1/*
2 *  linux/drivers/scsi/esas2r/esas2r_ioctl.c
3 *      For use with ATTO ExpressSAS R6xx SAS/SATA RAID controllers
4 *
5 *  Copyright (c) 2001-2013 ATTO Technology, Inc.
6 *  (mailto:linuxdrivers@attotech.com)
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16 * GNU General Public License for more details.
17 *
18 * NO WARRANTY
19 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
20 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
21 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
22 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
23 * solely responsible for determining the appropriateness of using and
24 * distributing the Program and assumes all risks associated with its
25 * exercise of rights under this Agreement, including but not limited to
26 * the risks and costs of program errors, damage to or loss of data,
27 * programs or equipment, and unavailability or interruption of operations.
28 *
29 * DISCLAIMER OF LIABILITY
30 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
31 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
32 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
33 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
34 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
35 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
36 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
37 *
38 * You should have received a copy of the GNU General Public License
39 * along with this program; if not, write to the Free Software
40 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
41 * USA.
42 */
43
44#include "esas2r.h"
45
46/*
47 * Buffered ioctl handlers.  A buffered ioctl is one which requires that we
48 * allocate a DMA-able memory area to communicate with the firmware.  In
49 * order to prevent continually allocating and freeing consistent memory,
50 * we will allocate a global buffer the first time we need it and re-use
51 * it for subsequent ioctl calls that require it.
52 */
53
54u8 *esas2r_buffered_ioctl;
55dma_addr_t esas2r_buffered_ioctl_addr;
56u32 esas2r_buffered_ioctl_size;
57struct pci_dev *esas2r_buffered_ioctl_pcid;
58
59static DEFINE_SEMAPHORE(buffered_ioctl_semaphore);
60typedef int (*BUFFERED_IOCTL_CALLBACK)(struct esas2r_adapter *,
61				       struct esas2r_request *,
62				       struct esas2r_sg_context *,
63				       void *);
64typedef void (*BUFFERED_IOCTL_DONE_CALLBACK)(struct esas2r_adapter *,
65					     struct esas2r_request *, void *);
66
67struct esas2r_buffered_ioctl {
68	struct esas2r_adapter *a;
69	void *ioctl;
70	u32 length;
71	u32 control_code;
72	u32 offset;
73	BUFFERED_IOCTL_CALLBACK
74		callback;
75	void *context;
76	BUFFERED_IOCTL_DONE_CALLBACK
77		done_callback;
78	void *done_context;
79
80};
81
82static void complete_fm_api_req(struct esas2r_adapter *a,
83				struct esas2r_request *rq)
84{
85	a->fm_api_command_done = 1;
86	wake_up_interruptible(&a->fm_api_waiter);
87}
88
89/* Callbacks for building scatter/gather lists for FM API requests */
90static u32 get_physaddr_fm_api(struct esas2r_sg_context *sgc, u64 *addr)
91{
92	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
93	int offset = sgc->cur_offset - a->save_offset;
94
95	(*addr) = a->firmware.phys + offset;
96	return a->firmware.orig_len - offset;
97}
98
99static u32 get_physaddr_fm_api_header(struct esas2r_sg_context *sgc, u64 *addr)
100{
101	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
102	int offset = sgc->cur_offset - a->save_offset;
103
104	(*addr) = a->firmware.header_buff_phys + offset;
105	return sizeof(struct esas2r_flash_img) - offset;
106}
107
108/* Handle EXPRESS_IOCTL_RW_FIRMWARE ioctl with img_type = FW_IMG_FM_API. */
109static void do_fm_api(struct esas2r_adapter *a, struct esas2r_flash_img *fi)
110{
111	struct esas2r_request *rq;
112
113	if (down_interruptible(&a->fm_api_semaphore)) {
114		fi->status = FI_STAT_BUSY;
115		return;
116	}
117
118	rq = esas2r_alloc_request(a);
119	if (rq == NULL) {
120		fi->status = FI_STAT_BUSY;
121		goto free_sem;
122	}
123
124	if (fi == &a->firmware.header) {
125		a->firmware.header_buff = dma_alloc_coherent(&a->pcid->dev,
126							     (size_t)sizeof(
127								     struct
128								     esas2r_flash_img),
129							     (dma_addr_t *)&a->
130							     firmware.
131							     header_buff_phys,
132							     GFP_KERNEL);
133
134		if (a->firmware.header_buff == NULL) {
135			esas2r_debug("failed to allocate header buffer!");
136			fi->status = FI_STAT_BUSY;
137			goto free_req;
138		}
139
140		memcpy(a->firmware.header_buff, fi,
141		       sizeof(struct esas2r_flash_img));
142		a->save_offset = a->firmware.header_buff;
143		a->fm_api_sgc.get_phys_addr =
144			(PGETPHYSADDR)get_physaddr_fm_api_header;
145	} else {
146		a->save_offset = (u8 *)fi;
147		a->fm_api_sgc.get_phys_addr =
148			(PGETPHYSADDR)get_physaddr_fm_api;
149	}
150
151	rq->comp_cb = complete_fm_api_req;
152	a->fm_api_command_done = 0;
153	a->fm_api_sgc.cur_offset = a->save_offset;
154
155	if (!esas2r_fm_api(a, (struct esas2r_flash_img *)a->save_offset, rq,
156			   &a->fm_api_sgc))
157		goto all_done;
158
159	/* Now wait around for it to complete. */
160	while (!a->fm_api_command_done)
161		wait_event_interruptible(a->fm_api_waiter,
162					 a->fm_api_command_done);
163all_done:
164	if (fi == &a->firmware.header) {
165		memcpy(fi, a->firmware.header_buff,
166		       sizeof(struct esas2r_flash_img));
167
168		dma_free_coherent(&a->pcid->dev,
169				  (size_t)sizeof(struct esas2r_flash_img),
170				  a->firmware.header_buff,
171				  (dma_addr_t)a->firmware.header_buff_phys);
172	}
173free_req:
174	esas2r_free_request(a, (struct esas2r_request *)rq);
175free_sem:
176	up(&a->fm_api_semaphore);
177	return;
178
179}
180
181static void complete_nvr_req(struct esas2r_adapter *a,
182			     struct esas2r_request *rq)
183{
184	a->nvram_command_done = 1;
185	wake_up_interruptible(&a->nvram_waiter);
186}
187
188/* Callback for building scatter/gather lists for buffered ioctls */
189static u32 get_physaddr_buffered_ioctl(struct esas2r_sg_context *sgc,
190				       u64 *addr)
191{
192	int offset = (u8 *)sgc->cur_offset - esas2r_buffered_ioctl;
193
194	(*addr) = esas2r_buffered_ioctl_addr + offset;
195	return esas2r_buffered_ioctl_size - offset;
196}
197
198static void complete_buffered_ioctl_req(struct esas2r_adapter *a,
199					struct esas2r_request *rq)
200{
201	a->buffered_ioctl_done = 1;
202	wake_up_interruptible(&a->buffered_ioctl_waiter);
203}
204
205static u8 handle_buffered_ioctl(struct esas2r_buffered_ioctl *bi)
206{
207	struct esas2r_adapter *a = bi->a;
208	struct esas2r_request *rq;
209	struct esas2r_sg_context sgc;
210	u8 result = IOCTL_SUCCESS;
211
212	if (down_interruptible(&buffered_ioctl_semaphore))
213		return IOCTL_OUT_OF_RESOURCES;
214
215	/* allocate a buffer or use the existing buffer. */
216	if (esas2r_buffered_ioctl) {
217		if (esas2r_buffered_ioctl_size < bi->length) {
218			/* free the too-small buffer and get a new one */
219			dma_free_coherent(&a->pcid->dev,
220					  (size_t)esas2r_buffered_ioctl_size,
221					  esas2r_buffered_ioctl,
222					  esas2r_buffered_ioctl_addr);
223
224			goto allocate_buffer;
225		}
226	} else {
227allocate_buffer:
228		esas2r_buffered_ioctl_size = bi->length;
229		esas2r_buffered_ioctl_pcid = a->pcid;
230		esas2r_buffered_ioctl = dma_alloc_coherent(&a->pcid->dev,
231							   (size_t)
232							   esas2r_buffered_ioctl_size,
233							   &
234							   esas2r_buffered_ioctl_addr,
235							   GFP_KERNEL);
236	}
237
238	if (!esas2r_buffered_ioctl) {
239		esas2r_log(ESAS2R_LOG_CRIT,
240			   "could not allocate %d bytes of consistent memory "
241			   "for a buffered ioctl!",
242			   bi->length);
243
244		esas2r_debug("buffered ioctl alloc failure");
245		result = IOCTL_OUT_OF_RESOURCES;
246		goto exit_cleanly;
247	}
248
249	memcpy(esas2r_buffered_ioctl, bi->ioctl, bi->length);
250
251	rq = esas2r_alloc_request(a);
252	if (rq == NULL) {
253		esas2r_log(ESAS2R_LOG_CRIT,
254			   "could not allocate an internal request");
255
256		result = IOCTL_OUT_OF_RESOURCES;
257		esas2r_debug("buffered ioctl - no requests");
258		goto exit_cleanly;
259	}
260
261	a->buffered_ioctl_done = 0;
262	rq->comp_cb = complete_buffered_ioctl_req;
263	sgc.cur_offset = esas2r_buffered_ioctl + bi->offset;
264	sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_buffered_ioctl;
265	sgc.length = esas2r_buffered_ioctl_size;
266
267	if (!(*bi->callback)(a, rq, &sgc, bi->context)) {
268		/* completed immediately, no need to wait */
269		a->buffered_ioctl_done = 0;
270		goto free_andexit_cleanly;
271	}
272
273	/* now wait around for it to complete. */
274	while (!a->buffered_ioctl_done)
275		wait_event_interruptible(a->buffered_ioctl_waiter,
276					 a->buffered_ioctl_done);
277
278free_andexit_cleanly:
279	if (result == IOCTL_SUCCESS && bi->done_callback)
280		(*bi->done_callback)(a, rq, bi->done_context);
281
282	esas2r_free_request(a, rq);
283
284exit_cleanly:
285	if (result == IOCTL_SUCCESS)
286		memcpy(bi->ioctl, esas2r_buffered_ioctl, bi->length);
287
288	up(&buffered_ioctl_semaphore);
289	return result;
290}
291
292/* SMP ioctl support */
293static int smp_ioctl_callback(struct esas2r_adapter *a,
294			      struct esas2r_request *rq,
295			      struct esas2r_sg_context *sgc, void *context)
296{
297	struct atto_ioctl_smp *si =
298		(struct atto_ioctl_smp *)esas2r_buffered_ioctl;
299
300	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
301	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_SMP);
302
303	if (!esas2r_build_sg_list(a, rq, sgc)) {
304		si->status = ATTO_STS_OUT_OF_RSRC;
305		return false;
306	}
307
308	esas2r_start_request(a, rq);
309	return true;
310}
311
312static u8 handle_smp_ioctl(struct esas2r_adapter *a, struct atto_ioctl_smp *si)
313{
314	struct esas2r_buffered_ioctl bi;
315
316	memset(&bi, 0, sizeof(bi));
317
318	bi.a = a;
319	bi.ioctl = si;
320	bi.length = sizeof(struct atto_ioctl_smp)
321		    + le32_to_cpu(si->req_length)
322		    + le32_to_cpu(si->rsp_length);
323	bi.offset = 0;
324	bi.callback = smp_ioctl_callback;
325	return handle_buffered_ioctl(&bi);
326}
327
328
329/* CSMI ioctl support */
330static void esas2r_csmi_ioctl_tunnel_comp_cb(struct esas2r_adapter *a,
331					     struct esas2r_request *rq)
332{
333	rq->target_id = le16_to_cpu(rq->func_rsp.ioctl_rsp.csmi.target_id);
334	rq->vrq->scsi.flags |= cpu_to_le32(rq->func_rsp.ioctl_rsp.csmi.lun);
335
336	/* Now call the original completion callback. */
337	(*rq->aux_req_cb)(a, rq);
338}
339
340/* Tunnel a CSMI IOCTL to the back end driver for processing. */
341static bool csmi_ioctl_tunnel(struct esas2r_adapter *a,
342			      union atto_ioctl_csmi *ci,
343			      struct esas2r_request *rq,
344			      struct esas2r_sg_context *sgc,
345			      u32 ctrl_code,
346			      u16 target_id)
347{
348	struct atto_vda_ioctl_req *ioctl = &rq->vrq->ioctl;
349
350	if (test_bit(AF_DEGRADED_MODE, &a->flags))
351		return false;
352
353	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
354	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_CSMI);
355	ioctl->csmi.ctrl_code = cpu_to_le32(ctrl_code);
356	ioctl->csmi.target_id = cpu_to_le16(target_id);
357	ioctl->csmi.lun = (u8)le32_to_cpu(rq->vrq->scsi.flags);
358
359	/*
360	 * Always usurp the completion callback since the interrupt callback
361	 * mechanism may be used.
362	 */
363	rq->aux_req_cx = ci;
364	rq->aux_req_cb = rq->comp_cb;
365	rq->comp_cb = esas2r_csmi_ioctl_tunnel_comp_cb;
366
367	if (!esas2r_build_sg_list(a, rq, sgc))
368		return false;
369
370	esas2r_start_request(a, rq);
371	return true;
372}
373
374static bool check_lun(struct scsi_lun lun)
375{
376	bool result;
377
378	result = ((lun.scsi_lun[7] == 0) &&
379		  (lun.scsi_lun[6] == 0) &&
380		  (lun.scsi_lun[5] == 0) &&
381		  (lun.scsi_lun[4] == 0) &&
382		  (lun.scsi_lun[3] == 0) &&
383		  (lun.scsi_lun[2] == 0) &&
384/* Byte 1 is intentionally skipped */
385		  (lun.scsi_lun[0] == 0));
386
387	return result;
388}
389
390static int csmi_ioctl_callback(struct esas2r_adapter *a,
391			       struct esas2r_request *rq,
392			       struct esas2r_sg_context *sgc, void *context)
393{
394	struct atto_csmi *ci = (struct atto_csmi *)context;
395	union atto_ioctl_csmi *ioctl_csmi =
396		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
397	u8 path = 0;
398	u8 tid = 0;
399	u8 lun = 0;
400	u32 sts = CSMI_STS_SUCCESS;
401	struct esas2r_target *t;
402	unsigned long flags;
403
404	if (ci->control_code == CSMI_CC_GET_DEV_ADDR) {
405		struct atto_csmi_get_dev_addr *gda = &ci->data.dev_addr;
406
407		path = gda->path_id;
408		tid = gda->target_id;
409		lun = gda->lun;
410	} else if (ci->control_code == CSMI_CC_TASK_MGT) {
411		struct atto_csmi_task_mgmt *tm = &ci->data.tsk_mgt;
412
413		path = tm->path_id;
414		tid = tm->target_id;
415		lun = tm->lun;
416	}
417
418	if (path > 0) {
419		rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(
420			CSMI_STS_INV_PARAM);
421		return false;
422	}
423
424	rq->target_id = tid;
425	rq->vrq->scsi.flags |= cpu_to_le32(lun);
426
427	switch (ci->control_code) {
428	case CSMI_CC_GET_DRVR_INFO:
429	{
430		struct atto_csmi_get_driver_info *gdi = &ioctl_csmi->drvr_info;
431
432		strcpy(gdi->description, esas2r_get_model_name(a));
433		gdi->csmi_major_rev = CSMI_MAJOR_REV;
434		gdi->csmi_minor_rev = CSMI_MINOR_REV;
435		break;
436	}
437
438	case CSMI_CC_GET_CNTLR_CFG:
439	{
440		struct atto_csmi_get_cntlr_cfg *gcc = &ioctl_csmi->cntlr_cfg;
441
442		gcc->base_io_addr = 0;
443		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_2,
444				      &gcc->base_memaddr_lo);
445		pci_read_config_dword(a->pcid, PCI_BASE_ADDRESS_3,
446				      &gcc->base_memaddr_hi);
447		gcc->board_id = MAKEDWORD(a->pcid->subsystem_device,
448					  a->pcid->subsystem_vendor);
449		gcc->slot_num = CSMI_SLOT_NUM_UNKNOWN;
450		gcc->cntlr_class = CSMI_CNTLR_CLASS_HBA;
451		gcc->io_bus_type = CSMI_BUS_TYPE_PCI;
452		gcc->pci_addr.bus_num = a->pcid->bus->number;
453		gcc->pci_addr.device_num = PCI_SLOT(a->pcid->devfn);
454		gcc->pci_addr.function_num = PCI_FUNC(a->pcid->devfn);
455
456		memset(gcc->serial_num, 0, sizeof(gcc->serial_num));
457
458		gcc->major_rev = LOBYTE(LOWORD(a->fw_version));
459		gcc->minor_rev = HIBYTE(LOWORD(a->fw_version));
460		gcc->build_rev = LOBYTE(HIWORD(a->fw_version));
461		gcc->release_rev = HIBYTE(HIWORD(a->fw_version));
462		gcc->bios_major_rev = HIBYTE(HIWORD(a->flash_ver));
463		gcc->bios_minor_rev = LOBYTE(HIWORD(a->flash_ver));
464		gcc->bios_build_rev = LOWORD(a->flash_ver);
465
466		if (test_bit(AF2_THUNDERLINK, &a->flags2))
467			gcc->cntlr_flags = CSMI_CNTLRF_SAS_HBA
468					   | CSMI_CNTLRF_SATA_HBA;
469		else
470			gcc->cntlr_flags = CSMI_CNTLRF_SAS_RAID
471					   | CSMI_CNTLRF_SATA_RAID;
472
473		gcc->rrom_major_rev = 0;
474		gcc->rrom_minor_rev = 0;
475		gcc->rrom_build_rev = 0;
476		gcc->rrom_release_rev = 0;
477		gcc->rrom_biosmajor_rev = 0;
478		gcc->rrom_biosminor_rev = 0;
479		gcc->rrom_biosbuild_rev = 0;
480		gcc->rrom_biosrelease_rev = 0;
481		break;
482	}
483
484	case CSMI_CC_GET_CNTLR_STS:
485	{
486		struct atto_csmi_get_cntlr_sts *gcs = &ioctl_csmi->cntlr_sts;
487
488		if (test_bit(AF_DEGRADED_MODE, &a->flags))
489			gcs->status = CSMI_CNTLR_STS_FAILED;
490		else
491			gcs->status = CSMI_CNTLR_STS_GOOD;
492
493		gcs->offline_reason = CSMI_OFFLINE_NO_REASON;
494		break;
495	}
496
497	case CSMI_CC_FW_DOWNLOAD:
498	case CSMI_CC_GET_RAID_INFO:
499	case CSMI_CC_GET_RAID_CFG:
500
501		sts = CSMI_STS_BAD_CTRL_CODE;
502		break;
503
504	case CSMI_CC_SMP_PASSTHRU:
505	case CSMI_CC_SSP_PASSTHRU:
506	case CSMI_CC_STP_PASSTHRU:
507	case CSMI_CC_GET_PHY_INFO:
508	case CSMI_CC_SET_PHY_INFO:
509	case CSMI_CC_GET_LINK_ERRORS:
510	case CSMI_CC_GET_SATA_SIG:
511	case CSMI_CC_GET_CONN_INFO:
512	case CSMI_CC_PHY_CTRL:
513
514		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
515				       ci->control_code,
516				       ESAS2R_TARG_ID_INV)) {
517			sts = CSMI_STS_FAILED;
518			break;
519		}
520
521		return true;
522
523	case CSMI_CC_GET_SCSI_ADDR:
524	{
525		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
526
527		struct scsi_lun lun;
528
529		memcpy(&lun, gsa->sas_lun, sizeof(struct scsi_lun));
530
531		if (!check_lun(lun)) {
532			sts = CSMI_STS_NO_SCSI_ADDR;
533			break;
534		}
535
536		/* make sure the device is present */
537		spin_lock_irqsave(&a->mem_lock, flags);
538		t = esas2r_targ_db_find_by_sas_addr(a, (u64 *)gsa->sas_addr);
539		spin_unlock_irqrestore(&a->mem_lock, flags);
540
541		if (t == NULL) {
542			sts = CSMI_STS_NO_SCSI_ADDR;
543			break;
544		}
545
546		gsa->host_index = 0xFF;
547		gsa->lun = gsa->sas_lun[1];
548		rq->target_id = esas2r_targ_get_id(t, a);
549		break;
550	}
551
552	case CSMI_CC_GET_DEV_ADDR:
553	{
554		struct atto_csmi_get_dev_addr *gda = &ioctl_csmi->dev_addr;
555
556		/* make sure the target is present */
557		t = a->targetdb + rq->target_id;
558
559		if (t >= a->targetdb_end
560		    || t->target_state != TS_PRESENT
561		    || t->sas_addr == 0) {
562			sts = CSMI_STS_NO_DEV_ADDR;
563			break;
564		}
565
566		/* fill in the result */
567		*(u64 *)gda->sas_addr = t->sas_addr;
568		memset(gda->sas_lun, 0, sizeof(gda->sas_lun));
569		gda->sas_lun[1] = (u8)le32_to_cpu(rq->vrq->scsi.flags);
570		break;
571	}
572
573	case CSMI_CC_TASK_MGT:
574
575		/* make sure the target is present */
576		t = a->targetdb + rq->target_id;
577
578		if (t >= a->targetdb_end
579		    || t->target_state != TS_PRESENT
580		    || !(t->flags & TF_PASS_THRU)) {
581			sts = CSMI_STS_NO_DEV_ADDR;
582			break;
583		}
584
585		if (!csmi_ioctl_tunnel(a, ioctl_csmi, rq, sgc,
586				       ci->control_code,
587				       t->phys_targ_id)) {
588			sts = CSMI_STS_FAILED;
589			break;
590		}
591
592		return true;
593
594	default:
595
596		sts = CSMI_STS_BAD_CTRL_CODE;
597		break;
598	}
599
600	rq->func_rsp.ioctl_rsp.csmi.csmi_status = cpu_to_le32(sts);
601
602	return false;
603}
604
605
606static void csmi_ioctl_done_callback(struct esas2r_adapter *a,
607				     struct esas2r_request *rq, void *context)
608{
609	struct atto_csmi *ci = (struct atto_csmi *)context;
610	union atto_ioctl_csmi *ioctl_csmi =
611		(union atto_ioctl_csmi *)esas2r_buffered_ioctl;
612
613	switch (ci->control_code) {
614	case CSMI_CC_GET_DRVR_INFO:
615	{
616		struct atto_csmi_get_driver_info *gdi =
617			&ioctl_csmi->drvr_info;
618
619		strcpy(gdi->name, ESAS2R_VERSION_STR);
620
621		gdi->major_rev = ESAS2R_MAJOR_REV;
622		gdi->minor_rev = ESAS2R_MINOR_REV;
623		gdi->build_rev = 0;
624		gdi->release_rev = 0;
625		break;
626	}
627
628	case CSMI_CC_GET_SCSI_ADDR:
629	{
630		struct atto_csmi_get_scsi_addr *gsa = &ioctl_csmi->scsi_addr;
631
632		if (le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status) ==
633		    CSMI_STS_SUCCESS) {
634			gsa->target_id = rq->target_id;
635			gsa->path_id = 0;
636		}
637
638		break;
639	}
640	}
641
642	ci->status = le32_to_cpu(rq->func_rsp.ioctl_rsp.csmi.csmi_status);
643}
644
645
646static u8 handle_csmi_ioctl(struct esas2r_adapter *a, struct atto_csmi *ci)
647{
648	struct esas2r_buffered_ioctl bi;
649
650	memset(&bi, 0, sizeof(bi));
651
652	bi.a = a;
653	bi.ioctl = &ci->data;
654	bi.length = sizeof(union atto_ioctl_csmi);
655	bi.offset = 0;
656	bi.callback = csmi_ioctl_callback;
657	bi.context = ci;
658	bi.done_callback = csmi_ioctl_done_callback;
659	bi.done_context = ci;
660
661	return handle_buffered_ioctl(&bi);
662}
663
664/* ATTO HBA ioctl support */
665
666/* Tunnel an ATTO HBA IOCTL to the back end driver for processing. */
667static bool hba_ioctl_tunnel(struct esas2r_adapter *a,
668			     struct atto_ioctl *hi,
669			     struct esas2r_request *rq,
670			     struct esas2r_sg_context *sgc)
671{
672	esas2r_sgc_init(sgc, a, rq, rq->vrq->ioctl.sge);
673
674	esas2r_build_ioctl_req(a, rq, sgc->length, VDA_IOCTL_HBA);
675
676	if (!esas2r_build_sg_list(a, rq, sgc)) {
677		hi->status = ATTO_STS_OUT_OF_RSRC;
678
679		return false;
680	}
681
682	esas2r_start_request(a, rq);
683
684	return true;
685}
686
687static void scsi_passthru_comp_cb(struct esas2r_adapter *a,
688				  struct esas2r_request *rq)
689{
690	struct atto_ioctl *hi = (struct atto_ioctl *)rq->aux_req_cx;
691	struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
692	u8 sts = ATTO_SPT_RS_FAILED;
693
694	spt->scsi_status = rq->func_rsp.scsi_rsp.scsi_stat;
695	spt->sense_length = rq->sense_len;
696	spt->residual_length =
697		le32_to_cpu(rq->func_rsp.scsi_rsp.residual_length);
698
699	switch (rq->req_stat) {
700	case RS_SUCCESS:
701	case RS_SCSI_ERROR:
702		sts = ATTO_SPT_RS_SUCCESS;
703		break;
704	case RS_UNDERRUN:
705		sts = ATTO_SPT_RS_UNDERRUN;
706		break;
707	case RS_OVERRUN:
708		sts = ATTO_SPT_RS_OVERRUN;
709		break;
710	case RS_SEL:
711	case RS_SEL2:
712		sts = ATTO_SPT_RS_NO_DEVICE;
713		break;
714	case RS_NO_LUN:
715		sts = ATTO_SPT_RS_NO_LUN;
716		break;
717	case RS_TIMEOUT:
718		sts = ATTO_SPT_RS_TIMEOUT;
719		break;
720	case RS_DEGRADED:
721		sts = ATTO_SPT_RS_DEGRADED;
722		break;
723	case RS_BUSY:
724		sts = ATTO_SPT_RS_BUSY;
725		break;
726	case RS_ABORTED:
727		sts = ATTO_SPT_RS_ABORTED;
728		break;
729	case RS_RESET:
730		sts = ATTO_SPT_RS_BUS_RESET;
731		break;
732	}
733
734	spt->req_status = sts;
735
736	/* Update the target ID to the next one present. */
737	spt->target_id =
738		esas2r_targ_db_find_next_present(a, (u16)spt->target_id);
739
740	/* Done, call the completion callback. */
741	(*rq->aux_req_cb)(a, rq);
742}
743
744static int hba_ioctl_callback(struct esas2r_adapter *a,
745			      struct esas2r_request *rq,
746			      struct esas2r_sg_context *sgc,
747			      void *context)
748{
749	struct atto_ioctl *hi = (struct atto_ioctl *)esas2r_buffered_ioctl;
750
751	hi->status = ATTO_STS_SUCCESS;
752
753	switch (hi->function) {
754	case ATTO_FUNC_GET_ADAP_INFO:
755	{
756		u8 *class_code = (u8 *)&a->pcid->class;
757
758		struct atto_hba_get_adapter_info *gai =
759			&hi->data.get_adap_info;
760		int pcie_cap_reg;
761
762		if (hi->flags & HBAF_TUNNEL) {
763			hi->status = ATTO_STS_UNSUPPORTED;
764			break;
765		}
766
767		if (hi->version > ATTO_VER_GET_ADAP_INFO0) {
768			hi->status = ATTO_STS_INV_VERSION;
769			hi->version = ATTO_VER_GET_ADAP_INFO0;
770			break;
771		}
772
773		memset(gai, 0, sizeof(*gai));
774
775		gai->pci.vendor_id = a->pcid->vendor;
776		gai->pci.device_id = a->pcid->device;
777		gai->pci.ss_vendor_id = a->pcid->subsystem_vendor;
778		gai->pci.ss_device_id = a->pcid->subsystem_device;
779		gai->pci.class_code[0] = class_code[0];
780		gai->pci.class_code[1] = class_code[1];
781		gai->pci.class_code[2] = class_code[2];
782		gai->pci.rev_id = a->pcid->revision;
783		gai->pci.bus_num = a->pcid->bus->number;
784		gai->pci.dev_num = PCI_SLOT(a->pcid->devfn);
785		gai->pci.func_num = PCI_FUNC(a->pcid->devfn);
786
787		pcie_cap_reg = pci_find_capability(a->pcid, PCI_CAP_ID_EXP);
788		if (pcie_cap_reg) {
789			u16 stat;
790			u32 caps;
791
792			pci_read_config_word(a->pcid,
793					     pcie_cap_reg + PCI_EXP_LNKSTA,
794					     &stat);
795			pci_read_config_dword(a->pcid,
796					      pcie_cap_reg + PCI_EXP_LNKCAP,
797					      &caps);
798
799			gai->pci.link_speed_curr =
800				(u8)(stat & PCI_EXP_LNKSTA_CLS);
801			gai->pci.link_speed_max =
802				(u8)(caps & PCI_EXP_LNKCAP_SLS);
803			gai->pci.link_width_curr =
804				(u8)((stat & PCI_EXP_LNKSTA_NLW)
805				     >> PCI_EXP_LNKSTA_NLW_SHIFT);
806			gai->pci.link_width_max =
807				(u8)((caps & PCI_EXP_LNKCAP_MLW)
808				     >> 4);
809		}
810
811		gai->pci.msi_vector_cnt = 1;
812
813		if (a->pcid->msix_enabled)
814			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSIX;
815		else if (a->pcid->msi_enabled)
816			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_MSI;
817		else
818			gai->pci.interrupt_mode = ATTO_GAI_PCIIM_LEGACY;
819
820		gai->adap_type = ATTO_GAI_AT_ESASRAID2;
821
822		if (test_bit(AF2_THUNDERLINK, &a->flags2))
823			gai->adap_type = ATTO_GAI_AT_TLSASHBA;
824
825		if (test_bit(AF_DEGRADED_MODE, &a->flags))
826			gai->adap_flags |= ATTO_GAI_AF_DEGRADED;
827
828		gai->adap_flags |= ATTO_GAI_AF_SPT_SUPP |
829				   ATTO_GAI_AF_DEVADDR_SUPP;
830
831		if (a->pcid->subsystem_device == ATTO_ESAS_R60F
832		    || a->pcid->subsystem_device == ATTO_ESAS_R608
833		    || a->pcid->subsystem_device == ATTO_ESAS_R644
834		    || a->pcid->subsystem_device == ATTO_TSSC_3808E)
835			gai->adap_flags |= ATTO_GAI_AF_VIRT_SES;
836
837		gai->num_ports = ESAS2R_NUM_PHYS;
838		gai->num_phys = ESAS2R_NUM_PHYS;
839
840		strcpy(gai->firmware_rev, a->fw_rev);
841		strcpy(gai->flash_rev, a->flash_rev);
842		strcpy(gai->model_name_short, esas2r_get_model_name_short(a));
843		strcpy(gai->model_name, esas2r_get_model_name(a));
844
845		gai->num_targets = ESAS2R_MAX_TARGETS;
846
847		gai->num_busses = 1;
848		gai->num_targsper_bus = gai->num_targets;
849		gai->num_lunsper_targ = 256;
850
851		if (a->pcid->subsystem_device == ATTO_ESAS_R6F0
852		    || a->pcid->subsystem_device == ATTO_ESAS_R60F)
853			gai->num_connectors = 4;
854		else
855			gai->num_connectors = 2;
856
857		gai->adap_flags2 |= ATTO_GAI_AF2_ADAP_CTRL_SUPP;
858
859		gai->num_targets_backend = a->num_targets_backend;
860
861		gai->tunnel_flags = a->ioctl_tunnel
862				    & (ATTO_GAI_TF_MEM_RW
863				       | ATTO_GAI_TF_TRACE
864				       | ATTO_GAI_TF_SCSI_PASS_THRU
865				       | ATTO_GAI_TF_GET_DEV_ADDR
866				       | ATTO_GAI_TF_PHY_CTRL
867				       | ATTO_GAI_TF_CONN_CTRL
868				       | ATTO_GAI_TF_GET_DEV_INFO);
869		break;
870	}
871
872	case ATTO_FUNC_GET_ADAP_ADDR:
873	{
874		struct atto_hba_get_adapter_address *gaa =
875			&hi->data.get_adap_addr;
876
877		if (hi->flags & HBAF_TUNNEL) {
878			hi->status = ATTO_STS_UNSUPPORTED;
879			break;
880		}
881
882		if (hi->version > ATTO_VER_GET_ADAP_ADDR0) {
883			hi->status = ATTO_STS_INV_VERSION;
884			hi->version = ATTO_VER_GET_ADAP_ADDR0;
885		} else if (gaa->addr_type == ATTO_GAA_AT_PORT
886			   || gaa->addr_type == ATTO_GAA_AT_NODE) {
887			if (gaa->addr_type == ATTO_GAA_AT_PORT
888			    && gaa->port_id >= ESAS2R_NUM_PHYS) {
889				hi->status = ATTO_STS_NOT_APPL;
890			} else {
891				memcpy((u64 *)gaa->address,
892				       &a->nvram->sas_addr[0], sizeof(u64));
893				gaa->addr_len = sizeof(u64);
894			}
895		} else {
896			hi->status = ATTO_STS_INV_PARAM;
897		}
898
899		break;
900	}
901
902	case ATTO_FUNC_MEM_RW:
903	{
904		if (hi->flags & HBAF_TUNNEL) {
905			if (hba_ioctl_tunnel(a, hi, rq, sgc))
906				return true;
907
908			break;
909		}
910
911		hi->status = ATTO_STS_UNSUPPORTED;
912
913		break;
914	}
915
916	case ATTO_FUNC_TRACE:
917	{
918		struct atto_hba_trace *trc = &hi->data.trace;
919
920		if (hi->flags & HBAF_TUNNEL) {
921			if (hba_ioctl_tunnel(a, hi, rq, sgc))
922				return true;
923
924			break;
925		}
926
927		if (hi->version > ATTO_VER_TRACE1) {
928			hi->status = ATTO_STS_INV_VERSION;
929			hi->version = ATTO_VER_TRACE1;
930			break;
931		}
932
933		if (trc->trace_type == ATTO_TRC_TT_FWCOREDUMP
934		    && hi->version >= ATTO_VER_TRACE1) {
935			if (trc->trace_func == ATTO_TRC_TF_UPLOAD) {
936				u32 len = hi->data_length;
937				u32 offset = trc->current_offset;
938				u32 total_len = ESAS2R_FWCOREDUMP_SZ;
939
940				/* Size is zero if a core dump isn't present */
941				if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
942					total_len = 0;
943
944				if (len > total_len)
945					len = total_len;
946
947				if (offset >= total_len
948				    || offset + len > total_len
949				    || len == 0) {
950					hi->status = ATTO_STS_INV_PARAM;
951					break;
952				}
953
954				memcpy(trc + 1,
955				       a->fw_coredump_buff + offset,
956				       len);
957
958				hi->data_length = len;
959			} else if (trc->trace_func == ATTO_TRC_TF_RESET) {
960				memset(a->fw_coredump_buff, 0,
961				       ESAS2R_FWCOREDUMP_SZ);
962
963				clear_bit(AF2_COREDUMP_SAVED, &a->flags2);
964			} else if (trc->trace_func != ATTO_TRC_TF_GET_INFO) {
965				hi->status = ATTO_STS_UNSUPPORTED;
966				break;
967			}
968
969			/* Always return all the info we can. */
970			trc->trace_mask = 0;
971			trc->current_offset = 0;
972			trc->total_length = ESAS2R_FWCOREDUMP_SZ;
973
974			/* Return zero length buffer if core dump not present */
975			if (!test_bit(AF2_COREDUMP_SAVED, &a->flags2))
976				trc->total_length = 0;
977		} else {
978			hi->status = ATTO_STS_UNSUPPORTED;
979		}
980
981		break;
982	}
983
984	case ATTO_FUNC_SCSI_PASS_THRU:
985	{
986		struct atto_hba_scsi_pass_thru *spt = &hi->data.scsi_pass_thru;
987		struct scsi_lun lun;
988
989		memcpy(&lun, spt->lun, sizeof(struct scsi_lun));
990
991		if (hi->flags & HBAF_TUNNEL) {
992			if (hba_ioctl_tunnel(a, hi, rq, sgc))
993				return true;
994
995			break;
996		}
997
998		if (hi->version > ATTO_VER_SCSI_PASS_THRU0) {
999			hi->status = ATTO_STS_INV_VERSION;
1000			hi->version = ATTO_VER_SCSI_PASS_THRU0;
1001			break;
1002		}
1003
1004		if (spt->target_id >= ESAS2R_MAX_TARGETS || !check_lun(lun)) {
1005			hi->status = ATTO_STS_INV_PARAM;
1006			break;
1007		}
1008
1009		esas2r_sgc_init(sgc, a, rq, NULL);
1010
1011		sgc->length = hi->data_length;
1012		sgc->cur_offset += offsetof(struct atto_ioctl, data.byte)
1013				   + sizeof(struct atto_hba_scsi_pass_thru);
1014
1015		/* Finish request initialization */
1016		rq->target_id = (u16)spt->target_id;
1017		rq->vrq->scsi.flags |= cpu_to_le32(spt->lun[1]);
1018		memcpy(rq->vrq->scsi.cdb, spt->cdb, 16);
1019		rq->vrq->scsi.length = cpu_to_le32(hi->data_length);
1020		rq->sense_len = spt->sense_length;
1021		rq->sense_buf = (u8 *)spt->sense_data;
1022		/* NOTE: we ignore spt->timeout */
1023
1024		/*
1025		 * always usurp the completion callback since the interrupt
1026		 * callback mechanism may be used.
1027		 */
1028
1029		rq->aux_req_cx = hi;
1030		rq->aux_req_cb = rq->comp_cb;
1031		rq->comp_cb = scsi_passthru_comp_cb;
1032
1033		if (spt->flags & ATTO_SPTF_DATA_IN) {
1034			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_RDD);
1035		} else if (spt->flags & ATTO_SPTF_DATA_OUT) {
1036			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_WRD);
1037		} else {
1038			if (sgc->length) {
1039				hi->status = ATTO_STS_INV_PARAM;
1040				break;
1041			}
1042		}
1043
1044		if (spt->flags & ATTO_SPTF_ORDERED_Q)
1045			rq->vrq->scsi.flags |=
1046				cpu_to_le32(FCP_CMND_TA_ORDRD_Q);
1047		else if (spt->flags & ATTO_SPTF_HEAD_OF_Q)
1048			rq->vrq->scsi.flags |= cpu_to_le32(FCP_CMND_TA_HEAD_Q);
1049
1050
1051		if (!esas2r_build_sg_list(a, rq, sgc)) {
1052			hi->status = ATTO_STS_OUT_OF_RSRC;
1053			break;
1054		}
1055
1056		esas2r_start_request(a, rq);
1057
1058		return true;
1059	}
1060
1061	case ATTO_FUNC_GET_DEV_ADDR:
1062	{
1063		struct atto_hba_get_device_address *gda =
1064			&hi->data.get_dev_addr;
1065		struct esas2r_target *t;
1066
1067		if (hi->flags & HBAF_TUNNEL) {
1068			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1069				return true;
1070
1071			break;
1072		}
1073
1074		if (hi->version > ATTO_VER_GET_DEV_ADDR0) {
1075			hi->status = ATTO_STS_INV_VERSION;
1076			hi->version = ATTO_VER_GET_DEV_ADDR0;
1077			break;
1078		}
1079
1080		if (gda->target_id >= ESAS2R_MAX_TARGETS) {
1081			hi->status = ATTO_STS_INV_PARAM;
1082			break;
1083		}
1084
1085		t = a->targetdb + (u16)gda->target_id;
1086
1087		if (t->target_state != TS_PRESENT) {
1088			hi->status = ATTO_STS_FAILED;
1089		} else if (gda->addr_type == ATTO_GDA_AT_PORT) {
1090			if (t->sas_addr == 0) {
1091				hi->status = ATTO_STS_UNSUPPORTED;
1092			} else {
1093				*(u64 *)gda->address = t->sas_addr;
1094
1095				gda->addr_len = sizeof(u64);
1096			}
1097		} else if (gda->addr_type == ATTO_GDA_AT_NODE) {
1098			hi->status = ATTO_STS_NOT_APPL;
1099		} else {
1100			hi->status = ATTO_STS_INV_PARAM;
1101		}
1102
1103		/* update the target ID to the next one present. */
1104
1105		gda->target_id =
1106			esas2r_targ_db_find_next_present(a,
1107							 (u16)gda->target_id);
1108		break;
1109	}
1110
1111	case ATTO_FUNC_PHY_CTRL:
1112	case ATTO_FUNC_CONN_CTRL:
1113	{
1114		if (hba_ioctl_tunnel(a, hi, rq, sgc))
1115			return true;
1116
1117		break;
1118	}
1119
1120	case ATTO_FUNC_ADAP_CTRL:
1121	{
1122		struct atto_hba_adap_ctrl *ac = &hi->data.adap_ctrl;
1123
1124		if (hi->flags & HBAF_TUNNEL) {
1125			hi->status = ATTO_STS_UNSUPPORTED;
1126			break;
1127		}
1128
1129		if (hi->version > ATTO_VER_ADAP_CTRL0) {
1130			hi->status = ATTO_STS_INV_VERSION;
1131			hi->version = ATTO_VER_ADAP_CTRL0;
1132			break;
1133		}
1134
1135		if (ac->adap_func == ATTO_AC_AF_HARD_RST) {
1136			esas2r_reset_adapter(a);
1137		} else if (ac->adap_func != ATTO_AC_AF_GET_STATE) {
1138			hi->status = ATTO_STS_UNSUPPORTED;
1139			break;
1140		}
1141
1142		if (test_bit(AF_CHPRST_NEEDED, &a->flags))
1143			ac->adap_state = ATTO_AC_AS_RST_SCHED;
1144		else if (test_bit(AF_CHPRST_PENDING, &a->flags))
1145			ac->adap_state = ATTO_AC_AS_RST_IN_PROG;
1146		else if (test_bit(AF_DISC_PENDING, &a->flags))
1147			ac->adap_state = ATTO_AC_AS_RST_DISC;
1148		else if (test_bit(AF_DISABLED, &a->flags))
1149			ac->adap_state = ATTO_AC_AS_DISABLED;
1150		else if (test_bit(AF_DEGRADED_MODE, &a->flags))
1151			ac->adap_state = ATTO_AC_AS_DEGRADED;
1152		else
1153			ac->adap_state = ATTO_AC_AS_OK;
1154
1155		break;
1156	}
1157
1158	case ATTO_FUNC_GET_DEV_INFO:
1159	{
1160		struct atto_hba_get_device_info *gdi = &hi->data.get_dev_info;
1161		struct esas2r_target *t;
1162
1163		if (hi->flags & HBAF_TUNNEL) {
1164			if (hba_ioctl_tunnel(a, hi, rq, sgc))
1165				return true;
1166
1167			break;
1168		}
1169
1170		if (hi->version > ATTO_VER_GET_DEV_INFO0) {
1171			hi->status = ATTO_STS_INV_VERSION;
1172			hi->version = ATTO_VER_GET_DEV_INFO0;
1173			break;
1174		}
1175
1176		if (gdi->target_id >= ESAS2R_MAX_TARGETS) {
1177			hi->status = ATTO_STS_INV_PARAM;
1178			break;
1179		}
1180
1181		t = a->targetdb + (u16)gdi->target_id;
1182
1183		/* update the target ID to the next one present. */
1184
1185		gdi->target_id =
1186			esas2r_targ_db_find_next_present(a,
1187							 (u16)gdi->target_id);
1188
1189		if (t->target_state != TS_PRESENT) {
1190			hi->status = ATTO_STS_FAILED;
1191			break;
1192		}
1193
1194		hi->status = ATTO_STS_UNSUPPORTED;
1195		break;
1196	}
1197
1198	default:
1199
1200		hi->status = ATTO_STS_INV_FUNC;
1201		break;
1202	}
1203
1204	return false;
1205}
1206
1207static void hba_ioctl_done_callback(struct esas2r_adapter *a,
1208				    struct esas2r_request *rq, void *context)
1209{
1210	struct atto_ioctl *ioctl_hba =
1211		(struct atto_ioctl *)esas2r_buffered_ioctl;
1212
1213	esas2r_debug("hba_ioctl_done_callback %d", a->index);
1214
1215	if (ioctl_hba->function == ATTO_FUNC_GET_ADAP_INFO) {
1216		struct atto_hba_get_adapter_info *gai =
1217			&ioctl_hba->data.get_adap_info;
1218
1219		esas2r_debug("ATTO_FUNC_GET_ADAP_INFO");
1220
1221		gai->drvr_rev_major = ESAS2R_MAJOR_REV;
1222		gai->drvr_rev_minor = ESAS2R_MINOR_REV;
1223
1224		strcpy(gai->drvr_rev_ascii, ESAS2R_VERSION_STR);
1225		strcpy(gai->drvr_name, ESAS2R_DRVR_NAME);
1226
1227		gai->num_busses = 1;
1228		gai->num_targsper_bus = ESAS2R_MAX_ID + 1;
1229		gai->num_lunsper_targ = 1;
1230	}
1231}
1232
1233u8 handle_hba_ioctl(struct esas2r_adapter *a,
1234		    struct atto_ioctl *ioctl_hba)
1235{
1236	struct esas2r_buffered_ioctl bi;
1237
1238	memset(&bi, 0, sizeof(bi));
1239
1240	bi.a = a;
1241	bi.ioctl = ioctl_hba;
1242	bi.length = sizeof(struct atto_ioctl) + ioctl_hba->data_length;
1243	bi.callback = hba_ioctl_callback;
1244	bi.context = NULL;
1245	bi.done_callback = hba_ioctl_done_callback;
1246	bi.done_context = NULL;
1247	bi.offset = 0;
1248
1249	return handle_buffered_ioctl(&bi);
1250}
1251
1252
1253int esas2r_write_params(struct esas2r_adapter *a, struct esas2r_request *rq,
1254			struct esas2r_sas_nvram *data)
1255{
1256	int result = 0;
1257
1258	a->nvram_command_done = 0;
1259	rq->comp_cb = complete_nvr_req;
1260
1261	if (esas2r_nvram_write(a, rq, data)) {
1262		/* now wait around for it to complete. */
1263		while (!a->nvram_command_done)
1264			wait_event_interruptible(a->nvram_waiter,
1265						 a->nvram_command_done);
1266		;
1267
1268		/* done, check the status. */
1269		if (rq->req_stat == RS_SUCCESS)
1270			result = 1;
1271	}
1272	return result;
1273}
1274
1275
1276/* This function only cares about ATTO-specific ioctls (atto_express_ioctl) */
1277int esas2r_ioctl_handler(void *hostdata, int cmd, void __user *arg)
1278{
1279	struct atto_express_ioctl *ioctl = NULL;
1280	struct esas2r_adapter *a;
1281	struct esas2r_request *rq;
1282	u16 code;
1283	int err;
1284
1285	esas2r_log(ESAS2R_LOG_DEBG, "ioctl (%p, %x, %p)", hostdata, cmd, arg);
1286
1287	if ((arg == NULL)
1288	    || (cmd < EXPRESS_IOCTL_MIN)
1289	    || (cmd > EXPRESS_IOCTL_MAX))
1290		return -ENOTSUPP;
1291
1292	if (!access_ok(VERIFY_WRITE, arg, sizeof(struct atto_express_ioctl))) {
1293		esas2r_log(ESAS2R_LOG_WARN,
1294			   "ioctl_handler access_ok failed for cmd %d, "
1295			   "address %p", cmd,
1296			   arg);
1297		return -EFAULT;
1298	}
1299
1300	/* allocate a kernel memory buffer for the IOCTL data */
1301	ioctl = kzalloc(sizeof(struct atto_express_ioctl), GFP_KERNEL);
1302	if (ioctl == NULL) {
1303		esas2r_log(ESAS2R_LOG_WARN,
1304			   "ioctl_handler kzalloc failed for %d bytes",
1305			   sizeof(struct atto_express_ioctl));
1306		return -ENOMEM;
1307	}
1308
1309	err = __copy_from_user(ioctl, arg, sizeof(struct atto_express_ioctl));
1310	if (err != 0) {
1311		esas2r_log(ESAS2R_LOG_WARN,
1312			   "copy_from_user didn't copy everything (err %d, cmd %d)",
1313			   err,
1314			   cmd);
1315		kfree(ioctl);
1316
1317		return -EFAULT;
1318	}
1319
1320	/* verify the signature */
1321
1322	if (memcmp(ioctl->header.signature,
1323		   EXPRESS_IOCTL_SIGNATURE,
1324		   EXPRESS_IOCTL_SIGNATURE_SIZE) != 0) {
1325		esas2r_log(ESAS2R_LOG_WARN, "invalid signature");
1326		kfree(ioctl);
1327
1328		return -ENOTSUPP;
1329	}
1330
1331	/* assume success */
1332
1333	ioctl->header.return_code = IOCTL_SUCCESS;
1334	err = 0;
1335
1336	/*
1337	 * handle EXPRESS_IOCTL_GET_CHANNELS
1338	 * without paying attention to channel
1339	 */
1340
1341	if (cmd == EXPRESS_IOCTL_GET_CHANNELS) {
1342		int i = 0, k = 0;
1343
1344		ioctl->data.chanlist.num_channels = 0;
1345
1346		while (i < MAX_ADAPTERS) {
1347			if (esas2r_adapters[i]) {
1348				ioctl->data.chanlist.num_channels++;
1349				ioctl->data.chanlist.channel[k] = i;
1350				k++;
1351			}
1352			i++;
1353		}
1354
1355		goto ioctl_done;
1356	}
1357
1358	/* get the channel */
1359
1360	if (ioctl->header.channel == 0xFF) {
1361		a = (struct esas2r_adapter *)hostdata;
1362	} else {
1363		a = esas2r_adapters[ioctl->header.channel];
1364		if (ioctl->header.channel >= MAX_ADAPTERS || (a == NULL)) {
1365			ioctl->header.return_code = IOCTL_BAD_CHANNEL;
1366			esas2r_log(ESAS2R_LOG_WARN, "bad channel value");
1367			kfree(ioctl);
1368
1369			return -ENOTSUPP;
1370		}
1371	}
1372
1373	switch (cmd) {
1374	case EXPRESS_IOCTL_RW_FIRMWARE:
1375
1376		if (ioctl->data.fwrw.img_type == FW_IMG_FM_API) {
1377			err = esas2r_write_fw(a,
1378					      (char *)ioctl->data.fwrw.image,
1379					      0,
1380					      sizeof(struct
1381						     atto_express_ioctl));
1382
1383			if (err >= 0) {
1384				err = esas2r_read_fw(a,
1385						     (char *)ioctl->data.fwrw.
1386						     image,
1387						     0,
1388						     sizeof(struct
1389							    atto_express_ioctl));
1390			}
1391		} else if (ioctl->data.fwrw.img_type == FW_IMG_FS_API) {
1392			err = esas2r_write_fs(a,
1393					      (char *)ioctl->data.fwrw.image,
1394					      0,
1395					      sizeof(struct
1396						     atto_express_ioctl));
1397
1398			if (err >= 0) {
1399				err = esas2r_read_fs(a,
1400						     (char *)ioctl->data.fwrw.
1401						     image,
1402						     0,
1403						     sizeof(struct
1404							    atto_express_ioctl));
1405			}
1406		} else {
1407			ioctl->header.return_code = IOCTL_BAD_FLASH_IMGTYPE;
1408		}
1409
1410		break;
1411
1412	case EXPRESS_IOCTL_READ_PARAMS:
1413
1414		memcpy(ioctl->data.prw.data_buffer, a->nvram,
1415		       sizeof(struct esas2r_sas_nvram));
1416		ioctl->data.prw.code = 1;
1417		break;
1418
1419	case EXPRESS_IOCTL_WRITE_PARAMS:
1420
1421		rq = esas2r_alloc_request(a);
1422		if (rq == NULL) {
1423			kfree(ioctl);
1424			esas2r_log(ESAS2R_LOG_WARN,
1425			   "could not allocate an internal request");
1426			return -ENOMEM;
1427		}
1428
1429		code = esas2r_write_params(a, rq,
1430					   (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1431		ioctl->data.prw.code = code;
1432
1433		esas2r_free_request(a, rq);
1434
1435		break;
1436
1437	case EXPRESS_IOCTL_DEFAULT_PARAMS:
1438
1439		esas2r_nvram_get_defaults(a,
1440					  (struct esas2r_sas_nvram *)ioctl->data.prw.data_buffer);
1441		ioctl->data.prw.code = 1;
1442		break;
1443
1444	case EXPRESS_IOCTL_CHAN_INFO:
1445
1446		ioctl->data.chaninfo.major_rev = ESAS2R_MAJOR_REV;
1447		ioctl->data.chaninfo.minor_rev = ESAS2R_MINOR_REV;
1448		ioctl->data.chaninfo.IRQ = a->pcid->irq;
1449		ioctl->data.chaninfo.device_id = a->pcid->device;
1450		ioctl->data.chaninfo.vendor_id = a->pcid->vendor;
1451		ioctl->data.chaninfo.ven_dev_id = a->pcid->subsystem_device;
1452		ioctl->data.chaninfo.revision_id = a->pcid->revision;
1453		ioctl->data.chaninfo.pci_bus = a->pcid->bus->number;
1454		ioctl->data.chaninfo.pci_dev_func = a->pcid->devfn;
1455		ioctl->data.chaninfo.core_rev = 0;
1456		ioctl->data.chaninfo.host_no = a->host->host_no;
1457		ioctl->data.chaninfo.hbaapi_rev = 0;
1458		break;
1459
1460	case EXPRESS_IOCTL_SMP:
1461		ioctl->header.return_code = handle_smp_ioctl(a,
1462							     &ioctl->data.
1463							     ioctl_smp);
1464		break;
1465
1466	case EXPRESS_CSMI:
1467		ioctl->header.return_code =
1468			handle_csmi_ioctl(a, &ioctl->data.csmi);
1469		break;
1470
1471	case EXPRESS_IOCTL_HBA:
1472		ioctl->header.return_code = handle_hba_ioctl(a,
1473							     &ioctl->data.
1474							     ioctl_hba);
1475		break;
1476
1477	case EXPRESS_IOCTL_VDA:
1478		err = esas2r_write_vda(a,
1479				       (char *)&ioctl->data.ioctl_vda,
1480				       0,
1481				       sizeof(struct atto_ioctl_vda) +
1482				       ioctl->data.ioctl_vda.data_length);
1483
1484		if (err >= 0) {
1485			err = esas2r_read_vda(a,
1486					      (char *)&ioctl->data.ioctl_vda,
1487					      0,
1488					      sizeof(struct atto_ioctl_vda) +
1489					      ioctl->data.ioctl_vda.data_length);
1490		}
1491
1492
1493
1494
1495		break;
1496
1497	case EXPRESS_IOCTL_GET_MOD_INFO:
1498
1499		ioctl->data.modinfo.adapter = a;
1500		ioctl->data.modinfo.pci_dev = a->pcid;
1501		ioctl->data.modinfo.scsi_host = a->host;
1502		ioctl->data.modinfo.host_no = a->host->host_no;
1503
1504		break;
1505
1506	default:
1507		esas2r_debug("esas2r_ioctl invalid cmd %p!", cmd);
1508		ioctl->header.return_code = IOCTL_ERR_INVCMD;
1509	}
1510
1511ioctl_done:
1512
1513	if (err < 0) {
1514		esas2r_log(ESAS2R_LOG_WARN, "err %d on ioctl cmd %d", err,
1515			   cmd);
1516
1517		switch (err) {
1518		case -ENOMEM:
1519		case -EBUSY:
1520			ioctl->header.return_code = IOCTL_OUT_OF_RESOURCES;
1521			break;
1522
1523		case -ENOSYS:
1524		case -EINVAL:
1525			ioctl->header.return_code = IOCTL_INVALID_PARAM;
1526			break;
1527
1528		default:
1529			ioctl->header.return_code = IOCTL_GENERAL_ERROR;
1530			break;
1531		}
1532
1533	}
1534
1535	/* Always copy the buffer back, if only to pick up the status */
1536	err = __copy_to_user(arg, ioctl, sizeof(struct atto_express_ioctl));
1537	if (err != 0) {
1538		esas2r_log(ESAS2R_LOG_WARN,
1539			   "ioctl_handler copy_to_user didn't copy "
1540			   "everything (err %d, cmd %d)", err,
1541			   cmd);
1542		kfree(ioctl);
1543
1544		return -EFAULT;
1545	}
1546
1547	kfree(ioctl);
1548
1549	return 0;
1550}
1551
1552int esas2r_ioctl(struct scsi_device *sd, int cmd, void __user *arg)
1553{
1554	return esas2r_ioctl_handler(sd->host->hostdata, cmd, arg);
1555}
1556
1557static void free_fw_buffers(struct esas2r_adapter *a)
1558{
1559	if (a->firmware.data) {
1560		dma_free_coherent(&a->pcid->dev,
1561				  (size_t)a->firmware.orig_len,
1562				  a->firmware.data,
1563				  (dma_addr_t)a->firmware.phys);
1564
1565		a->firmware.data = NULL;
1566	}
1567}
1568
1569static int allocate_fw_buffers(struct esas2r_adapter *a, u32 length)
1570{
1571	free_fw_buffers(a);
1572
1573	a->firmware.orig_len = length;
1574
1575	a->firmware.data = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1576						    (size_t)length,
1577						    (dma_addr_t *)&a->firmware.
1578						    phys,
1579						    GFP_KERNEL);
1580
1581	if (!a->firmware.data) {
1582		esas2r_debug("buffer alloc failed!");
1583		return 0;
1584	}
1585
1586	return 1;
1587}
1588
1589/* Handle a call to read firmware. */
1590int esas2r_read_fw(struct esas2r_adapter *a, char *buf, long off, int count)
1591{
1592	esas2r_trace_enter();
1593	/* if the cached header is a status, simply copy it over and return. */
1594	if (a->firmware.state == FW_STATUS_ST) {
1595		int size = min_t(int, count, sizeof(a->firmware.header));
1596		esas2r_trace_exit();
1597		memcpy(buf, &a->firmware.header, size);
1598		esas2r_debug("esas2r_read_fw: STATUS size %d", size);
1599		return size;
1600	}
1601
1602	/*
1603	 * if the cached header is a command, do it if at
1604	 * offset 0, otherwise copy the pieces.
1605	 */
1606
1607	if (a->firmware.state == FW_COMMAND_ST) {
1608		u32 length = a->firmware.header.length;
1609		esas2r_trace_exit();
1610
1611		esas2r_debug("esas2r_read_fw: COMMAND length %d off %d",
1612			     length,
1613			     off);
1614
1615		if (off == 0) {
1616			if (a->firmware.header.action == FI_ACT_UP) {
1617				if (!allocate_fw_buffers(a, length))
1618					return -ENOMEM;
1619
1620
1621				/* copy header over */
1622
1623				memcpy(a->firmware.data,
1624				       &a->firmware.header,
1625				       sizeof(a->firmware.header));
1626
1627				do_fm_api(a,
1628					  (struct esas2r_flash_img *)a->firmware.data);
1629			} else if (a->firmware.header.action == FI_ACT_UPSZ) {
1630				int size =
1631					min((int)count,
1632					    (int)sizeof(a->firmware.header));
1633				do_fm_api(a, &a->firmware.header);
1634				memcpy(buf, &a->firmware.header, size);
1635				esas2r_debug("FI_ACT_UPSZ size %d", size);
1636				return size;
1637			} else {
1638				esas2r_debug("invalid action %d",
1639					     a->firmware.header.action);
1640				return -ENOSYS;
1641			}
1642		}
1643
1644		if (count + off > length)
1645			count = length - off;
1646
1647		if (count < 0)
1648			return 0;
1649
1650		if (!a->firmware.data) {
1651			esas2r_debug(
1652				"read: nonzero offset but no buffer available!");
1653			return -ENOMEM;
1654		}
1655
1656		esas2r_debug("esas2r_read_fw: off %d count %d length %d ", off,
1657			     count,
1658			     length);
1659
1660		memcpy(buf, &a->firmware.data[off], count);
1661
1662		/* when done, release the buffer */
1663
1664		if (length <= off + count) {
1665			esas2r_debug("esas2r_read_fw: freeing buffer!");
1666
1667			free_fw_buffers(a);
1668		}
1669
1670		return count;
1671	}
1672
1673	esas2r_trace_exit();
1674	esas2r_debug("esas2r_read_fw: invalid firmware state %d",
1675		     a->firmware.state);
1676
1677	return -EINVAL;
1678}
1679
1680/* Handle a call to write firmware. */
1681int esas2r_write_fw(struct esas2r_adapter *a, const char *buf, long off,
1682		    int count)
1683{
1684	u32 length;
1685
1686	if (off == 0) {
1687		struct esas2r_flash_img *header =
1688			(struct esas2r_flash_img *)buf;
1689
1690		/* assume version 0 flash image */
1691
1692		int min_size = sizeof(struct esas2r_flash_img_v0);
1693
1694		a->firmware.state = FW_INVALID_ST;
1695
1696		/* validate the version field first */
1697
1698		if (count < 4
1699		    ||  header->fi_version > FI_VERSION_1) {
1700			esas2r_debug(
1701				"esas2r_write_fw: short header or invalid version");
1702			return -EINVAL;
1703		}
1704
1705		/* See if its a version 1 flash image */
1706
1707		if (header->fi_version == FI_VERSION_1)
1708			min_size = sizeof(struct esas2r_flash_img);
1709
1710		/* If this is the start, the header must be full and valid. */
1711		if (count < min_size) {
1712			esas2r_debug("esas2r_write_fw: short header, aborting");
1713			return -EINVAL;
1714		}
1715
1716		/* Make sure the size is reasonable. */
1717		length = header->length;
1718
1719		if (length > 1024 * 1024) {
1720			esas2r_debug(
1721				"esas2r_write_fw: hosed, length %d  fi_version %d",
1722				length, header->fi_version);
1723			return -EINVAL;
1724		}
1725
1726		/*
1727		 * If this is a write command, allocate memory because
1728		 * we have to cache everything. otherwise, just cache
1729		 * the header, because the read op will do the command.
1730		 */
1731
1732		if (header->action == FI_ACT_DOWN) {
1733			if (!allocate_fw_buffers(a, length))
1734				return -ENOMEM;
1735
1736			/*
1737			 * Store the command, so there is context on subsequent
1738			 * calls.
1739			 */
1740			memcpy(&a->firmware.header,
1741			       buf,
1742			       sizeof(*header));
1743		} else if (header->action == FI_ACT_UP
1744			   ||  header->action == FI_ACT_UPSZ) {
1745			/* Save the command, result will be picked up on read */
1746			memcpy(&a->firmware.header,
1747			       buf,
1748			       sizeof(*header));
1749
1750			a->firmware.state = FW_COMMAND_ST;
1751
1752			esas2r_debug(
1753				"esas2r_write_fw: COMMAND, count %d, action %d ",
1754				count, header->action);
1755
1756			/*
1757			 * Pretend we took the whole buffer,
1758			 * so we don't get bothered again.
1759			 */
1760
1761			return count;
1762		} else {
1763			esas2r_debug("esas2r_write_fw: invalid action %d ",
1764				     a->firmware.header.action);
1765			return -ENOSYS;
1766		}
1767	} else {
1768		length = a->firmware.header.length;
1769	}
1770
1771	/*
1772	 * We only get here on a download command, regardless of offset.
1773	 * the chunks written by the system need to be cached, and when
1774	 * the final one arrives, issue the fmapi command.
1775	 */
1776
1777	if (off + count > length)
1778		count = length - off;
1779
1780	if (count > 0) {
1781		esas2r_debug("esas2r_write_fw: off %d count %d length %d", off,
1782			     count,
1783			     length);
1784
1785		/*
1786		 * On a full upload, the system tries sending the whole buffer.
1787		 * there's nothing to do with it, so just drop it here, before
1788		 * trying to copy over into unallocated memory!
1789		 */
1790		if (a->firmware.header.action == FI_ACT_UP)
1791			return count;
1792
1793		if (!a->firmware.data) {
1794			esas2r_debug(
1795				"write: nonzero offset but no buffer available!");
1796			return -ENOMEM;
1797		}
1798
1799		memcpy(&a->firmware.data[off], buf, count);
1800
1801		if (length == off + count) {
1802			do_fm_api(a,
1803				  (struct esas2r_flash_img *)a->firmware.data);
1804
1805			/*
1806			 * Now copy the header result to be picked up by the
1807			 * next read
1808			 */
1809			memcpy(&a->firmware.header,
1810			       a->firmware.data,
1811			       sizeof(a->firmware.header));
1812
1813			a->firmware.state = FW_STATUS_ST;
1814
1815			esas2r_debug("write completed");
1816
1817			/*
1818			 * Since the system has the data buffered, the only way
1819			 * this can leak is if a root user writes a program
1820			 * that writes a shorter buffer than it claims, and the
1821			 * copyin fails.
1822			 */
1823			free_fw_buffers(a);
1824		}
1825	}
1826
1827	return count;
1828}
1829
1830/* Callback for the completion of a VDA request. */
1831static void vda_complete_req(struct esas2r_adapter *a,
1832			     struct esas2r_request *rq)
1833{
1834	a->vda_command_done = 1;
1835	wake_up_interruptible(&a->vda_waiter);
1836}
1837
1838/* Scatter/gather callback for VDA requests */
1839static u32 get_physaddr_vda(struct esas2r_sg_context *sgc, u64 *addr)
1840{
1841	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1842	int offset = (u8 *)sgc->cur_offset - (u8 *)a->vda_buffer;
1843
1844	(*addr) = a->ppvda_buffer + offset;
1845	return VDA_MAX_BUFFER_SIZE - offset;
1846}
1847
1848/* Handle a call to read a VDA command. */
1849int esas2r_read_vda(struct esas2r_adapter *a, char *buf, long off, int count)
1850{
1851	if (!a->vda_buffer)
1852		return -ENOMEM;
1853
1854	if (off == 0) {
1855		struct esas2r_request *rq;
1856		struct atto_ioctl_vda *vi =
1857			(struct atto_ioctl_vda *)a->vda_buffer;
1858		struct esas2r_sg_context sgc;
1859		bool wait_for_completion;
1860
1861		/*
1862		 * Presumeably, someone has already written to the vda_buffer,
1863		 * and now they are reading the node the response, so now we
1864		 * will actually issue the request to the chip and reply.
1865		 */
1866
1867		/* allocate a request */
1868		rq = esas2r_alloc_request(a);
1869		if (rq == NULL) {
1870			esas2r_debug("esas2r_read_vda: out of requestss");
1871			return -EBUSY;
1872		}
1873
1874		rq->comp_cb = vda_complete_req;
1875
1876		sgc.first_req = rq;
1877		sgc.adapter = a;
1878		sgc.cur_offset = a->vda_buffer + VDA_BUFFER_HEADER_SZ;
1879		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_vda;
1880
1881		a->vda_command_done = 0;
1882
1883		wait_for_completion =
1884			esas2r_process_vda_ioctl(a, vi, rq, &sgc);
1885
1886		if (wait_for_completion) {
1887			/* now wait around for it to complete. */
1888
1889			while (!a->vda_command_done)
1890				wait_event_interruptible(a->vda_waiter,
1891							 a->vda_command_done);
1892		}
1893
1894		esas2r_free_request(a, (struct esas2r_request *)rq);
1895	}
1896
1897	if (off > VDA_MAX_BUFFER_SIZE)
1898		return 0;
1899
1900	if (count + off > VDA_MAX_BUFFER_SIZE)
1901		count = VDA_MAX_BUFFER_SIZE - off;
1902
1903	if (count < 0)
1904		return 0;
1905
1906	memcpy(buf, a->vda_buffer + off, count);
1907
1908	return count;
1909}
1910
1911/* Handle a call to write a VDA command. */
1912int esas2r_write_vda(struct esas2r_adapter *a, const char *buf, long off,
1913		     int count)
1914{
1915	/*
1916	 * allocate memory for it, if not already done.  once allocated,
1917	 * we will keep it around until the driver is unloaded.
1918	 */
1919
1920	if (!a->vda_buffer) {
1921		dma_addr_t dma_addr;
1922		a->vda_buffer = (u8 *)dma_alloc_coherent(&a->pcid->dev,
1923							 (size_t)
1924							 VDA_MAX_BUFFER_SIZE,
1925							 &dma_addr,
1926							 GFP_KERNEL);
1927
1928		a->ppvda_buffer = dma_addr;
1929	}
1930
1931	if (!a->vda_buffer)
1932		return -ENOMEM;
1933
1934	if (off > VDA_MAX_BUFFER_SIZE)
1935		return 0;
1936
1937	if (count + off > VDA_MAX_BUFFER_SIZE)
1938		count = VDA_MAX_BUFFER_SIZE - off;
1939
1940	if (count < 1)
1941		return 0;
1942
1943	memcpy(a->vda_buffer + off, buf, count);
1944
1945	return count;
1946}
1947
1948/* Callback for the completion of an FS_API request.*/
1949static void fs_api_complete_req(struct esas2r_adapter *a,
1950				struct esas2r_request *rq)
1951{
1952	a->fs_api_command_done = 1;
1953
1954	wake_up_interruptible(&a->fs_api_waiter);
1955}
1956
1957/* Scatter/gather callback for VDA requests */
1958static u32 get_physaddr_fs_api(struct esas2r_sg_context *sgc, u64 *addr)
1959{
1960	struct esas2r_adapter *a = (struct esas2r_adapter *)sgc->adapter;
1961	struct esas2r_ioctl_fs *fs =
1962		(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1963	u32 offset = (u8 *)sgc->cur_offset - (u8 *)fs;
1964
1965	(*addr) = a->ppfs_api_buffer + offset;
1966
1967	return a->fs_api_buffer_size - offset;
1968}
1969
1970/* Handle a call to read firmware via FS_API. */
1971int esas2r_read_fs(struct esas2r_adapter *a, char *buf, long off, int count)
1972{
1973	if (!a->fs_api_buffer)
1974		return -ENOMEM;
1975
1976	if (off == 0) {
1977		struct esas2r_request *rq;
1978		struct esas2r_sg_context sgc;
1979		struct esas2r_ioctl_fs *fs =
1980			(struct esas2r_ioctl_fs *)a->fs_api_buffer;
1981
1982		/* If another flash request is already in progress, return. */
1983		if (down_interruptible(&a->fs_api_semaphore)) {
1984busy:
1985			fs->status = ATTO_STS_OUT_OF_RSRC;
1986			return -EBUSY;
1987		}
1988
1989		/*
1990		 * Presumeably, someone has already written to the
1991		 * fs_api_buffer, and now they are reading the node the
1992		 * response, so now we will actually issue the request to the
1993		 * chip and reply. Allocate a request
1994		 */
1995
1996		rq = esas2r_alloc_request(a);
1997		if (rq == NULL) {
1998			esas2r_debug("esas2r_read_fs: out of requests");
1999			up(&a->fs_api_semaphore);
2000			goto busy;
2001		}
2002
2003		rq->comp_cb = fs_api_complete_req;
2004
2005		/* Set up the SGCONTEXT for to build the s/g table */
2006
2007		sgc.cur_offset = fs->data;
2008		sgc.get_phys_addr = (PGETPHYSADDR)get_physaddr_fs_api;
2009
2010		a->fs_api_command_done = 0;
2011
2012		if (!esas2r_process_fs_ioctl(a, fs, rq, &sgc)) {
2013			if (fs->status == ATTO_STS_OUT_OF_RSRC)
2014				count = -EBUSY;
2015
2016			goto dont_wait;
2017		}
2018
2019		/* Now wait around for it to complete. */
2020
2021		while (!a->fs_api_command_done)
2022			wait_event_interruptible(a->fs_api_waiter,
2023						 a->fs_api_command_done);
2024		;
2025dont_wait:
2026		/* Free the request and keep going */
2027		up(&a->fs_api_semaphore);
2028		esas2r_free_request(a, (struct esas2r_request *)rq);
2029
2030		/* Pick up possible error code from above */
2031		if (count < 0)
2032			return count;
2033	}
2034
2035	if (off > a->fs_api_buffer_size)
2036		return 0;
2037
2038	if (count + off > a->fs_api_buffer_size)
2039		count = a->fs_api_buffer_size - off;
2040
2041	if (count < 0)
2042		return 0;
2043
2044	memcpy(buf, a->fs_api_buffer + off, count);
2045
2046	return count;
2047}
2048
2049/* Handle a call to write firmware via FS_API. */
2050int esas2r_write_fs(struct esas2r_adapter *a, const char *buf, long off,
2051		    int count)
2052{
2053	if (off == 0) {
2054		struct esas2r_ioctl_fs *fs = (struct esas2r_ioctl_fs *)buf;
2055		u32 length = fs->command.length + offsetof(
2056			struct esas2r_ioctl_fs,
2057			data);
2058
2059		/*
2060		 * Special case, for BEGIN commands, the length field
2061		 * is lying to us, so just get enough for the header.
2062		 */
2063
2064		if (fs->command.command == ESAS2R_FS_CMD_BEGINW)
2065			length = offsetof(struct esas2r_ioctl_fs, data);
2066
2067		/*
2068		 * Beginning a command.  We assume we'll get at least
2069		 * enough in the first write so we can look at the
2070		 * header and see how much we need to alloc.
2071		 */
2072
2073		if (count < offsetof(struct esas2r_ioctl_fs, data))
2074			return -EINVAL;
2075
2076		/* Allocate a buffer or use the existing buffer. */
2077		if (a->fs_api_buffer) {
2078			if (a->fs_api_buffer_size < length) {
2079				/* Free too-small buffer and get a new one */
2080				dma_free_coherent(&a->pcid->dev,
2081						  (size_t)a->fs_api_buffer_size,
2082						  a->fs_api_buffer,
2083						  (dma_addr_t)a->ppfs_api_buffer);
2084
2085				goto re_allocate_buffer;
2086			}
2087		} else {
2088re_allocate_buffer:
2089			a->fs_api_buffer_size = length;
2090
2091			a->fs_api_buffer = (u8 *)dma_alloc_coherent(
2092				&a->pcid->dev,
2093				(size_t)a->fs_api_buffer_size,
2094				(dma_addr_t *)&a->ppfs_api_buffer,
2095				GFP_KERNEL);
2096		}
2097	}
2098
2099	if (!a->fs_api_buffer)
2100		return -ENOMEM;
2101
2102	if (off > a->fs_api_buffer_size)
2103		return 0;
2104
2105	if (count + off > a->fs_api_buffer_size)
2106		count = a->fs_api_buffer_size - off;
2107
2108	if (count < 1)
2109		return 0;
2110
2111	memcpy(a->fs_api_buffer + off, buf, count);
2112
2113	return count;
2114}
2115