1/*
2 *  Derived from arch/i386/kernel/irq.c
3 *    Copyright (C) 1992 Linus Torvalds
4 *  Adapted from arch/i386 by Gary Thomas
5 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *  Updated and modified by Cort Dougan <cort@fsmlabs.com>
7 *    Copyright (C) 1996-2001 Cort Dougan
8 *  Adapted for Power Macintosh by Paul Mackerras
9 *    Copyright (C) 1996 Paul Mackerras (paulus@cs.anu.edu.au)
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 *
16 * This file contains the code used to make IRQ descriptions in the
17 * device tree to actual irq numbers on an interrupt controller
18 * driver.
19 */
20
21#include <linux/errno.h>
22#include <linux/list.h>
23#include <linux/module.h>
24#include <linux/of.h>
25#include <linux/of_irq.h>
26#include <linux/string.h>
27#include <linux/slab.h>
28
29/**
30 * irq_of_parse_and_map - Parse and map an interrupt into linux virq space
31 * @dev: Device node of the device whose interrupt is to be mapped
32 * @index: Index of the interrupt to map
33 *
34 * This function is a wrapper that chains of_irq_parse_one() and
35 * irq_create_of_mapping() to make things easier to callers
36 */
37unsigned int irq_of_parse_and_map(struct device_node *dev, int index)
38{
39	struct of_phandle_args oirq;
40
41	if (of_irq_parse_one(dev, index, &oirq))
42		return 0;
43
44	return irq_create_of_mapping(&oirq);
45}
46EXPORT_SYMBOL_GPL(irq_of_parse_and_map);
47
48/**
49 * of_irq_find_parent - Given a device node, find its interrupt parent node
50 * @child: pointer to device node
51 *
52 * Returns a pointer to the interrupt parent node, or NULL if the interrupt
53 * parent could not be determined.
54 */
55struct device_node *of_irq_find_parent(struct device_node *child)
56{
57	struct device_node *p;
58	const __be32 *parp;
59
60	if (!of_node_get(child))
61		return NULL;
62
63	do {
64		parp = of_get_property(child, "interrupt-parent", NULL);
65		if (parp == NULL)
66			p = of_get_parent(child);
67		else {
68			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
69				p = of_node_get(of_irq_dflt_pic);
70			else
71				p = of_find_node_by_phandle(be32_to_cpup(parp));
72		}
73		of_node_put(child);
74		child = p;
75	} while (p && of_get_property(p, "#interrupt-cells", NULL) == NULL);
76
77	return p;
78}
79
80/**
81 * of_irq_parse_raw - Low level interrupt tree parsing
82 * @parent:	the device interrupt parent
83 * @addr:	address specifier (start of "reg" property of the device) in be32 format
84 * @out_irq:	structure of_irq updated by this function
85 *
86 * Returns 0 on success and a negative number on error
87 *
88 * This function is a low-level interrupt tree walking function. It
89 * can be used to do a partial walk with synthetized reg and interrupts
90 * properties, for example when resolving PCI interrupts when no device
91 * node exist for the parent. It takes an interrupt specifier structure as
92 * input, walks the tree looking for any interrupt-map properties, translates
93 * the specifier for each map, and then returns the translated map.
94 */
95int of_irq_parse_raw(const __be32 *addr, struct of_phandle_args *out_irq)
96{
97	struct device_node *ipar, *tnode, *old = NULL, *newpar = NULL;
98	__be32 initial_match_array[MAX_PHANDLE_ARGS];
99	const __be32 *match_array = initial_match_array;
100	const __be32 *tmp, *imap, *imask, dummy_imask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
101	u32 intsize = 1, addrsize, newintsize = 0, newaddrsize = 0;
102	int imaplen, match, i;
103
104#ifdef DEBUG
105	of_print_phandle_args("of_irq_parse_raw: ", out_irq);
106#endif
107
108	ipar = of_node_get(out_irq->np);
109
110	/* First get the #interrupt-cells property of the current cursor
111	 * that tells us how to interpret the passed-in intspec. If there
112	 * is none, we are nice and just walk up the tree
113	 */
114	do {
115		tmp = of_get_property(ipar, "#interrupt-cells", NULL);
116		if (tmp != NULL) {
117			intsize = be32_to_cpu(*tmp);
118			break;
119		}
120		tnode = ipar;
121		ipar = of_irq_find_parent(ipar);
122		of_node_put(tnode);
123	} while (ipar);
124	if (ipar == NULL) {
125		pr_debug(" -> no parent found !\n");
126		goto fail;
127	}
128
129	pr_debug("of_irq_parse_raw: ipar=%s, size=%d\n", of_node_full_name(ipar), intsize);
130
131	if (out_irq->args_count != intsize)
132		return -EINVAL;
133
134	/* Look for this #address-cells. We have to implement the old linux
135	 * trick of looking for the parent here as some device-trees rely on it
136	 */
137	old = of_node_get(ipar);
138	do {
139		tmp = of_get_property(old, "#address-cells", NULL);
140		tnode = of_get_parent(old);
141		of_node_put(old);
142		old = tnode;
143	} while (old && tmp == NULL);
144	of_node_put(old);
145	old = NULL;
146	addrsize = (tmp == NULL) ? 2 : be32_to_cpu(*tmp);
147
148	pr_debug(" -> addrsize=%d\n", addrsize);
149
150	/* Range check so that the temporary buffer doesn't overflow */
151	if (WARN_ON(addrsize + intsize > MAX_PHANDLE_ARGS))
152		goto fail;
153
154	/* Precalculate the match array - this simplifies match loop */
155	for (i = 0; i < addrsize; i++)
156		initial_match_array[i] = addr ? addr[i] : 0;
157	for (i = 0; i < intsize; i++)
158		initial_match_array[addrsize + i] = cpu_to_be32(out_irq->args[i]);
159
160	/* Now start the actual "proper" walk of the interrupt tree */
161	while (ipar != NULL) {
162		/* Now check if cursor is an interrupt-controller and if it is
163		 * then we are done
164		 */
165		if (of_get_property(ipar, "interrupt-controller", NULL) !=
166				NULL) {
167			pr_debug(" -> got it !\n");
168			return 0;
169		}
170
171		/*
172		 * interrupt-map parsing does not work without a reg
173		 * property when #address-cells != 0
174		 */
175		if (addrsize && !addr) {
176			pr_debug(" -> no reg passed in when needed !\n");
177			goto fail;
178		}
179
180		/* Now look for an interrupt-map */
181		imap = of_get_property(ipar, "interrupt-map", &imaplen);
182		/* No interrupt map, check for an interrupt parent */
183		if (imap == NULL) {
184			pr_debug(" -> no map, getting parent\n");
185			newpar = of_irq_find_parent(ipar);
186			goto skiplevel;
187		}
188		imaplen /= sizeof(u32);
189
190		/* Look for a mask */
191		imask = of_get_property(ipar, "interrupt-map-mask", NULL);
192		if (!imask)
193			imask = dummy_imask;
194
195		/* Parse interrupt-map */
196		match = 0;
197		while (imaplen > (addrsize + intsize + 1) && !match) {
198			/* Compare specifiers */
199			match = 1;
200			for (i = 0; i < (addrsize + intsize); i++, imaplen--)
201				match &= !((match_array[i] ^ *imap++) & imask[i]);
202
203			pr_debug(" -> match=%d (imaplen=%d)\n", match, imaplen);
204
205			/* Get the interrupt parent */
206			if (of_irq_workarounds & OF_IMAP_NO_PHANDLE)
207				newpar = of_node_get(of_irq_dflt_pic);
208			else
209				newpar = of_find_node_by_phandle(be32_to_cpup(imap));
210			imap++;
211			--imaplen;
212
213			/* Check if not found */
214			if (newpar == NULL) {
215				pr_debug(" -> imap parent not found !\n");
216				goto fail;
217			}
218
219			if (!of_device_is_available(newpar))
220				match = 0;
221
222			/* Get #interrupt-cells and #address-cells of new
223			 * parent
224			 */
225			tmp = of_get_property(newpar, "#interrupt-cells", NULL);
226			if (tmp == NULL) {
227				pr_debug(" -> parent lacks #interrupt-cells!\n");
228				goto fail;
229			}
230			newintsize = be32_to_cpu(*tmp);
231			tmp = of_get_property(newpar, "#address-cells", NULL);
232			newaddrsize = (tmp == NULL) ? 0 : be32_to_cpu(*tmp);
233
234			pr_debug(" -> newintsize=%d, newaddrsize=%d\n",
235			    newintsize, newaddrsize);
236
237			/* Check for malformed properties */
238			if (WARN_ON(newaddrsize + newintsize > MAX_PHANDLE_ARGS))
239				goto fail;
240			if (imaplen < (newaddrsize + newintsize))
241				goto fail;
242
243			imap += newaddrsize + newintsize;
244			imaplen -= newaddrsize + newintsize;
245
246			pr_debug(" -> imaplen=%d\n", imaplen);
247		}
248		if (!match)
249			goto fail;
250
251		/*
252		 * Successfully parsed an interrrupt-map translation; copy new
253		 * interrupt specifier into the out_irq structure
254		 */
255		out_irq->np = newpar;
256
257		match_array = imap - newaddrsize - newintsize;
258		for (i = 0; i < newintsize; i++)
259			out_irq->args[i] = be32_to_cpup(imap - newintsize + i);
260		out_irq->args_count = intsize = newintsize;
261		addrsize = newaddrsize;
262
263	skiplevel:
264		/* Iterate again with new parent */
265		pr_debug(" -> new parent: %s\n", of_node_full_name(newpar));
266		of_node_put(ipar);
267		ipar = newpar;
268		newpar = NULL;
269	}
270 fail:
271	of_node_put(ipar);
272	of_node_put(newpar);
273
274	return -EINVAL;
275}
276EXPORT_SYMBOL_GPL(of_irq_parse_raw);
277
278/**
279 * of_irq_parse_one - Resolve an interrupt for a device
280 * @device: the device whose interrupt is to be resolved
281 * @index: index of the interrupt to resolve
282 * @out_irq: structure of_irq filled by this function
283 *
284 * This function resolves an interrupt for a node by walking the interrupt tree,
285 * finding which interrupt controller node it is attached to, and returning the
286 * interrupt specifier that can be used to retrieve a Linux IRQ number.
287 */
288int of_irq_parse_one(struct device_node *device, int index, struct of_phandle_args *out_irq)
289{
290	struct device_node *p;
291	const __be32 *intspec, *tmp, *addr;
292	u32 intsize, intlen;
293	int i, res;
294
295	pr_debug("of_irq_parse_one: dev=%s, index=%d\n", of_node_full_name(device), index);
296
297	/* OldWorld mac stuff is "special", handle out of line */
298	if (of_irq_workarounds & OF_IMAP_OLDWORLD_MAC)
299		return of_irq_parse_oldworld(device, index, out_irq);
300
301	/* Get the reg property (if any) */
302	addr = of_get_property(device, "reg", NULL);
303
304	/* Try the new-style interrupts-extended first */
305	res = of_parse_phandle_with_args(device, "interrupts-extended",
306					"#interrupt-cells", index, out_irq);
307	if (!res)
308		return of_irq_parse_raw(addr, out_irq);
309
310	/* Get the interrupts property */
311	intspec = of_get_property(device, "interrupts", &intlen);
312	if (intspec == NULL)
313		return -EINVAL;
314
315	intlen /= sizeof(*intspec);
316
317	pr_debug(" intspec=%d intlen=%d\n", be32_to_cpup(intspec), intlen);
318
319	/* Look for the interrupt parent. */
320	p = of_irq_find_parent(device);
321	if (p == NULL)
322		return -EINVAL;
323
324	/* Get size of interrupt specifier */
325	tmp = of_get_property(p, "#interrupt-cells", NULL);
326	if (tmp == NULL) {
327		res = -EINVAL;
328		goto out;
329	}
330	intsize = be32_to_cpu(*tmp);
331
332	pr_debug(" intsize=%d intlen=%d\n", intsize, intlen);
333
334	/* Check index */
335	if ((index + 1) * intsize > intlen) {
336		res = -EINVAL;
337		goto out;
338	}
339
340	/* Copy intspec into irq structure */
341	intspec += index * intsize;
342	out_irq->np = p;
343	out_irq->args_count = intsize;
344	for (i = 0; i < intsize; i++)
345		out_irq->args[i] = be32_to_cpup(intspec++);
346
347	/* Check if there are any interrupt-map translations to process */
348	res = of_irq_parse_raw(addr, out_irq);
349 out:
350	of_node_put(p);
351	return res;
352}
353EXPORT_SYMBOL_GPL(of_irq_parse_one);
354
355/**
356 * of_irq_to_resource - Decode a node's IRQ and return it as a resource
357 * @dev: pointer to device tree node
358 * @index: zero-based index of the irq
359 * @r: pointer to resource structure to return result into.
360 */
361int of_irq_to_resource(struct device_node *dev, int index, struct resource *r)
362{
363	int irq = irq_of_parse_and_map(dev, index);
364
365	/* Only dereference the resource if both the
366	 * resource and the irq are valid. */
367	if (r && irq) {
368		const char *name = NULL;
369
370		memset(r, 0, sizeof(*r));
371		/*
372		 * Get optional "interrupt-names" property to add a name
373		 * to the resource.
374		 */
375		of_property_read_string_index(dev, "interrupt-names", index,
376					      &name);
377
378		r->start = r->end = irq;
379		r->flags = IORESOURCE_IRQ | irqd_get_trigger_type(irq_get_irq_data(irq));
380		r->name = name ? name : of_node_full_name(dev);
381	}
382
383	return irq;
384}
385EXPORT_SYMBOL_GPL(of_irq_to_resource);
386
387/**
388 * of_irq_get - Decode a node's IRQ and return it as a Linux IRQ number
389 * @dev: pointer to device tree node
390 * @index: zero-based index of the IRQ
391 *
392 * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or
393 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
394 * of any other failure.
395 */
396int of_irq_get(struct device_node *dev, int index)
397{
398	int rc;
399	struct of_phandle_args oirq;
400	struct irq_domain *domain;
401
402	rc = of_irq_parse_one(dev, index, &oirq);
403	if (rc)
404		return rc;
405
406	domain = irq_find_host(oirq.np);
407	if (!domain)
408		return -EPROBE_DEFER;
409
410	return irq_create_of_mapping(&oirq);
411}
412EXPORT_SYMBOL_GPL(of_irq_get);
413
414/**
415 * of_irq_get_byname - Decode a node's IRQ and return it as a Linux IRQ number
416 * @dev: pointer to device tree node
417 * @name: IRQ name
418 *
419 * Returns Linux IRQ number on success, or 0 on the IRQ mapping failure, or
420 * -EPROBE_DEFER if the IRQ domain is not yet created, or error code in case
421 * of any other failure.
422 */
423int of_irq_get_byname(struct device_node *dev, const char *name)
424{
425	int index;
426
427	if (unlikely(!name))
428		return -EINVAL;
429
430	index = of_property_match_string(dev, "interrupt-names", name);
431	if (index < 0)
432		return index;
433
434	return of_irq_get(dev, index);
435}
436
437/**
438 * of_irq_count - Count the number of IRQs a node uses
439 * @dev: pointer to device tree node
440 */
441int of_irq_count(struct device_node *dev)
442{
443	struct of_phandle_args irq;
444	int nr = 0;
445
446	while (of_irq_parse_one(dev, nr, &irq) == 0)
447		nr++;
448
449	return nr;
450}
451
452/**
453 * of_irq_to_resource_table - Fill in resource table with node's IRQ info
454 * @dev: pointer to device tree node
455 * @res: array of resources to fill in
456 * @nr_irqs: the number of IRQs (and upper bound for num of @res elements)
457 *
458 * Returns the size of the filled in table (up to @nr_irqs).
459 */
460int of_irq_to_resource_table(struct device_node *dev, struct resource *res,
461		int nr_irqs)
462{
463	int i;
464
465	for (i = 0; i < nr_irqs; i++, res++)
466		if (!of_irq_to_resource(dev, i, res))
467			break;
468
469	return i;
470}
471EXPORT_SYMBOL_GPL(of_irq_to_resource_table);
472
473struct intc_desc {
474	struct list_head	list;
475	struct device_node	*dev;
476	struct device_node	*interrupt_parent;
477};
478
479/**
480 * of_irq_init - Scan and init matching interrupt controllers in DT
481 * @matches: 0 terminated array of nodes to match and init function to call
482 *
483 * This function scans the device tree for matching interrupt controller nodes,
484 * and calls their initialization functions in order with parents first.
485 */
486void __init of_irq_init(const struct of_device_id *matches)
487{
488	struct device_node *np, *parent = NULL;
489	struct intc_desc *desc, *temp_desc;
490	struct list_head intc_desc_list, intc_parent_list;
491
492	INIT_LIST_HEAD(&intc_desc_list);
493	INIT_LIST_HEAD(&intc_parent_list);
494
495	for_each_matching_node(np, matches) {
496		if (!of_find_property(np, "interrupt-controller", NULL) ||
497				!of_device_is_available(np))
498			continue;
499		/*
500		 * Here, we allocate and populate an intc_desc with the node
501		 * pointer, interrupt-parent device_node etc.
502		 */
503		desc = kzalloc(sizeof(*desc), GFP_KERNEL);
504		if (WARN_ON(!desc))
505			goto err;
506
507		desc->dev = np;
508		desc->interrupt_parent = of_irq_find_parent(np);
509		if (desc->interrupt_parent == np)
510			desc->interrupt_parent = NULL;
511		list_add_tail(&desc->list, &intc_desc_list);
512	}
513
514	/*
515	 * The root irq controller is the one without an interrupt-parent.
516	 * That one goes first, followed by the controllers that reference it,
517	 * followed by the ones that reference the 2nd level controllers, etc.
518	 */
519	while (!list_empty(&intc_desc_list)) {
520		/*
521		 * Process all controllers with the current 'parent'.
522		 * First pass will be looking for NULL as the parent.
523		 * The assumption is that NULL parent means a root controller.
524		 */
525		list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
526			const struct of_device_id *match;
527			int ret;
528			of_irq_init_cb_t irq_init_cb;
529
530			if (desc->interrupt_parent != parent)
531				continue;
532
533			list_del(&desc->list);
534			match = of_match_node(matches, desc->dev);
535			if (WARN(!match->data,
536			    "of_irq_init: no init function for %s\n",
537			    match->compatible)) {
538				kfree(desc);
539				continue;
540			}
541
542			pr_debug("of_irq_init: init %s @ %p, parent %p\n",
543				 match->compatible,
544				 desc->dev, desc->interrupt_parent);
545			irq_init_cb = (of_irq_init_cb_t)match->data;
546			ret = irq_init_cb(desc->dev, desc->interrupt_parent);
547			if (ret) {
548				kfree(desc);
549				continue;
550			}
551
552			/*
553			 * This one is now set up; add it to the parent list so
554			 * its children can get processed in a subsequent pass.
555			 */
556			list_add_tail(&desc->list, &intc_parent_list);
557		}
558
559		/* Get the next pending parent that might have children */
560		desc = list_first_entry_or_null(&intc_parent_list,
561						typeof(*desc), list);
562		if (!desc) {
563			pr_err("of_irq_init: children remain, but no parents\n");
564			break;
565		}
566		list_del(&desc->list);
567		parent = desc->dev;
568		kfree(desc);
569	}
570
571	list_for_each_entry_safe(desc, temp_desc, &intc_parent_list, list) {
572		list_del(&desc->list);
573		kfree(desc);
574	}
575err:
576	list_for_each_entry_safe(desc, temp_desc, &intc_desc_list, list) {
577		list_del(&desc->list);
578		kfree(desc);
579	}
580}
581