1/*
2 * This file is provided under a dual BSD/GPLv2 license.  When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of version 2 of the GNU General Public License as
11 * published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 * The full GNU General Public License is included in this distribution
22 * in the file called LICENSE.GPL.
23 *
24 * BSD LICENSE
25 *
26 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
27 * All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions
31 * are met:
32 *
33 *   * Redistributions of source code must retain the above copyright
34 *     notice, this list of conditions and the following disclaimer.
35 *   * Redistributions in binary form must reproduce the above copyright
36 *     notice, this list of conditions and the following disclaimer in
37 *     the documentation and/or other materials provided with the
38 *     distribution.
39 *   * Neither the name of Intel Corporation nor the names of its
40 *     contributors may be used to endorse or promote products derived
41 *     from this software without specific prior written permission.
42 *
43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
46 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
47 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
48 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
49 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
50 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
51 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
52 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
53 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
54 */
55
56#include "isci.h"
57#include "host.h"
58#include "phy.h"
59#include "scu_event_codes.h"
60#include "probe_roms.h"
61
62#undef C
63#define C(a) (#a)
64static const char *phy_state_name(enum sci_phy_states state)
65{
66	static const char * const strings[] = PHY_STATES;
67
68	return strings[state];
69}
70#undef C
71
72/* Maximum arbitration wait time in micro-seconds */
73#define SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME  (700)
74
75enum sas_linkrate sci_phy_linkrate(struct isci_phy *iphy)
76{
77	return iphy->max_negotiated_speed;
78}
79
80static struct isci_host *phy_to_host(struct isci_phy *iphy)
81{
82	struct isci_phy *table = iphy - iphy->phy_index;
83	struct isci_host *ihost = container_of(table, typeof(*ihost), phys[0]);
84
85	return ihost;
86}
87
88static struct device *sciphy_to_dev(struct isci_phy *iphy)
89{
90	return &phy_to_host(iphy)->pdev->dev;
91}
92
93static enum sci_status
94sci_phy_transport_layer_initialization(struct isci_phy *iphy,
95				       struct scu_transport_layer_registers __iomem *reg)
96{
97	u32 tl_control;
98
99	iphy->transport_layer_registers = reg;
100
101	writel(SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX,
102		&iphy->transport_layer_registers->stp_rni);
103
104	/*
105	 * Hardware team recommends that we enable the STP prefetch for all
106	 * transports
107	 */
108	tl_control = readl(&iphy->transport_layer_registers->control);
109	tl_control |= SCU_TLCR_GEN_BIT(STP_WRITE_DATA_PREFETCH);
110	writel(tl_control, &iphy->transport_layer_registers->control);
111
112	return SCI_SUCCESS;
113}
114
115static enum sci_status
116sci_phy_link_layer_initialization(struct isci_phy *iphy,
117				  struct scu_link_layer_registers __iomem *llr)
118{
119	struct isci_host *ihost = iphy->owning_port->owning_controller;
120	struct sci_phy_user_params *phy_user;
121	struct sci_phy_oem_params *phy_oem;
122	int phy_idx = iphy->phy_index;
123	struct sci_phy_cap phy_cap;
124	u32 phy_configuration;
125	u32 parity_check = 0;
126	u32 parity_count = 0;
127	u32 llctl, link_rate;
128	u32 clksm_value = 0;
129	u32 sp_timeouts = 0;
130
131	phy_user = &ihost->user_parameters.phys[phy_idx];
132	phy_oem = &ihost->oem_parameters.phys[phy_idx];
133	iphy->link_layer_registers = llr;
134
135	/* Set our IDENTIFY frame data */
136	#define SCI_END_DEVICE 0x01
137
138	writel(SCU_SAS_TIID_GEN_BIT(SMP_INITIATOR) |
139	       SCU_SAS_TIID_GEN_BIT(SSP_INITIATOR) |
140	       SCU_SAS_TIID_GEN_BIT(STP_INITIATOR) |
141	       SCU_SAS_TIID_GEN_BIT(DA_SATA_HOST) |
142	       SCU_SAS_TIID_GEN_VAL(DEVICE_TYPE, SCI_END_DEVICE),
143	       &llr->transmit_identification);
144
145	/* Write the device SAS Address */
146	writel(0xFEDCBA98, &llr->sas_device_name_high);
147	writel(phy_idx, &llr->sas_device_name_low);
148
149	/* Write the source SAS Address */
150	writel(phy_oem->sas_address.high, &llr->source_sas_address_high);
151	writel(phy_oem->sas_address.low, &llr->source_sas_address_low);
152
153	/* Clear and Set the PHY Identifier */
154	writel(0, &llr->identify_frame_phy_id);
155	writel(SCU_SAS_TIPID_GEN_VALUE(ID, phy_idx), &llr->identify_frame_phy_id);
156
157	/* Change the initial state of the phy configuration register */
158	phy_configuration = readl(&llr->phy_configuration);
159
160	/* Hold OOB state machine in reset */
161	phy_configuration |=  SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
162	writel(phy_configuration, &llr->phy_configuration);
163
164	/* Configure the SNW capabilities */
165	phy_cap.all = 0;
166	phy_cap.start = 1;
167	phy_cap.gen3_no_ssc = 1;
168	phy_cap.gen2_no_ssc = 1;
169	phy_cap.gen1_no_ssc = 1;
170	if (ihost->oem_parameters.controller.do_enable_ssc) {
171		struct scu_afe_registers __iomem *afe = &ihost->scu_registers->afe;
172		struct scu_afe_transceiver __iomem *xcvr = &afe->scu_afe_xcvr[phy_idx];
173		struct isci_pci_info *pci_info = to_pci_info(ihost->pdev);
174		bool en_sas = false;
175		bool en_sata = false;
176		u32 sas_type = 0;
177		u32 sata_spread = 0x2;
178		u32 sas_spread = 0x2;
179
180		phy_cap.gen3_ssc = 1;
181		phy_cap.gen2_ssc = 1;
182		phy_cap.gen1_ssc = 1;
183
184		if (pci_info->orom->hdr.version < ISCI_ROM_VER_1_1)
185			en_sas = en_sata = true;
186		else {
187			sata_spread = ihost->oem_parameters.controller.ssc_sata_tx_spread_level;
188			sas_spread = ihost->oem_parameters.controller.ssc_sas_tx_spread_level;
189
190			if (sata_spread)
191				en_sata = true;
192
193			if (sas_spread) {
194				en_sas = true;
195				sas_type = ihost->oem_parameters.controller.ssc_sas_tx_type;
196			}
197
198		}
199
200		if (en_sas) {
201			u32 reg;
202
203			reg = readl(&xcvr->afe_xcvr_control0);
204			reg |= (0x00100000 | (sas_type << 19));
205			writel(reg, &xcvr->afe_xcvr_control0);
206
207			reg = readl(&xcvr->afe_tx_ssc_control);
208			reg |= sas_spread << 8;
209			writel(reg, &xcvr->afe_tx_ssc_control);
210		}
211
212		if (en_sata) {
213			u32 reg;
214
215			reg = readl(&xcvr->afe_tx_ssc_control);
216			reg |= sata_spread;
217			writel(reg, &xcvr->afe_tx_ssc_control);
218
219			reg = readl(&llr->stp_control);
220			reg |= 1 << 12;
221			writel(reg, &llr->stp_control);
222		}
223	}
224
225	/* The SAS specification indicates that the phy_capabilities that
226	 * are transmitted shall have an even parity.  Calculate the parity.
227	 */
228	parity_check = phy_cap.all;
229	while (parity_check != 0) {
230		if (parity_check & 0x1)
231			parity_count++;
232		parity_check >>= 1;
233	}
234
235	/* If parity indicates there are an odd number of bits set, then
236	 * set the parity bit to 1 in the phy capabilities.
237	 */
238	if ((parity_count % 2) != 0)
239		phy_cap.parity = 1;
240
241	writel(phy_cap.all, &llr->phy_capabilities);
242
243	/* Set the enable spinup period but disable the ability to send
244	 * notify enable spinup
245	 */
246	writel(SCU_ENSPINUP_GEN_VAL(COUNT,
247			phy_user->notify_enable_spin_up_insertion_frequency),
248		&llr->notify_enable_spinup_control);
249
250	/* Write the ALIGN Insertion Ferequency for connected phy and
251	 * inpendent of connected state
252	 */
253	clksm_value = SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(CONNECTED,
254			phy_user->in_connection_align_insertion_frequency);
255
256	clksm_value |= SCU_ALIGN_INSERTION_FREQUENCY_GEN_VAL(GENERAL,
257			phy_user->align_insertion_frequency);
258
259	writel(clksm_value, &llr->clock_skew_management);
260
261	if (is_c0(ihost->pdev) || is_c1(ihost->pdev)) {
262		writel(0x04210400, &llr->afe_lookup_table_control);
263		writel(0x020A7C05, &llr->sas_primitive_timeout);
264	} else
265		writel(0x02108421, &llr->afe_lookup_table_control);
266
267	llctl = SCU_SAS_LLCTL_GEN_VAL(NO_OUTBOUND_TASK_TIMEOUT,
268		(u8)ihost->user_parameters.no_outbound_task_timeout);
269
270	switch (phy_user->max_speed_generation) {
271	case SCIC_SDS_PARM_GEN3_SPEED:
272		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN3;
273		break;
274	case SCIC_SDS_PARM_GEN2_SPEED:
275		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN2;
276		break;
277	default:
278		link_rate = SCU_SAS_LINK_LAYER_CONTROL_MAX_LINK_RATE_GEN1;
279		break;
280	}
281	llctl |= SCU_SAS_LLCTL_GEN_VAL(MAX_LINK_RATE, link_rate);
282	writel(llctl, &llr->link_layer_control);
283
284	sp_timeouts = readl(&llr->sas_phy_timeouts);
285
286	/* Clear the default 0x36 (54us) RATE_CHANGE timeout value. */
287	sp_timeouts &= ~SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0xFF);
288
289	/* Set RATE_CHANGE timeout value to 0x3B (59us).  This ensures SCU can
290	 * lock with 3Gb drive when SCU max rate is set to 1.5Gb.
291	 */
292	sp_timeouts |= SCU_SAS_PHYTOV_GEN_VAL(RATE_CHANGE, 0x3B);
293
294	writel(sp_timeouts, &llr->sas_phy_timeouts);
295
296	if (is_a2(ihost->pdev)) {
297		/* Program the max ARB time for the PHY to 700us so we
298		 * inter-operate with the PMC expander which shuts down
299		 * PHYs if the expander PHY generates too many breaks.
300		 * This time value will guarantee that the initiator PHY
301		 * will generate the break.
302		 */
303		writel(SCIC_SDS_PHY_MAX_ARBITRATION_WAIT_TIME,
304		       &llr->maximum_arbitration_wait_timer_timeout);
305	}
306
307	/* Disable link layer hang detection, rely on the OS timeout for
308	 * I/O timeouts.
309	 */
310	writel(0, &llr->link_layer_hang_detection_timeout);
311
312	/* We can exit the initial state to the stopped state */
313	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
314
315	return SCI_SUCCESS;
316}
317
318static void phy_sata_timeout(unsigned long data)
319{
320	struct sci_timer *tmr = (struct sci_timer *)data;
321	struct isci_phy *iphy = container_of(tmr, typeof(*iphy), sata_timer);
322	struct isci_host *ihost = iphy->owning_port->owning_controller;
323	unsigned long flags;
324
325	spin_lock_irqsave(&ihost->scic_lock, flags);
326
327	if (tmr->cancel)
328		goto done;
329
330	dev_dbg(sciphy_to_dev(iphy),
331		 "%s: SCIC SDS Phy 0x%p did not receive signature fis before "
332		 "timeout.\n",
333		 __func__,
334		 iphy);
335
336	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
337done:
338	spin_unlock_irqrestore(&ihost->scic_lock, flags);
339}
340
341/**
342 * This method returns the port currently containing this phy. If the phy is
343 *    currently contained by the dummy port, then the phy is considered to not
344 *    be part of a port.
345 * @sci_phy: This parameter specifies the phy for which to retrieve the
346 *    containing port.
347 *
348 * This method returns a handle to a port that contains the supplied phy.
349 * NULL This value is returned if the phy is not part of a real
350 * port (i.e. it's contained in the dummy port). !NULL All other
351 * values indicate a handle/pointer to the port containing the phy.
352 */
353struct isci_port *phy_get_non_dummy_port(struct isci_phy *iphy)
354{
355	struct isci_port *iport = iphy->owning_port;
356
357	if (iport->physical_port_index == SCIC_SDS_DUMMY_PORT)
358		return NULL;
359
360	return iphy->owning_port;
361}
362
363/**
364 * This method will assign a port to the phy object.
365 * @out]: iphy This parameter specifies the phy for which to assign a port
366 *    object.
367 *
368 *
369 */
370void sci_phy_set_port(
371	struct isci_phy *iphy,
372	struct isci_port *iport)
373{
374	iphy->owning_port = iport;
375
376	if (iphy->bcn_received_while_port_unassigned) {
377		iphy->bcn_received_while_port_unassigned = false;
378		sci_port_broadcast_change_received(iphy->owning_port, iphy);
379	}
380}
381
382enum sci_status sci_phy_initialize(struct isci_phy *iphy,
383				   struct scu_transport_layer_registers __iomem *tl,
384				   struct scu_link_layer_registers __iomem *ll)
385{
386	/* Perfrom the initialization of the TL hardware */
387	sci_phy_transport_layer_initialization(iphy, tl);
388
389	/* Perofrm the initialization of the PE hardware */
390	sci_phy_link_layer_initialization(iphy, ll);
391
392	/* There is nothing that needs to be done in this state just
393	 * transition to the stopped state
394	 */
395	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
396
397	return SCI_SUCCESS;
398}
399
400/**
401 * This method assigns the direct attached device ID for this phy.
402 *
403 * @iphy The phy for which the direct attached device id is to
404 *       be assigned.
405 * @device_id The direct attached device ID to assign to the phy.
406 *       This will either be the RNi for the device or an invalid RNi if there
407 *       is no current device assigned to the phy.
408 */
409void sci_phy_setup_transport(struct isci_phy *iphy, u32 device_id)
410{
411	u32 tl_control;
412
413	writel(device_id, &iphy->transport_layer_registers->stp_rni);
414
415	/*
416	 * The read should guarantee that the first write gets posted
417	 * before the next write
418	 */
419	tl_control = readl(&iphy->transport_layer_registers->control);
420	tl_control |= SCU_TLCR_GEN_BIT(CLEAR_TCI_NCQ_MAPPING_TABLE);
421	writel(tl_control, &iphy->transport_layer_registers->control);
422}
423
424static void sci_phy_suspend(struct isci_phy *iphy)
425{
426	u32 scu_sas_pcfg_value;
427
428	scu_sas_pcfg_value =
429		readl(&iphy->link_layer_registers->phy_configuration);
430	scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
431	writel(scu_sas_pcfg_value,
432		&iphy->link_layer_registers->phy_configuration);
433
434	sci_phy_setup_transport(iphy, SCIC_SDS_REMOTE_NODE_CONTEXT_INVALID_INDEX);
435}
436
437void sci_phy_resume(struct isci_phy *iphy)
438{
439	u32 scu_sas_pcfg_value;
440
441	scu_sas_pcfg_value =
442		readl(&iphy->link_layer_registers->phy_configuration);
443	scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE);
444	writel(scu_sas_pcfg_value,
445		&iphy->link_layer_registers->phy_configuration);
446}
447
448void sci_phy_get_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
449{
450	sas->high = readl(&iphy->link_layer_registers->source_sas_address_high);
451	sas->low = readl(&iphy->link_layer_registers->source_sas_address_low);
452}
453
454void sci_phy_get_attached_sas_address(struct isci_phy *iphy, struct sci_sas_address *sas)
455{
456	struct sas_identify_frame *iaf;
457
458	iaf = &iphy->frame_rcvd.iaf;
459	memcpy(sas, iaf->sas_addr, SAS_ADDR_SIZE);
460}
461
462void sci_phy_get_protocols(struct isci_phy *iphy, struct sci_phy_proto *proto)
463{
464	proto->all = readl(&iphy->link_layer_registers->transmit_identification);
465}
466
467enum sci_status sci_phy_start(struct isci_phy *iphy)
468{
469	enum sci_phy_states state = iphy->sm.current_state_id;
470
471	if (state != SCI_PHY_STOPPED) {
472		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
473			__func__, phy_state_name(state));
474		return SCI_FAILURE_INVALID_STATE;
475	}
476
477	sci_change_state(&iphy->sm, SCI_PHY_STARTING);
478	return SCI_SUCCESS;
479}
480
481enum sci_status sci_phy_stop(struct isci_phy *iphy)
482{
483	enum sci_phy_states state = iphy->sm.current_state_id;
484
485	switch (state) {
486	case SCI_PHY_SUB_INITIAL:
487	case SCI_PHY_SUB_AWAIT_OSSP_EN:
488	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
489	case SCI_PHY_SUB_AWAIT_SAS_POWER:
490	case SCI_PHY_SUB_AWAIT_SATA_POWER:
491	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
492	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
493	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
494	case SCI_PHY_SUB_FINAL:
495	case SCI_PHY_READY:
496		break;
497	default:
498		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
499			__func__, phy_state_name(state));
500		return SCI_FAILURE_INVALID_STATE;
501	}
502
503	sci_change_state(&iphy->sm, SCI_PHY_STOPPED);
504	return SCI_SUCCESS;
505}
506
507enum sci_status sci_phy_reset(struct isci_phy *iphy)
508{
509	enum sci_phy_states state = iphy->sm.current_state_id;
510
511	if (state != SCI_PHY_READY) {
512		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
513			__func__, phy_state_name(state));
514		return SCI_FAILURE_INVALID_STATE;
515	}
516
517	sci_change_state(&iphy->sm, SCI_PHY_RESETTING);
518	return SCI_SUCCESS;
519}
520
521enum sci_status sci_phy_consume_power_handler(struct isci_phy *iphy)
522{
523	enum sci_phy_states state = iphy->sm.current_state_id;
524
525	switch (state) {
526	case SCI_PHY_SUB_AWAIT_SAS_POWER: {
527		u32 enable_spinup;
528
529		enable_spinup = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
530		enable_spinup |= SCU_ENSPINUP_GEN_BIT(ENABLE);
531		writel(enable_spinup, &iphy->link_layer_registers->notify_enable_spinup_control);
532
533		/* Change state to the final state this substate machine has run to completion */
534		sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
535
536		return SCI_SUCCESS;
537	}
538	case SCI_PHY_SUB_AWAIT_SATA_POWER: {
539		u32 scu_sas_pcfg_value;
540
541		/* Release the spinup hold state and reset the OOB state machine */
542		scu_sas_pcfg_value =
543			readl(&iphy->link_layer_registers->phy_configuration);
544		scu_sas_pcfg_value &=
545			~(SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD) | SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
546		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
547		writel(scu_sas_pcfg_value,
548			&iphy->link_layer_registers->phy_configuration);
549
550		/* Now restart the OOB operation */
551		scu_sas_pcfg_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
552		scu_sas_pcfg_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
553		writel(scu_sas_pcfg_value,
554			&iphy->link_layer_registers->phy_configuration);
555
556		/* Change state to the final state this substate machine has run to completion */
557		sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_PHY_EN);
558
559		return SCI_SUCCESS;
560	}
561	default:
562		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
563			__func__, phy_state_name(state));
564		return SCI_FAILURE_INVALID_STATE;
565	}
566}
567
568static void sci_phy_start_sas_link_training(struct isci_phy *iphy)
569{
570	/* continue the link training for the phy as if it were a SAS PHY
571	 * instead of a SATA PHY. This is done because the completion queue had a SAS
572	 * PHY DETECTED event when the state machine was expecting a SATA PHY event.
573	 */
574	u32 phy_control;
575
576	phy_control = readl(&iphy->link_layer_registers->phy_configuration);
577	phy_control |= SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD);
578	writel(phy_control,
579	       &iphy->link_layer_registers->phy_configuration);
580
581	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SAS_SPEED_EN);
582
583	iphy->protocol = SAS_PROTOCOL_SSP;
584}
585
586static void sci_phy_start_sata_link_training(struct isci_phy *iphy)
587{
588	/* This method continues the link training for the phy as if it were a SATA PHY
589	 * instead of a SAS PHY.  This is done because the completion queue had a SATA
590	 * SPINUP HOLD event when the state machine was expecting a SAS PHY event. none
591	 */
592	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_POWER);
593
594	iphy->protocol = SAS_PROTOCOL_SATA;
595}
596
597/**
598 * sci_phy_complete_link_training - perform processing common to
599 *    all protocols upon completion of link training.
600 * @sci_phy: This parameter specifies the phy object for which link training
601 *    has completed.
602 * @max_link_rate: This parameter specifies the maximum link rate to be
603 *    associated with this phy.
604 * @next_state: This parameter specifies the next state for the phy's starting
605 *    sub-state machine.
606 *
607 */
608static void sci_phy_complete_link_training(struct isci_phy *iphy,
609					   enum sas_linkrate max_link_rate,
610					   u32 next_state)
611{
612	iphy->max_negotiated_speed = max_link_rate;
613
614	sci_change_state(&iphy->sm, next_state);
615}
616
617static const char *phy_event_name(u32 event_code)
618{
619	switch (scu_get_event_code(event_code)) {
620	case SCU_EVENT_PORT_SELECTOR_DETECTED:
621		return "port selector";
622	case SCU_EVENT_SENT_PORT_SELECTION:
623		return "port selection";
624	case SCU_EVENT_HARD_RESET_TRANSMITTED:
625		return "tx hard reset";
626	case SCU_EVENT_HARD_RESET_RECEIVED:
627		return "rx hard reset";
628	case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
629		return "identify timeout";
630	case SCU_EVENT_LINK_FAILURE:
631		return "link fail";
632	case SCU_EVENT_SATA_SPINUP_HOLD:
633		return "sata spinup hold";
634	case SCU_EVENT_SAS_15_SSC:
635	case SCU_EVENT_SAS_15:
636		return "sas 1.5";
637	case SCU_EVENT_SAS_30_SSC:
638	case SCU_EVENT_SAS_30:
639		return "sas 3.0";
640	case SCU_EVENT_SAS_60_SSC:
641	case SCU_EVENT_SAS_60:
642		return "sas 6.0";
643	case SCU_EVENT_SATA_15_SSC:
644	case SCU_EVENT_SATA_15:
645		return "sata 1.5";
646	case SCU_EVENT_SATA_30_SSC:
647	case SCU_EVENT_SATA_30:
648		return "sata 3.0";
649	case SCU_EVENT_SATA_60_SSC:
650	case SCU_EVENT_SATA_60:
651		return "sata 6.0";
652	case SCU_EVENT_SAS_PHY_DETECTED:
653		return "sas detect";
654	case SCU_EVENT_SATA_PHY_DETECTED:
655		return "sata detect";
656	default:
657		return "unknown";
658	}
659}
660
661#define phy_event_dbg(iphy, state, code) \
662	dev_dbg(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
663		phy_to_host(iphy)->id, iphy->phy_index, \
664		phy_state_name(state), phy_event_name(code), code)
665
666#define phy_event_warn(iphy, state, code) \
667	dev_warn(sciphy_to_dev(iphy), "phy-%d:%d: %s event: %s (%x)\n", \
668		phy_to_host(iphy)->id, iphy->phy_index, \
669		phy_state_name(state), phy_event_name(code), code)
670
671
672void scu_link_layer_set_txcomsas_timeout(struct isci_phy *iphy, u32 timeout)
673{
674	u32 val;
675
676	/* Extend timeout */
677	val = readl(&iphy->link_layer_registers->transmit_comsas_signal);
678	val &= ~SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_MASK);
679	val |= SCU_SAS_LLTXCOMSAS_GEN_VAL(NEGTIME, timeout);
680
681	writel(val, &iphy->link_layer_registers->transmit_comsas_signal);
682}
683
684enum sci_status sci_phy_event_handler(struct isci_phy *iphy, u32 event_code)
685{
686	enum sci_phy_states state = iphy->sm.current_state_id;
687
688	switch (state) {
689	case SCI_PHY_SUB_AWAIT_OSSP_EN:
690		switch (scu_get_event_code(event_code)) {
691		case SCU_EVENT_SAS_PHY_DETECTED:
692			sci_phy_start_sas_link_training(iphy);
693			iphy->is_in_link_training = true;
694			break;
695		case SCU_EVENT_SATA_SPINUP_HOLD:
696			sci_phy_start_sata_link_training(iphy);
697			iphy->is_in_link_training = true;
698			break;
699		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
700		       /* Extend timeout value */
701		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
702
703		       /* Start the oob/sn state machine over again */
704		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
705		       break;
706		default:
707			phy_event_dbg(iphy, state, event_code);
708			return SCI_FAILURE;
709		}
710		return SCI_SUCCESS;
711	case SCI_PHY_SUB_AWAIT_SAS_SPEED_EN:
712		switch (scu_get_event_code(event_code)) {
713		case SCU_EVENT_SAS_PHY_DETECTED:
714			/*
715			 * Why is this being reported again by the controller?
716			 * We would re-enter this state so just stay here */
717			break;
718		case SCU_EVENT_SAS_15:
719		case SCU_EVENT_SAS_15_SSC:
720			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
721						       SCI_PHY_SUB_AWAIT_IAF_UF);
722			break;
723		case SCU_EVENT_SAS_30:
724		case SCU_EVENT_SAS_30_SSC:
725			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
726						       SCI_PHY_SUB_AWAIT_IAF_UF);
727			break;
728		case SCU_EVENT_SAS_60:
729		case SCU_EVENT_SAS_60_SSC:
730			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
731						       SCI_PHY_SUB_AWAIT_IAF_UF);
732			break;
733		case SCU_EVENT_SATA_SPINUP_HOLD:
734			/*
735			 * We were doing SAS PHY link training and received a SATA PHY event
736			 * continue OOB/SN as if this were a SATA PHY */
737			sci_phy_start_sata_link_training(iphy);
738			break;
739		case SCU_EVENT_LINK_FAILURE:
740			/* Change the timeout value to default */
741			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
742
743			/* Link failure change state back to the starting state */
744			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
745			break;
746		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
747		       /* Extend the timeout value */
748		       scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
749
750		       /* Start the oob/sn state machine over again */
751		       sci_change_state(&iphy->sm, SCI_PHY_STARTING);
752		       break;
753		default:
754			phy_event_warn(iphy, state, event_code);
755			return SCI_FAILURE;
756			break;
757		}
758		return SCI_SUCCESS;
759	case SCI_PHY_SUB_AWAIT_IAF_UF:
760		switch (scu_get_event_code(event_code)) {
761		case SCU_EVENT_SAS_PHY_DETECTED:
762			/* Backup the state machine */
763			sci_phy_start_sas_link_training(iphy);
764			break;
765		case SCU_EVENT_SATA_SPINUP_HOLD:
766			/* We were doing SAS PHY link training and received a
767			 * SATA PHY event continue OOB/SN as if this were a
768			 * SATA PHY
769			 */
770			sci_phy_start_sata_link_training(iphy);
771			break;
772		case SCU_EVENT_RECEIVED_IDENTIFY_TIMEOUT:
773			/* Extend the timeout value */
774			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_EXTENDED);
775
776			/* Start the oob/sn state machine over again */
777			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
778			break;
779		case SCU_EVENT_LINK_FAILURE:
780			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
781		case SCU_EVENT_HARD_RESET_RECEIVED:
782			/* Start the oob/sn state machine over again */
783			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
784			break;
785		default:
786			phy_event_warn(iphy, state, event_code);
787			return SCI_FAILURE;
788		}
789		return SCI_SUCCESS;
790	case SCI_PHY_SUB_AWAIT_SAS_POWER:
791		switch (scu_get_event_code(event_code)) {
792		case SCU_EVENT_LINK_FAILURE:
793			/* Change the timeout value to default */
794			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
795
796			/* Link failure change state back to the starting state */
797			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
798			break;
799		default:
800			phy_event_warn(iphy, state, event_code);
801			return SCI_FAILURE;
802		}
803		return SCI_SUCCESS;
804	case SCI_PHY_SUB_AWAIT_SATA_POWER:
805		switch (scu_get_event_code(event_code)) {
806		case SCU_EVENT_LINK_FAILURE:
807			/* Change the timeout value to default */
808			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
809
810			/* Link failure change state back to the starting state */
811			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
812			break;
813		case SCU_EVENT_SATA_SPINUP_HOLD:
814			/* These events are received every 10ms and are
815			 * expected while in this state
816			 */
817			break;
818
819		case SCU_EVENT_SAS_PHY_DETECTED:
820			/* There has been a change in the phy type before OOB/SN for the
821			 * SATA finished start down the SAS link traning path.
822			 */
823			sci_phy_start_sas_link_training(iphy);
824			break;
825
826		default:
827			phy_event_warn(iphy, state, event_code);
828			return SCI_FAILURE;
829		}
830		return SCI_SUCCESS;
831	case SCI_PHY_SUB_AWAIT_SATA_PHY_EN:
832		switch (scu_get_event_code(event_code)) {
833		case SCU_EVENT_LINK_FAILURE:
834			/* Change the timeout value to default */
835			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
836
837			/* Link failure change state back to the starting state */
838			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
839			break;
840		case SCU_EVENT_SATA_SPINUP_HOLD:
841			/* These events might be received since we dont know how many may be in
842			 * the completion queue while waiting for power
843			 */
844			break;
845		case SCU_EVENT_SATA_PHY_DETECTED:
846			iphy->protocol = SAS_PROTOCOL_SATA;
847
848			/* We have received the SATA PHY notification change state */
849			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
850			break;
851		case SCU_EVENT_SAS_PHY_DETECTED:
852			/* There has been a change in the phy type before OOB/SN for the
853			 * SATA finished start down the SAS link traning path.
854			 */
855			sci_phy_start_sas_link_training(iphy);
856			break;
857		default:
858			phy_event_warn(iphy, state, event_code);
859			return SCI_FAILURE;
860		}
861		return SCI_SUCCESS;
862	case SCI_PHY_SUB_AWAIT_SATA_SPEED_EN:
863		switch (scu_get_event_code(event_code)) {
864		case SCU_EVENT_SATA_PHY_DETECTED:
865			/*
866			 * The hardware reports multiple SATA PHY detected events
867			 * ignore the extras */
868			break;
869		case SCU_EVENT_SATA_15:
870		case SCU_EVENT_SATA_15_SSC:
871			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_1_5_GBPS,
872						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
873			break;
874		case SCU_EVENT_SATA_30:
875		case SCU_EVENT_SATA_30_SSC:
876			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_3_0_GBPS,
877						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
878			break;
879		case SCU_EVENT_SATA_60:
880		case SCU_EVENT_SATA_60_SSC:
881			sci_phy_complete_link_training(iphy, SAS_LINK_RATE_6_0_GBPS,
882						       SCI_PHY_SUB_AWAIT_SIG_FIS_UF);
883			break;
884		case SCU_EVENT_LINK_FAILURE:
885			/* Change the timeout value to default */
886			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
887
888			/* Link failure change state back to the starting state */
889			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
890			break;
891		case SCU_EVENT_SAS_PHY_DETECTED:
892			/*
893			 * There has been a change in the phy type before OOB/SN for the
894			 * SATA finished start down the SAS link traning path. */
895			sci_phy_start_sas_link_training(iphy);
896			break;
897		default:
898			phy_event_warn(iphy, state, event_code);
899			return SCI_FAILURE;
900		}
901
902		return SCI_SUCCESS;
903	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF:
904		switch (scu_get_event_code(event_code)) {
905		case SCU_EVENT_SATA_PHY_DETECTED:
906			/* Backup the state machine */
907			sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_SATA_SPEED_EN);
908			break;
909
910		case SCU_EVENT_LINK_FAILURE:
911			/* Change the timeout value to default */
912			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
913
914			/* Link failure change state back to the starting state */
915			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
916			break;
917
918		default:
919			phy_event_warn(iphy, state, event_code);
920			return SCI_FAILURE;
921		}
922		return SCI_SUCCESS;
923	case SCI_PHY_READY:
924		switch (scu_get_event_code(event_code)) {
925		case SCU_EVENT_LINK_FAILURE:
926			/* Set default timeout */
927			scu_link_layer_set_txcomsas_timeout(iphy, SCU_SAS_LINK_LAYER_TXCOMSAS_NEGTIME_DEFAULT);
928
929			/* Link failure change state back to the starting state */
930			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
931			break;
932		case SCU_EVENT_BROADCAST_CHANGE:
933		case SCU_EVENT_BROADCAST_SES:
934		case SCU_EVENT_BROADCAST_RESERVED0:
935		case SCU_EVENT_BROADCAST_RESERVED1:
936		case SCU_EVENT_BROADCAST_EXPANDER:
937		case SCU_EVENT_BROADCAST_AEN:
938			/* Broadcast change received. Notify the port. */
939			if (phy_get_non_dummy_port(iphy) != NULL)
940				sci_port_broadcast_change_received(iphy->owning_port, iphy);
941			else
942				iphy->bcn_received_while_port_unassigned = true;
943			break;
944		case SCU_EVENT_BROADCAST_RESERVED3:
945		case SCU_EVENT_BROADCAST_RESERVED4:
946		default:
947			phy_event_warn(iphy, state, event_code);
948			return SCI_FAILURE_INVALID_STATE;
949		}
950		return SCI_SUCCESS;
951	case SCI_PHY_RESETTING:
952		switch (scu_get_event_code(event_code)) {
953		case SCU_EVENT_HARD_RESET_TRANSMITTED:
954			/* Link failure change state back to the starting state */
955			sci_change_state(&iphy->sm, SCI_PHY_STARTING);
956			break;
957		default:
958			phy_event_warn(iphy, state, event_code);
959			return SCI_FAILURE_INVALID_STATE;
960			break;
961		}
962		return SCI_SUCCESS;
963	default:
964		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
965			__func__, phy_state_name(state));
966		return SCI_FAILURE_INVALID_STATE;
967	}
968}
969
970enum sci_status sci_phy_frame_handler(struct isci_phy *iphy, u32 frame_index)
971{
972	enum sci_phy_states state = iphy->sm.current_state_id;
973	struct isci_host *ihost = iphy->owning_port->owning_controller;
974	enum sci_status result;
975	unsigned long flags;
976
977	switch (state) {
978	case SCI_PHY_SUB_AWAIT_IAF_UF: {
979		u32 *frame_words;
980		struct sas_identify_frame iaf;
981
982		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
983								  frame_index,
984								  (void **)&frame_words);
985
986		if (result != SCI_SUCCESS)
987			return result;
988
989		sci_swab32_cpy(&iaf, frame_words, sizeof(iaf) / sizeof(u32));
990		if (iaf.frame_type == 0) {
991			u32 state;
992
993			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
994			memcpy(&iphy->frame_rcvd.iaf, &iaf, sizeof(iaf));
995			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
996			if (iaf.smp_tport) {
997				/* We got the IAF for an expander PHY go to the final
998				 * state since there are no power requirements for
999				 * expander phys.
1000				 */
1001				state = SCI_PHY_SUB_FINAL;
1002			} else {
1003				/* We got the IAF we can now go to the await spinup
1004				 * semaphore state
1005				 */
1006				state = SCI_PHY_SUB_AWAIT_SAS_POWER;
1007			}
1008			sci_change_state(&iphy->sm, state);
1009			result = SCI_SUCCESS;
1010		} else
1011			dev_warn(sciphy_to_dev(iphy),
1012				"%s: PHY starting substate machine received "
1013				"unexpected frame id %x\n",
1014				__func__, frame_index);
1015
1016		sci_controller_release_frame(ihost, frame_index);
1017		return result;
1018	}
1019	case SCI_PHY_SUB_AWAIT_SIG_FIS_UF: {
1020		struct dev_to_host_fis *frame_header;
1021		u32 *fis_frame_data;
1022
1023		result = sci_unsolicited_frame_control_get_header(&ihost->uf_control,
1024								  frame_index,
1025								  (void **)&frame_header);
1026
1027		if (result != SCI_SUCCESS)
1028			return result;
1029
1030		if ((frame_header->fis_type == FIS_REGD2H) &&
1031		    !(frame_header->status & ATA_BUSY)) {
1032			sci_unsolicited_frame_control_get_buffer(&ihost->uf_control,
1033								 frame_index,
1034								 (void **)&fis_frame_data);
1035
1036			spin_lock_irqsave(&iphy->sas_phy.frame_rcvd_lock, flags);
1037			sci_controller_copy_sata_response(&iphy->frame_rcvd.fis,
1038							  frame_header,
1039							  fis_frame_data);
1040			spin_unlock_irqrestore(&iphy->sas_phy.frame_rcvd_lock, flags);
1041
1042			/* got IAF we can now go to the await spinup semaphore state */
1043			sci_change_state(&iphy->sm, SCI_PHY_SUB_FINAL);
1044
1045			result = SCI_SUCCESS;
1046		} else
1047			dev_warn(sciphy_to_dev(iphy),
1048				 "%s: PHY starting substate machine received "
1049				 "unexpected frame id %x\n",
1050				 __func__, frame_index);
1051
1052		/* Regardless of the result we are done with this frame with it */
1053		sci_controller_release_frame(ihost, frame_index);
1054
1055		return result;
1056	}
1057	default:
1058		dev_dbg(sciphy_to_dev(iphy), "%s: in wrong state: %s\n",
1059			__func__, phy_state_name(state));
1060		return SCI_FAILURE_INVALID_STATE;
1061	}
1062
1063}
1064
1065static void sci_phy_starting_initial_substate_enter(struct sci_base_state_machine *sm)
1066{
1067	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1068
1069	/* This is just an temporary state go off to the starting state */
1070	sci_change_state(&iphy->sm, SCI_PHY_SUB_AWAIT_OSSP_EN);
1071}
1072
1073static void sci_phy_starting_await_sas_power_substate_enter(struct sci_base_state_machine *sm)
1074{
1075	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1076	struct isci_host *ihost = iphy->owning_port->owning_controller;
1077
1078	sci_controller_power_control_queue_insert(ihost, iphy);
1079}
1080
1081static void sci_phy_starting_await_sas_power_substate_exit(struct sci_base_state_machine *sm)
1082{
1083	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1084	struct isci_host *ihost = iphy->owning_port->owning_controller;
1085
1086	sci_controller_power_control_queue_remove(ihost, iphy);
1087}
1088
1089static void sci_phy_starting_await_sata_power_substate_enter(struct sci_base_state_machine *sm)
1090{
1091	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1092	struct isci_host *ihost = iphy->owning_port->owning_controller;
1093
1094	sci_controller_power_control_queue_insert(ihost, iphy);
1095}
1096
1097static void sci_phy_starting_await_sata_power_substate_exit(struct sci_base_state_machine *sm)
1098{
1099	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1100	struct isci_host *ihost = iphy->owning_port->owning_controller;
1101
1102	sci_controller_power_control_queue_remove(ihost, iphy);
1103}
1104
1105static void sci_phy_starting_await_sata_phy_substate_enter(struct sci_base_state_machine *sm)
1106{
1107	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1108
1109	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1110}
1111
1112static void sci_phy_starting_await_sata_phy_substate_exit(struct sci_base_state_machine *sm)
1113{
1114	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1115
1116	sci_del_timer(&iphy->sata_timer);
1117}
1118
1119static void sci_phy_starting_await_sata_speed_substate_enter(struct sci_base_state_machine *sm)
1120{
1121	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1122
1123	sci_mod_timer(&iphy->sata_timer, SCIC_SDS_SATA_LINK_TRAINING_TIMEOUT);
1124}
1125
1126static void sci_phy_starting_await_sata_speed_substate_exit(struct sci_base_state_machine *sm)
1127{
1128	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1129
1130	sci_del_timer(&iphy->sata_timer);
1131}
1132
1133static void sci_phy_starting_await_sig_fis_uf_substate_enter(struct sci_base_state_machine *sm)
1134{
1135	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1136
1137	if (sci_port_link_detected(iphy->owning_port, iphy)) {
1138
1139		/*
1140		 * Clear the PE suspend condition so we can actually
1141		 * receive SIG FIS
1142		 * The hardware will not respond to the XRDY until the PE
1143		 * suspend condition is cleared.
1144		 */
1145		sci_phy_resume(iphy);
1146
1147		sci_mod_timer(&iphy->sata_timer,
1148			      SCIC_SDS_SIGNATURE_FIS_TIMEOUT);
1149	} else
1150		iphy->is_in_link_training = false;
1151}
1152
1153static void sci_phy_starting_await_sig_fis_uf_substate_exit(struct sci_base_state_machine *sm)
1154{
1155	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1156
1157	sci_del_timer(&iphy->sata_timer);
1158}
1159
1160static void sci_phy_starting_final_substate_enter(struct sci_base_state_machine *sm)
1161{
1162	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1163
1164	/* State machine has run to completion so exit out and change
1165	 * the base state machine to the ready state
1166	 */
1167	sci_change_state(&iphy->sm, SCI_PHY_READY);
1168}
1169
1170/**
1171 *
1172 * @sci_phy: This is the struct isci_phy object to stop.
1173 *
1174 * This method will stop the struct isci_phy object. This does not reset the
1175 * protocol engine it just suspends it and places it in a state where it will
1176 * not cause the end device to power up. none
1177 */
1178static void scu_link_layer_stop_protocol_engine(
1179	struct isci_phy *iphy)
1180{
1181	u32 scu_sas_pcfg_value;
1182	u32 enable_spinup_value;
1183
1184	/* Suspend the protocol engine and place it in a sata spinup hold state */
1185	scu_sas_pcfg_value =
1186		readl(&iphy->link_layer_registers->phy_configuration);
1187	scu_sas_pcfg_value |=
1188		(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1189		 SCU_SAS_PCFG_GEN_BIT(SUSPEND_PROTOCOL_ENGINE) |
1190		 SCU_SAS_PCFG_GEN_BIT(SATA_SPINUP_HOLD));
1191	writel(scu_sas_pcfg_value,
1192	       &iphy->link_layer_registers->phy_configuration);
1193
1194	/* Disable the notify enable spinup primitives */
1195	enable_spinup_value = readl(&iphy->link_layer_registers->notify_enable_spinup_control);
1196	enable_spinup_value &= ~SCU_ENSPINUP_GEN_BIT(ENABLE);
1197	writel(enable_spinup_value, &iphy->link_layer_registers->notify_enable_spinup_control);
1198}
1199
1200static void scu_link_layer_start_oob(struct isci_phy *iphy)
1201{
1202	struct scu_link_layer_registers __iomem *ll = iphy->link_layer_registers;
1203	u32 val;
1204
1205	/** Reset OOB sequence - start */
1206	val = readl(&ll->phy_configuration);
1207	val &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_RESET) |
1208		 SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE) |
1209		 SCU_SAS_PCFG_GEN_BIT(HARD_RESET));
1210	writel(val, &ll->phy_configuration);
1211	readl(&ll->phy_configuration); /* flush */
1212	/** Reset OOB sequence - end */
1213
1214	/** Start OOB sequence - start */
1215	val = readl(&ll->phy_configuration);
1216	val |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1217	writel(val, &ll->phy_configuration);
1218	readl(&ll->phy_configuration); /* flush */
1219	/** Start OOB sequence - end */
1220}
1221
1222/**
1223 *
1224 *
1225 * This method will transmit a hard reset request on the specified phy. The SCU
1226 * hardware requires that we reset the OOB state machine and set the hard reset
1227 * bit in the phy configuration register. We then must start OOB over with the
1228 * hard reset bit set.
1229 */
1230static void scu_link_layer_tx_hard_reset(
1231	struct isci_phy *iphy)
1232{
1233	u32 phy_configuration_value;
1234
1235	/*
1236	 * SAS Phys must wait for the HARD_RESET_TX event notification to transition
1237	 * to the starting state. */
1238	phy_configuration_value =
1239		readl(&iphy->link_layer_registers->phy_configuration);
1240	phy_configuration_value &= ~(SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE));
1241	phy_configuration_value |=
1242		(SCU_SAS_PCFG_GEN_BIT(HARD_RESET) |
1243		 SCU_SAS_PCFG_GEN_BIT(OOB_RESET));
1244	writel(phy_configuration_value,
1245	       &iphy->link_layer_registers->phy_configuration);
1246
1247	/* Now take the OOB state machine out of reset */
1248	phy_configuration_value |= SCU_SAS_PCFG_GEN_BIT(OOB_ENABLE);
1249	phy_configuration_value &= ~SCU_SAS_PCFG_GEN_BIT(OOB_RESET);
1250	writel(phy_configuration_value,
1251	       &iphy->link_layer_registers->phy_configuration);
1252}
1253
1254static void sci_phy_stopped_state_enter(struct sci_base_state_machine *sm)
1255{
1256	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1257	struct isci_port *iport = iphy->owning_port;
1258	struct isci_host *ihost = iport->owning_controller;
1259
1260	/*
1261	 * @todo We need to get to the controller to place this PE in a
1262	 * reset state
1263	 */
1264	sci_del_timer(&iphy->sata_timer);
1265
1266	scu_link_layer_stop_protocol_engine(iphy);
1267
1268	if (iphy->sm.previous_state_id != SCI_PHY_INITIAL)
1269		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1270}
1271
1272static void sci_phy_starting_state_enter(struct sci_base_state_machine *sm)
1273{
1274	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1275	struct isci_port *iport = iphy->owning_port;
1276	struct isci_host *ihost = iport->owning_controller;
1277
1278	scu_link_layer_stop_protocol_engine(iphy);
1279	scu_link_layer_start_oob(iphy);
1280
1281	/* We don't know what kind of phy we are going to be just yet */
1282	iphy->protocol = SAS_PROTOCOL_NONE;
1283	iphy->bcn_received_while_port_unassigned = false;
1284
1285	if (iphy->sm.previous_state_id == SCI_PHY_READY)
1286		sci_controller_link_down(ihost, phy_get_non_dummy_port(iphy), iphy);
1287
1288	sci_change_state(&iphy->sm, SCI_PHY_SUB_INITIAL);
1289}
1290
1291static void sci_phy_ready_state_enter(struct sci_base_state_machine *sm)
1292{
1293	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1294	struct isci_port *iport = iphy->owning_port;
1295	struct isci_host *ihost = iport->owning_controller;
1296
1297	sci_controller_link_up(ihost, phy_get_non_dummy_port(iphy), iphy);
1298}
1299
1300static void sci_phy_ready_state_exit(struct sci_base_state_machine *sm)
1301{
1302	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1303
1304	sci_phy_suspend(iphy);
1305}
1306
1307static void sci_phy_resetting_state_enter(struct sci_base_state_machine *sm)
1308{
1309	struct isci_phy *iphy = container_of(sm, typeof(*iphy), sm);
1310
1311	/* The phy is being reset, therefore deactivate it from the port.  In
1312	 * the resetting state we don't notify the user regarding link up and
1313	 * link down notifications
1314	 */
1315	sci_port_deactivate_phy(iphy->owning_port, iphy, false);
1316
1317	if (iphy->protocol == SAS_PROTOCOL_SSP) {
1318		scu_link_layer_tx_hard_reset(iphy);
1319	} else {
1320		/* The SCU does not need to have a discrete reset state so
1321		 * just go back to the starting state.
1322		 */
1323		sci_change_state(&iphy->sm, SCI_PHY_STARTING);
1324	}
1325}
1326
1327static const struct sci_base_state sci_phy_state_table[] = {
1328	[SCI_PHY_INITIAL] = { },
1329	[SCI_PHY_STOPPED] = {
1330		.enter_state = sci_phy_stopped_state_enter,
1331	},
1332	[SCI_PHY_STARTING] = {
1333		.enter_state = sci_phy_starting_state_enter,
1334	},
1335	[SCI_PHY_SUB_INITIAL] = {
1336		.enter_state = sci_phy_starting_initial_substate_enter,
1337	},
1338	[SCI_PHY_SUB_AWAIT_OSSP_EN] = { },
1339	[SCI_PHY_SUB_AWAIT_SAS_SPEED_EN] = { },
1340	[SCI_PHY_SUB_AWAIT_IAF_UF] = { },
1341	[SCI_PHY_SUB_AWAIT_SAS_POWER] = {
1342		.enter_state = sci_phy_starting_await_sas_power_substate_enter,
1343		.exit_state  = sci_phy_starting_await_sas_power_substate_exit,
1344	},
1345	[SCI_PHY_SUB_AWAIT_SATA_POWER] = {
1346		.enter_state = sci_phy_starting_await_sata_power_substate_enter,
1347		.exit_state  = sci_phy_starting_await_sata_power_substate_exit
1348	},
1349	[SCI_PHY_SUB_AWAIT_SATA_PHY_EN] = {
1350		.enter_state = sci_phy_starting_await_sata_phy_substate_enter,
1351		.exit_state  = sci_phy_starting_await_sata_phy_substate_exit
1352	},
1353	[SCI_PHY_SUB_AWAIT_SATA_SPEED_EN] = {
1354		.enter_state = sci_phy_starting_await_sata_speed_substate_enter,
1355		.exit_state  = sci_phy_starting_await_sata_speed_substate_exit
1356	},
1357	[SCI_PHY_SUB_AWAIT_SIG_FIS_UF] = {
1358		.enter_state = sci_phy_starting_await_sig_fis_uf_substate_enter,
1359		.exit_state  = sci_phy_starting_await_sig_fis_uf_substate_exit
1360	},
1361	[SCI_PHY_SUB_FINAL] = {
1362		.enter_state = sci_phy_starting_final_substate_enter,
1363	},
1364	[SCI_PHY_READY] = {
1365		.enter_state = sci_phy_ready_state_enter,
1366		.exit_state = sci_phy_ready_state_exit,
1367	},
1368	[SCI_PHY_RESETTING] = {
1369		.enter_state = sci_phy_resetting_state_enter,
1370	},
1371	[SCI_PHY_FINAL] = { },
1372};
1373
1374void sci_phy_construct(struct isci_phy *iphy,
1375			    struct isci_port *iport, u8 phy_index)
1376{
1377	sci_init_sm(&iphy->sm, sci_phy_state_table, SCI_PHY_INITIAL);
1378
1379	/* Copy the rest of the input data to our locals */
1380	iphy->owning_port = iport;
1381	iphy->phy_index = phy_index;
1382	iphy->bcn_received_while_port_unassigned = false;
1383	iphy->protocol = SAS_PROTOCOL_NONE;
1384	iphy->link_layer_registers = NULL;
1385	iphy->max_negotiated_speed = SAS_LINK_RATE_UNKNOWN;
1386
1387	/* Create the SIGNATURE FIS Timeout timer for this phy */
1388	sci_init_timer(&iphy->sata_timer, phy_sata_timeout);
1389}
1390
1391void isci_phy_init(struct isci_phy *iphy, struct isci_host *ihost, int index)
1392{
1393	struct sci_oem_params *oem = &ihost->oem_parameters;
1394	u64 sci_sas_addr;
1395	__be64 sas_addr;
1396
1397	sci_sas_addr = oem->phys[index].sas_address.high;
1398	sci_sas_addr <<= 32;
1399	sci_sas_addr |= oem->phys[index].sas_address.low;
1400	sas_addr = cpu_to_be64(sci_sas_addr);
1401	memcpy(iphy->sas_addr, &sas_addr, sizeof(sas_addr));
1402
1403	iphy->sas_phy.enabled = 0;
1404	iphy->sas_phy.id = index;
1405	iphy->sas_phy.sas_addr = &iphy->sas_addr[0];
1406	iphy->sas_phy.frame_rcvd = (u8 *)&iphy->frame_rcvd;
1407	iphy->sas_phy.ha = &ihost->sas_ha;
1408	iphy->sas_phy.lldd_phy = iphy;
1409	iphy->sas_phy.enabled = 1;
1410	iphy->sas_phy.class = SAS;
1411	iphy->sas_phy.iproto = SAS_PROTOCOL_ALL;
1412	iphy->sas_phy.tproto = 0;
1413	iphy->sas_phy.type = PHY_TYPE_PHYSICAL;
1414	iphy->sas_phy.role = PHY_ROLE_INITIATOR;
1415	iphy->sas_phy.oob_mode = OOB_NOT_CONNECTED;
1416	iphy->sas_phy.linkrate = SAS_LINK_RATE_UNKNOWN;
1417	memset(&iphy->frame_rcvd, 0, sizeof(iphy->frame_rcvd));
1418}
1419
1420
1421/**
1422 * isci_phy_control() - This function is one of the SAS Domain Template
1423 *    functions. This is a phy management function.
1424 * @phy: This parameter specifies the sphy being controlled.
1425 * @func: This parameter specifies the phy control function being invoked.
1426 * @buf: This parameter is specific to the phy function being invoked.
1427 *
1428 * status, zero indicates success.
1429 */
1430int isci_phy_control(struct asd_sas_phy *sas_phy,
1431		     enum phy_func func,
1432		     void *buf)
1433{
1434	int ret = 0;
1435	struct isci_phy *iphy = sas_phy->lldd_phy;
1436	struct asd_sas_port *port = sas_phy->port;
1437	struct isci_host *ihost = sas_phy->ha->lldd_ha;
1438	unsigned long flags;
1439
1440	dev_dbg(&ihost->pdev->dev,
1441		"%s: phy %p; func %d; buf %p; isci phy %p, port %p\n",
1442		__func__, sas_phy, func, buf, iphy, port);
1443
1444	switch (func) {
1445	case PHY_FUNC_DISABLE:
1446		spin_lock_irqsave(&ihost->scic_lock, flags);
1447		scu_link_layer_start_oob(iphy);
1448		sci_phy_stop(iphy);
1449		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1450		break;
1451
1452	case PHY_FUNC_LINK_RESET:
1453		spin_lock_irqsave(&ihost->scic_lock, flags);
1454		scu_link_layer_start_oob(iphy);
1455		sci_phy_stop(iphy);
1456		sci_phy_start(iphy);
1457		spin_unlock_irqrestore(&ihost->scic_lock, flags);
1458		break;
1459
1460	case PHY_FUNC_HARD_RESET:
1461		if (!port)
1462			return -ENODEV;
1463
1464		ret = isci_port_perform_hard_reset(ihost, port->lldd_port, iphy);
1465
1466		break;
1467	case PHY_FUNC_GET_EVENTS: {
1468		struct scu_link_layer_registers __iomem *r;
1469		struct sas_phy *phy = sas_phy->phy;
1470
1471		r = iphy->link_layer_registers;
1472		phy->running_disparity_error_count = readl(&r->running_disparity_error_count);
1473		phy->loss_of_dword_sync_count = readl(&r->loss_of_sync_error_count);
1474		phy->phy_reset_problem_count = readl(&r->phy_reset_problem_count);
1475		phy->invalid_dword_count = readl(&r->invalid_dword_counter);
1476		break;
1477	}
1478
1479	default:
1480		dev_dbg(&ihost->pdev->dev,
1481			   "%s: phy %p; func %d NOT IMPLEMENTED!\n",
1482			   __func__, sas_phy, func);
1483		ret = -ENOSYS;
1484		break;
1485	}
1486	return ret;
1487}
1488