1
2#include <linux/device.h>
3#include <linux/io.h>
4#include <linux/ioport.h>
5#include <linux/module.h>
6#include <linux/of_address.h>
7#include <linux/pci_regs.h>
8#include <linux/sizes.h>
9#include <linux/slab.h>
10#include <linux/string.h>
11
12/* Max address size we deal with */
13#define OF_MAX_ADDR_CELLS	4
14#define OF_CHECK_ADDR_COUNT(na)	((na) > 0 && (na) <= OF_MAX_ADDR_CELLS)
15#define OF_CHECK_COUNTS(na, ns)	(OF_CHECK_ADDR_COUNT(na) && (ns) > 0)
16
17static struct of_bus *of_match_bus(struct device_node *np);
18static int __of_address_to_resource(struct device_node *dev,
19		const __be32 *addrp, u64 size, unsigned int flags,
20		const char *name, struct resource *r);
21
22/* Debug utility */
23#ifdef DEBUG
24static void of_dump_addr(const char *s, const __be32 *addr, int na)
25{
26	printk(KERN_DEBUG "%s", s);
27	while (na--)
28		printk(" %08x", be32_to_cpu(*(addr++)));
29	printk("\n");
30}
31#else
32static void of_dump_addr(const char *s, const __be32 *addr, int na) { }
33#endif
34
35/* Callbacks for bus specific translators */
36struct of_bus {
37	const char	*name;
38	const char	*addresses;
39	int		(*match)(struct device_node *parent);
40	void		(*count_cells)(struct device_node *child,
41				       int *addrc, int *sizec);
42	u64		(*map)(__be32 *addr, const __be32 *range,
43				int na, int ns, int pna);
44	int		(*translate)(__be32 *addr, u64 offset, int na);
45	unsigned int	(*get_flags)(const __be32 *addr);
46};
47
48/*
49 * Default translator (generic bus)
50 */
51
52static void of_bus_default_count_cells(struct device_node *dev,
53				       int *addrc, int *sizec)
54{
55	if (addrc)
56		*addrc = of_n_addr_cells(dev);
57	if (sizec)
58		*sizec = of_n_size_cells(dev);
59}
60
61static u64 of_bus_default_map(__be32 *addr, const __be32 *range,
62		int na, int ns, int pna)
63{
64	u64 cp, s, da;
65
66	cp = of_read_number(range, na);
67	s  = of_read_number(range + na + pna, ns);
68	da = of_read_number(addr, na);
69
70	pr_debug("OF: default map, cp=%llx, s=%llx, da=%llx\n",
71		 (unsigned long long)cp, (unsigned long long)s,
72		 (unsigned long long)da);
73
74	if (da < cp || da >= (cp + s))
75		return OF_BAD_ADDR;
76	return da - cp;
77}
78
79static int of_bus_default_translate(__be32 *addr, u64 offset, int na)
80{
81	u64 a = of_read_number(addr, na);
82	memset(addr, 0, na * 4);
83	a += offset;
84	if (na > 1)
85		addr[na - 2] = cpu_to_be32(a >> 32);
86	addr[na - 1] = cpu_to_be32(a & 0xffffffffu);
87
88	return 0;
89}
90
91static unsigned int of_bus_default_get_flags(const __be32 *addr)
92{
93	return IORESOURCE_MEM;
94}
95
96#ifdef CONFIG_OF_ADDRESS_PCI
97/*
98 * PCI bus specific translator
99 */
100
101static int of_bus_pci_match(struct device_node *np)
102{
103	/*
104 	 * "pciex" is PCI Express
105	 * "vci" is for the /chaos bridge on 1st-gen PCI powermacs
106	 * "ht" is hypertransport
107	 */
108	return !strcmp(np->type, "pci") || !strcmp(np->type, "pciex") ||
109		!strcmp(np->type, "vci") || !strcmp(np->type, "ht");
110}
111
112static void of_bus_pci_count_cells(struct device_node *np,
113				   int *addrc, int *sizec)
114{
115	if (addrc)
116		*addrc = 3;
117	if (sizec)
118		*sizec = 2;
119}
120
121static unsigned int of_bus_pci_get_flags(const __be32 *addr)
122{
123	unsigned int flags = 0;
124	u32 w = be32_to_cpup(addr);
125
126	switch((w >> 24) & 0x03) {
127	case 0x01:
128		flags |= IORESOURCE_IO;
129		break;
130	case 0x02: /* 32 bits */
131	case 0x03: /* 64 bits */
132		flags |= IORESOURCE_MEM;
133		break;
134	}
135	if (w & 0x40000000)
136		flags |= IORESOURCE_PREFETCH;
137	return flags;
138}
139
140static u64 of_bus_pci_map(__be32 *addr, const __be32 *range, int na, int ns,
141		int pna)
142{
143	u64 cp, s, da;
144	unsigned int af, rf;
145
146	af = of_bus_pci_get_flags(addr);
147	rf = of_bus_pci_get_flags(range);
148
149	/* Check address type match */
150	if ((af ^ rf) & (IORESOURCE_MEM | IORESOURCE_IO))
151		return OF_BAD_ADDR;
152
153	/* Read address values, skipping high cell */
154	cp = of_read_number(range + 1, na - 1);
155	s  = of_read_number(range + na + pna, ns);
156	da = of_read_number(addr + 1, na - 1);
157
158	pr_debug("OF: PCI map, cp=%llx, s=%llx, da=%llx\n",
159		 (unsigned long long)cp, (unsigned long long)s,
160		 (unsigned long long)da);
161
162	if (da < cp || da >= (cp + s))
163		return OF_BAD_ADDR;
164	return da - cp;
165}
166
167static int of_bus_pci_translate(__be32 *addr, u64 offset, int na)
168{
169	return of_bus_default_translate(addr + 1, offset, na - 1);
170}
171#endif /* CONFIG_OF_ADDRESS_PCI */
172
173#ifdef CONFIG_PCI
174const __be32 *of_get_pci_address(struct device_node *dev, int bar_no, u64 *size,
175			unsigned int *flags)
176{
177	const __be32 *prop;
178	unsigned int psize;
179	struct device_node *parent;
180	struct of_bus *bus;
181	int onesize, i, na, ns;
182
183	/* Get parent & match bus type */
184	parent = of_get_parent(dev);
185	if (parent == NULL)
186		return NULL;
187	bus = of_match_bus(parent);
188	if (strcmp(bus->name, "pci")) {
189		of_node_put(parent);
190		return NULL;
191	}
192	bus->count_cells(dev, &na, &ns);
193	of_node_put(parent);
194	if (!OF_CHECK_ADDR_COUNT(na))
195		return NULL;
196
197	/* Get "reg" or "assigned-addresses" property */
198	prop = of_get_property(dev, bus->addresses, &psize);
199	if (prop == NULL)
200		return NULL;
201	psize /= 4;
202
203	onesize = na + ns;
204	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++) {
205		u32 val = be32_to_cpu(prop[0]);
206		if ((val & 0xff) == ((bar_no * 4) + PCI_BASE_ADDRESS_0)) {
207			if (size)
208				*size = of_read_number(prop + na, ns);
209			if (flags)
210				*flags = bus->get_flags(prop);
211			return prop;
212		}
213	}
214	return NULL;
215}
216EXPORT_SYMBOL(of_get_pci_address);
217
218int of_pci_address_to_resource(struct device_node *dev, int bar,
219			       struct resource *r)
220{
221	const __be32	*addrp;
222	u64		size;
223	unsigned int	flags;
224
225	addrp = of_get_pci_address(dev, bar, &size, &flags);
226	if (addrp == NULL)
227		return -EINVAL;
228	return __of_address_to_resource(dev, addrp, size, flags, NULL, r);
229}
230EXPORT_SYMBOL_GPL(of_pci_address_to_resource);
231
232int of_pci_range_parser_init(struct of_pci_range_parser *parser,
233				struct device_node *node)
234{
235	const int na = 3, ns = 2;
236	int rlen;
237
238	parser->node = node;
239	parser->pna = of_n_addr_cells(node);
240	parser->np = parser->pna + na + ns;
241
242	parser->range = of_get_property(node, "ranges", &rlen);
243	if (parser->range == NULL)
244		return -ENOENT;
245
246	parser->end = parser->range + rlen / sizeof(__be32);
247
248	return 0;
249}
250EXPORT_SYMBOL_GPL(of_pci_range_parser_init);
251
252struct of_pci_range *of_pci_range_parser_one(struct of_pci_range_parser *parser,
253						struct of_pci_range *range)
254{
255	const int na = 3, ns = 2;
256
257	if (!range)
258		return NULL;
259
260	if (!parser->range || parser->range + parser->np > parser->end)
261		return NULL;
262
263	range->pci_space = parser->range[0];
264	range->flags = of_bus_pci_get_flags(parser->range);
265	range->pci_addr = of_read_number(parser->range + 1, ns);
266	range->cpu_addr = of_translate_address(parser->node,
267				parser->range + na);
268	range->size = of_read_number(parser->range + parser->pna + na, ns);
269
270	parser->range += parser->np;
271
272	/* Now consume following elements while they are contiguous */
273	while (parser->range + parser->np <= parser->end) {
274		u32 flags, pci_space;
275		u64 pci_addr, cpu_addr, size;
276
277		pci_space = be32_to_cpup(parser->range);
278		flags = of_bus_pci_get_flags(parser->range);
279		pci_addr = of_read_number(parser->range + 1, ns);
280		cpu_addr = of_translate_address(parser->node,
281				parser->range + na);
282		size = of_read_number(parser->range + parser->pna + na, ns);
283
284		if (flags != range->flags)
285			break;
286		if (pci_addr != range->pci_addr + range->size ||
287		    cpu_addr != range->cpu_addr + range->size)
288			break;
289
290		range->size += size;
291		parser->range += parser->np;
292	}
293
294	return range;
295}
296EXPORT_SYMBOL_GPL(of_pci_range_parser_one);
297
298/*
299 * of_pci_range_to_resource - Create a resource from an of_pci_range
300 * @range:	the PCI range that describes the resource
301 * @np:		device node where the range belongs to
302 * @res:	pointer to a valid resource that will be updated to
303 *              reflect the values contained in the range.
304 *
305 * Returns EINVAL if the range cannot be converted to resource.
306 *
307 * Note that if the range is an IO range, the resource will be converted
308 * using pci_address_to_pio() which can fail if it is called too early or
309 * if the range cannot be matched to any host bridge IO space (our case here).
310 * To guard against that we try to register the IO range first.
311 * If that fails we know that pci_address_to_pio() will do too.
312 */
313int of_pci_range_to_resource(struct of_pci_range *range,
314			     struct device_node *np, struct resource *res)
315{
316	int err;
317	res->flags = range->flags;
318	res->parent = res->child = res->sibling = NULL;
319	res->name = np->full_name;
320
321	if (res->flags & IORESOURCE_IO) {
322		unsigned long port;
323		err = pci_register_io_range(range->cpu_addr, range->size);
324		if (err)
325			goto invalid_range;
326		port = pci_address_to_pio(range->cpu_addr);
327		if (port == (unsigned long)-1) {
328			err = -EINVAL;
329			goto invalid_range;
330		}
331		res->start = port;
332	} else {
333		res->start = range->cpu_addr;
334	}
335	res->end = res->start + range->size - 1;
336	return 0;
337
338invalid_range:
339	res->start = (resource_size_t)OF_BAD_ADDR;
340	res->end = (resource_size_t)OF_BAD_ADDR;
341	return err;
342}
343#endif /* CONFIG_PCI */
344
345/*
346 * ISA bus specific translator
347 */
348
349static int of_bus_isa_match(struct device_node *np)
350{
351	return !strcmp(np->name, "isa");
352}
353
354static void of_bus_isa_count_cells(struct device_node *child,
355				   int *addrc, int *sizec)
356{
357	if (addrc)
358		*addrc = 2;
359	if (sizec)
360		*sizec = 1;
361}
362
363static u64 of_bus_isa_map(__be32 *addr, const __be32 *range, int na, int ns,
364		int pna)
365{
366	u64 cp, s, da;
367
368	/* Check address type match */
369	if ((addr[0] ^ range[0]) & cpu_to_be32(1))
370		return OF_BAD_ADDR;
371
372	/* Read address values, skipping high cell */
373	cp = of_read_number(range + 1, na - 1);
374	s  = of_read_number(range + na + pna, ns);
375	da = of_read_number(addr + 1, na - 1);
376
377	pr_debug("OF: ISA map, cp=%llx, s=%llx, da=%llx\n",
378		 (unsigned long long)cp, (unsigned long long)s,
379		 (unsigned long long)da);
380
381	if (da < cp || da >= (cp + s))
382		return OF_BAD_ADDR;
383	return da - cp;
384}
385
386static int of_bus_isa_translate(__be32 *addr, u64 offset, int na)
387{
388	return of_bus_default_translate(addr + 1, offset, na - 1);
389}
390
391static unsigned int of_bus_isa_get_flags(const __be32 *addr)
392{
393	unsigned int flags = 0;
394	u32 w = be32_to_cpup(addr);
395
396	if (w & 1)
397		flags |= IORESOURCE_IO;
398	else
399		flags |= IORESOURCE_MEM;
400	return flags;
401}
402
403/*
404 * Array of bus specific translators
405 */
406
407static struct of_bus of_busses[] = {
408#ifdef CONFIG_OF_ADDRESS_PCI
409	/* PCI */
410	{
411		.name = "pci",
412		.addresses = "assigned-addresses",
413		.match = of_bus_pci_match,
414		.count_cells = of_bus_pci_count_cells,
415		.map = of_bus_pci_map,
416		.translate = of_bus_pci_translate,
417		.get_flags = of_bus_pci_get_flags,
418	},
419#endif /* CONFIG_OF_ADDRESS_PCI */
420	/* ISA */
421	{
422		.name = "isa",
423		.addresses = "reg",
424		.match = of_bus_isa_match,
425		.count_cells = of_bus_isa_count_cells,
426		.map = of_bus_isa_map,
427		.translate = of_bus_isa_translate,
428		.get_flags = of_bus_isa_get_flags,
429	},
430	/* Default */
431	{
432		.name = "default",
433		.addresses = "reg",
434		.match = NULL,
435		.count_cells = of_bus_default_count_cells,
436		.map = of_bus_default_map,
437		.translate = of_bus_default_translate,
438		.get_flags = of_bus_default_get_flags,
439	},
440};
441
442static struct of_bus *of_match_bus(struct device_node *np)
443{
444	int i;
445
446	for (i = 0; i < ARRAY_SIZE(of_busses); i++)
447		if (!of_busses[i].match || of_busses[i].match(np))
448			return &of_busses[i];
449	BUG();
450	return NULL;
451}
452
453static int of_empty_ranges_quirk(struct device_node *np)
454{
455	if (IS_ENABLED(CONFIG_PPC)) {
456		/* To save cycles, we cache the result for global "Mac" setting */
457		static int quirk_state = -1;
458
459		/* PA-SEMI sdc DT bug */
460		if (of_device_is_compatible(np, "1682m-sdc"))
461			return true;
462
463		/* Make quirk cached */
464		if (quirk_state < 0)
465			quirk_state =
466				of_machine_is_compatible("Power Macintosh") ||
467				of_machine_is_compatible("MacRISC");
468		return quirk_state;
469	}
470	return false;
471}
472
473static int of_translate_one(struct device_node *parent, struct of_bus *bus,
474			    struct of_bus *pbus, __be32 *addr,
475			    int na, int ns, int pna, const char *rprop)
476{
477	const __be32 *ranges;
478	unsigned int rlen;
479	int rone;
480	u64 offset = OF_BAD_ADDR;
481
482	/* Normally, an absence of a "ranges" property means we are
483	 * crossing a non-translatable boundary, and thus the addresses
484	 * below the current not cannot be converted to CPU physical ones.
485	 * Unfortunately, while this is very clear in the spec, it's not
486	 * what Apple understood, and they do have things like /uni-n or
487	 * /ht nodes with no "ranges" property and a lot of perfectly
488	 * useable mapped devices below them. Thus we treat the absence of
489	 * "ranges" as equivalent to an empty "ranges" property which means
490	 * a 1:1 translation at that level. It's up to the caller not to try
491	 * to translate addresses that aren't supposed to be translated in
492	 * the first place. --BenH.
493	 *
494	 * As far as we know, this damage only exists on Apple machines, so
495	 * This code is only enabled on powerpc. --gcl
496	 */
497	ranges = of_get_property(parent, rprop, &rlen);
498	if (ranges == NULL && !of_empty_ranges_quirk(parent)) {
499		pr_debug("OF: no ranges; cannot translate\n");
500		return 1;
501	}
502	if (ranges == NULL || rlen == 0) {
503		offset = of_read_number(addr, na);
504		memset(addr, 0, pna * 4);
505		pr_debug("OF: empty ranges; 1:1 translation\n");
506		goto finish;
507	}
508
509	pr_debug("OF: walking ranges...\n");
510
511	/* Now walk through the ranges */
512	rlen /= 4;
513	rone = na + pna + ns;
514	for (; rlen >= rone; rlen -= rone, ranges += rone) {
515		offset = bus->map(addr, ranges, na, ns, pna);
516		if (offset != OF_BAD_ADDR)
517			break;
518	}
519	if (offset == OF_BAD_ADDR) {
520		pr_debug("OF: not found !\n");
521		return 1;
522	}
523	memcpy(addr, ranges + na, 4 * pna);
524
525 finish:
526	of_dump_addr("OF: parent translation for:", addr, pna);
527	pr_debug("OF: with offset: %llx\n", (unsigned long long)offset);
528
529	/* Translate it into parent bus space */
530	return pbus->translate(addr, offset, pna);
531}
532
533/*
534 * Translate an address from the device-tree into a CPU physical address,
535 * this walks up the tree and applies the various bus mappings on the
536 * way.
537 *
538 * Note: We consider that crossing any level with #size-cells == 0 to mean
539 * that translation is impossible (that is we are not dealing with a value
540 * that can be mapped to a cpu physical address). This is not really specified
541 * that way, but this is traditionally the way IBM at least do things
542 */
543static u64 __of_translate_address(struct device_node *dev,
544				  const __be32 *in_addr, const char *rprop)
545{
546	struct device_node *parent = NULL;
547	struct of_bus *bus, *pbus;
548	__be32 addr[OF_MAX_ADDR_CELLS];
549	int na, ns, pna, pns;
550	u64 result = OF_BAD_ADDR;
551
552	pr_debug("OF: ** translation for device %s **\n", of_node_full_name(dev));
553
554	/* Increase refcount at current level */
555	of_node_get(dev);
556
557	/* Get parent & match bus type */
558	parent = of_get_parent(dev);
559	if (parent == NULL)
560		goto bail;
561	bus = of_match_bus(parent);
562
563	/* Count address cells & copy address locally */
564	bus->count_cells(dev, &na, &ns);
565	if (!OF_CHECK_COUNTS(na, ns)) {
566		pr_debug("OF: Bad cell count for %s\n", of_node_full_name(dev));
567		goto bail;
568	}
569	memcpy(addr, in_addr, na * 4);
570
571	pr_debug("OF: bus is %s (na=%d, ns=%d) on %s\n",
572	    bus->name, na, ns, of_node_full_name(parent));
573	of_dump_addr("OF: translating address:", addr, na);
574
575	/* Translate */
576	for (;;) {
577		/* Switch to parent bus */
578		of_node_put(dev);
579		dev = parent;
580		parent = of_get_parent(dev);
581
582		/* If root, we have finished */
583		if (parent == NULL) {
584			pr_debug("OF: reached root node\n");
585			result = of_read_number(addr, na);
586			break;
587		}
588
589		/* Get new parent bus and counts */
590		pbus = of_match_bus(parent);
591		pbus->count_cells(dev, &pna, &pns);
592		if (!OF_CHECK_COUNTS(pna, pns)) {
593			printk(KERN_ERR "prom_parse: Bad cell count for %s\n",
594			       of_node_full_name(dev));
595			break;
596		}
597
598		pr_debug("OF: parent bus is %s (na=%d, ns=%d) on %s\n",
599		    pbus->name, pna, pns, of_node_full_name(parent));
600
601		/* Apply bus translation */
602		if (of_translate_one(dev, bus, pbus, addr, na, ns, pna, rprop))
603			break;
604
605		/* Complete the move up one level */
606		na = pna;
607		ns = pns;
608		bus = pbus;
609
610		of_dump_addr("OF: one level translation:", addr, na);
611	}
612 bail:
613	of_node_put(parent);
614	of_node_put(dev);
615
616	return result;
617}
618
619u64 of_translate_address(struct device_node *dev, const __be32 *in_addr)
620{
621	return __of_translate_address(dev, in_addr, "ranges");
622}
623EXPORT_SYMBOL(of_translate_address);
624
625u64 of_translate_dma_address(struct device_node *dev, const __be32 *in_addr)
626{
627	return __of_translate_address(dev, in_addr, "dma-ranges");
628}
629EXPORT_SYMBOL(of_translate_dma_address);
630
631const __be32 *of_get_address(struct device_node *dev, int index, u64 *size,
632		    unsigned int *flags)
633{
634	const __be32 *prop;
635	unsigned int psize;
636	struct device_node *parent;
637	struct of_bus *bus;
638	int onesize, i, na, ns;
639
640	/* Get parent & match bus type */
641	parent = of_get_parent(dev);
642	if (parent == NULL)
643		return NULL;
644	bus = of_match_bus(parent);
645	bus->count_cells(dev, &na, &ns);
646	of_node_put(parent);
647	if (!OF_CHECK_ADDR_COUNT(na))
648		return NULL;
649
650	/* Get "reg" or "assigned-addresses" property */
651	prop = of_get_property(dev, bus->addresses, &psize);
652	if (prop == NULL)
653		return NULL;
654	psize /= 4;
655
656	onesize = na + ns;
657	for (i = 0; psize >= onesize; psize -= onesize, prop += onesize, i++)
658		if (i == index) {
659			if (size)
660				*size = of_read_number(prop + na, ns);
661			if (flags)
662				*flags = bus->get_flags(prop);
663			return prop;
664		}
665	return NULL;
666}
667EXPORT_SYMBOL(of_get_address);
668
669#ifdef PCI_IOBASE
670struct io_range {
671	struct list_head list;
672	phys_addr_t start;
673	resource_size_t size;
674};
675
676static LIST_HEAD(io_range_list);
677static DEFINE_SPINLOCK(io_range_lock);
678#endif
679
680/*
681 * Record the PCI IO range (expressed as CPU physical address + size).
682 * Return a negative value if an error has occured, zero otherwise
683 */
684int __weak pci_register_io_range(phys_addr_t addr, resource_size_t size)
685{
686	int err = 0;
687
688#ifdef PCI_IOBASE
689	struct io_range *range;
690	resource_size_t allocated_size = 0;
691
692	/* check if the range hasn't been previously recorded */
693	spin_lock(&io_range_lock);
694	list_for_each_entry(range, &io_range_list, list) {
695		if (addr >= range->start && addr + size <= range->start + size) {
696			/* range already registered, bail out */
697			goto end_register;
698		}
699		allocated_size += range->size;
700	}
701
702	/* range not registed yet, check for available space */
703	if (allocated_size + size - 1 > IO_SPACE_LIMIT) {
704		/* if it's too big check if 64K space can be reserved */
705		if (allocated_size + SZ_64K - 1 > IO_SPACE_LIMIT) {
706			err = -E2BIG;
707			goto end_register;
708		}
709
710		size = SZ_64K;
711		pr_warn("Requested IO range too big, new size set to 64K\n");
712	}
713
714	/* add the range to the list */
715	range = kzalloc(sizeof(*range), GFP_ATOMIC);
716	if (!range) {
717		err = -ENOMEM;
718		goto end_register;
719	}
720
721	range->start = addr;
722	range->size = size;
723
724	list_add_tail(&range->list, &io_range_list);
725
726end_register:
727	spin_unlock(&io_range_lock);
728#endif
729
730	return err;
731}
732
733phys_addr_t pci_pio_to_address(unsigned long pio)
734{
735	phys_addr_t address = (phys_addr_t)OF_BAD_ADDR;
736
737#ifdef PCI_IOBASE
738	struct io_range *range;
739	resource_size_t allocated_size = 0;
740
741	if (pio > IO_SPACE_LIMIT)
742		return address;
743
744	spin_lock(&io_range_lock);
745	list_for_each_entry(range, &io_range_list, list) {
746		if (pio >= allocated_size && pio < allocated_size + range->size) {
747			address = range->start + pio - allocated_size;
748			break;
749		}
750		allocated_size += range->size;
751	}
752	spin_unlock(&io_range_lock);
753#endif
754
755	return address;
756}
757
758unsigned long __weak pci_address_to_pio(phys_addr_t address)
759{
760#ifdef PCI_IOBASE
761	struct io_range *res;
762	resource_size_t offset = 0;
763	unsigned long addr = -1;
764
765	spin_lock(&io_range_lock);
766	list_for_each_entry(res, &io_range_list, list) {
767		if (address >= res->start && address < res->start + res->size) {
768			addr = address - res->start + offset;
769			break;
770		}
771		offset += res->size;
772	}
773	spin_unlock(&io_range_lock);
774
775	return addr;
776#else
777	if (address > IO_SPACE_LIMIT)
778		return (unsigned long)-1;
779
780	return (unsigned long) address;
781#endif
782}
783
784static int __of_address_to_resource(struct device_node *dev,
785		const __be32 *addrp, u64 size, unsigned int flags,
786		const char *name, struct resource *r)
787{
788	u64 taddr;
789
790	if ((flags & (IORESOURCE_IO | IORESOURCE_MEM)) == 0)
791		return -EINVAL;
792	taddr = of_translate_address(dev, addrp);
793	if (taddr == OF_BAD_ADDR)
794		return -EINVAL;
795	memset(r, 0, sizeof(struct resource));
796	if (flags & IORESOURCE_IO) {
797		unsigned long port;
798		port = pci_address_to_pio(taddr);
799		if (port == (unsigned long)-1)
800			return -EINVAL;
801		r->start = port;
802		r->end = port + size - 1;
803	} else {
804		r->start = taddr;
805		r->end = taddr + size - 1;
806	}
807	r->flags = flags;
808	r->name = name ? name : dev->full_name;
809
810	return 0;
811}
812
813/**
814 * of_address_to_resource - Translate device tree address and return as resource
815 *
816 * Note that if your address is a PIO address, the conversion will fail if
817 * the physical address can't be internally converted to an IO token with
818 * pci_address_to_pio(), that is because it's either called to early or it
819 * can't be matched to any host bridge IO space
820 */
821int of_address_to_resource(struct device_node *dev, int index,
822			   struct resource *r)
823{
824	const __be32	*addrp;
825	u64		size;
826	unsigned int	flags;
827	const char	*name = NULL;
828
829	addrp = of_get_address(dev, index, &size, &flags);
830	if (addrp == NULL)
831		return -EINVAL;
832
833	/* Get optional "reg-names" property to add a name to a resource */
834	of_property_read_string_index(dev, "reg-names",	index, &name);
835
836	return __of_address_to_resource(dev, addrp, size, flags, name, r);
837}
838EXPORT_SYMBOL_GPL(of_address_to_resource);
839
840struct device_node *of_find_matching_node_by_address(struct device_node *from,
841					const struct of_device_id *matches,
842					u64 base_address)
843{
844	struct device_node *dn = of_find_matching_node(from, matches);
845	struct resource res;
846
847	while (dn) {
848		if (!of_address_to_resource(dn, 0, &res) &&
849		    res.start == base_address)
850			return dn;
851
852		dn = of_find_matching_node(dn, matches);
853	}
854
855	return NULL;
856}
857
858
859/**
860 * of_iomap - Maps the memory mapped IO for a given device_node
861 * @device:	the device whose io range will be mapped
862 * @index:	index of the io range
863 *
864 * Returns a pointer to the mapped memory
865 */
866void __iomem *of_iomap(struct device_node *np, int index)
867{
868	struct resource res;
869
870	if (of_address_to_resource(np, index, &res))
871		return NULL;
872
873	return ioremap(res.start, resource_size(&res));
874}
875EXPORT_SYMBOL(of_iomap);
876
877/*
878 * of_io_request_and_map - Requests a resource and maps the memory mapped IO
879 *			   for a given device_node
880 * @device:	the device whose io range will be mapped
881 * @index:	index of the io range
882 * @name:	name of the resource
883 *
884 * Returns a pointer to the requested and mapped memory or an ERR_PTR() encoded
885 * error code on failure. Usage example:
886 *
887 *	base = of_io_request_and_map(node, 0, "foo");
888 *	if (IS_ERR(base))
889 *		return PTR_ERR(base);
890 */
891void __iomem *of_io_request_and_map(struct device_node *np, int index,
892					const char *name)
893{
894	struct resource res;
895	void __iomem *mem;
896
897	if (of_address_to_resource(np, index, &res))
898		return IOMEM_ERR_PTR(-EINVAL);
899
900	if (!request_mem_region(res.start, resource_size(&res), name))
901		return IOMEM_ERR_PTR(-EBUSY);
902
903	mem = ioremap(res.start, resource_size(&res));
904	if (!mem) {
905		release_mem_region(res.start, resource_size(&res));
906		return IOMEM_ERR_PTR(-ENOMEM);
907	}
908
909	return mem;
910}
911EXPORT_SYMBOL(of_io_request_and_map);
912
913/**
914 * of_dma_get_range - Get DMA range info
915 * @np:		device node to get DMA range info
916 * @dma_addr:	pointer to store initial DMA address of DMA range
917 * @paddr:	pointer to store initial CPU address of DMA range
918 * @size:	pointer to store size of DMA range
919 *
920 * Look in bottom up direction for the first "dma-ranges" property
921 * and parse it.
922 *  dma-ranges format:
923 *	DMA addr (dma_addr)	: naddr cells
924 *	CPU addr (phys_addr_t)	: pna cells
925 *	size			: nsize cells
926 *
927 * It returns -ENODEV if "dma-ranges" property was not found
928 * for this device in DT.
929 */
930int of_dma_get_range(struct device_node *np, u64 *dma_addr, u64 *paddr, u64 *size)
931{
932	struct device_node *node = of_node_get(np);
933	const __be32 *ranges = NULL;
934	int len, naddr, nsize, pna;
935	int ret = 0;
936	u64 dmaaddr;
937
938	if (!node)
939		return -EINVAL;
940
941	while (1) {
942		naddr = of_n_addr_cells(node);
943		nsize = of_n_size_cells(node);
944		node = of_get_next_parent(node);
945		if (!node)
946			break;
947
948		ranges = of_get_property(node, "dma-ranges", &len);
949
950		/* Ignore empty ranges, they imply no translation required */
951		if (ranges && len > 0)
952			break;
953
954		/*
955		 * At least empty ranges has to be defined for parent node if
956		 * DMA is supported
957		 */
958		if (!ranges)
959			break;
960	}
961
962	if (!ranges) {
963		pr_debug("%s: no dma-ranges found for node(%s)\n",
964			 __func__, np->full_name);
965		ret = -ENODEV;
966		goto out;
967	}
968
969	len /= sizeof(u32);
970
971	pna = of_n_addr_cells(node);
972
973	/* dma-ranges format:
974	 * DMA addr	: naddr cells
975	 * CPU addr	: pna cells
976	 * size		: nsize cells
977	 */
978	dmaaddr = of_read_number(ranges, naddr);
979	*paddr = of_translate_dma_address(np, ranges);
980	if (*paddr == OF_BAD_ADDR) {
981		pr_err("%s: translation of DMA address(%pad) to CPU address failed node(%s)\n",
982		       __func__, dma_addr, np->full_name);
983		ret = -EINVAL;
984		goto out;
985	}
986	*dma_addr = dmaaddr;
987
988	*size = of_read_number(ranges + naddr + pna, nsize);
989
990	pr_debug("dma_addr(%llx) cpu_addr(%llx) size(%llx)\n",
991		 *dma_addr, *paddr, *size);
992
993out:
994	of_node_put(node);
995
996	return ret;
997}
998EXPORT_SYMBOL_GPL(of_dma_get_range);
999
1000/**
1001 * of_dma_is_coherent - Check if device is coherent
1002 * @np:	device node
1003 *
1004 * It returns true if "dma-coherent" property was found
1005 * for this device in DT.
1006 */
1007bool of_dma_is_coherent(struct device_node *np)
1008{
1009	struct device_node *node = of_node_get(np);
1010
1011	while (node) {
1012		if (of_property_read_bool(node, "dma-coherent")) {
1013			of_node_put(node);
1014			return true;
1015		}
1016		node = of_get_next_parent(node);
1017	}
1018	of_node_put(node);
1019	return false;
1020}
1021EXPORT_SYMBOL_GPL(of_dma_is_coherent);
1022