1/******************************************************************************
2 *
3 * Copyright(c) 2009-2012  Realtek Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms of version 2 of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110, USA
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called LICENSE.
20 *
21 * Contact Information:
22 * wlanfae <wlanfae@realtek.com>
23 * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
24 * Hsinchu 300, Taiwan.
25 *
26 * Larry Finger <Larry.Finger@lwfinger.net>
27 *
28 *****************************************************************************/
29
30#include "../wifi.h"
31#include "../efuse.h"
32#include "../base.h"
33#include "../regd.h"
34#include "../cam.h"
35#include "../ps.h"
36#include "../pci.h"
37#include "reg.h"
38#include "def.h"
39#include "phy.h"
40#include "dm.h"
41#include "fw.h"
42#include "led.h"
43#include "hw.h"
44
45void rtl92se_get_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
46{
47	struct rtl_priv *rtlpriv = rtl_priv(hw);
48	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
49	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
50
51	switch (variable) {
52	case HW_VAR_RCR: {
53			*((u32 *) (val)) = rtlpci->receive_config;
54			break;
55		}
56	case HW_VAR_RF_STATE: {
57			*((enum rf_pwrstate *)(val)) = ppsc->rfpwr_state;
58			break;
59		}
60	case HW_VAR_FW_PSMODE_STATUS: {
61			*((bool *) (val)) = ppsc->fw_current_inpsmode;
62			break;
63		}
64	case HW_VAR_CORRECT_TSF: {
65			u64 tsf;
66			u32 *ptsf_low = (u32 *)&tsf;
67			u32 *ptsf_high = ((u32 *)&tsf) + 1;
68
69			*ptsf_high = rtl_read_dword(rtlpriv, (TSFR + 4));
70			*ptsf_low = rtl_read_dword(rtlpriv, TSFR);
71
72			*((u64 *) (val)) = tsf;
73
74			break;
75		}
76	case HW_VAR_MRC: {
77			*((bool *)(val)) = rtlpriv->dm.current_mrc_switch;
78			break;
79		}
80	default: {
81		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
82			 "switch case not processed\n");
83			break;
84		}
85	}
86}
87
88void rtl92se_set_hw_reg(struct ieee80211_hw *hw, u8 variable, u8 *val)
89{
90	struct rtl_priv *rtlpriv = rtl_priv(hw);
91	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
92	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
93	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
94	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
95	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
96
97	switch (variable) {
98	case HW_VAR_ETHER_ADDR:{
99			rtl_write_dword(rtlpriv, IDR0, ((u32 *)(val))[0]);
100			rtl_write_word(rtlpriv, IDR4, ((u16 *)(val + 4))[0]);
101			break;
102		}
103	case HW_VAR_BASIC_RATE:{
104			u16 rate_cfg = ((u16 *) val)[0];
105			u8 rate_index = 0;
106
107			if (rtlhal->version == VERSION_8192S_ACUT)
108				rate_cfg = rate_cfg & 0x150;
109			else
110				rate_cfg = rate_cfg & 0x15f;
111
112			rate_cfg |= 0x01;
113
114			rtl_write_byte(rtlpriv, RRSR, rate_cfg & 0xff);
115			rtl_write_byte(rtlpriv, RRSR + 1,
116				       (rate_cfg >> 8) & 0xff);
117
118			while (rate_cfg > 0x1) {
119				rate_cfg = (rate_cfg >> 1);
120				rate_index++;
121			}
122			rtl_write_byte(rtlpriv, INIRTSMCS_SEL, rate_index);
123
124			break;
125		}
126	case HW_VAR_BSSID:{
127			rtl_write_dword(rtlpriv, BSSIDR, ((u32 *)(val))[0]);
128			rtl_write_word(rtlpriv, BSSIDR + 4,
129				       ((u16 *)(val + 4))[0]);
130			break;
131		}
132	case HW_VAR_SIFS:{
133			rtl_write_byte(rtlpriv, SIFS_OFDM, val[0]);
134			rtl_write_byte(rtlpriv, SIFS_OFDM + 1, val[1]);
135			break;
136		}
137	case HW_VAR_SLOT_TIME:{
138			u8 e_aci;
139
140			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
141				 "HW_VAR_SLOT_TIME %x\n", val[0]);
142
143			rtl_write_byte(rtlpriv, SLOT_TIME, val[0]);
144
145			for (e_aci = 0; e_aci < AC_MAX; e_aci++) {
146				rtlpriv->cfg->ops->set_hw_reg(hw,
147						HW_VAR_AC_PARAM,
148						(&e_aci));
149			}
150			break;
151		}
152	case HW_VAR_ACK_PREAMBLE:{
153			u8 reg_tmp;
154			u8 short_preamble = (bool) (*val);
155			reg_tmp = (mac->cur_40_prime_sc) << 5;
156			if (short_preamble)
157				reg_tmp |= 0x80;
158
159			rtl_write_byte(rtlpriv, RRSR + 2, reg_tmp);
160			break;
161		}
162	case HW_VAR_AMPDU_MIN_SPACE:{
163			u8 min_spacing_to_set;
164			u8 sec_min_space;
165
166			min_spacing_to_set = *val;
167			if (min_spacing_to_set <= 7) {
168				if (rtlpriv->sec.pairwise_enc_algorithm ==
169				    NO_ENCRYPTION)
170					sec_min_space = 0;
171				else
172					sec_min_space = 1;
173
174				if (min_spacing_to_set < sec_min_space)
175					min_spacing_to_set = sec_min_space;
176				if (min_spacing_to_set > 5)
177					min_spacing_to_set = 5;
178
179				mac->min_space_cfg =
180						((mac->min_space_cfg & 0xf8) |
181						min_spacing_to_set);
182
183				*val = min_spacing_to_set;
184
185				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
186					 "Set HW_VAR_AMPDU_MIN_SPACE: %#x\n",
187					 mac->min_space_cfg);
188
189				rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
190					       mac->min_space_cfg);
191			}
192			break;
193		}
194	case HW_VAR_SHORTGI_DENSITY:{
195			u8 density_to_set;
196
197			density_to_set = *val;
198			mac->min_space_cfg = rtlpriv->rtlhal.minspace_cfg;
199			mac->min_space_cfg |= (density_to_set << 3);
200
201			RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
202				 "Set HW_VAR_SHORTGI_DENSITY: %#x\n",
203				 mac->min_space_cfg);
204
205			rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE,
206				       mac->min_space_cfg);
207
208			break;
209		}
210	case HW_VAR_AMPDU_FACTOR:{
211			u8 factor_toset;
212			u8 regtoset;
213			u8 factorlevel[18] = {
214				2, 4, 4, 7, 7, 13, 13,
215				13, 2, 7, 7, 13, 13,
216				15, 15, 15, 15, 0};
217			u8 index = 0;
218
219			factor_toset = *val;
220			if (factor_toset <= 3) {
221				factor_toset = (1 << (factor_toset + 2));
222				if (factor_toset > 0xf)
223					factor_toset = 0xf;
224
225				for (index = 0; index < 17; index++) {
226					if (factorlevel[index] > factor_toset)
227						factorlevel[index] =
228								 factor_toset;
229				}
230
231				for (index = 0; index < 8; index++) {
232					regtoset = ((factorlevel[index * 2]) |
233						    (factorlevel[index *
234						    2 + 1] << 4));
235					rtl_write_byte(rtlpriv,
236						       AGGLEN_LMT_L + index,
237						       regtoset);
238				}
239
240				regtoset = ((factorlevel[16]) |
241					    (factorlevel[17] << 4));
242				rtl_write_byte(rtlpriv, AGGLEN_LMT_H, regtoset);
243
244				RT_TRACE(rtlpriv, COMP_MLME, DBG_LOUD,
245					 "Set HW_VAR_AMPDU_FACTOR: %#x\n",
246					 factor_toset);
247			}
248			break;
249		}
250	case HW_VAR_AC_PARAM:{
251			u8 e_aci = *val;
252			rtl92s_dm_init_edca_turbo(hw);
253
254			if (rtlpci->acm_method != EACMWAY2_SW)
255				rtlpriv->cfg->ops->set_hw_reg(hw,
256						 HW_VAR_ACM_CTRL,
257						 &e_aci);
258			break;
259		}
260	case HW_VAR_ACM_CTRL:{
261			u8 e_aci = *val;
262			union aci_aifsn *p_aci_aifsn = (union aci_aifsn *)(&(
263							mac->ac[0].aifs));
264			u8 acm = p_aci_aifsn->f.acm;
265			u8 acm_ctrl = rtl_read_byte(rtlpriv, AcmHwCtrl);
266
267			acm_ctrl = acm_ctrl | ((rtlpci->acm_method == 2) ?
268				   0x0 : 0x1);
269
270			if (acm) {
271				switch (e_aci) {
272				case AC0_BE:
273					acm_ctrl |= AcmHw_BeqEn;
274					break;
275				case AC2_VI:
276					acm_ctrl |= AcmHw_ViqEn;
277					break;
278				case AC3_VO:
279					acm_ctrl |= AcmHw_VoqEn;
280					break;
281				default:
282					RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
283						 "HW_VAR_ACM_CTRL acm set failed: eACI is %d\n",
284						 acm);
285					break;
286				}
287			} else {
288				switch (e_aci) {
289				case AC0_BE:
290					acm_ctrl &= (~AcmHw_BeqEn);
291					break;
292				case AC2_VI:
293					acm_ctrl &= (~AcmHw_ViqEn);
294					break;
295				case AC3_VO:
296					acm_ctrl &= (~AcmHw_VoqEn);
297					break;
298				default:
299					RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
300						 "switch case not processed\n");
301					break;
302				}
303			}
304
305			RT_TRACE(rtlpriv, COMP_QOS, DBG_TRACE,
306				 "HW_VAR_ACM_CTRL Write 0x%X\n", acm_ctrl);
307			rtl_write_byte(rtlpriv, AcmHwCtrl, acm_ctrl);
308			break;
309		}
310	case HW_VAR_RCR:{
311			rtl_write_dword(rtlpriv, RCR, ((u32 *) (val))[0]);
312			rtlpci->receive_config = ((u32 *) (val))[0];
313			break;
314		}
315	case HW_VAR_RETRY_LIMIT:{
316			u8 retry_limit = val[0];
317
318			rtl_write_word(rtlpriv, RETRY_LIMIT,
319				       retry_limit << RETRY_LIMIT_SHORT_SHIFT |
320				       retry_limit << RETRY_LIMIT_LONG_SHIFT);
321			break;
322		}
323	case HW_VAR_DUAL_TSF_RST: {
324			break;
325		}
326	case HW_VAR_EFUSE_BYTES: {
327			rtlefuse->efuse_usedbytes = *((u16 *) val);
328			break;
329		}
330	case HW_VAR_EFUSE_USAGE: {
331			rtlefuse->efuse_usedpercentage = *val;
332			break;
333		}
334	case HW_VAR_IO_CMD: {
335			break;
336		}
337	case HW_VAR_WPA_CONFIG: {
338			rtl_write_byte(rtlpriv, REG_SECR, *val);
339			break;
340		}
341	case HW_VAR_SET_RPWM:{
342			break;
343		}
344	case HW_VAR_H2C_FW_PWRMODE:{
345			break;
346		}
347	case HW_VAR_FW_PSMODE_STATUS: {
348			ppsc->fw_current_inpsmode = *((bool *) val);
349			break;
350		}
351	case HW_VAR_H2C_FW_JOINBSSRPT:{
352			break;
353		}
354	case HW_VAR_AID:{
355			break;
356		}
357	case HW_VAR_CORRECT_TSF:{
358			break;
359		}
360	case HW_VAR_MRC: {
361			bool bmrc_toset = *((bool *)val);
362			u8 u1bdata = 0;
363
364			if (bmrc_toset) {
365				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
366					      MASKBYTE0, 0x33);
367				u1bdata = (u8)rtl_get_bbreg(hw,
368						ROFDM1_TRXPATHENABLE,
369						MASKBYTE0);
370				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
371					      MASKBYTE0,
372					      ((u1bdata & 0xf0) | 0x03));
373				u1bdata = (u8)rtl_get_bbreg(hw,
374						ROFDM0_TRXPATHENABLE,
375						MASKBYTE1);
376				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
377					      MASKBYTE1,
378					      (u1bdata | 0x04));
379
380				/* Update current settings. */
381				rtlpriv->dm.current_mrc_switch = bmrc_toset;
382			} else {
383				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
384					      MASKBYTE0, 0x13);
385				u1bdata = (u8)rtl_get_bbreg(hw,
386						 ROFDM1_TRXPATHENABLE,
387						 MASKBYTE0);
388				rtl_set_bbreg(hw, ROFDM1_TRXPATHENABLE,
389					      MASKBYTE0,
390					      ((u1bdata & 0xf0) | 0x01));
391				u1bdata = (u8)rtl_get_bbreg(hw,
392						ROFDM0_TRXPATHENABLE,
393						MASKBYTE1);
394				rtl_set_bbreg(hw, ROFDM0_TRXPATHENABLE,
395					      MASKBYTE1, (u1bdata & 0xfb));
396
397				/* Update current settings. */
398				rtlpriv->dm.current_mrc_switch = bmrc_toset;
399			}
400
401			break;
402		}
403	case HW_VAR_FW_LPS_ACTION: {
404		bool enter_fwlps = *((bool *)val);
405		u8 rpwm_val, fw_pwrmode;
406		bool fw_current_inps;
407
408		if (enter_fwlps) {
409			rpwm_val = 0x02;	/* RF off */
410			fw_current_inps = true;
411			rtlpriv->cfg->ops->set_hw_reg(hw,
412					HW_VAR_FW_PSMODE_STATUS,
413					(u8 *)(&fw_current_inps));
414			rtlpriv->cfg->ops->set_hw_reg(hw,
415					HW_VAR_H2C_FW_PWRMODE,
416					&ppsc->fwctrl_psmode);
417
418			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
419						      &rpwm_val);
420		} else {
421			rpwm_val = 0x0C;	/* RF on */
422			fw_pwrmode = FW_PS_ACTIVE_MODE;
423			fw_current_inps = false;
424			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SET_RPWM,
425						      &rpwm_val);
426			rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_H2C_FW_PWRMODE,
427						      &fw_pwrmode);
428
429			rtlpriv->cfg->ops->set_hw_reg(hw,
430					HW_VAR_FW_PSMODE_STATUS,
431					(u8 *)(&fw_current_inps));
432		}
433		break; }
434	default:
435		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
436			 "switch case not processed\n");
437		break;
438	}
439
440}
441
442void rtl92se_enable_hw_security_config(struct ieee80211_hw *hw)
443{
444	struct rtl_priv *rtlpriv = rtl_priv(hw);
445	u8 sec_reg_value = 0x0;
446
447	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
448		 "PairwiseEncAlgorithm = %d GroupEncAlgorithm = %d\n",
449		 rtlpriv->sec.pairwise_enc_algorithm,
450		 rtlpriv->sec.group_enc_algorithm);
451
452	if (rtlpriv->cfg->mod_params->sw_crypto || rtlpriv->sec.use_sw_sec) {
453		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
454			 "not open hw encryption\n");
455		return;
456	}
457
458	sec_reg_value = SCR_TXENCENABLE | SCR_RXENCENABLE;
459
460	if (rtlpriv->sec.use_defaultkey) {
461		sec_reg_value |= SCR_TXUSEDK;
462		sec_reg_value |= SCR_RXUSEDK;
463	}
464
465	RT_TRACE(rtlpriv, COMP_SEC, DBG_LOUD, "The SECR-value %x\n",
466		 sec_reg_value);
467
468	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_WPA_CONFIG, &sec_reg_value);
469
470}
471
472static u8 _rtl92se_halset_sysclk(struct ieee80211_hw *hw, u8 data)
473{
474	struct rtl_priv *rtlpriv = rtl_priv(hw);
475	u8 waitcount = 100;
476	bool bresult = false;
477	u8 tmpvalue;
478
479	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
480
481	/* Wait the MAC synchronized. */
482	udelay(400);
483
484	/* Check if it is set ready. */
485	tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
486	bresult = ((tmpvalue & BIT(7)) == (data & BIT(7)));
487
488	if ((data & (BIT(6) | BIT(7))) == false) {
489		waitcount = 100;
490		tmpvalue = 0;
491
492		while (1) {
493			waitcount--;
494
495			tmpvalue = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
496			if ((tmpvalue & BIT(6)))
497				break;
498
499			pr_err("wait for BIT(6) return value %x\n", tmpvalue);
500			if (waitcount == 0)
501				break;
502
503			udelay(10);
504		}
505
506		if (waitcount == 0)
507			bresult = false;
508		else
509			bresult = true;
510	}
511
512	return bresult;
513}
514
515void rtl8192se_gpiobit3_cfg_inputmode(struct ieee80211_hw *hw)
516{
517	struct rtl_priv *rtlpriv = rtl_priv(hw);
518	u8 u1tmp;
519
520	/* The following config GPIO function */
521	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
522	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
523
524	/* config GPIO3 to input */
525	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
526	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
527
528}
529
530static u8 _rtl92se_rf_onoff_detect(struct ieee80211_hw *hw)
531{
532	struct rtl_priv *rtlpriv = rtl_priv(hw);
533	u8 u1tmp;
534	u8 retval = ERFON;
535
536	/* The following config GPIO function */
537	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, (GPIOMUX_EN | GPIOSEL_GPIO));
538	u1tmp = rtl_read_byte(rtlpriv, GPIO_IO_SEL);
539
540	/* config GPIO3 to input */
541	u1tmp &= HAL_8192S_HW_GPIO_OFF_MASK;
542	rtl_write_byte(rtlpriv, GPIO_IO_SEL, u1tmp);
543
544	/* On some of the platform, driver cannot read correct
545	 * value without delay between Write_GPIO_SEL and Read_GPIO_IN */
546	mdelay(10);
547
548	/* check GPIO3 */
549	u1tmp = rtl_read_byte(rtlpriv, GPIO_IN_SE);
550	retval = (u1tmp & HAL_8192S_HW_GPIO_OFF_BIT) ? ERFON : ERFOFF;
551
552	return retval;
553}
554
555static void _rtl92se_macconfig_before_fwdownload(struct ieee80211_hw *hw)
556{
557	struct rtl_priv *rtlpriv = rtl_priv(hw);
558	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
559	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
560
561	u8 i;
562	u8 tmpu1b;
563	u16 tmpu2b;
564	u8 pollingcnt = 20;
565
566	if (rtlpci->first_init) {
567		/* Reset PCIE Digital */
568		tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
569		tmpu1b &= 0xFE;
570		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
571		udelay(1);
572		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b | BIT(0));
573	}
574
575	/* Switch to SW IO control */
576	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
577	if (tmpu1b & BIT(7)) {
578		tmpu1b &= ~(BIT(6) | BIT(7));
579
580		/* Set failed, return to prevent hang. */
581		if (!_rtl92se_halset_sysclk(hw, tmpu1b))
582			return;
583	}
584
585	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
586	udelay(50);
587	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
588	udelay(50);
589
590	/* Clear FW RPWM for FW control LPS.*/
591	rtl_write_byte(rtlpriv, RPWM, 0x0);
592
593	/* Reset MAC-IO and CPU and Core Digital BIT(10)/11/15 */
594	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
595	tmpu1b &= 0x73;
596	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
597	/* wait for BIT 10/11/15 to pull high automatically!! */
598	mdelay(1);
599
600	rtl_write_byte(rtlpriv, CMDR, 0);
601	rtl_write_byte(rtlpriv, TCR, 0);
602
603	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
604	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
605	tmpu1b |= 0x08;
606	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
607	tmpu1b &= ~(BIT(3));
608	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
609
610	/* Enable AFE clock source */
611	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
612	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
613	/* Delay 1.5ms */
614	mdelay(2);
615	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
616	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
617
618	/* Enable AFE Macro Block's Bandgap */
619	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
620	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
621	mdelay(1);
622
623	/* Enable AFE Mbias */
624	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
625	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
626	mdelay(1);
627
628	/* Enable LDOA15 block	*/
629	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
630	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
631
632	/* Set Digital Vdd to Retention isolation Path. */
633	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
634	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
635
636	/* For warm reboot NIC disappera bug. */
637	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
638	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
639
640	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
641
642	/* Enable AFE PLL Macro Block */
643	/* We need to delay 100u before enabling PLL. */
644	udelay(200);
645	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
646	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
647
648	/* for divider reset  */
649	udelay(100);
650	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) |
651		       BIT(4) | BIT(6)));
652	udelay(10);
653	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
654	udelay(10);
655
656	/* Enable MAC 80MHZ clock  */
657	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
658	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
659	mdelay(1);
660
661	/* Release isolation AFE PLL & MD */
662	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
663
664	/* Enable MAC clock */
665	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
666	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
667
668	/* Enable Core digital and enable IOREG R/W */
669	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
670	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
671
672	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
673	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b & ~(BIT(7)));
674
675	/* enable REG_EN */
676	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
677
678	/* Switch the control path. */
679	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
680	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
681
682	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
683	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
684	if (!_rtl92se_halset_sysclk(hw, tmpu1b))
685		return; /* Set failed, return to prevent hang. */
686
687	rtl_write_word(rtlpriv, CMDR, 0x07FC);
688
689	/* MH We must enable the section of code to prevent load IMEM fail. */
690	/* Load MAC register from WMAc temporarily We simulate macreg. */
691	/* txt HW will provide MAC txt later  */
692	rtl_write_byte(rtlpriv, 0x6, 0x30);
693	rtl_write_byte(rtlpriv, 0x49, 0xf0);
694
695	rtl_write_byte(rtlpriv, 0x4b, 0x81);
696
697	rtl_write_byte(rtlpriv, 0xb5, 0x21);
698
699	rtl_write_byte(rtlpriv, 0xdc, 0xff);
700	rtl_write_byte(rtlpriv, 0xdd, 0xff);
701	rtl_write_byte(rtlpriv, 0xde, 0xff);
702	rtl_write_byte(rtlpriv, 0xdf, 0xff);
703
704	rtl_write_byte(rtlpriv, 0x11a, 0x00);
705	rtl_write_byte(rtlpriv, 0x11b, 0x00);
706
707	for (i = 0; i < 32; i++)
708		rtl_write_byte(rtlpriv, INIMCS_SEL + i, 0x1b);
709
710	rtl_write_byte(rtlpriv, 0x236, 0xff);
711
712	rtl_write_byte(rtlpriv, 0x503, 0x22);
713
714	if (ppsc->support_aspm && !ppsc->support_backdoor)
715		rtl_write_byte(rtlpriv, 0x560, 0x40);
716	else
717		rtl_write_byte(rtlpriv, 0x560, 0x00);
718
719	rtl_write_byte(rtlpriv, DBG_PORT, 0x91);
720
721	/* Set RX Desc Address */
722	rtl_write_dword(rtlpriv, RDQDA, rtlpci->rx_ring[RX_MPDU_QUEUE].dma);
723	rtl_write_dword(rtlpriv, RCDA, rtlpci->rx_ring[RX_CMD_QUEUE].dma);
724
725	/* Set TX Desc Address */
726	rtl_write_dword(rtlpriv, TBKDA, rtlpci->tx_ring[BK_QUEUE].dma);
727	rtl_write_dword(rtlpriv, TBEDA, rtlpci->tx_ring[BE_QUEUE].dma);
728	rtl_write_dword(rtlpriv, TVIDA, rtlpci->tx_ring[VI_QUEUE].dma);
729	rtl_write_dword(rtlpriv, TVODA, rtlpci->tx_ring[VO_QUEUE].dma);
730	rtl_write_dword(rtlpriv, TBDA, rtlpci->tx_ring[BEACON_QUEUE].dma);
731	rtl_write_dword(rtlpriv, TCDA, rtlpci->tx_ring[TXCMD_QUEUE].dma);
732	rtl_write_dword(rtlpriv, TMDA, rtlpci->tx_ring[MGNT_QUEUE].dma);
733	rtl_write_dword(rtlpriv, THPDA, rtlpci->tx_ring[HIGH_QUEUE].dma);
734	rtl_write_dword(rtlpriv, HDA, rtlpci->tx_ring[HCCA_QUEUE].dma);
735
736	rtl_write_word(rtlpriv, CMDR, 0x37FC);
737
738	/* To make sure that TxDMA can ready to download FW. */
739	/* We should reset TxDMA if IMEM RPT was not ready. */
740	do {
741		tmpu1b = rtl_read_byte(rtlpriv, TCR);
742		if ((tmpu1b & TXDMA_INIT_VALUE) == TXDMA_INIT_VALUE)
743			break;
744
745		udelay(5);
746	} while (pollingcnt--);
747
748	if (pollingcnt <= 0) {
749		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
750			 "Polling TXDMA_INIT_VALUE timeout!! Current TCR(%#x)\n",
751			 tmpu1b);
752		tmpu1b = rtl_read_byte(rtlpriv, CMDR);
753		rtl_write_byte(rtlpriv, CMDR, tmpu1b & (~TXDMA_EN));
754		udelay(2);
755		/* Reset TxDMA */
756		rtl_write_byte(rtlpriv, CMDR, tmpu1b | TXDMA_EN);
757	}
758
759	/* After MACIO reset,we must refresh LED state. */
760	if ((ppsc->rfoff_reason == RF_CHANGE_BY_IPS) ||
761	   (ppsc->rfoff_reason == 0)) {
762		struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
763		struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
764		enum rf_pwrstate rfpwr_state_toset;
765		rfpwr_state_toset = _rtl92se_rf_onoff_detect(hw);
766
767		if (rfpwr_state_toset == ERFON)
768			rtl92se_sw_led_on(hw, pLed0);
769	}
770}
771
772static void _rtl92se_macconfig_after_fwdownload(struct ieee80211_hw *hw)
773{
774	struct rtl_priv *rtlpriv = rtl_priv(hw);
775	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
776	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
777	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
778	u8 i;
779	u16 tmpu2b;
780
781	/* 1. System Configure Register (Offset: 0x0000 - 0x003F) */
782
783	/* 2. Command Control Register (Offset: 0x0040 - 0x004F) */
784	/* Turn on 0x40 Command register */
785	rtl_write_word(rtlpriv, CMDR, (BBRSTN | BB_GLB_RSTN |
786			SCHEDULE_EN | MACRXEN | MACTXEN | DDMA_EN | FW2HW_EN |
787			RXDMA_EN | TXDMA_EN | HCI_RXDMA_EN | HCI_TXDMA_EN));
788
789	/* Set TCR TX DMA pre 2 FULL enable bit	*/
790	rtl_write_dword(rtlpriv, TCR, rtl_read_dword(rtlpriv, TCR) |
791			TXDMAPRE2FULL);
792
793	/* Set RCR	*/
794	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
795
796	/* 3. MACID Setting Register (Offset: 0x0050 - 0x007F) */
797
798	/* 4. Timing Control Register  (Offset: 0x0080 - 0x009F) */
799	/* Set CCK/OFDM SIFS */
800	/* CCK SIFS shall always be 10us. */
801	rtl_write_word(rtlpriv, SIFS_CCK, 0x0a0a);
802	rtl_write_word(rtlpriv, SIFS_OFDM, 0x1010);
803
804	/* Set AckTimeout */
805	rtl_write_byte(rtlpriv, ACK_TIMEOUT, 0x40);
806
807	/* Beacon related */
808	rtl_write_word(rtlpriv, BCN_INTERVAL, 100);
809	rtl_write_word(rtlpriv, ATIMWND, 2);
810
811	/* 5. FIFO Control Register (Offset: 0x00A0 - 0x015F) */
812	/* 5.1 Initialize Number of Reserved Pages in Firmware Queue */
813	/* Firmware allocate now, associate with FW internal setting.!!! */
814
815	/* 5.2 Setting TX/RX page size 0/1/2/3/4=64/128/256/512/1024 */
816	/* 5.3 Set driver info, we only accept PHY status now. */
817	/* 5.4 Set RXDMA arbitration to control RXDMA/MAC/FW R/W for RXFIFO  */
818	rtl_write_byte(rtlpriv, RXDMA, rtl_read_byte(rtlpriv, RXDMA) | BIT(6));
819
820	/* 6. Adaptive Control Register  (Offset: 0x0160 - 0x01CF) */
821	/* Set RRSR to all legacy rate and HT rate
822	 * CCK rate is supported by default.
823	 * CCK rate will be filtered out only when associated
824	 * AP does not support it.
825	 * Only enable ACK rate to OFDM 24M
826	 * Disable RRSR for CCK rate in A-Cut	*/
827
828	if (rtlhal->version == VERSION_8192S_ACUT)
829		rtl_write_byte(rtlpriv, RRSR, 0xf0);
830	else if (rtlhal->version == VERSION_8192S_BCUT)
831		rtl_write_byte(rtlpriv, RRSR, 0xff);
832	rtl_write_byte(rtlpriv, RRSR + 1, 0x01);
833	rtl_write_byte(rtlpriv, RRSR + 2, 0x00);
834
835	/* A-Cut IC do not support CCK rate. We forbid ARFR to */
836	/* fallback to CCK rate */
837	for (i = 0; i < 8; i++) {
838		/*Disable RRSR for CCK rate in A-Cut */
839		if (rtlhal->version == VERSION_8192S_ACUT)
840			rtl_write_dword(rtlpriv, ARFR0 + i * 4, 0x1f0ff0f0);
841	}
842
843	/* Different rate use different AMPDU size */
844	/* MCS32/ MCS15_SG use max AMPDU size 15*2=30K */
845	rtl_write_byte(rtlpriv, AGGLEN_LMT_H, 0x0f);
846	/* MCS0/1/2/3 use max AMPDU size 4*2=8K */
847	rtl_write_word(rtlpriv, AGGLEN_LMT_L, 0x7442);
848	/* MCS4/5 use max AMPDU size 8*2=16K 6/7 use 10*2=20K */
849	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 2, 0xddd7);
850	/* MCS8/9 use max AMPDU size 8*2=16K 10/11 use 10*2=20K */
851	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 4, 0xd772);
852	/* MCS12/13/14/15 use max AMPDU size 15*2=30K */
853	rtl_write_word(rtlpriv, AGGLEN_LMT_L + 6, 0xfffd);
854
855	/* Set Data / Response auto rate fallack retry count */
856	rtl_write_dword(rtlpriv, DARFRC, 0x04010000);
857	rtl_write_dword(rtlpriv, DARFRC + 4, 0x09070605);
858	rtl_write_dword(rtlpriv, RARFRC, 0x04010000);
859	rtl_write_dword(rtlpriv, RARFRC + 4, 0x09070605);
860
861	/* 7. EDCA Setting Register (Offset: 0x01D0 - 0x01FF) */
862	/* Set all rate to support SG */
863	rtl_write_word(rtlpriv, SG_RATE, 0xFFFF);
864
865	/* 8. WMAC, BA, and CCX related Register (Offset: 0x0200 - 0x023F) */
866	/* Set NAV protection length */
867	rtl_write_word(rtlpriv, NAV_PROT_LEN, 0x0080);
868	/* CF-END Threshold */
869	rtl_write_byte(rtlpriv, CFEND_TH, 0xFF);
870	/* Set AMPDU minimum space */
871	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, 0x07);
872	/* Set TXOP stall control for several queue/HI/BCN/MGT/ */
873	rtl_write_byte(rtlpriv, TXOP_STALL_CTRL, 0x00);
874
875	/* 9. Security Control Register (Offset: 0x0240 - 0x025F) */
876	/* 10. Power Save Control Register (Offset: 0x0260 - 0x02DF) */
877	/* 11. General Purpose Register (Offset: 0x02E0 - 0x02FF) */
878	/* 12. Host Interrupt Status Register (Offset: 0x0300 - 0x030F) */
879	/* 13. Test Mode and Debug Control Register (Offset: 0x0310 - 0x034F) */
880
881	/* 14. Set driver info, we only accept PHY status now. */
882	rtl_write_byte(rtlpriv, RXDRVINFO_SZ, 4);
883
884	/* 15. For EEPROM R/W Workaround */
885	/* 16. For EFUSE to share REG_SYS_FUNC_EN with EEPROM!!! */
886	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN);
887	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN, tmpu2b | BIT(13));
888	tmpu2b = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL);
889	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, tmpu2b & (~BIT(8)));
890
891	/* 17. For EFUSE */
892	/* We may R/W EFUSE in EEPROM mode */
893	if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
894		u8	tempval;
895
896		tempval = rtl_read_byte(rtlpriv, REG_SYS_ISO_CTRL + 1);
897		tempval &= 0xFE;
898		rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, tempval);
899
900		/* Change Program timing */
901		rtl_write_byte(rtlpriv, REG_EFUSE_CTRL + 3, 0x72);
902		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "EFUSE CONFIG OK\n");
903	}
904
905	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "OK\n");
906
907}
908
909static void _rtl92se_hw_configure(struct ieee80211_hw *hw)
910{
911	struct rtl_priv *rtlpriv = rtl_priv(hw);
912	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
913	struct rtl_phy *rtlphy = &(rtlpriv->phy);
914	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
915
916	u8 reg_bw_opmode = 0;
917	u32 reg_rrsr = 0;
918	u8 regtmp = 0;
919
920	reg_bw_opmode = BW_OPMODE_20MHZ;
921	reg_rrsr = RATE_ALL_CCK | RATE_ALL_OFDM_AG;
922
923	regtmp = rtl_read_byte(rtlpriv, INIRTSMCS_SEL);
924	reg_rrsr = ((reg_rrsr & 0x000fffff) << 8) | regtmp;
925	rtl_write_dword(rtlpriv, INIRTSMCS_SEL, reg_rrsr);
926	rtl_write_byte(rtlpriv, BW_OPMODE, reg_bw_opmode);
927
928	/* Set Retry Limit here */
929	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RETRY_LIMIT,
930			(u8 *)(&rtlpci->shortretry_limit));
931
932	rtl_write_byte(rtlpriv, MLT, 0x8f);
933
934	/* For Min Spacing configuration. */
935	switch (rtlphy->rf_type) {
936	case RF_1T2R:
937	case RF_1T1R:
938		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_1T << 3);
939		break;
940	case RF_2T2R:
941	case RF_2T2R_GREEN:
942		rtlhal->minspace_cfg = (MAX_MSS_DENSITY_2T << 3);
943		break;
944	}
945	rtl_write_byte(rtlpriv, AMPDU_MIN_SPACE, rtlhal->minspace_cfg);
946}
947
948int rtl92se_hw_init(struct ieee80211_hw *hw)
949{
950	struct rtl_priv *rtlpriv = rtl_priv(hw);
951	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
952	struct rtl_phy *rtlphy = &(rtlpriv->phy);
953	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
954	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
955	u8 tmp_byte = 0;
956	unsigned long flags;
957	bool rtstatus = true;
958	u8 tmp_u1b;
959	int err = false;
960	u8 i;
961	int wdcapra_add[] = {
962		EDCAPARA_BE, EDCAPARA_BK,
963		EDCAPARA_VI, EDCAPARA_VO};
964	u8 secr_value = 0x0;
965
966	rtlpci->being_init_adapter = true;
967
968	/* As this function can take a very long time (up to 350 ms)
969	 * and can be called with irqs disabled, reenable the irqs
970	 * to let the other devices continue being serviced.
971	 *
972	 * It is safe doing so since our own interrupts will only be enabled
973	 * in a subsequent step.
974	 */
975	local_save_flags(flags);
976	local_irq_enable();
977
978	rtlpriv->intf_ops->disable_aspm(hw);
979
980	/* 1. MAC Initialize */
981	/* Before FW download, we have to set some MAC register */
982	_rtl92se_macconfig_before_fwdownload(hw);
983
984	rtlhal->version = (enum version_8192s)((rtl_read_dword(rtlpriv,
985			PMC_FSM) >> 16) & 0xF);
986
987	rtl8192se_gpiobit3_cfg_inputmode(hw);
988
989	/* 2. download firmware */
990	rtstatus = rtl92s_download_fw(hw);
991	if (!rtstatus) {
992		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
993			 "Failed to download FW. Init HW without FW now... "
994			 "Please copy FW into /lib/firmware/rtlwifi\n");
995		err = 1;
996		goto exit;
997	}
998
999	/* After FW download, we have to reset MAC register */
1000	_rtl92se_macconfig_after_fwdownload(hw);
1001
1002	/*Retrieve default FW Cmd IO map. */
1003	rtlhal->fwcmd_iomap =	rtl_read_word(rtlpriv, LBUS_MON_ADDR);
1004	rtlhal->fwcmd_ioparam = rtl_read_dword(rtlpriv, LBUS_ADDR_MASK);
1005
1006	/* 3. Initialize MAC/PHY Config by MACPHY_reg.txt */
1007	if (!rtl92s_phy_mac_config(hw)) {
1008		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "MAC Config failed\n");
1009		err = rtstatus;
1010		goto exit;
1011	}
1012
1013	/* because last function modify RCR, so we update
1014	 * rcr var here, or TP will unstable for receive_config
1015	 * is wrong, RX RCR_ACRC32 will cause TP unstabel & Rx
1016	 * RCR_APP_ICV will cause mac80211 unassoc for cisco 1252
1017	 */
1018	rtlpci->receive_config = rtl_read_dword(rtlpriv, RCR);
1019	rtlpci->receive_config &= ~(RCR_ACRC32 | RCR_AICV);
1020	rtl_write_dword(rtlpriv, RCR, rtlpci->receive_config);
1021
1022	/* Make sure BB/RF write OK. We should prevent enter IPS. radio off. */
1023	/* We must set flag avoid BB/RF config period later!! */
1024	rtl_write_dword(rtlpriv, CMDR, 0x37FC);
1025
1026	/* 4. Initialize BB After MAC Config PHY_reg.txt, AGC_Tab.txt */
1027	if (!rtl92s_phy_bb_config(hw)) {
1028		RT_TRACE(rtlpriv, COMP_INIT, DBG_EMERG, "BB Config failed\n");
1029		err = rtstatus;
1030		goto exit;
1031	}
1032
1033	/* 5. Initiailze RF RAIO_A.txt RF RAIO_B.txt */
1034	/* Before initalizing RF. We can not use FW to do RF-R/W. */
1035
1036	rtlphy->rf_mode = RF_OP_BY_SW_3WIRE;
1037
1038	/* Before RF-R/W we must execute the IO from Scott's suggestion. */
1039	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, 0xDB);
1040	if (rtlhal->version == VERSION_8192S_ACUT)
1041		rtl_write_byte(rtlpriv, SPS1_CTRL + 3, 0x07);
1042	else
1043		rtl_write_byte(rtlpriv, RF_CTRL, 0x07);
1044
1045	if (!rtl92s_phy_rf_config(hw)) {
1046		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "RF Config failed\n");
1047		err = rtstatus;
1048		goto exit;
1049	}
1050
1051	/* After read predefined TXT, we must set BB/MAC/RF
1052	 * register as our requirement */
1053
1054	rtlphy->rfreg_chnlval[0] = rtl92s_phy_query_rf_reg(hw,
1055							   (enum radio_path)0,
1056							   RF_CHNLBW,
1057							   RFREG_OFFSET_MASK);
1058	rtlphy->rfreg_chnlval[1] = rtl92s_phy_query_rf_reg(hw,
1059							   (enum radio_path)1,
1060							   RF_CHNLBW,
1061							   RFREG_OFFSET_MASK);
1062
1063	/*---- Set CCK and OFDM Block "ON"----*/
1064	rtl_set_bbreg(hw, RFPGA0_RFMOD, BCCKEN, 0x1);
1065	rtl_set_bbreg(hw, RFPGA0_RFMOD, BOFDMEN, 0x1);
1066
1067	/*3 Set Hardware(Do nothing now) */
1068	_rtl92se_hw_configure(hw);
1069
1070	/* Read EEPROM TX power index and PHY_REG_PG.txt to capture correct */
1071	/* TX power index for different rate set. */
1072	/* Get original hw reg values */
1073	rtl92s_phy_get_hw_reg_originalvalue(hw);
1074	/* Write correct tx power index */
1075	rtl92s_phy_set_txpower(hw, rtlphy->current_channel);
1076
1077	/* We must set MAC address after firmware download. */
1078	for (i = 0; i < 6; i++)
1079		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1080
1081	/* EEPROM R/W workaround */
1082	tmp_u1b = rtl_read_byte(rtlpriv, MAC_PINMUX_CFG);
1083	rtl_write_byte(rtlpriv, MAC_PINMUX_CFG, tmp_u1b & (~BIT(3)));
1084
1085	rtl_write_byte(rtlpriv, 0x4d, 0x0);
1086
1087	if (hal_get_firmwareversion(rtlpriv) >= 0x49) {
1088		tmp_byte = rtl_read_byte(rtlpriv, FW_RSVD_PG_CRTL) & (~BIT(4));
1089		tmp_byte = tmp_byte | BIT(5);
1090		rtl_write_byte(rtlpriv, FW_RSVD_PG_CRTL, tmp_byte);
1091		rtl_write_dword(rtlpriv, TXDESC_MSK, 0xFFFFCFFF);
1092	}
1093
1094	/* We enable high power and RA related mechanism after NIC
1095	 * initialized. */
1096	if (hal_get_firmwareversion(rtlpriv) >= 0x35) {
1097		/* Fw v.53 and later. */
1098		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_INIT);
1099	} else if (hal_get_firmwareversion(rtlpriv) == 0x34) {
1100		/* Fw v.52. */
1101		rtl_write_dword(rtlpriv, WFM5, FW_RA_INIT);
1102		rtl92s_phy_chk_fwcmd_iodone(hw);
1103	} else {
1104		/* Compatible earlier FW version. */
1105		rtl_write_dword(rtlpriv, WFM5, FW_RA_RESET);
1106		rtl92s_phy_chk_fwcmd_iodone(hw);
1107		rtl_write_dword(rtlpriv, WFM5, FW_RA_ACTIVE);
1108		rtl92s_phy_chk_fwcmd_iodone(hw);
1109		rtl_write_dword(rtlpriv, WFM5, FW_RA_REFRESH);
1110		rtl92s_phy_chk_fwcmd_iodone(hw);
1111	}
1112
1113	/* Add to prevent ASPM bug. */
1114	/* Always enable hst and NIC clock request. */
1115	rtl92s_phy_switch_ephy_parameter(hw);
1116
1117	/* Security related
1118	 * 1. Clear all H/W keys.
1119	 * 2. Enable H/W encryption/decryption. */
1120	rtl_cam_reset_all_entry(hw);
1121	secr_value |= SCR_TXENCENABLE;
1122	secr_value |= SCR_RXENCENABLE;
1123	secr_value |= SCR_NOSKMC;
1124	rtl_write_byte(rtlpriv, REG_SECR, secr_value);
1125
1126	for (i = 0; i < 4; i++)
1127		rtl_write_dword(rtlpriv, wdcapra_add[i], 0x5e4322);
1128
1129	if (rtlphy->rf_type == RF_1T2R) {
1130		bool mrc2set = true;
1131		/* Turn on B-Path */
1132		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_MRC, (u8 *)&mrc2set);
1133	}
1134
1135	rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_ON);
1136	rtl92s_dm_init(hw);
1137exit:
1138	local_irq_restore(flags);
1139	rtlpci->being_init_adapter = false;
1140	return err;
1141}
1142
1143void rtl92se_set_mac_addr(struct rtl_io *io, const u8 *addr)
1144{
1145	/* This is a stub. */
1146}
1147
1148void rtl92se_set_check_bssid(struct ieee80211_hw *hw, bool check_bssid)
1149{
1150	struct rtl_priv *rtlpriv = rtl_priv(hw);
1151	u32 reg_rcr;
1152
1153	if (rtlpriv->psc.rfpwr_state != ERFON)
1154		return;
1155
1156	rtlpriv->cfg->ops->get_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1157
1158	if (check_bssid) {
1159		reg_rcr |= (RCR_CBSSID);
1160		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1161	} else if (!check_bssid) {
1162		reg_rcr &= (~RCR_CBSSID);
1163		rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_RCR, (u8 *)(&reg_rcr));
1164	}
1165
1166}
1167
1168static int _rtl92se_set_media_status(struct ieee80211_hw *hw,
1169				     enum nl80211_iftype type)
1170{
1171	struct rtl_priv *rtlpriv = rtl_priv(hw);
1172	u8 bt_msr = rtl_read_byte(rtlpriv, MSR);
1173	u32 temp;
1174	bt_msr &= ~MSR_LINK_MASK;
1175
1176	switch (type) {
1177	case NL80211_IFTYPE_UNSPECIFIED:
1178		bt_msr |= (MSR_LINK_NONE << MSR_LINK_SHIFT);
1179		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1180			 "Set Network type to NO LINK!\n");
1181		break;
1182	case NL80211_IFTYPE_ADHOC:
1183		bt_msr |= (MSR_LINK_ADHOC << MSR_LINK_SHIFT);
1184		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1185			 "Set Network type to Ad Hoc!\n");
1186		break;
1187	case NL80211_IFTYPE_STATION:
1188		bt_msr |= (MSR_LINK_MANAGED << MSR_LINK_SHIFT);
1189		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1190			 "Set Network type to STA!\n");
1191		break;
1192	case NL80211_IFTYPE_AP:
1193		bt_msr |= (MSR_LINK_MASTER << MSR_LINK_SHIFT);
1194		RT_TRACE(rtlpriv, COMP_INIT, DBG_TRACE,
1195			 "Set Network type to AP!\n");
1196		break;
1197	default:
1198		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1199			 "Network type %d not supported!\n", type);
1200		return 1;
1201
1202	}
1203
1204	if (type != NL80211_IFTYPE_AP &&
1205	    rtlpriv->mac80211.link_state < MAC80211_LINKED)
1206		bt_msr = rtl_read_byte(rtlpriv, MSR) & ~MSR_LINK_MASK;
1207	rtl_write_byte(rtlpriv, MSR, bt_msr);
1208
1209	temp = rtl_read_dword(rtlpriv, TCR);
1210	rtl_write_dword(rtlpriv, TCR, temp & (~BIT(8)));
1211	rtl_write_dword(rtlpriv, TCR, temp | BIT(8));
1212
1213
1214	return 0;
1215}
1216
1217/* HW_VAR_MEDIA_STATUS & HW_VAR_CECHK_BSSID */
1218int rtl92se_set_network_type(struct ieee80211_hw *hw, enum nl80211_iftype type)
1219{
1220	struct rtl_priv *rtlpriv = rtl_priv(hw);
1221
1222	if (_rtl92se_set_media_status(hw, type))
1223		return -EOPNOTSUPP;
1224
1225	if (rtlpriv->mac80211.link_state == MAC80211_LINKED) {
1226		if (type != NL80211_IFTYPE_AP)
1227			rtl92se_set_check_bssid(hw, true);
1228	} else {
1229		rtl92se_set_check_bssid(hw, false);
1230	}
1231
1232	return 0;
1233}
1234
1235/* don't set REG_EDCA_BE_PARAM here because mac80211 will send pkt when scan */
1236void rtl92se_set_qos(struct ieee80211_hw *hw, int aci)
1237{
1238	struct rtl_priv *rtlpriv = rtl_priv(hw);
1239	rtl92s_dm_init_edca_turbo(hw);
1240
1241	switch (aci) {
1242	case AC1_BK:
1243		rtl_write_dword(rtlpriv, EDCAPARA_BK, 0xa44f);
1244		break;
1245	case AC0_BE:
1246		/* rtl_write_dword(rtlpriv, EDCAPARA_BE, u4b_ac_param); */
1247		break;
1248	case AC2_VI:
1249		rtl_write_dword(rtlpriv, EDCAPARA_VI, 0x5e4322);
1250		break;
1251	case AC3_VO:
1252		rtl_write_dword(rtlpriv, EDCAPARA_VO, 0x2f3222);
1253		break;
1254	default:
1255		RT_ASSERT(false, "invalid aci: %d !\n", aci);
1256		break;
1257	}
1258}
1259
1260void rtl92se_enable_interrupt(struct ieee80211_hw *hw)
1261{
1262	struct rtl_priv *rtlpriv = rtl_priv(hw);
1263	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1264
1265	rtl_write_dword(rtlpriv, INTA_MASK, rtlpci->irq_mask[0]);
1266	/* Support Bit 32-37(Assign as Bit 0-5) interrupt setting now */
1267	rtl_write_dword(rtlpriv, INTA_MASK + 4, rtlpci->irq_mask[1] & 0x3F);
1268	rtlpci->irq_enabled = true;
1269}
1270
1271void rtl92se_disable_interrupt(struct ieee80211_hw *hw)
1272{
1273	struct rtl_priv *rtlpriv;
1274	struct rtl_pci *rtlpci;
1275
1276	rtlpriv = rtl_priv(hw);
1277	/* if firmware not available, no interrupts */
1278	if (!rtlpriv || !rtlpriv->max_fw_size)
1279		return;
1280	rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1281	rtl_write_dword(rtlpriv, INTA_MASK, 0);
1282	rtl_write_dword(rtlpriv, INTA_MASK + 4, 0);
1283	rtlpci->irq_enabled = false;
1284}
1285
1286static u8 _rtl92s_set_sysclk(struct ieee80211_hw *hw, u8 data)
1287{
1288	struct rtl_priv *rtlpriv = rtl_priv(hw);
1289	u8 waitcnt = 100;
1290	bool result = false;
1291	u8 tmp;
1292
1293	rtl_write_byte(rtlpriv, SYS_CLKR + 1, data);
1294
1295	/* Wait the MAC synchronized. */
1296	udelay(400);
1297
1298	/* Check if it is set ready. */
1299	tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1300	result = ((tmp & BIT(7)) == (data & BIT(7)));
1301
1302	if ((data & (BIT(6) | BIT(7))) == false) {
1303		waitcnt = 100;
1304		tmp = 0;
1305
1306		while (1) {
1307			waitcnt--;
1308			tmp = rtl_read_byte(rtlpriv, SYS_CLKR + 1);
1309
1310			if ((tmp & BIT(6)))
1311				break;
1312
1313			pr_err("wait for BIT(6) return value %x\n", tmp);
1314
1315			if (waitcnt == 0)
1316				break;
1317			udelay(10);
1318		}
1319
1320		if (waitcnt == 0)
1321			result = false;
1322		else
1323			result = true;
1324	}
1325
1326	return result;
1327}
1328
1329static void _rtl92s_phy_set_rfhalt(struct ieee80211_hw *hw)
1330{
1331	struct rtl_priv *rtlpriv = rtl_priv(hw);
1332	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1333	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1334	u8 u1btmp;
1335
1336	if (rtlhal->driver_going2unload)
1337		rtl_write_byte(rtlpriv, 0x560, 0x0);
1338
1339	/* Power save for BB/RF */
1340	u1btmp = rtl_read_byte(rtlpriv, LDOV12D_CTRL);
1341	u1btmp |= BIT(0);
1342	rtl_write_byte(rtlpriv, LDOV12D_CTRL, u1btmp);
1343	rtl_write_byte(rtlpriv, SPS1_CTRL, 0x0);
1344	rtl_write_byte(rtlpriv, TXPAUSE, 0xFF);
1345	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1346	udelay(100);
1347	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1348	rtl_write_byte(rtlpriv, PHY_CCA, 0x0);
1349	udelay(10);
1350	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1351	udelay(10);
1352	rtl_write_word(rtlpriv, CMDR, 0x77FC);
1353	udelay(10);
1354	rtl_write_word(rtlpriv, CMDR, 0x57FC);
1355	rtl_write_word(rtlpriv, CMDR, 0x0000);
1356
1357	if (rtlhal->driver_going2unload) {
1358		u1btmp = rtl_read_byte(rtlpriv, (REG_SYS_FUNC_EN + 1));
1359		u1btmp &= ~(BIT(0));
1360		rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, u1btmp);
1361	}
1362
1363	u1btmp = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1364
1365	/* Add description. After switch control path. register
1366	 * after page1 will be invisible. We can not do any IO
1367	 * for register>0x40. After resume&MACIO reset, we need
1368	 * to remember previous reg content. */
1369	if (u1btmp & BIT(7)) {
1370		u1btmp &= ~(BIT(6) | BIT(7));
1371		if (!_rtl92s_set_sysclk(hw, u1btmp)) {
1372			pr_err("Switch ctrl path fail\n");
1373			return;
1374		}
1375	}
1376
1377	/* Power save for MAC */
1378	if (ppsc->rfoff_reason == RF_CHANGE_BY_IPS  &&
1379		!rtlhal->driver_going2unload) {
1380		/* enable LED function */
1381		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1382	/* SW/HW radio off or halt adapter!! For example S3/S4 */
1383	} else {
1384		/* LED function disable. Power range is about 8mA now. */
1385		/* if write 0xF1 disconnet_pci power
1386		 *	 ifconfig wlan0 down power are both high 35:70 */
1387		/* if write oxF9 disconnet_pci power
1388		 * ifconfig wlan0 down power are both low  12:45*/
1389		rtl_write_byte(rtlpriv, 0x03, 0xF9);
1390	}
1391
1392	rtl_write_byte(rtlpriv, SYS_CLKR + 1, 0x70);
1393	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, 0x68);
1394	rtl_write_byte(rtlpriv,  AFE_PLL_CTRL, 0x00);
1395	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1396	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, 0x0E);
1397	RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
1398
1399}
1400
1401static void _rtl92se_gen_refreshledstate(struct ieee80211_hw *hw)
1402{
1403	struct rtl_priv *rtlpriv = rtl_priv(hw);
1404	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1405	struct rtl_pci_priv *pcipriv = rtl_pcipriv(hw);
1406	struct rtl_led *pLed0 = &(pcipriv->ledctl.sw_led0);
1407
1408	if (rtlpci->up_first_time == 1)
1409		return;
1410
1411	if (rtlpriv->psc.rfoff_reason == RF_CHANGE_BY_IPS)
1412		rtl92se_sw_led_on(hw, pLed0);
1413	else
1414		rtl92se_sw_led_off(hw, pLed0);
1415}
1416
1417
1418static void _rtl92se_power_domain_init(struct ieee80211_hw *hw)
1419{
1420	struct rtl_priv *rtlpriv = rtl_priv(hw);
1421	u16 tmpu2b;
1422	u8 tmpu1b;
1423
1424	rtlpriv->psc.pwrdomain_protect = true;
1425
1426	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1427	if (tmpu1b & BIT(7)) {
1428		tmpu1b &= ~(BIT(6) | BIT(7));
1429		if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1430			rtlpriv->psc.pwrdomain_protect = false;
1431			return;
1432		}
1433	}
1434
1435	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, 0x0);
1436	rtl_write_byte(rtlpriv, LDOA15_CTRL, 0x34);
1437
1438	/* Reset MAC-IO and CPU and Core Digital BIT10/11/15 */
1439	tmpu1b = rtl_read_byte(rtlpriv, REG_SYS_FUNC_EN + 1);
1440
1441	/* If IPS we need to turn LED on. So we not
1442	 * not disable BIT 3/7 of reg3. */
1443	if (rtlpriv->psc.rfoff_reason & (RF_CHANGE_BY_IPS | RF_CHANGE_BY_HW))
1444		tmpu1b &= 0xFB;
1445	else
1446		tmpu1b &= 0x73;
1447
1448	rtl_write_byte(rtlpriv, REG_SYS_FUNC_EN + 1, tmpu1b);
1449	/* wait for BIT 10/11/15 to pull high automatically!! */
1450	mdelay(1);
1451
1452	rtl_write_byte(rtlpriv, CMDR, 0);
1453	rtl_write_byte(rtlpriv, TCR, 0);
1454
1455	/* Data sheet not define 0x562!!! Copy from WMAC!!!!! */
1456	tmpu1b = rtl_read_byte(rtlpriv, 0x562);
1457	tmpu1b |= 0x08;
1458	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1459	tmpu1b &= ~(BIT(3));
1460	rtl_write_byte(rtlpriv, 0x562, tmpu1b);
1461
1462	/* Enable AFE clock source */
1463	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL);
1464	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL, (tmpu1b | 0x01));
1465	/* Delay 1.5ms */
1466	udelay(1500);
1467	tmpu1b = rtl_read_byte(rtlpriv, AFE_XTAL_CTRL + 1);
1468	rtl_write_byte(rtlpriv, AFE_XTAL_CTRL + 1, (tmpu1b & 0xfb));
1469
1470	/* Enable AFE Macro Block's Bandgap */
1471	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1472	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | BIT(0)));
1473	mdelay(1);
1474
1475	/* Enable AFE Mbias */
1476	tmpu1b = rtl_read_byte(rtlpriv, AFE_MISC);
1477	rtl_write_byte(rtlpriv, AFE_MISC, (tmpu1b | 0x02));
1478	mdelay(1);
1479
1480	/* Enable LDOA15 block */
1481	tmpu1b = rtl_read_byte(rtlpriv, LDOA15_CTRL);
1482	rtl_write_byte(rtlpriv, LDOA15_CTRL, (tmpu1b | BIT(0)));
1483
1484	/* Set Digital Vdd to Retention isolation Path. */
1485	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_ISO_CTRL);
1486	rtl_write_word(rtlpriv, REG_SYS_ISO_CTRL, (tmpu2b | BIT(11)));
1487
1488
1489	/* For warm reboot NIC disappera bug. */
1490	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1491	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(13)));
1492
1493	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL + 1, 0x68);
1494
1495	/* Enable AFE PLL Macro Block */
1496	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL);
1497	rtl_write_byte(rtlpriv, AFE_PLL_CTRL, (tmpu1b | BIT(0) | BIT(4)));
1498	/* Enable MAC 80MHZ clock */
1499	tmpu1b = rtl_read_byte(rtlpriv, AFE_PLL_CTRL + 1);
1500	rtl_write_byte(rtlpriv, AFE_PLL_CTRL + 1, (tmpu1b | BIT(0)));
1501	mdelay(1);
1502
1503	/* Release isolation AFE PLL & MD */
1504	rtl_write_byte(rtlpriv, REG_SYS_ISO_CTRL, 0xA6);
1505
1506	/* Enable MAC clock */
1507	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1508	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b | BIT(12) | BIT(11)));
1509
1510	/* Enable Core digital and enable IOREG R/W */
1511	tmpu2b = rtl_read_word(rtlpriv, REG_SYS_FUNC_EN);
1512	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11)));
1513	/* enable REG_EN */
1514	rtl_write_word(rtlpriv, REG_SYS_FUNC_EN, (tmpu2b | BIT(11) | BIT(15)));
1515
1516	/* Switch the control path. */
1517	tmpu2b = rtl_read_word(rtlpriv, SYS_CLKR);
1518	rtl_write_word(rtlpriv, SYS_CLKR, (tmpu2b & (~BIT(2))));
1519
1520	tmpu1b = rtl_read_byte(rtlpriv, (SYS_CLKR + 1));
1521	tmpu1b = ((tmpu1b | BIT(7)) & (~BIT(6)));
1522	if (!_rtl92s_set_sysclk(hw, tmpu1b)) {
1523		rtlpriv->psc.pwrdomain_protect = false;
1524		return;
1525	}
1526
1527	rtl_write_word(rtlpriv, CMDR, 0x37FC);
1528
1529	/* After MACIO reset,we must refresh LED state. */
1530	_rtl92se_gen_refreshledstate(hw);
1531
1532	rtlpriv->psc.pwrdomain_protect = false;
1533}
1534
1535void rtl92se_card_disable(struct ieee80211_hw *hw)
1536{
1537	struct rtl_priv *rtlpriv = rtl_priv(hw);
1538	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1539	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1540	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
1541	enum nl80211_iftype opmode;
1542	u8 wait = 30;
1543
1544	rtlpriv->intf_ops->enable_aspm(hw);
1545
1546	if (rtlpci->driver_is_goingto_unload ||
1547		ppsc->rfoff_reason > RF_CHANGE_BY_PS)
1548		rtlpriv->cfg->ops->led_control(hw, LED_CTL_POWER_OFF);
1549
1550	/* we should chnge GPIO to input mode
1551	 * this will drop away current about 25mA*/
1552	rtl8192se_gpiobit3_cfg_inputmode(hw);
1553
1554	/* this is very important for ips power save */
1555	while (wait-- >= 10 && rtlpriv->psc.pwrdomain_protect) {
1556		if (rtlpriv->psc.pwrdomain_protect)
1557			mdelay(20);
1558		else
1559			break;
1560	}
1561
1562	mac->link_state = MAC80211_NOLINK;
1563	opmode = NL80211_IFTYPE_UNSPECIFIED;
1564	_rtl92se_set_media_status(hw, opmode);
1565
1566	_rtl92s_phy_set_rfhalt(hw);
1567	udelay(100);
1568}
1569
1570void rtl92se_interrupt_recognized(struct ieee80211_hw *hw, u32 *p_inta,
1571			     u32 *p_intb)
1572{
1573	struct rtl_priv *rtlpriv = rtl_priv(hw);
1574	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1575
1576	*p_inta = rtl_read_dword(rtlpriv, ISR) & rtlpci->irq_mask[0];
1577	rtl_write_dword(rtlpriv, ISR, *p_inta);
1578
1579	*p_intb = rtl_read_dword(rtlpriv, ISR + 4) & rtlpci->irq_mask[1];
1580	rtl_write_dword(rtlpriv, ISR + 4, *p_intb);
1581}
1582
1583void rtl92se_set_beacon_related_registers(struct ieee80211_hw *hw)
1584{
1585	struct rtl_priv *rtlpriv = rtl_priv(hw);
1586	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1587	u16 bcntime_cfg = 0;
1588	u16 bcn_cw = 6, bcn_ifs = 0xf;
1589	u16 atim_window = 2;
1590
1591	/* ATIM Window (in unit of TU). */
1592	rtl_write_word(rtlpriv, ATIMWND, atim_window);
1593
1594	/* Beacon interval (in unit of TU). */
1595	rtl_write_word(rtlpriv, BCN_INTERVAL, mac->beacon_interval);
1596
1597	/* DrvErlyInt (in unit of TU). (Time to send
1598	 * interrupt to notify driver to change
1599	 * beacon content) */
1600	rtl_write_word(rtlpriv, BCN_DRV_EARLY_INT, 10 << 4);
1601
1602	/* BcnDMATIM(in unit of us). Indicates the
1603	 * time before TBTT to perform beacon queue DMA  */
1604	rtl_write_word(rtlpriv, BCN_DMATIME, 256);
1605
1606	/* Force beacon frame transmission even
1607	 * after receiving beacon frame from
1608	 * other ad hoc STA */
1609	rtl_write_byte(rtlpriv, BCN_ERR_THRESH, 100);
1610
1611	/* Beacon Time Configuration */
1612	if (mac->opmode == NL80211_IFTYPE_ADHOC)
1613		bcntime_cfg |= (bcn_cw << BCN_TCFG_CW_SHIFT);
1614
1615	/* TODO: bcn_ifs may required to be changed on ASIC */
1616	bcntime_cfg |= bcn_ifs << BCN_TCFG_IFS;
1617
1618	/*for beacon changed */
1619	rtl92s_phy_set_beacon_hwreg(hw, mac->beacon_interval);
1620}
1621
1622void rtl92se_set_beacon_interval(struct ieee80211_hw *hw)
1623{
1624	struct rtl_priv *rtlpriv = rtl_priv(hw);
1625	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
1626	u16 bcn_interval = mac->beacon_interval;
1627
1628	/* Beacon interval (in unit of TU). */
1629	rtl_write_word(rtlpriv, BCN_INTERVAL, bcn_interval);
1630	/* 2008.10.24 added by tynli for beacon changed. */
1631	rtl92s_phy_set_beacon_hwreg(hw, bcn_interval);
1632}
1633
1634void rtl92se_update_interrupt_mask(struct ieee80211_hw *hw,
1635		u32 add_msr, u32 rm_msr)
1636{
1637	struct rtl_priv *rtlpriv = rtl_priv(hw);
1638	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
1639
1640	RT_TRACE(rtlpriv, COMP_INTR, DBG_LOUD, "add_msr:%x, rm_msr:%x\n",
1641		 add_msr, rm_msr);
1642
1643	if (add_msr)
1644		rtlpci->irq_mask[0] |= add_msr;
1645
1646	if (rm_msr)
1647		rtlpci->irq_mask[0] &= (~rm_msr);
1648
1649	rtl92se_disable_interrupt(hw);
1650	rtl92se_enable_interrupt(hw);
1651}
1652
1653static void _rtl8192se_get_IC_Inferiority(struct ieee80211_hw *hw)
1654{
1655	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1656	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1657	u8 efuse_id;
1658
1659	rtlhal->ic_class = IC_INFERIORITY_A;
1660
1661	/* Only retrieving while using EFUSE. */
1662	if ((rtlefuse->epromtype == EEPROM_BOOT_EFUSE) &&
1663		!rtlefuse->autoload_failflag) {
1664		efuse_id = efuse_read_1byte(hw, EFUSE_IC_ID_OFFSET);
1665
1666		if (efuse_id == 0xfe)
1667			rtlhal->ic_class = IC_INFERIORITY_B;
1668	}
1669}
1670
1671static void _rtl92se_read_adapter_info(struct ieee80211_hw *hw)
1672{
1673	struct rtl_priv *rtlpriv = rtl_priv(hw);
1674	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1675	struct rtl_phy *rtlphy = &(rtlpriv->phy);
1676	u16 i, usvalue;
1677	u16	eeprom_id;
1678	u8 tempval;
1679	u8 hwinfo[HWSET_MAX_SIZE_92S];
1680	u8 rf_path, index;
1681
1682	if (rtlefuse->epromtype == EEPROM_93C46) {
1683		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
1684			 "RTL819X Not boot from eeprom, check it !!\n");
1685	} else if (rtlefuse->epromtype == EEPROM_BOOT_EFUSE) {
1686		rtl_efuse_shadow_map_update(hw);
1687
1688		memcpy((void *)hwinfo, (void *)
1689			&rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
1690			HWSET_MAX_SIZE_92S);
1691	}
1692
1693	RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1694		      hwinfo, HWSET_MAX_SIZE_92S);
1695
1696	eeprom_id = *((u16 *)&hwinfo[0]);
1697	if (eeprom_id != RTL8190_EEPROM_ID) {
1698		RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1699			 "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1700		rtlefuse->autoload_failflag = true;
1701	} else {
1702		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1703		rtlefuse->autoload_failflag = false;
1704	}
1705
1706	if (rtlefuse->autoload_failflag)
1707		return;
1708
1709	_rtl8192se_get_IC_Inferiority(hw);
1710
1711	/* Read IC Version && Channel Plan */
1712	/* VID, DID	 SE	0xA-D */
1713	rtlefuse->eeprom_vid = *(u16 *)&hwinfo[EEPROM_VID];
1714	rtlefuse->eeprom_did = *(u16 *)&hwinfo[EEPROM_DID];
1715	rtlefuse->eeprom_svid = *(u16 *)&hwinfo[EEPROM_SVID];
1716	rtlefuse->eeprom_smid = *(u16 *)&hwinfo[EEPROM_SMID];
1717	rtlefuse->eeprom_version = *(u16 *)&hwinfo[EEPROM_VERSION];
1718
1719	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1720		 "EEPROMId = 0x%4x\n", eeprom_id);
1721	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1722		 "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1723	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1724		 "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1725	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1726		 "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1727	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1728		 "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1729
1730	for (i = 0; i < 6; i += 2) {
1731		usvalue = *(u16 *)&hwinfo[EEPROM_MAC_ADDR + i];
1732		*((u16 *) (&rtlefuse->dev_addr[i])) = usvalue;
1733	}
1734
1735	for (i = 0; i < 6; i++)
1736		rtl_write_byte(rtlpriv, MACIDR0 + i, rtlefuse->dev_addr[i]);
1737
1738	RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1739
1740	/* Get Tx Power Level by Channel */
1741	/* Read Tx power of Channel 1 ~ 14 from EEPROM. */
1742	/* 92S suupport RF A & B */
1743	for (rf_path = 0; rf_path < 2; rf_path++) {
1744		for (i = 0; i < 3; i++) {
1745			/* Read CCK RF A & B Tx power  */
1746			rtlefuse->eeprom_chnlarea_txpwr_cck[rf_path][i] =
1747			hwinfo[EEPROM_TXPOWERBASE + rf_path * 3 + i];
1748
1749			/* Read OFDM RF A & B Tx power for 1T */
1750			rtlefuse->eeprom_chnlarea_txpwr_ht40_1s[rf_path][i] =
1751			hwinfo[EEPROM_TXPOWERBASE + 6 + rf_path * 3 + i];
1752
1753			/* Read OFDM RF A & B Tx power for 2T */
1754			rtlefuse->eprom_chnl_txpwr_ht40_2sdf[rf_path][i]
1755				 = hwinfo[EEPROM_TXPOWERBASE + 12 +
1756				   rf_path * 3 + i];
1757		}
1758	}
1759
1760	for (rf_path = 0; rf_path < 2; rf_path++)
1761		for (i = 0; i < 3; i++)
1762			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1763				"RF(%d) EEPROM CCK Area(%d) = 0x%x\n",
1764				rf_path, i,
1765				rtlefuse->eeprom_chnlarea_txpwr_cck
1766				[rf_path][i]);
1767	for (rf_path = 0; rf_path < 2; rf_path++)
1768		for (i = 0; i < 3; i++)
1769			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1770				"RF(%d) EEPROM HT40 1S Area(%d) = 0x%x\n",
1771				rf_path, i,
1772				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1773				[rf_path][i]);
1774	for (rf_path = 0; rf_path < 2; rf_path++)
1775		for (i = 0; i < 3; i++)
1776			RTPRINT(rtlpriv, FINIT, INIT_EEPROM,
1777				"RF(%d) EEPROM HT40 2S Diff Area(%d) = 0x%x\n",
1778				rf_path, i,
1779				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1780				[rf_path][i]);
1781
1782	for (rf_path = 0; rf_path < 2; rf_path++) {
1783
1784		/* Assign dedicated channel tx power */
1785		for (i = 0; i < 14; i++)	{
1786			/* channel 1~3 use the same Tx Power Level. */
1787			if (i < 3)
1788				index = 0;
1789			/* Channel 4-8 */
1790			else if (i < 8)
1791				index = 1;
1792			/* Channel 9-14 */
1793			else
1794				index = 2;
1795
1796			/* Record A & B CCK /OFDM - 1T/2T Channel area
1797			 * tx power */
1798			rtlefuse->txpwrlevel_cck[rf_path][i]  =
1799				rtlefuse->eeprom_chnlarea_txpwr_cck
1800							[rf_path][index];
1801			rtlefuse->txpwrlevel_ht40_1s[rf_path][i]  =
1802				rtlefuse->eeprom_chnlarea_txpwr_ht40_1s
1803							[rf_path][index];
1804			rtlefuse->txpwrlevel_ht40_2s[rf_path][i]  =
1805				rtlefuse->eprom_chnl_txpwr_ht40_2sdf
1806							[rf_path][index];
1807		}
1808
1809		for (i = 0; i < 14; i++) {
1810			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1811				"RF(%d)-Ch(%d) [CCK / HT40_1S / HT40_2S] = [0x%x / 0x%x / 0x%x]\n",
1812				rf_path, i,
1813				rtlefuse->txpwrlevel_cck[rf_path][i],
1814				rtlefuse->txpwrlevel_ht40_1s[rf_path][i],
1815				rtlefuse->txpwrlevel_ht40_2s[rf_path][i]);
1816		}
1817	}
1818
1819	for (rf_path = 0; rf_path < 2; rf_path++) {
1820		for (i = 0; i < 3; i++) {
1821			/* Read Power diff limit. */
1822			rtlefuse->eeprom_pwrgroup[rf_path][i] =
1823				hwinfo[EEPROM_TXPWRGROUP + rf_path * 3 + i];
1824		}
1825	}
1826
1827	for (rf_path = 0; rf_path < 2; rf_path++) {
1828		/* Fill Pwr group */
1829		for (i = 0; i < 14; i++) {
1830			/* Chanel 1-3 */
1831			if (i < 3)
1832				index = 0;
1833			/* Channel 4-8 */
1834			else if (i < 8)
1835				index = 1;
1836			/* Channel 9-13 */
1837			else
1838				index = 2;
1839
1840			rtlefuse->pwrgroup_ht20[rf_path][i] =
1841				(rtlefuse->eeprom_pwrgroup[rf_path][index] &
1842				0xf);
1843			rtlefuse->pwrgroup_ht40[rf_path][i] =
1844				((rtlefuse->eeprom_pwrgroup[rf_path][index] &
1845				0xf0) >> 4);
1846
1847			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1848				"RF-%d pwrgroup_ht20[%d] = 0x%x\n",
1849				rf_path, i,
1850				rtlefuse->pwrgroup_ht20[rf_path][i]);
1851			RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1852				"RF-%d pwrgroup_ht40[%d] = 0x%x\n",
1853				rf_path, i,
1854				rtlefuse->pwrgroup_ht40[rf_path][i]);
1855			}
1856	}
1857
1858	for (i = 0; i < 14; i++) {
1859		/* Read tx power difference between HT OFDM 20/40 MHZ */
1860		/* channel 1-3 */
1861		if (i < 3)
1862			index = 0;
1863		/* Channel 4-8 */
1864		else if (i < 8)
1865			index = 1;
1866		/* Channel 9-14 */
1867		else
1868			index = 2;
1869
1870		tempval = hwinfo[EEPROM_TX_PWR_HT20_DIFF + index] & 0xff;
1871		rtlefuse->txpwr_ht20diff[RF90_PATH_A][i] = (tempval & 0xF);
1872		rtlefuse->txpwr_ht20diff[RF90_PATH_B][i] =
1873						 ((tempval >> 4) & 0xF);
1874
1875		/* Read OFDM<->HT tx power diff */
1876		/* Channel 1-3 */
1877		if (i < 3)
1878			index = 0;
1879		/* Channel 4-8 */
1880		else if (i < 8)
1881			index = 0x11;
1882		/* Channel 9-14 */
1883		else
1884			index = 1;
1885
1886		tempval = hwinfo[EEPROM_TX_PWR_OFDM_DIFF + index] & 0xff;
1887		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i] =
1888				 (tempval & 0xF);
1889		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i] =
1890				 ((tempval >> 4) & 0xF);
1891
1892		tempval = hwinfo[TX_PWR_SAFETY_CHK];
1893		rtlefuse->txpwr_safetyflag = (tempval & 0x01);
1894	}
1895
1896	rtlefuse->eeprom_regulatory = 0;
1897	if (rtlefuse->eeprom_version >= 2) {
1898		/* BIT(0)~2 */
1899		if (rtlefuse->eeprom_version >= 4)
1900			rtlefuse->eeprom_regulatory =
1901				 (hwinfo[EEPROM_REGULATORY] & 0x7);
1902		else /* BIT(0) */
1903			rtlefuse->eeprom_regulatory =
1904				 (hwinfo[EEPROM_REGULATORY] & 0x1);
1905	}
1906	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1907		"eeprom_regulatory = 0x%x\n", rtlefuse->eeprom_regulatory);
1908
1909	for (i = 0; i < 14; i++)
1910		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1911			"RF-A Ht20 to HT40 Diff[%d] = 0x%x\n",
1912			i, rtlefuse->txpwr_ht20diff[RF90_PATH_A][i]);
1913	for (i = 0; i < 14; i++)
1914		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1915			"RF-A Legacy to Ht40 Diff[%d] = 0x%x\n",
1916			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][i]);
1917	for (i = 0; i < 14; i++)
1918		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1919			"RF-B Ht20 to HT40 Diff[%d] = 0x%x\n",
1920			i, rtlefuse->txpwr_ht20diff[RF90_PATH_B][i]);
1921	for (i = 0; i < 14; i++)
1922		RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1923			"RF-B Legacy to HT40 Diff[%d] = 0x%x\n",
1924			i, rtlefuse->txpwr_legacyhtdiff[RF90_PATH_B][i]);
1925
1926	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1927		"TxPwrSafetyFlag = %d\n", rtlefuse->txpwr_safetyflag);
1928
1929	/* Read RF-indication and Tx Power gain
1930	 * index diff of legacy to HT OFDM rate. */
1931	tempval = hwinfo[EEPROM_RFIND_POWERDIFF] & 0xff;
1932	rtlefuse->eeprom_txpowerdiff = tempval;
1933	rtlefuse->legacy_httxpowerdiff =
1934		rtlefuse->txpwr_legacyhtdiff[RF90_PATH_A][0];
1935
1936	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1937		"TxPowerDiff = %#x\n", rtlefuse->eeprom_txpowerdiff);
1938
1939	/* Get TSSI value for each path. */
1940	usvalue = *(u16 *)&hwinfo[EEPROM_TSSI_A];
1941	rtlefuse->eeprom_tssi[RF90_PATH_A] = (u8)((usvalue & 0xff00) >> 8);
1942	usvalue = hwinfo[EEPROM_TSSI_B];
1943	rtlefuse->eeprom_tssi[RF90_PATH_B] = (u8)(usvalue & 0xff);
1944
1945	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER, "TSSI_A = 0x%x, TSSI_B = 0x%x\n",
1946		rtlefuse->eeprom_tssi[RF90_PATH_A],
1947		rtlefuse->eeprom_tssi[RF90_PATH_B]);
1948
1949	/* Read antenna tx power offset of B/C/D to A  from EEPROM */
1950	/* and read ThermalMeter from EEPROM */
1951	tempval = hwinfo[EEPROM_THERMALMETER];
1952	rtlefuse->eeprom_thermalmeter = tempval;
1953	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1954		"thermalmeter = 0x%x\n", rtlefuse->eeprom_thermalmeter);
1955
1956	/* ThermalMeter, BIT(0)~3 for RFIC1, BIT(4)~7 for RFIC2 */
1957	rtlefuse->thermalmeter[0] = (rtlefuse->eeprom_thermalmeter & 0x1f);
1958	rtlefuse->tssi_13dbm = rtlefuse->eeprom_thermalmeter * 100;
1959
1960	/* Read CrystalCap from EEPROM */
1961	tempval = hwinfo[EEPROM_CRYSTALCAP] >> 4;
1962	rtlefuse->eeprom_crystalcap = tempval;
1963	/* CrystalCap, BIT(12)~15 */
1964	rtlefuse->crystalcap = rtlefuse->eeprom_crystalcap;
1965
1966	/* Read IC Version && Channel Plan */
1967	/* Version ID, Channel plan */
1968	rtlefuse->eeprom_channelplan = hwinfo[EEPROM_CHANNELPLAN];
1969	rtlefuse->txpwr_fromeprom = true;
1970	RTPRINT(rtlpriv, FINIT, INIT_TXPOWER,
1971		"EEPROM ChannelPlan = 0x%4x\n", rtlefuse->eeprom_channelplan);
1972
1973	/* Read Customer ID or Board Type!!! */
1974	tempval = hwinfo[EEPROM_BOARDTYPE];
1975	/* Change RF type definition */
1976	if (tempval == 0)
1977		rtlphy->rf_type = RF_2T2R;
1978	else if (tempval == 1)
1979		rtlphy->rf_type = RF_1T2R;
1980	else if (tempval == 2)
1981		rtlphy->rf_type = RF_1T2R;
1982	else if (tempval == 3)
1983		rtlphy->rf_type = RF_1T1R;
1984
1985	/* 1T2R but 1SS (1x1 receive combining) */
1986	rtlefuse->b1x1_recvcombine = false;
1987	if (rtlphy->rf_type == RF_1T2R) {
1988		tempval = rtl_read_byte(rtlpriv, 0x07);
1989		if (!(tempval & BIT(0))) {
1990			rtlefuse->b1x1_recvcombine = true;
1991			RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1992				 "RF_TYPE=1T2R but only 1SS\n");
1993		}
1994	}
1995	rtlefuse->b1ss_support = rtlefuse->b1x1_recvcombine;
1996	rtlefuse->eeprom_oemid = *&hwinfo[EEPROM_CUSTOMID];
1997
1998	RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "EEPROM Customer ID: 0x%2x",
1999		 rtlefuse->eeprom_oemid);
2000
2001	/* set channel paln to world wide 13 */
2002	rtlefuse->channel_plan = COUNTRY_CODE_WORLD_WIDE_13;
2003}
2004
2005void rtl92se_read_eeprom_info(struct ieee80211_hw *hw)
2006{
2007	struct rtl_priv *rtlpriv = rtl_priv(hw);
2008	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2009	u8 tmp_u1b = 0;
2010
2011	tmp_u1b = rtl_read_byte(rtlpriv, EPROM_CMD);
2012
2013	if (tmp_u1b & BIT(4)) {
2014		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EEPROM\n");
2015		rtlefuse->epromtype = EEPROM_93C46;
2016	} else {
2017		RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "Boot from EFUSE\n");
2018		rtlefuse->epromtype = EEPROM_BOOT_EFUSE;
2019	}
2020
2021	if (tmp_u1b & BIT(5)) {
2022		RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
2023		rtlefuse->autoload_failflag = false;
2024		_rtl92se_read_adapter_info(hw);
2025	} else {
2026		RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG, "Autoload ERR!!\n");
2027		rtlefuse->autoload_failflag = true;
2028	}
2029}
2030
2031static void rtl92se_update_hal_rate_table(struct ieee80211_hw *hw,
2032					  struct ieee80211_sta *sta)
2033{
2034	struct rtl_priv *rtlpriv = rtl_priv(hw);
2035	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2036	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2037	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2038	u32 ratr_value;
2039	u8 ratr_index = 0;
2040	u8 nmode = mac->ht_enable;
2041	u8 mimo_ps = IEEE80211_SMPS_OFF;
2042	u16 shortgi_rate = 0;
2043	u32 tmp_ratr_value = 0;
2044	u8 curtxbw_40mhz = mac->bw_40;
2045	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2046				1 : 0;
2047	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2048				1 : 0;
2049	enum wireless_mode wirelessmode = mac->mode;
2050
2051	if (rtlhal->current_bandtype == BAND_ON_5G)
2052		ratr_value = sta->supp_rates[1] << 4;
2053	else
2054		ratr_value = sta->supp_rates[0];
2055	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2056		ratr_value = 0xfff;
2057	ratr_value |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2058			sta->ht_cap.mcs.rx_mask[0] << 12);
2059	switch (wirelessmode) {
2060	case WIRELESS_MODE_B:
2061		ratr_value &= 0x0000000D;
2062		break;
2063	case WIRELESS_MODE_G:
2064		ratr_value &= 0x00000FF5;
2065		break;
2066	case WIRELESS_MODE_N_24G:
2067	case WIRELESS_MODE_N_5G:
2068		nmode = 1;
2069		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2070			ratr_value &= 0x0007F005;
2071		} else {
2072			u32 ratr_mask;
2073
2074			if (get_rf_type(rtlphy) == RF_1T2R ||
2075			    get_rf_type(rtlphy) == RF_1T1R) {
2076				if (curtxbw_40mhz)
2077					ratr_mask = 0x000ff015;
2078				else
2079					ratr_mask = 0x000ff005;
2080			} else {
2081				if (curtxbw_40mhz)
2082					ratr_mask = 0x0f0ff015;
2083				else
2084					ratr_mask = 0x0f0ff005;
2085			}
2086
2087			ratr_value &= ratr_mask;
2088		}
2089		break;
2090	default:
2091		if (rtlphy->rf_type == RF_1T2R)
2092			ratr_value &= 0x000ff0ff;
2093		else
2094			ratr_value &= 0x0f0ff0ff;
2095
2096		break;
2097	}
2098
2099	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2100		ratr_value &= 0x0FFFFFFF;
2101	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2102		ratr_value &= 0x0FFFFFF0;
2103
2104	if (nmode && ((curtxbw_40mhz &&
2105			 curshortgi_40mhz) || (!curtxbw_40mhz &&
2106						 curshortgi_20mhz))) {
2107
2108		ratr_value |= 0x10000000;
2109		tmp_ratr_value = (ratr_value >> 12);
2110
2111		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2112			if ((1 << shortgi_rate) & tmp_ratr_value)
2113				break;
2114		}
2115
2116		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2117		    (shortgi_rate << 4) | (shortgi_rate);
2118
2119		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2120	}
2121
2122	rtl_write_dword(rtlpriv, ARFR0 + ratr_index * 4, ratr_value);
2123	if (ratr_value & 0xfffff000)
2124		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_N);
2125	else
2126		rtl92s_phy_set_fw_cmd(hw, FW_CMD_RA_REFRESH_BG);
2127
2128	RT_TRACE(rtlpriv, COMP_RATR, DBG_DMESG, "%x\n",
2129		 rtl_read_dword(rtlpriv, ARFR0));
2130}
2131
2132static void rtl92se_update_hal_rate_mask(struct ieee80211_hw *hw,
2133					 struct ieee80211_sta *sta,
2134					 u8 rssi_level)
2135{
2136	struct rtl_priv *rtlpriv = rtl_priv(hw);
2137	struct rtl_phy *rtlphy = &(rtlpriv->phy);
2138	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2139	struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
2140	struct rtl_sta_info *sta_entry = NULL;
2141	u32 ratr_bitmap;
2142	u8 ratr_index = 0;
2143	u8 curtxbw_40mhz = (sta->bandwidth >= IEEE80211_STA_RX_BW_40) ? 1 : 0;
2144	u8 curshortgi_40mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_40) ?
2145				1 : 0;
2146	u8 curshortgi_20mhz = (sta->ht_cap.cap & IEEE80211_HT_CAP_SGI_20) ?
2147				1 : 0;
2148	enum wireless_mode wirelessmode = 0;
2149	bool shortgi = false;
2150	u32 ratr_value = 0;
2151	u8 shortgi_rate = 0;
2152	u32 mask = 0;
2153	u32 band = 0;
2154	bool bmulticast = false;
2155	u8 macid = 0;
2156	u8 mimo_ps = IEEE80211_SMPS_OFF;
2157
2158	sta_entry = (struct rtl_sta_info *) sta->drv_priv;
2159	wirelessmode = sta_entry->wireless_mode;
2160	if (mac->opmode == NL80211_IFTYPE_STATION)
2161		curtxbw_40mhz = mac->bw_40;
2162	else if (mac->opmode == NL80211_IFTYPE_AP ||
2163		mac->opmode == NL80211_IFTYPE_ADHOC)
2164		macid = sta->aid + 1;
2165
2166	if (rtlhal->current_bandtype == BAND_ON_5G)
2167		ratr_bitmap = sta->supp_rates[1] << 4;
2168	else
2169		ratr_bitmap = sta->supp_rates[0];
2170	if (mac->opmode == NL80211_IFTYPE_ADHOC)
2171		ratr_bitmap = 0xfff;
2172	ratr_bitmap |= (sta->ht_cap.mcs.rx_mask[1] << 20 |
2173			sta->ht_cap.mcs.rx_mask[0] << 12);
2174	switch (wirelessmode) {
2175	case WIRELESS_MODE_B:
2176		band |= WIRELESS_11B;
2177		ratr_index = RATR_INX_WIRELESS_B;
2178		if (ratr_bitmap & 0x0000000c)
2179			ratr_bitmap &= 0x0000000d;
2180		else
2181			ratr_bitmap &= 0x0000000f;
2182		break;
2183	case WIRELESS_MODE_G:
2184		band |= (WIRELESS_11G | WIRELESS_11B);
2185		ratr_index = RATR_INX_WIRELESS_GB;
2186
2187		if (rssi_level == 1)
2188			ratr_bitmap &= 0x00000f00;
2189		else if (rssi_level == 2)
2190			ratr_bitmap &= 0x00000ff0;
2191		else
2192			ratr_bitmap &= 0x00000ff5;
2193		break;
2194	case WIRELESS_MODE_A:
2195		band |= WIRELESS_11A;
2196		ratr_index = RATR_INX_WIRELESS_A;
2197		ratr_bitmap &= 0x00000ff0;
2198		break;
2199	case WIRELESS_MODE_N_24G:
2200	case WIRELESS_MODE_N_5G:
2201		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2202		ratr_index = RATR_INX_WIRELESS_NGB;
2203
2204		if (mimo_ps == IEEE80211_SMPS_STATIC) {
2205			if (rssi_level == 1)
2206				ratr_bitmap &= 0x00070000;
2207			else if (rssi_level == 2)
2208				ratr_bitmap &= 0x0007f000;
2209			else
2210				ratr_bitmap &= 0x0007f005;
2211		} else {
2212			if (rtlphy->rf_type == RF_1T2R ||
2213				rtlphy->rf_type == RF_1T1R) {
2214				if (rssi_level == 1) {
2215						ratr_bitmap &= 0x000f0000;
2216				} else if (rssi_level == 3) {
2217					ratr_bitmap &= 0x000fc000;
2218				} else if (rssi_level == 5) {
2219						ratr_bitmap &= 0x000ff000;
2220				} else {
2221					if (curtxbw_40mhz)
2222						ratr_bitmap &= 0x000ff015;
2223					else
2224						ratr_bitmap &= 0x000ff005;
2225				}
2226			} else {
2227				if (rssi_level == 1) {
2228					ratr_bitmap &= 0x0f8f0000;
2229				} else if (rssi_level == 3) {
2230					ratr_bitmap &= 0x0f8fc000;
2231				} else if (rssi_level == 5) {
2232					ratr_bitmap &= 0x0f8ff000;
2233				} else {
2234					if (curtxbw_40mhz)
2235						ratr_bitmap &= 0x0f8ff015;
2236					else
2237						ratr_bitmap &= 0x0f8ff005;
2238				}
2239			}
2240		}
2241
2242		if ((curtxbw_40mhz && curshortgi_40mhz) ||
2243		    (!curtxbw_40mhz && curshortgi_20mhz)) {
2244			if (macid == 0)
2245				shortgi = true;
2246			else if (macid == 1)
2247				shortgi = false;
2248		}
2249		break;
2250	default:
2251		band |= (WIRELESS_11N | WIRELESS_11G | WIRELESS_11B);
2252		ratr_index = RATR_INX_WIRELESS_NGB;
2253
2254		if (rtlphy->rf_type == RF_1T2R)
2255			ratr_bitmap &= 0x000ff0ff;
2256		else
2257			ratr_bitmap &= 0x0f8ff0ff;
2258		break;
2259	}
2260	sta_entry->ratr_index = ratr_index;
2261
2262	if (rtlpriv->rtlhal.version >= VERSION_8192S_BCUT)
2263		ratr_bitmap &= 0x0FFFFFFF;
2264	else if (rtlpriv->rtlhal.version == VERSION_8192S_ACUT)
2265		ratr_bitmap &= 0x0FFFFFF0;
2266
2267	if (shortgi) {
2268		ratr_bitmap |= 0x10000000;
2269		/* Get MAX MCS available. */
2270		ratr_value = (ratr_bitmap >> 12);
2271		for (shortgi_rate = 15; shortgi_rate > 0; shortgi_rate--) {
2272			if ((1 << shortgi_rate) & ratr_value)
2273				break;
2274		}
2275
2276		shortgi_rate = (shortgi_rate << 12) | (shortgi_rate << 8) |
2277			(shortgi_rate << 4) | (shortgi_rate);
2278		rtl_write_byte(rtlpriv, SG_RATE, shortgi_rate);
2279	}
2280
2281	mask |= (bmulticast ? 1 : 0) << 9 | (macid & 0x1f) << 4 | (band & 0xf);
2282
2283	RT_TRACE(rtlpriv, COMP_RATR, DBG_TRACE, "mask = %x, bitmap = %x\n",
2284		 mask, ratr_bitmap);
2285	rtl_write_dword(rtlpriv, 0x2c4, ratr_bitmap);
2286	rtl_write_dword(rtlpriv, WFM5, (FW_RA_UPDATE_MASK | (mask << 8)));
2287
2288	if (macid != 0)
2289		sta_entry->ratr_index = ratr_index;
2290}
2291
2292void rtl92se_update_hal_rate_tbl(struct ieee80211_hw *hw,
2293		struct ieee80211_sta *sta, u8 rssi_level)
2294{
2295	struct rtl_priv *rtlpriv = rtl_priv(hw);
2296
2297	if (rtlpriv->dm.useramask)
2298		rtl92se_update_hal_rate_mask(hw, sta, rssi_level);
2299	else
2300		rtl92se_update_hal_rate_table(hw, sta);
2301}
2302
2303void rtl92se_update_channel_access_setting(struct ieee80211_hw *hw)
2304{
2305	struct rtl_priv *rtlpriv = rtl_priv(hw);
2306	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2307	u16 sifs_timer;
2308
2309	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SLOT_TIME,
2310				      &mac->slot_time);
2311	sifs_timer = 0x0e0e;
2312	rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_SIFS, (u8 *)&sifs_timer);
2313
2314}
2315
2316/* this ifunction is for RFKILL, it's different with windows,
2317 * because UI will disable wireless when GPIO Radio Off.
2318 * And here we not check or Disable/Enable ASPM like windows*/
2319bool rtl92se_gpio_radio_on_off_checking(struct ieee80211_hw *hw, u8 *valid)
2320{
2321	struct rtl_priv *rtlpriv = rtl_priv(hw);
2322	struct rtl_ps_ctl *ppsc = rtl_psc(rtl_priv(hw));
2323	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2324	enum rf_pwrstate rfpwr_toset /*, cur_rfstate */;
2325	unsigned long flag = 0;
2326	bool actuallyset = false;
2327	bool turnonbypowerdomain = false;
2328
2329	/* just 8191se can check gpio before firstup, 92c/92d have fixed it */
2330	if ((rtlpci->up_first_time == 1) || (rtlpci->being_init_adapter))
2331		return false;
2332
2333	if (ppsc->swrf_processing)
2334		return false;
2335
2336	spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2337	if (ppsc->rfchange_inprogress) {
2338		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2339		return false;
2340	} else {
2341		ppsc->rfchange_inprogress = true;
2342		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2343	}
2344
2345	/* cur_rfstate = ppsc->rfpwr_state;*/
2346
2347	/* because after _rtl92s_phy_set_rfhalt, all power
2348	 * closed, so we must open some power for GPIO check,
2349	 * or we will always check GPIO RFOFF here,
2350	 * And we should close power after GPIO check */
2351	if (RT_IN_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC)) {
2352		_rtl92se_power_domain_init(hw);
2353		turnonbypowerdomain = true;
2354	}
2355
2356	rfpwr_toset = _rtl92se_rf_onoff_detect(hw);
2357
2358	if ((ppsc->hwradiooff) && (rfpwr_toset == ERFON)) {
2359		RT_TRACE(rtlpriv, COMP_RF, DBG_DMESG,
2360			 "RFKILL-HW Radio ON, RF ON\n");
2361
2362		rfpwr_toset = ERFON;
2363		ppsc->hwradiooff = false;
2364		actuallyset = true;
2365	} else if ((!ppsc->hwradiooff) && (rfpwr_toset == ERFOFF)) {
2366		RT_TRACE(rtlpriv, COMP_RF,
2367			 DBG_DMESG, "RFKILL-HW Radio OFF, RF OFF\n");
2368
2369		rfpwr_toset = ERFOFF;
2370		ppsc->hwradiooff = true;
2371		actuallyset = true;
2372	}
2373
2374	if (actuallyset) {
2375		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2376		ppsc->rfchange_inprogress = false;
2377		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2378
2379	/* this not include ifconfig wlan0 down case */
2380	/* } else if (rfpwr_toset == ERFOFF || cur_rfstate == ERFOFF) { */
2381	} else {
2382		/* because power_domain_init may be happen when
2383		 * _rtl92s_phy_set_rfhalt, this will open some powers
2384		 * and cause current increasing about 40 mA for ips,
2385		 * rfoff and ifconfig down, so we set
2386		 * _rtl92s_phy_set_rfhalt again here */
2387		if (ppsc->reg_rfps_level & RT_RF_OFF_LEVL_HALT_NIC &&
2388			turnonbypowerdomain) {
2389			_rtl92s_phy_set_rfhalt(hw);
2390			RT_SET_PS_LEVEL(ppsc, RT_RF_OFF_LEVL_HALT_NIC);
2391		}
2392
2393		spin_lock_irqsave(&rtlpriv->locks.rf_ps_lock, flag);
2394		ppsc->rfchange_inprogress = false;
2395		spin_unlock_irqrestore(&rtlpriv->locks.rf_ps_lock, flag);
2396	}
2397
2398	*valid = 1;
2399	return !ppsc->hwradiooff;
2400
2401}
2402
2403/* Is_wepkey just used for WEP used as group & pairwise key
2404 * if pairwise is AES ang group is WEP Is_wepkey == false.*/
2405void rtl92se_set_key(struct ieee80211_hw *hw, u32 key_index, u8 *p_macaddr,
2406	bool is_group, u8 enc_algo, bool is_wepkey, bool clear_all)
2407{
2408	struct rtl_priv *rtlpriv = rtl_priv(hw);
2409	struct rtl_mac *mac = rtl_mac(rtl_priv(hw));
2410	struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
2411	u8 *macaddr = p_macaddr;
2412
2413	u32 entry_id = 0;
2414	bool is_pairwise = false;
2415
2416	static u8 cam_const_addr[4][6] = {
2417		{0x00, 0x00, 0x00, 0x00, 0x00, 0x00},
2418		{0x00, 0x00, 0x00, 0x00, 0x00, 0x01},
2419		{0x00, 0x00, 0x00, 0x00, 0x00, 0x02},
2420		{0x00, 0x00, 0x00, 0x00, 0x00, 0x03}
2421	};
2422	static u8 cam_const_broad[] = {
2423		0xff, 0xff, 0xff, 0xff, 0xff, 0xff
2424	};
2425
2426	if (clear_all) {
2427		u8 idx = 0;
2428		u8 cam_offset = 0;
2429		u8 clear_number = 5;
2430
2431		RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG, "clear_all\n");
2432
2433		for (idx = 0; idx < clear_number; idx++) {
2434			rtl_cam_mark_invalid(hw, cam_offset + idx);
2435			rtl_cam_empty_entry(hw, cam_offset + idx);
2436
2437			if (idx < 5) {
2438				memset(rtlpriv->sec.key_buf[idx], 0,
2439				       MAX_KEY_LEN);
2440				rtlpriv->sec.key_len[idx] = 0;
2441			}
2442		}
2443
2444	} else {
2445		switch (enc_algo) {
2446		case WEP40_ENCRYPTION:
2447			enc_algo = CAM_WEP40;
2448			break;
2449		case WEP104_ENCRYPTION:
2450			enc_algo = CAM_WEP104;
2451			break;
2452		case TKIP_ENCRYPTION:
2453			enc_algo = CAM_TKIP;
2454			break;
2455		case AESCCMP_ENCRYPTION:
2456			enc_algo = CAM_AES;
2457			break;
2458		default:
2459			RT_TRACE(rtlpriv, COMP_ERR, DBG_EMERG,
2460				 "switch case not processed\n");
2461			enc_algo = CAM_TKIP;
2462			break;
2463		}
2464
2465		if (is_wepkey || rtlpriv->sec.use_defaultkey) {
2466			macaddr = cam_const_addr[key_index];
2467			entry_id = key_index;
2468		} else {
2469			if (is_group) {
2470				macaddr = cam_const_broad;
2471				entry_id = key_index;
2472			} else {
2473				if (mac->opmode == NL80211_IFTYPE_AP) {
2474					entry_id = rtl_cam_get_free_entry(hw,
2475								 p_macaddr);
2476					if (entry_id >=  TOTAL_CAM_ENTRY) {
2477						RT_TRACE(rtlpriv,
2478							 COMP_SEC, DBG_EMERG,
2479							 "Can not find free hw security cam entry\n");
2480						return;
2481					}
2482				} else {
2483					entry_id = CAM_PAIRWISE_KEY_POSITION;
2484				}
2485
2486				key_index = PAIRWISE_KEYIDX;
2487				is_pairwise = true;
2488			}
2489		}
2490
2491		if (rtlpriv->sec.key_len[key_index] == 0) {
2492			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2493				 "delete one entry, entry_id is %d\n",
2494				 entry_id);
2495			if (mac->opmode == NL80211_IFTYPE_AP)
2496				rtl_cam_del_entry(hw, p_macaddr);
2497			rtl_cam_delete_one_entry(hw, p_macaddr, entry_id);
2498		} else {
2499			RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2500				 "add one entry\n");
2501			if (is_pairwise) {
2502				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2503					 "set Pairwise key\n");
2504
2505				rtl_cam_add_one_entry(hw, macaddr, key_index,
2506					entry_id, enc_algo,
2507					CAM_CONFIG_NO_USEDK,
2508					rtlpriv->sec.key_buf[key_index]);
2509			} else {
2510				RT_TRACE(rtlpriv, COMP_SEC, DBG_DMESG,
2511					 "set group key\n");
2512
2513				if (mac->opmode == NL80211_IFTYPE_ADHOC) {
2514					rtl_cam_add_one_entry(hw,
2515						rtlefuse->dev_addr,
2516						PAIRWISE_KEYIDX,
2517						CAM_PAIRWISE_KEY_POSITION,
2518						enc_algo, CAM_CONFIG_NO_USEDK,
2519						rtlpriv->sec.key_buf[entry_id]);
2520				}
2521
2522				rtl_cam_add_one_entry(hw, macaddr, key_index,
2523					      entry_id, enc_algo,
2524					      CAM_CONFIG_NO_USEDK,
2525					      rtlpriv->sec.key_buf[entry_id]);
2526			}
2527
2528		}
2529	}
2530}
2531
2532void rtl92se_suspend(struct ieee80211_hw *hw)
2533{
2534	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2535
2536	rtlpci->up_first_time = true;
2537}
2538
2539void rtl92se_resume(struct ieee80211_hw *hw)
2540{
2541	struct rtl_pci *rtlpci = rtl_pcidev(rtl_pcipriv(hw));
2542	u32 val;
2543
2544	pci_read_config_dword(rtlpci->pdev, 0x40, &val);
2545	if ((val & 0x0000ff00) != 0)
2546		pci_write_config_dword(rtlpci->pdev, 0x40,
2547			val & 0xffff00ff);
2548}
2549