
1246	if_limit->max = rt2x00dev->ops->max_ap_intf;
1247	if_limit->types = BIT(NL80211_IFTYPE_AP);
1248#ifdef CONFIG_MAC80211_MESH
1249	if_limit->types |= BIT(NL80211_IFTYPE_MESH_POINT);
1250#endif
1251
1252	/*
1253	 * Build up AP interface combinations structure.
1254	 */
1255	if_combination = &rt2x00dev->if_combinations[IF_COMB_AP];
1256	if_combination->limits = if_limit;
1257	if_combination->n_limits = 1;
1258	if_combination->max_interfaces = if_limit->max;
1259	if_combination->num_different_channels = 1;
1260
1261	/*
1262	 * Finally, specify the possible combinations to mac80211.
1263	 */
1264	rt2x00dev->hw->wiphy->iface_combinations = rt2x00dev->if_combinations;
1265	rt2x00dev->hw->wiphy->n_iface_combinations = 1;
1266}
1267
1268static unsigned int rt2x00dev_extra_tx_headroom(struct rt2x00_dev *rt2x00dev)
1269{
1270	if (WARN_ON(!rt2x00dev->tx))
1271		return 0;
1272
1273	if (rt2x00_is_usb(rt2x00dev))
1274		return rt2x00dev->tx[0].winfo_size + rt2x00dev->tx[0].desc_size;
1275
1276	return rt2x00dev->tx[0].winfo_size;
1277}
1278
1279/*
1280 * driver allocation handlers.
1281 */
1282int rt2x00lib_probe_dev(struct rt2x00_dev *rt2x00dev)
1283{
1284	int retval = -ENOMEM;
1285
1286	/*
1287	 * Set possible interface combinations.
1288	 */
1289	rt2x00lib_set_if_combinations(rt2x00dev);
1290
1291	/*
1292	 * Allocate the driver data memory, if necessary.
1293	 */
1294	if (rt2x00dev->ops->drv_data_size > 0) {
1295		rt2x00dev->drv_data = kzalloc(rt2x00dev->ops->drv_data_size,
1296			                      GFP_KERNEL);
1297		if (!rt2x00dev->drv_data) {
1298			retval = -ENOMEM;
1299			goto exit;
1300		}
1301	}
1302
1303	spin_lock_init(&rt2x00dev->irqmask_lock);
1304	mutex_init(&rt2x00dev->csr_mutex);
1305	INIT_LIST_HEAD(&rt2x00dev->bar_list);
1306	spin_lock_init(&rt2x00dev->bar_list_lock);
1307
1308	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1309
1310	/*
1311	 * Make room for rt2x00_intf inside the per-interface
1312	 * structure ieee80211_vif.
1313	 */
1314	rt2x00dev->hw->vif_data_size = sizeof(struct rt2x00_intf);
1315
1316	/*
1317	 * rt2x00 devices can only use the last n bits of the MAC address
1318	 * for virtual interfaces.
1319	 */
1320	rt2x00dev->hw->wiphy->addr_mask[ETH_ALEN - 1] =
1321		(rt2x00dev->ops->max_ap_intf - 1);
1322
1323	/*
1324	 * Initialize work.
1325	 */
1326	rt2x00dev->workqueue =
1327	    alloc_ordered_workqueue("%s", 0, wiphy_name(rt2x00dev->hw->wiphy));
1328	if (!rt2x00dev->workqueue) {
1329		retval = -ENOMEM;
1330		goto exit;
1331	}
1332
1333	INIT_WORK(&rt2x00dev->intf_work, rt2x00lib_intf_scheduled);
1334	INIT_DELAYED_WORK(&rt2x00dev->autowakeup_work, rt2x00lib_autowakeup);
1335	INIT_WORK(&rt2x00dev->sleep_work, rt2x00lib_sleep);
1336
1337	/*
1338	 * Let the driver probe the device to detect the capabilities.
1339	 */
1340	retval = rt2x00dev->ops->lib->probe_hw(rt2x00dev);
1341	if (retval) {
1342		rt2x00_err(rt2x00dev, "Failed to allocate device\n");
1343		goto exit;
1344	}
1345
1346	/*
1347	 * Allocate queue array.
1348	 */
1349	retval = rt2x00queue_allocate(rt2x00dev);
1350	if (retval)
1351		goto exit;
1352
1353	/* Cache TX headroom value */
1354	rt2x00dev->extra_tx_headroom = rt2x00dev_extra_tx_headroom(rt2x00dev);
1355
1356	/*
1357	 * Determine which operating modes are supported, all modes
1358	 * which require beaconing, depend on the availability of
1359	 * beacon entries.
1360	 */
1361	rt2x00dev->hw->wiphy->interface_modes = BIT(NL80211_IFTYPE_STATION);
1362	if (rt2x00dev->bcn->limit > 0)
1363		rt2x00dev->hw->wiphy->interface_modes |=
1364		    BIT(NL80211_IFTYPE_ADHOC) |
1365		    BIT(NL80211_IFTYPE_AP) |
1366#ifdef CONFIG_MAC80211_MESH
1367		    BIT(NL80211_IFTYPE_MESH_POINT) |
1368#endif
1369		    BIT(NL80211_IFTYPE_WDS);
1370
1371	rt2x00dev->hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
1372
1373	/*
1374	 * Initialize ieee80211 structure.
1375	 */
1376	retval = rt2x00lib_probe_hw(rt2x00dev);
1377	if (retval) {
1378		rt2x00_err(rt2x00dev, "Failed to initialize hw\n");
1379		goto exit;
1380	}
1381
1382	/*
1383	 * Register extra components.
1384	 */
1385	rt2x00link_register(rt2x00dev);
1386	rt2x00leds_register(rt2x00dev);
1387	rt2x00debug_register(rt2x00dev);
1388
1389	/*
1390	 * Start rfkill polling.
1391	 */
1392	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1393		rt2x00rfkill_register(rt2x00dev);
1394
1395	return 0;
1396
1397exit:
1398	rt2x00lib_remove_dev(rt2x00dev);
1399
1400	return retval;
1401}
1402EXPORT_SYMBOL_GPL(rt2x00lib_probe_dev);
1403
1404void rt2x00lib_remove_dev(struct rt2x00_dev *rt2x00dev)
1405{
1406	clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1407
1408	/*
1409	 * Stop rfkill polling.
1410	 */
1411	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DELAYED_RFKILL))
1412		rt2x00rfkill_unregister(rt2x00dev);
1413
1414	/*
1415	 * Disable radio.
1416	 */
1417	rt2x00lib_disable_radio(rt2x00dev);
1418
1419	/*
1420	 * Stop all work.
1421	 */
1422	cancel_work_sync(&rt2x00dev->intf_work);
1423	cancel_delayed_work_sync(&rt2x00dev->autowakeup_work);
1424	cancel_work_sync(&rt2x00dev->sleep_work);
1425	if (rt2x00_is_usb(rt2x00dev)) {
1426		hrtimer_cancel(&rt2x00dev->txstatus_timer);
1427		cancel_work_sync(&rt2x00dev->rxdone_work);
1428		cancel_work_sync(&rt2x00dev->txdone_work);
1429	}
1430	if (rt2x00dev->workqueue)
1431		destroy_workqueue(rt2x00dev->workqueue);
1432
1433	/*
1434	 * Free the tx status fifo.
1435	 */
1436	kfifo_free(&rt2x00dev->txstatus_fifo);
1437
1438	/*
1439	 * Kill the tx status tasklet.
1440	 */
1441	tasklet_kill(&rt2x00dev->txstatus_tasklet);
1442	tasklet_kill(&rt2x00dev->pretbtt_tasklet);
1443	tasklet_kill(&rt2x00dev->tbtt_tasklet);
1444	tasklet_kill(&rt2x00dev->rxdone_tasklet);
1445	tasklet_kill(&rt2x00dev->autowake_tasklet);
1446
1447	/*
1448	 * Uninitialize device.
1449	 */
1450	rt2x00lib_uninitialize(rt2x00dev);
1451
1452	/*
1453	 * Free extra components
1454	 */
1455	rt2x00debug_deregister(rt2x00dev);
1456	rt2x00leds_unregister(rt2x00dev);
1457
1458	/*
1459	 * Free ieee80211_hw memory.
1460	 */
1461	rt2x00lib_remove_hw(rt2x00dev);
1462
1463	/*
1464	 * Free firmware image.
1465	 */
1466	rt2x00lib_free_firmware(rt2x00dev);
1467
1468	/*
1469	 * Free queue structures.
1470	 */
1471	rt2x00queue_free(rt2x00dev);
1472
1473	/*
1474	 * Free the driver data.
1475	 */
1476	kfree(rt2x00dev->drv_data);
1477}
1478EXPORT_SYMBOL_GPL(rt2x00lib_remove_dev);
1479
1480/*
1481 * Device state handlers
1482 */
1483#ifdef CONFIG_PM
1484int rt2x00lib_suspend(struct rt2x00_dev *rt2x00dev, pm_message_t state)
1485{
1486	rt2x00_dbg(rt2x00dev, "Going to sleep\n");
1487
1488	/*
1489	 * Prevent mac80211 from accessing driver while suspended.
1490	 */
1491	if (!test_and_clear_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags))
1492		return 0;
1493
1494	/*
1495	 * Cleanup as much as possible.
1496	 */
1497	rt2x00lib_uninitialize(rt2x00dev);
1498
1499	/*
1500	 * Suspend/disable extra components.
1501	 */
1502	rt2x00leds_suspend(rt2x00dev);
1503	rt2x00debug_deregister(rt2x00dev);
1504
1505	/*
1506	 * Set device mode to sleep for power management,
1507	 * on some hardware this call seems to consistently fail.
1508	 * From the specifications it is hard to tell why it fails,
1509	 * and if this is a "bad thing".
1510	 * Overall it is safe to just ignore the failure and
1511	 * continue suspending. The only downside is that the
1512	 * device will not be in optimal power save mode, but with
1513	 * the radio and the other components already disabled the
1514	 * device is as good as disabled.
1515	 */
1516	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_SLEEP))
1517		rt2x00_warn(rt2x00dev, "Device failed to enter sleep state, continue suspending\n");
1518
1519	return 0;
1520}
1521EXPORT_SYMBOL_GPL(rt2x00lib_suspend);
1522
1523int rt2x00lib_resume(struct rt2x00_dev *rt2x00dev)
1524{
1525	rt2x00_dbg(rt2x00dev, "Waking up\n");
1526
1527	/*
1528	 * Restore/enable extra components.
1529	 */
1530	rt2x00debug_register(rt2x00dev);
1531	rt2x00leds_resume(rt2x00dev);
1532
1533	/*
1534	 * We are ready again to receive requests from mac80211.
1535	 */
1536	set_bit(DEVICE_STATE_PRESENT, &rt2x00dev->flags);
1537
1538	return 0;
1539}
1540EXPORT_SYMBOL_GPL(rt2x00lib_resume);
1541#endif /* CONFIG_PM */
1542
1543/*
1544 * rt2x00lib module information.
1545 */
1546MODULE_AUTHOR(DRV_PROJECT);
1547MODULE_VERSION(DRV_VERSION);
1548MODULE_DESCRIPTION("rt2x00 library");
1549MODULE_LICENSE("GPL");
1550