1/*
2 * This is the Fusion MPT base driver providing common API layer interface
3 * for access to MPT (Message Passing Technology) firmware.
4 *
5 * This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
6 * Copyright (C) 2012-2014  LSI Corporation
7 * Copyright (C) 2013-2014 Avago Technologies
8 *  (mailto: MPT-FusionLinux.pdl@avagotech.com)
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version 2
13 * of the License, or (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18 * GNU General Public License for more details.
19 *
20 * NO WARRANTY
21 * THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
22 * CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
23 * LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
24 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
25 * solely responsible for determining the appropriateness of using and
26 * distributing the Program and assumes all risks associated with its
27 * exercise of rights under this Agreement, including but not limited to
28 * the risks and costs of program errors, damage to or loss of data,
29 * programs or equipment, and unavailability or interruption of operations.
30
31 * DISCLAIMER OF LIABILITY
32 * NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
33 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
34 * DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
35 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
36 * TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
37 * USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
38 * HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
39
40 * You should have received a copy of the GNU General Public License
41 * along with this program; if not, write to the Free Software
42 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
43 * USA.
44 */
45
46#include <linux/kernel.h>
47#include <linux/module.h>
48#include <linux/errno.h>
49#include <linux/init.h>
50#include <linux/slab.h>
51#include <linux/types.h>
52#include <linux/pci.h>
53#include <linux/kdev_t.h>
54#include <linux/blkdev.h>
55#include <linux/delay.h>
56#include <linux/interrupt.h>
57#include <linux/dma-mapping.h>
58#include <linux/io.h>
59#include <linux/time.h>
60#include <linux/kthread.h>
61#include <linux/aer.h>
62
63
64#include "mpt3sas_base.h"
65
66static MPT_CALLBACK	mpt_callbacks[MPT_MAX_CALLBACKS];
67
68
69#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
70
71 /* maximum controller queue depth */
72#define MAX_HBA_QUEUE_DEPTH	30000
73#define MAX_CHAIN_DEPTH		100000
74static int max_queue_depth = -1;
75module_param(max_queue_depth, int, 0);
76MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
77
78static int max_sgl_entries = -1;
79module_param(max_sgl_entries, int, 0);
80MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
81
82static int msix_disable = -1;
83module_param(msix_disable, int, 0);
84MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
85
86static int max_msix_vectors = 8;
87module_param(max_msix_vectors, int, 0);
88MODULE_PARM_DESC(max_msix_vectors,
89	" max msix vectors - (default=8)");
90
91static int mpt3sas_fwfault_debug;
92MODULE_PARM_DESC(mpt3sas_fwfault_debug,
93	" enable detection of firmware fault and halt firmware - (default=0)");
94
95static int
96_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
97
98/**
99 * _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
100 *
101 */
102static int
103_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
104{
105	int ret = param_set_int(val, kp);
106	struct MPT3SAS_ADAPTER *ioc;
107
108	if (ret)
109		return ret;
110
111	pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
112	list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
113		ioc->fwfault_debug = mpt3sas_fwfault_debug;
114	return 0;
115}
116module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
117	param_get_int, &mpt3sas_fwfault_debug, 0644);
118
119/**
120 *  mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
121 * @arg: input argument, used to derive ioc
122 *
123 * Return 0 if controller is removed from pci subsystem.
124 * Return -1 for other case.
125 */
126static int mpt3sas_remove_dead_ioc_func(void *arg)
127{
128	struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
129	struct pci_dev *pdev;
130
131	if ((ioc == NULL))
132		return -1;
133
134	pdev = ioc->pdev;
135	if ((pdev == NULL))
136		return -1;
137	pci_stop_and_remove_bus_device_locked(pdev);
138	return 0;
139}
140
141/**
142 * _base_fault_reset_work - workq handling ioc fault conditions
143 * @work: input argument, used to derive ioc
144 * Context: sleep.
145 *
146 * Return nothing.
147 */
148static void
149_base_fault_reset_work(struct work_struct *work)
150{
151	struct MPT3SAS_ADAPTER *ioc =
152	    container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
153	unsigned long	 flags;
154	u32 doorbell;
155	int rc;
156	struct task_struct *p;
157
158
159	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
160	if (ioc->shost_recovery)
161		goto rearm_timer;
162	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
163
164	doorbell = mpt3sas_base_get_iocstate(ioc, 0);
165	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
166		pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
167		    ioc->name);
168
169		/*
170		 * Call _scsih_flush_pending_cmds callback so that we flush all
171		 * pending commands back to OS. This call is required to aovid
172		 * deadlock at block layer. Dead IOC will fail to do diag reset,
173		 * and this call is safe since dead ioc will never return any
174		 * command back from HW.
175		 */
176		ioc->schedule_dead_ioc_flush_running_cmds(ioc);
177		/*
178		 * Set remove_host flag early since kernel thread will
179		 * take some time to execute.
180		 */
181		ioc->remove_host = 1;
182		/*Remove the Dead Host */
183		p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
184		    "mpt3sas_dead_ioc_%d", ioc->id);
185		if (IS_ERR(p))
186			pr_err(MPT3SAS_FMT
187			"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
188			ioc->name, __func__);
189		else
190			pr_err(MPT3SAS_FMT
191			"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
192			ioc->name, __func__);
193		return; /* don't rearm timer */
194	}
195
196	if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
197		rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
198		    FORCE_BIG_HAMMER);
199		pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
200		    __func__, (rc == 0) ? "success" : "failed");
201		doorbell = mpt3sas_base_get_iocstate(ioc, 0);
202		if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
203			mpt3sas_base_fault_info(ioc, doorbell &
204			    MPI2_DOORBELL_DATA_MASK);
205		if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
206		    MPI2_IOC_STATE_OPERATIONAL)
207			return; /* don't rearm timer */
208	}
209
210	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
211 rearm_timer:
212	if (ioc->fault_reset_work_q)
213		queue_delayed_work(ioc->fault_reset_work_q,
214		    &ioc->fault_reset_work,
215		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
216	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
217}
218
219/**
220 * mpt3sas_base_start_watchdog - start the fault_reset_work_q
221 * @ioc: per adapter object
222 * Context: sleep.
223 *
224 * Return nothing.
225 */
226void
227mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
228{
229	unsigned long	 flags;
230
231	if (ioc->fault_reset_work_q)
232		return;
233
234	/* initialize fault polling */
235
236	INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
237	snprintf(ioc->fault_reset_work_q_name,
238	    sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
239	ioc->fault_reset_work_q =
240		create_singlethread_workqueue(ioc->fault_reset_work_q_name);
241	if (!ioc->fault_reset_work_q) {
242		pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
243		    ioc->name, __func__, __LINE__);
244			return;
245	}
246	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
247	if (ioc->fault_reset_work_q)
248		queue_delayed_work(ioc->fault_reset_work_q,
249		    &ioc->fault_reset_work,
250		    msecs_to_jiffies(FAULT_POLLING_INTERVAL));
251	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
252}
253
254/**
255 * mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
256 * @ioc: per adapter object
257 * Context: sleep.
258 *
259 * Return nothing.
260 */
261void
262mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
263{
264	unsigned long flags;
265	struct workqueue_struct *wq;
266
267	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
268	wq = ioc->fault_reset_work_q;
269	ioc->fault_reset_work_q = NULL;
270	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
271	if (wq) {
272		if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
273			flush_workqueue(wq);
274		destroy_workqueue(wq);
275	}
276}
277
278/**
279 * mpt3sas_base_fault_info - verbose translation of firmware FAULT code
280 * @ioc: per adapter object
281 * @fault_code: fault code
282 *
283 * Return nothing.
284 */
285void
286mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
287{
288	pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
289	    ioc->name, fault_code);
290}
291
292/**
293 * mpt3sas_halt_firmware - halt's mpt controller firmware
294 * @ioc: per adapter object
295 *
296 * For debugging timeout related issues.  Writing 0xCOFFEE00
297 * to the doorbell register will halt controller firmware. With
298 * the purpose to stop both driver and firmware, the enduser can
299 * obtain a ring buffer from controller UART.
300 */
301void
302mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
303{
304	u32 doorbell;
305
306	if (!ioc->fwfault_debug)
307		return;
308
309	dump_stack();
310
311	doorbell = readl(&ioc->chip->Doorbell);
312	if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
313		mpt3sas_base_fault_info(ioc , doorbell);
314	else {
315		writel(0xC0FFEE00, &ioc->chip->Doorbell);
316		pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
317			ioc->name);
318	}
319
320	if (ioc->fwfault_debug == 2)
321		for (;;)
322			;
323	else
324		panic("panic in %s\n", __func__);
325}
326
327#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
328/**
329 * _base_sas_ioc_info - verbose translation of the ioc status
330 * @ioc: per adapter object
331 * @mpi_reply: reply mf payload returned from firmware
332 * @request_hdr: request mf
333 *
334 * Return nothing.
335 */
336static void
337_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
338	MPI2RequestHeader_t *request_hdr)
339{
340	u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
341	    MPI2_IOCSTATUS_MASK;
342	char *desc = NULL;
343	u16 frame_sz;
344	char *func_str = NULL;
345
346	/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
347	if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
348	    request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
349	    request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
350		return;
351
352	if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
353		return;
354
355	switch (ioc_status) {
356
357/****************************************************************************
358*  Common IOCStatus values for all replies
359****************************************************************************/
360
361	case MPI2_IOCSTATUS_INVALID_FUNCTION:
362		desc = "invalid function";
363		break;
364	case MPI2_IOCSTATUS_BUSY:
365		desc = "busy";
366		break;
367	case MPI2_IOCSTATUS_INVALID_SGL:
368		desc = "invalid sgl";
369		break;
370	case MPI2_IOCSTATUS_INTERNAL_ERROR:
371		desc = "internal error";
372		break;
373	case MPI2_IOCSTATUS_INVALID_VPID:
374		desc = "invalid vpid";
375		break;
376	case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
377		desc = "insufficient resources";
378		break;
379	case MPI2_IOCSTATUS_INVALID_FIELD:
380		desc = "invalid field";
381		break;
382	case MPI2_IOCSTATUS_INVALID_STATE:
383		desc = "invalid state";
384		break;
385	case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
386		desc = "op state not supported";
387		break;
388
389/****************************************************************************
390*  Config IOCStatus values
391****************************************************************************/
392
393	case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
394		desc = "config invalid action";
395		break;
396	case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
397		desc = "config invalid type";
398		break;
399	case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
400		desc = "config invalid page";
401		break;
402	case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
403		desc = "config invalid data";
404		break;
405	case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
406		desc = "config no defaults";
407		break;
408	case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
409		desc = "config cant commit";
410		break;
411
412/****************************************************************************
413*  SCSI IO Reply
414****************************************************************************/
415
416	case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
417	case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
418	case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
419	case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
420	case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
421	case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
422	case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
423	case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
424	case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
425	case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
426	case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
427	case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
428		break;
429
430/****************************************************************************
431*  For use by SCSI Initiator and SCSI Target end-to-end data protection
432****************************************************************************/
433
434	case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
435		desc = "eedp guard error";
436		break;
437	case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
438		desc = "eedp ref tag error";
439		break;
440	case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
441		desc = "eedp app tag error";
442		break;
443
444/****************************************************************************
445*  SCSI Target values
446****************************************************************************/
447
448	case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
449		desc = "target invalid io index";
450		break;
451	case MPI2_IOCSTATUS_TARGET_ABORTED:
452		desc = "target aborted";
453		break;
454	case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
455		desc = "target no conn retryable";
456		break;
457	case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
458		desc = "target no connection";
459		break;
460	case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
461		desc = "target xfer count mismatch";
462		break;
463	case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
464		desc = "target data offset error";
465		break;
466	case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
467		desc = "target too much write data";
468		break;
469	case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
470		desc = "target iu too short";
471		break;
472	case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
473		desc = "target ack nak timeout";
474		break;
475	case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
476		desc = "target nak received";
477		break;
478
479/****************************************************************************
480*  Serial Attached SCSI values
481****************************************************************************/
482
483	case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
484		desc = "smp request failed";
485		break;
486	case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
487		desc = "smp data overrun";
488		break;
489
490/****************************************************************************
491*  Diagnostic Buffer Post / Diagnostic Release values
492****************************************************************************/
493
494	case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
495		desc = "diagnostic released";
496		break;
497	default:
498		break;
499	}
500
501	if (!desc)
502		return;
503
504	switch (request_hdr->Function) {
505	case MPI2_FUNCTION_CONFIG:
506		frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
507		func_str = "config_page";
508		break;
509	case MPI2_FUNCTION_SCSI_TASK_MGMT:
510		frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
511		func_str = "task_mgmt";
512		break;
513	case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
514		frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
515		func_str = "sas_iounit_ctl";
516		break;
517	case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
518		frame_sz = sizeof(Mpi2SepRequest_t);
519		func_str = "enclosure";
520		break;
521	case MPI2_FUNCTION_IOC_INIT:
522		frame_sz = sizeof(Mpi2IOCInitRequest_t);
523		func_str = "ioc_init";
524		break;
525	case MPI2_FUNCTION_PORT_ENABLE:
526		frame_sz = sizeof(Mpi2PortEnableRequest_t);
527		func_str = "port_enable";
528		break;
529	case MPI2_FUNCTION_SMP_PASSTHROUGH:
530		frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
531		func_str = "smp_passthru";
532		break;
533	default:
534		frame_sz = 32;
535		func_str = "unknown";
536		break;
537	}
538
539	pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
540		ioc->name, desc, ioc_status, request_hdr, func_str);
541
542	_debug_dump_mf(request_hdr, frame_sz/4);
543}
544
545/**
546 * _base_display_event_data - verbose translation of firmware asyn events
547 * @ioc: per adapter object
548 * @mpi_reply: reply mf payload returned from firmware
549 *
550 * Return nothing.
551 */
552static void
553_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
554	Mpi2EventNotificationReply_t *mpi_reply)
555{
556	char *desc = NULL;
557	u16 event;
558
559	if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
560		return;
561
562	event = le16_to_cpu(mpi_reply->Event);
563
564	switch (event) {
565	case MPI2_EVENT_LOG_DATA:
566		desc = "Log Data";
567		break;
568	case MPI2_EVENT_STATE_CHANGE:
569		desc = "Status Change";
570		break;
571	case MPI2_EVENT_HARD_RESET_RECEIVED:
572		desc = "Hard Reset Received";
573		break;
574	case MPI2_EVENT_EVENT_CHANGE:
575		desc = "Event Change";
576		break;
577	case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
578		desc = "Device Status Change";
579		break;
580	case MPI2_EVENT_IR_OPERATION_STATUS:
581		desc = "IR Operation Status";
582		break;
583	case MPI2_EVENT_SAS_DISCOVERY:
584	{
585		Mpi2EventDataSasDiscovery_t *event_data =
586		    (Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
587		pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
588		    (event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
589		    "start" : "stop");
590		if (event_data->DiscoveryStatus)
591			pr_info("discovery_status(0x%08x)",
592			    le32_to_cpu(event_data->DiscoveryStatus));
593			pr_info("\n");
594		return;
595	}
596	case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
597		desc = "SAS Broadcast Primitive";
598		break;
599	case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
600		desc = "SAS Init Device Status Change";
601		break;
602	case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
603		desc = "SAS Init Table Overflow";
604		break;
605	case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
606		desc = "SAS Topology Change List";
607		break;
608	case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
609		desc = "SAS Enclosure Device Status Change";
610		break;
611	case MPI2_EVENT_IR_VOLUME:
612		desc = "IR Volume";
613		break;
614	case MPI2_EVENT_IR_PHYSICAL_DISK:
615		desc = "IR Physical Disk";
616		break;
617	case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
618		desc = "IR Configuration Change List";
619		break;
620	case MPI2_EVENT_LOG_ENTRY_ADDED:
621		desc = "Log Entry Added";
622		break;
623	case MPI2_EVENT_TEMP_THRESHOLD:
624		desc = "Temperature Threshold";
625		break;
626	}
627
628	if (!desc)
629		return;
630
631	pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
632}
633#endif
634
635/**
636 * _base_sas_log_info - verbose translation of firmware log info
637 * @ioc: per adapter object
638 * @log_info: log info
639 *
640 * Return nothing.
641 */
642static void
643_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
644{
645	union loginfo_type {
646		u32	loginfo;
647		struct {
648			u32	subcode:16;
649			u32	code:8;
650			u32	originator:4;
651			u32	bus_type:4;
652		} dw;
653	};
654	union loginfo_type sas_loginfo;
655	char *originator_str = NULL;
656
657	sas_loginfo.loginfo = log_info;
658	if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
659		return;
660
661	/* each nexus loss loginfo */
662	if (log_info == 0x31170000)
663		return;
664
665	/* eat the loginfos associated with task aborts */
666	if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
667	    0x31140000 || log_info == 0x31130000))
668		return;
669
670	switch (sas_loginfo.dw.originator) {
671	case 0:
672		originator_str = "IOP";
673		break;
674	case 1:
675		originator_str = "PL";
676		break;
677	case 2:
678		originator_str = "IR";
679		break;
680	}
681
682	pr_warn(MPT3SAS_FMT
683		"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
684		ioc->name, log_info,
685	     originator_str, sas_loginfo.dw.code,
686	     sas_loginfo.dw.subcode);
687}
688
689/**
690 * _base_display_reply_info -
691 * @ioc: per adapter object
692 * @smid: system request message index
693 * @msix_index: MSIX table index supplied by the OS
694 * @reply: reply message frame(lower 32bit addr)
695 *
696 * Return nothing.
697 */
698static void
699_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
700	u32 reply)
701{
702	MPI2DefaultReply_t *mpi_reply;
703	u16 ioc_status;
704	u32 loginfo = 0;
705
706	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
707	if (unlikely(!mpi_reply)) {
708		pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
709		    ioc->name, __FILE__, __LINE__, __func__);
710		return;
711	}
712	ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
713#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
714	if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
715	    (ioc->logging_level & MPT_DEBUG_REPLY)) {
716		_base_sas_ioc_info(ioc , mpi_reply,
717		   mpt3sas_base_get_msg_frame(ioc, smid));
718	}
719#endif
720	if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
721		loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
722		_base_sas_log_info(ioc, loginfo);
723	}
724
725	if (ioc_status || loginfo) {
726		ioc_status &= MPI2_IOCSTATUS_MASK;
727		mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
728	}
729}
730
731/**
732 * mpt3sas_base_done - base internal command completion routine
733 * @ioc: per adapter object
734 * @smid: system request message index
735 * @msix_index: MSIX table index supplied by the OS
736 * @reply: reply message frame(lower 32bit addr)
737 *
738 * Return 1 meaning mf should be freed from _base_interrupt
739 *        0 means the mf is freed from this function.
740 */
741u8
742mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
743	u32 reply)
744{
745	MPI2DefaultReply_t *mpi_reply;
746
747	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
748	if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
749		return 1;
750
751	if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
752		return 1;
753
754	ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
755	if (mpi_reply) {
756		ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
757		memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
758	}
759	ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
760
761	complete(&ioc->base_cmds.done);
762	return 1;
763}
764
765/**
766 * _base_async_event - main callback handler for firmware asyn events
767 * @ioc: per adapter object
768 * @msix_index: MSIX table index supplied by the OS
769 * @reply: reply message frame(lower 32bit addr)
770 *
771 * Return 1 meaning mf should be freed from _base_interrupt
772 *        0 means the mf is freed from this function.
773 */
774static u8
775_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
776{
777	Mpi2EventNotificationReply_t *mpi_reply;
778	Mpi2EventAckRequest_t *ack_request;
779	u16 smid;
780
781	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
782	if (!mpi_reply)
783		return 1;
784	if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
785		return 1;
786#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
787	_base_display_event_data(ioc, mpi_reply);
788#endif
789	if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
790		goto out;
791	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
792	if (!smid) {
793		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
794		    ioc->name, __func__);
795		goto out;
796	}
797
798	ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
799	memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
800	ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
801	ack_request->Event = mpi_reply->Event;
802	ack_request->EventContext = mpi_reply->EventContext;
803	ack_request->VF_ID = 0;  /* TODO */
804	ack_request->VP_ID = 0;
805	mpt3sas_base_put_smid_default(ioc, smid);
806
807 out:
808
809	/* scsih callback handler */
810	mpt3sas_scsih_event_callback(ioc, msix_index, reply);
811
812	/* ctl callback handler */
813	mpt3sas_ctl_event_callback(ioc, msix_index, reply);
814
815	return 1;
816}
817
818/**
819 * _base_get_cb_idx - obtain the callback index
820 * @ioc: per adapter object
821 * @smid: system request message index
822 *
823 * Return callback index.
824 */
825static u8
826_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
827{
828	int i;
829	u8 cb_idx;
830
831	if (smid < ioc->hi_priority_smid) {
832		i = smid - 1;
833		cb_idx = ioc->scsi_lookup[i].cb_idx;
834	} else if (smid < ioc->internal_smid) {
835		i = smid - ioc->hi_priority_smid;
836		cb_idx = ioc->hpr_lookup[i].cb_idx;
837	} else if (smid <= ioc->hba_queue_depth) {
838		i = smid - ioc->internal_smid;
839		cb_idx = ioc->internal_lookup[i].cb_idx;
840	} else
841		cb_idx = 0xFF;
842	return cb_idx;
843}
844
845/**
846 * _base_mask_interrupts - disable interrupts
847 * @ioc: per adapter object
848 *
849 * Disabling ResetIRQ, Reply and Doorbell Interrupts
850 *
851 * Return nothing.
852 */
853static void
854_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
855{
856	u32 him_register;
857
858	ioc->mask_interrupts = 1;
859	him_register = readl(&ioc->chip->HostInterruptMask);
860	him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
861	writel(him_register, &ioc->chip->HostInterruptMask);
862	readl(&ioc->chip->HostInterruptMask);
863}
864
865/**
866 * _base_unmask_interrupts - enable interrupts
867 * @ioc: per adapter object
868 *
869 * Enabling only Reply Interrupts
870 *
871 * Return nothing.
872 */
873static void
874_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
875{
876	u32 him_register;
877
878	him_register = readl(&ioc->chip->HostInterruptMask);
879	him_register &= ~MPI2_HIM_RIM;
880	writel(him_register, &ioc->chip->HostInterruptMask);
881	ioc->mask_interrupts = 0;
882}
883
884union reply_descriptor {
885	u64 word;
886	struct {
887		u32 low;
888		u32 high;
889	} u;
890};
891
892/**
893 * _base_interrupt - MPT adapter (IOC) specific interrupt handler.
894 * @irq: irq number (not used)
895 * @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
896 * @r: pt_regs pointer (not used)
897 *
898 * Return IRQ_HANDLE if processed, else IRQ_NONE.
899 */
900static irqreturn_t
901_base_interrupt(int irq, void *bus_id)
902{
903	struct adapter_reply_queue *reply_q = bus_id;
904	union reply_descriptor rd;
905	u32 completed_cmds;
906	u8 request_desript_type;
907	u16 smid;
908	u8 cb_idx;
909	u32 reply;
910	u8 msix_index = reply_q->msix_index;
911	struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
912	Mpi2ReplyDescriptorsUnion_t *rpf;
913	u8 rc;
914
915	if (ioc->mask_interrupts)
916		return IRQ_NONE;
917
918	if (!atomic_add_unless(&reply_q->busy, 1, 1))
919		return IRQ_NONE;
920
921	rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
922	request_desript_type = rpf->Default.ReplyFlags
923	     & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
924	if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
925		atomic_dec(&reply_q->busy);
926		return IRQ_NONE;
927	}
928
929	completed_cmds = 0;
930	cb_idx = 0xFF;
931	do {
932		rd.word = le64_to_cpu(rpf->Words);
933		if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
934			goto out;
935		reply = 0;
936		smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
937		if (request_desript_type ==
938		    MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
939		    request_desript_type ==
940		    MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
941			cb_idx = _base_get_cb_idx(ioc, smid);
942			if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
943			    (likely(mpt_callbacks[cb_idx] != NULL))) {
944				rc = mpt_callbacks[cb_idx](ioc, smid,
945				    msix_index, 0);
946				if (rc)
947					mpt3sas_base_free_smid(ioc, smid);
948			}
949		} else if (request_desript_type ==
950		    MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
951			reply = le32_to_cpu(
952			    rpf->AddressReply.ReplyFrameAddress);
953			if (reply > ioc->reply_dma_max_address ||
954			    reply < ioc->reply_dma_min_address)
955				reply = 0;
956			if (smid) {
957				cb_idx = _base_get_cb_idx(ioc, smid);
958				if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
959				    (likely(mpt_callbacks[cb_idx] != NULL))) {
960					rc = mpt_callbacks[cb_idx](ioc, smid,
961					    msix_index, reply);
962					if (reply)
963						_base_display_reply_info(ioc,
964						    smid, msix_index, reply);
965					if (rc)
966						mpt3sas_base_free_smid(ioc,
967						    smid);
968				}
969			} else {
970				_base_async_event(ioc, msix_index, reply);
971			}
972
973			/* reply free queue handling */
974			if (reply) {
975				ioc->reply_free_host_index =
976				    (ioc->reply_free_host_index ==
977				    (ioc->reply_free_queue_depth - 1)) ?
978				    0 : ioc->reply_free_host_index + 1;
979				ioc->reply_free[ioc->reply_free_host_index] =
980				    cpu_to_le32(reply);
981				wmb();
982				writel(ioc->reply_free_host_index,
983				    &ioc->chip->ReplyFreeHostIndex);
984			}
985		}
986
987		rpf->Words = cpu_to_le64(ULLONG_MAX);
988		reply_q->reply_post_host_index =
989		    (reply_q->reply_post_host_index ==
990		    (ioc->reply_post_queue_depth - 1)) ? 0 :
991		    reply_q->reply_post_host_index + 1;
992		request_desript_type =
993		    reply_q->reply_post_free[reply_q->reply_post_host_index].
994		    Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
995		completed_cmds++;
996		if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
997			goto out;
998		if (!reply_q->reply_post_host_index)
999			rpf = reply_q->reply_post_free;
1000		else
1001			rpf++;
1002	} while (1);
1003
1004 out:
1005
1006	if (!completed_cmds) {
1007		atomic_dec(&reply_q->busy);
1008		return IRQ_NONE;
1009	}
1010
1011	wmb();
1012	writel(reply_q->reply_post_host_index | (msix_index <<
1013	    MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
1014	atomic_dec(&reply_q->busy);
1015	return IRQ_HANDLED;
1016}
1017
1018/**
1019 * _base_is_controller_msix_enabled - is controller support muli-reply queues
1020 * @ioc: per adapter object
1021 *
1022 */
1023static inline int
1024_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
1025{
1026	return (ioc->facts.IOCCapabilities &
1027	    MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
1028}
1029
1030/**
1031 * mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
1032 * @ioc: per adapter object
1033 * Context: ISR conext
1034 *
1035 * Called when a Task Management request has completed. We want
1036 * to flush the other reply queues so all the outstanding IO has been
1037 * completed back to OS before we process the TM completetion.
1038 *
1039 * Return nothing.
1040 */
1041void
1042mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1043{
1044	struct adapter_reply_queue *reply_q;
1045
1046	/* If MSIX capability is turned off
1047	 * then multi-queues are not enabled
1048	 */
1049	if (!_base_is_controller_msix_enabled(ioc))
1050		return;
1051
1052	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1053		if (ioc->shost_recovery)
1054			return;
1055		/* TMs are on msix_index == 0 */
1056		if (reply_q->msix_index == 0)
1057			continue;
1058		_base_interrupt(reply_q->vector, (void *)reply_q);
1059	}
1060}
1061
1062/**
1063 * mpt3sas_base_release_callback_handler - clear interrupt callback handler
1064 * @cb_idx: callback index
1065 *
1066 * Return nothing.
1067 */
1068void
1069mpt3sas_base_release_callback_handler(u8 cb_idx)
1070{
1071	mpt_callbacks[cb_idx] = NULL;
1072}
1073
1074/**
1075 * mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
1076 * @cb_func: callback function
1077 *
1078 * Returns cb_func.
1079 */
1080u8
1081mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
1082{
1083	u8 cb_idx;
1084
1085	for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
1086		if (mpt_callbacks[cb_idx] == NULL)
1087			break;
1088
1089	mpt_callbacks[cb_idx] = cb_func;
1090	return cb_idx;
1091}
1092
1093/**
1094 * mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
1095 *
1096 * Return nothing.
1097 */
1098void
1099mpt3sas_base_initialize_callback_handler(void)
1100{
1101	u8 cb_idx;
1102
1103	for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
1104		mpt3sas_base_release_callback_handler(cb_idx);
1105}
1106
1107
1108/**
1109 * _base_build_zero_len_sge - build zero length sg entry
1110 * @ioc: per adapter object
1111 * @paddr: virtual address for SGE
1112 *
1113 * Create a zero length scatter gather entry to insure the IOCs hardware has
1114 * something to use if the target device goes brain dead and tries
1115 * to send data even when none is asked for.
1116 *
1117 * Return nothing.
1118 */
1119static void
1120_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1121{
1122	u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
1123	    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
1124	    MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
1125	    MPI2_SGE_FLAGS_SHIFT);
1126	ioc->base_add_sg_single(paddr, flags_length, -1);
1127}
1128
1129/**
1130 * _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
1131 * @paddr: virtual address for SGE
1132 * @flags_length: SGE flags and data transfer length
1133 * @dma_addr: Physical address
1134 *
1135 * Return nothing.
1136 */
1137static void
1138_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1139{
1140	Mpi2SGESimple32_t *sgel = paddr;
1141
1142	flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
1143	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1144	sgel->FlagsLength = cpu_to_le32(flags_length);
1145	sgel->Address = cpu_to_le32(dma_addr);
1146}
1147
1148
1149/**
1150 * _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
1151 * @paddr: virtual address for SGE
1152 * @flags_length: SGE flags and data transfer length
1153 * @dma_addr: Physical address
1154 *
1155 * Return nothing.
1156 */
1157static void
1158_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
1159{
1160	Mpi2SGESimple64_t *sgel = paddr;
1161
1162	flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
1163	    MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
1164	sgel->FlagsLength = cpu_to_le32(flags_length);
1165	sgel->Address = cpu_to_le64(dma_addr);
1166}
1167
1168/**
1169 * _base_get_chain_buffer_tracker - obtain chain tracker
1170 * @ioc: per adapter object
1171 * @smid: smid associated to an IO request
1172 *
1173 * Returns chain tracker(from ioc->free_chain_list)
1174 */
1175static struct chain_tracker *
1176_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1177{
1178	struct chain_tracker *chain_req;
1179	unsigned long flags;
1180
1181	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1182	if (list_empty(&ioc->free_chain_list)) {
1183		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1184		dfailprintk(ioc, pr_warn(MPT3SAS_FMT
1185			"chain buffers not available\n", ioc->name));
1186		return NULL;
1187	}
1188	chain_req = list_entry(ioc->free_chain_list.next,
1189	    struct chain_tracker, tracker_list);
1190	list_del_init(&chain_req->tracker_list);
1191	list_add_tail(&chain_req->tracker_list,
1192	    &ioc->scsi_lookup[smid - 1].chain_list);
1193	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1194	return chain_req;
1195}
1196
1197
1198/**
1199 * _base_build_sg - build generic sg
1200 * @ioc: per adapter object
1201 * @psge: virtual address for SGE
1202 * @data_out_dma: physical address for WRITES
1203 * @data_out_sz: data xfer size for WRITES
1204 * @data_in_dma: physical address for READS
1205 * @data_in_sz: data xfer size for READS
1206 *
1207 * Return nothing.
1208 */
1209static void
1210_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
1211	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1212	size_t data_in_sz)
1213{
1214	u32 sgl_flags;
1215
1216	if (!data_out_sz && !data_in_sz) {
1217		_base_build_zero_len_sge(ioc, psge);
1218		return;
1219	}
1220
1221	if (data_out_sz && data_in_sz) {
1222		/* WRITE sgel first */
1223		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1224		    MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
1225		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1226		ioc->base_add_sg_single(psge, sgl_flags |
1227		    data_out_sz, data_out_dma);
1228
1229		/* incr sgel */
1230		psge += ioc->sge_size;
1231
1232		/* READ sgel last */
1233		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1234		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1235		    MPI2_SGE_FLAGS_END_OF_LIST);
1236		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1237		ioc->base_add_sg_single(psge, sgl_flags |
1238		    data_in_sz, data_in_dma);
1239	} else if (data_out_sz) /* WRITE */ {
1240		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1241		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1242		    MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
1243		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1244		ioc->base_add_sg_single(psge, sgl_flags |
1245		    data_out_sz, data_out_dma);
1246	} else if (data_in_sz) /* READ */ {
1247		sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
1248		    MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
1249		    MPI2_SGE_FLAGS_END_OF_LIST);
1250		sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
1251		ioc->base_add_sg_single(psge, sgl_flags |
1252		    data_in_sz, data_in_dma);
1253	}
1254}
1255
1256/* IEEE format sgls */
1257
1258/**
1259 * _base_add_sg_single_ieee - add sg element for IEEE format
1260 * @paddr: virtual address for SGE
1261 * @flags: SGE flags
1262 * @chain_offset: number of 128 byte elements from start of segment
1263 * @length: data transfer length
1264 * @dma_addr: Physical address
1265 *
1266 * Return nothing.
1267 */
1268static void
1269_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
1270	dma_addr_t dma_addr)
1271{
1272	Mpi25IeeeSgeChain64_t *sgel = paddr;
1273
1274	sgel->Flags = flags;
1275	sgel->NextChainOffset = chain_offset;
1276	sgel->Length = cpu_to_le32(length);
1277	sgel->Address = cpu_to_le64(dma_addr);
1278}
1279
1280/**
1281 * _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
1282 * @ioc: per adapter object
1283 * @paddr: virtual address for SGE
1284 *
1285 * Create a zero length scatter gather entry to insure the IOCs hardware has
1286 * something to use if the target device goes brain dead and tries
1287 * to send data even when none is asked for.
1288 *
1289 * Return nothing.
1290 */
1291static void
1292_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
1293{
1294	u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1295		MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
1296		MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
1297	_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
1298}
1299
1300/**
1301 * _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
1302 * @ioc: per adapter object
1303 * @scmd: scsi command
1304 * @smid: system request message index
1305 * Context: none.
1306 *
1307 * The main routine that builds scatter gather table from a given
1308 * scsi request sent via the .queuecommand main handler.
1309 *
1310 * Returns 0 success, anything else error
1311 */
1312static int
1313_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
1314	struct scsi_cmnd *scmd, u16 smid)
1315{
1316	Mpi2SCSIIORequest_t *mpi_request;
1317	dma_addr_t chain_dma;
1318	struct scatterlist *sg_scmd;
1319	void *sg_local, *chain;
1320	u32 chain_offset;
1321	u32 chain_length;
1322	int sges_left;
1323	u32 sges_in_segment;
1324	u8 simple_sgl_flags;
1325	u8 simple_sgl_flags_last;
1326	u8 chain_sgl_flags;
1327	struct chain_tracker *chain_req;
1328
1329	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
1330
1331	/* init scatter gather flags */
1332	simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1333	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1334	simple_sgl_flags_last = simple_sgl_flags |
1335	    MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1336	chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
1337	    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1338
1339	sg_scmd = scsi_sglist(scmd);
1340	sges_left = scsi_dma_map(scmd);
1341	if (!sges_left) {
1342		sdev_printk(KERN_ERR, scmd->device,
1343			"pci_map_sg failed: request for %d bytes!\n",
1344			scsi_bufflen(scmd));
1345		return -ENOMEM;
1346	}
1347
1348	sg_local = &mpi_request->SGL;
1349	sges_in_segment = (ioc->request_sz -
1350	    offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
1351	if (sges_left <= sges_in_segment)
1352		goto fill_in_last_segment;
1353
1354	mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
1355	    (offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
1356
1357	/* fill in main message segment when there is a chain following */
1358	while (sges_in_segment > 1) {
1359		_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1360		    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1361		sg_scmd = sg_next(sg_scmd);
1362		sg_local += ioc->sge_size_ieee;
1363		sges_left--;
1364		sges_in_segment--;
1365	}
1366
1367	/* initializing the pointers */
1368	chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1369	if (!chain_req)
1370		return -1;
1371	chain = chain_req->chain_buffer;
1372	chain_dma = chain_req->chain_buffer_dma;
1373	do {
1374		sges_in_segment = (sges_left <=
1375		    ioc->max_sges_in_chain_message) ? sges_left :
1376		    ioc->max_sges_in_chain_message;
1377		chain_offset = (sges_left == sges_in_segment) ?
1378		    0 : sges_in_segment;
1379		chain_length = sges_in_segment * ioc->sge_size_ieee;
1380		if (chain_offset)
1381			chain_length += ioc->sge_size_ieee;
1382		_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
1383		    chain_offset, chain_length, chain_dma);
1384
1385		sg_local = chain;
1386		if (!chain_offset)
1387			goto fill_in_last_segment;
1388
1389		/* fill in chain segments */
1390		while (sges_in_segment) {
1391			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1392			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1393			sg_scmd = sg_next(sg_scmd);
1394			sg_local += ioc->sge_size_ieee;
1395			sges_left--;
1396			sges_in_segment--;
1397		}
1398
1399		chain_req = _base_get_chain_buffer_tracker(ioc, smid);
1400		if (!chain_req)
1401			return -1;
1402		chain = chain_req->chain_buffer;
1403		chain_dma = chain_req->chain_buffer_dma;
1404	} while (1);
1405
1406
1407 fill_in_last_segment:
1408
1409	/* fill the last segment */
1410	while (sges_left) {
1411		if (sges_left == 1)
1412			_base_add_sg_single_ieee(sg_local,
1413			    simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
1414			    sg_dma_address(sg_scmd));
1415		else
1416			_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
1417			    sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
1418		sg_scmd = sg_next(sg_scmd);
1419		sg_local += ioc->sge_size_ieee;
1420		sges_left--;
1421	}
1422
1423	return 0;
1424}
1425
1426/**
1427 * _base_build_sg_ieee - build generic sg for IEEE format
1428 * @ioc: per adapter object
1429 * @psge: virtual address for SGE
1430 * @data_out_dma: physical address for WRITES
1431 * @data_out_sz: data xfer size for WRITES
1432 * @data_in_dma: physical address for READS
1433 * @data_in_sz: data xfer size for READS
1434 *
1435 * Return nothing.
1436 */
1437static void
1438_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
1439	dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
1440	size_t data_in_sz)
1441{
1442	u8 sgl_flags;
1443
1444	if (!data_out_sz && !data_in_sz) {
1445		_base_build_zero_len_sge_ieee(ioc, psge);
1446		return;
1447	}
1448
1449	if (data_out_sz && data_in_sz) {
1450		/* WRITE sgel first */
1451		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1452		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1453		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1454		    data_out_dma);
1455
1456		/* incr sgel */
1457		psge += ioc->sge_size_ieee;
1458
1459		/* READ sgel last */
1460		sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
1461		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1462		    data_in_dma);
1463	} else if (data_out_sz) /* WRITE */ {
1464		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1465		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1466		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1467		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
1468		    data_out_dma);
1469	} else if (data_in_sz) /* READ */ {
1470		sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
1471		    MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
1472		    MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
1473		_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
1474		    data_in_dma);
1475	}
1476}
1477
1478#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
1479
1480/**
1481 * _base_config_dma_addressing - set dma addressing
1482 * @ioc: per adapter object
1483 * @pdev: PCI device struct
1484 *
1485 * Returns 0 for success, non-zero for failure.
1486 */
1487static int
1488_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
1489{
1490	struct sysinfo s;
1491	u64 consistent_dma_mask;
1492
1493	if (ioc->dma_mask)
1494		consistent_dma_mask = DMA_BIT_MASK(64);
1495	else
1496		consistent_dma_mask = DMA_BIT_MASK(32);
1497
1498	if (sizeof(dma_addr_t) > 4) {
1499		const uint64_t required_mask =
1500		    dma_get_required_mask(&pdev->dev);
1501		if ((required_mask > DMA_BIT_MASK(32)) &&
1502		    !pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
1503		    !pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
1504			ioc->base_add_sg_single = &_base_add_sg_single_64;
1505			ioc->sge_size = sizeof(Mpi2SGESimple64_t);
1506			ioc->dma_mask = 64;
1507			goto out;
1508		}
1509	}
1510
1511	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
1512	    && !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
1513		ioc->base_add_sg_single = &_base_add_sg_single_32;
1514		ioc->sge_size = sizeof(Mpi2SGESimple32_t);
1515		ioc->dma_mask = 32;
1516	} else
1517		return -ENODEV;
1518
1519 out:
1520	si_meminfo(&s);
1521	pr_info(MPT3SAS_FMT
1522		"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
1523		ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
1524
1525	return 0;
1526}
1527
1528static int
1529_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
1530				      struct pci_dev *pdev)
1531{
1532	if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
1533		if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
1534			return -ENODEV;
1535	}
1536	return 0;
1537}
1538
1539/**
1540 * _base_check_enable_msix - checks MSIX capabable.
1541 * @ioc: per adapter object
1542 *
1543 * Check to see if card is capable of MSIX, and set number
1544 * of available msix vectors
1545 */
1546static int
1547_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1548{
1549	int base;
1550	u16 message_control;
1551
1552	base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
1553	if (!base) {
1554		dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
1555			ioc->name));
1556		return -EINVAL;
1557	}
1558
1559	/* get msix vector count */
1560
1561	pci_read_config_word(ioc->pdev, base + 2, &message_control);
1562	ioc->msix_vector_count = (message_control & 0x3FF) + 1;
1563	if (ioc->msix_vector_count > 8)
1564		ioc->msix_vector_count = 8;
1565	dinitprintk(ioc, pr_info(MPT3SAS_FMT
1566		"msix is supported, vector_count(%d)\n",
1567		ioc->name, ioc->msix_vector_count));
1568	return 0;
1569}
1570
1571/**
1572 * _base_free_irq - free irq
1573 * @ioc: per adapter object
1574 *
1575 * Freeing respective reply_queue from the list.
1576 */
1577static void
1578_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
1579{
1580	struct adapter_reply_queue *reply_q, *next;
1581
1582	if (list_empty(&ioc->reply_queue_list))
1583		return;
1584
1585	list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
1586		list_del(&reply_q->list);
1587		irq_set_affinity_hint(reply_q->vector, NULL);
1588		free_cpumask_var(reply_q->affinity_hint);
1589		synchronize_irq(reply_q->vector);
1590		free_irq(reply_q->vector, reply_q);
1591		kfree(reply_q);
1592	}
1593}
1594
1595/**
1596 * _base_request_irq - request irq
1597 * @ioc: per adapter object
1598 * @index: msix index into vector table
1599 * @vector: irq vector
1600 *
1601 * Inserting respective reply_queue into the list.
1602 */
1603static int
1604_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
1605{
1606	struct adapter_reply_queue *reply_q;
1607	int r;
1608
1609	reply_q =  kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
1610	if (!reply_q) {
1611		pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
1612		    ioc->name, (int)sizeof(struct adapter_reply_queue));
1613		return -ENOMEM;
1614	}
1615	reply_q->ioc = ioc;
1616	reply_q->msix_index = index;
1617	reply_q->vector = vector;
1618
1619	if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
1620		return -ENOMEM;
1621	cpumask_clear(reply_q->affinity_hint);
1622
1623	atomic_set(&reply_q->busy, 0);
1624	if (ioc->msix_enable)
1625		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
1626		    MPT3SAS_DRIVER_NAME, ioc->id, index);
1627	else
1628		snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
1629		    MPT3SAS_DRIVER_NAME, ioc->id);
1630	r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
1631	    reply_q);
1632	if (r) {
1633		pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
1634		    reply_q->name, vector);
1635		kfree(reply_q);
1636		return -EBUSY;
1637	}
1638
1639	INIT_LIST_HEAD(&reply_q->list);
1640	list_add_tail(&reply_q->list, &ioc->reply_queue_list);
1641	return 0;
1642}
1643
1644/**
1645 * _base_assign_reply_queues - assigning msix index for each cpu
1646 * @ioc: per adapter object
1647 *
1648 * The enduser would need to set the affinity via /proc/irq/#/smp_affinity
1649 *
1650 * It would nice if we could call irq_set_affinity, however it is not
1651 * an exported symbol
1652 */
1653static void
1654_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
1655{
1656	unsigned int cpu, nr_cpus, nr_msix, index = 0;
1657	struct adapter_reply_queue *reply_q;
1658
1659	if (!_base_is_controller_msix_enabled(ioc))
1660		return;
1661
1662	memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
1663
1664	nr_cpus = num_online_cpus();
1665	nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
1666					       ioc->facts.MaxMSIxVectors);
1667	if (!nr_msix)
1668		return;
1669
1670	cpu = cpumask_first(cpu_online_mask);
1671
1672	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
1673
1674		unsigned int i, group = nr_cpus / nr_msix;
1675
1676		if (cpu >= nr_cpus)
1677			break;
1678
1679		if (index < nr_cpus % nr_msix)
1680			group++;
1681
1682		for (i = 0 ; i < group ; i++) {
1683			ioc->cpu_msix_table[cpu] = index;
1684			cpumask_or(reply_q->affinity_hint,
1685				   reply_q->affinity_hint, get_cpu_mask(cpu));
1686			cpu = cpumask_next(cpu, cpu_online_mask);
1687		}
1688
1689		if (irq_set_affinity_hint(reply_q->vector,
1690					   reply_q->affinity_hint))
1691			dinitprintk(ioc, pr_info(MPT3SAS_FMT
1692			    "error setting affinity hint for irq vector %d\n",
1693			    ioc->name, reply_q->vector));
1694		index++;
1695	}
1696}
1697
1698/**
1699 * _base_disable_msix - disables msix
1700 * @ioc: per adapter object
1701 *
1702 */
1703static void
1704_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
1705{
1706	if (!ioc->msix_enable)
1707		return;
1708	pci_disable_msix(ioc->pdev);
1709	ioc->msix_enable = 0;
1710}
1711
1712/**
1713 * _base_enable_msix - enables msix, failback to io_apic
1714 * @ioc: per adapter object
1715 *
1716 */
1717static int
1718_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
1719{
1720	struct msix_entry *entries, *a;
1721	int r;
1722	int i;
1723	u8 try_msix = 0;
1724
1725	if (msix_disable == -1 || msix_disable == 0)
1726		try_msix = 1;
1727
1728	if (!try_msix)
1729		goto try_ioapic;
1730
1731	if (_base_check_enable_msix(ioc) != 0)
1732		goto try_ioapic;
1733
1734	ioc->reply_queue_count = min_t(int, ioc->cpu_count,
1735	    ioc->msix_vector_count);
1736
1737	printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
1738	  ": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
1739	  ioc->cpu_count, max_msix_vectors);
1740
1741	if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
1742		max_msix_vectors = 8;
1743
1744	if (max_msix_vectors > 0) {
1745		ioc->reply_queue_count = min_t(int, max_msix_vectors,
1746			ioc->reply_queue_count);
1747		ioc->msix_vector_count = ioc->reply_queue_count;
1748	} else if (max_msix_vectors == 0)
1749		goto try_ioapic;
1750
1751	entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
1752	    GFP_KERNEL);
1753	if (!entries) {
1754		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1755			"kcalloc failed @ at %s:%d/%s() !!!\n",
1756			ioc->name, __FILE__, __LINE__, __func__));
1757		goto try_ioapic;
1758	}
1759
1760	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
1761		a->entry = i;
1762
1763	r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
1764	if (r) {
1765		dfailprintk(ioc, pr_info(MPT3SAS_FMT
1766			"pci_enable_msix_exact failed (r=%d) !!!\n",
1767			ioc->name, r));
1768		kfree(entries);
1769		goto try_ioapic;
1770	}
1771
1772	ioc->msix_enable = 1;
1773	for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
1774		r = _base_request_irq(ioc, i, a->vector);
1775		if (r) {
1776			_base_free_irq(ioc);
1777			_base_disable_msix(ioc);
1778			kfree(entries);
1779			goto try_ioapic;
1780		}
1781	}
1782
1783	kfree(entries);
1784	return 0;
1785
1786/* failback to io_apic interrupt routing */
1787 try_ioapic:
1788
1789	ioc->reply_queue_count = 1;
1790	r = _base_request_irq(ioc, 0, ioc->pdev->irq);
1791
1792	return r;
1793}
1794
1795/**
1796 * mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
1797 * @ioc: per adapter object
1798 *
1799 * Returns 0 for success, non-zero for failure.
1800 */
1801int
1802mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
1803{
1804	struct pci_dev *pdev = ioc->pdev;
1805	u32 memap_sz;
1806	u32 pio_sz;
1807	int i, r = 0;
1808	u64 pio_chip = 0;
1809	u64 chip_phys = 0;
1810	struct adapter_reply_queue *reply_q;
1811
1812	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
1813	    ioc->name, __func__));
1814
1815	ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
1816	if (pci_enable_device_mem(pdev)) {
1817		pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
1818			ioc->name);
1819		ioc->bars = 0;
1820		return -ENODEV;
1821	}
1822
1823
1824	if (pci_request_selected_regions(pdev, ioc->bars,
1825	    MPT3SAS_DRIVER_NAME)) {
1826		pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
1827			ioc->name);
1828		ioc->bars = 0;
1829		r = -ENODEV;
1830		goto out_fail;
1831	}
1832
1833/* AER (Advanced Error Reporting) hooks */
1834	pci_enable_pcie_error_reporting(pdev);
1835
1836	pci_set_master(pdev);
1837
1838
1839	if (_base_config_dma_addressing(ioc, pdev) != 0) {
1840		pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
1841		    ioc->name, pci_name(pdev));
1842		r = -ENODEV;
1843		goto out_fail;
1844	}
1845
1846	for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
1847		if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1848			if (pio_sz)
1849				continue;
1850			pio_chip = (u64)pci_resource_start(pdev, i);
1851			pio_sz = pci_resource_len(pdev, i);
1852		} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
1853			if (memap_sz)
1854				continue;
1855			ioc->chip_phys = pci_resource_start(pdev, i);
1856			chip_phys = (u64)ioc->chip_phys;
1857			memap_sz = pci_resource_len(pdev, i);
1858			ioc->chip = ioremap(ioc->chip_phys, memap_sz);
1859			if (ioc->chip == NULL) {
1860				pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
1861					ioc->name);
1862				r = -EINVAL;
1863				goto out_fail;
1864			}
1865		}
1866	}
1867
1868	_base_mask_interrupts(ioc);
1869
1870	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
1871	if (r)
1872		goto out_fail;
1873
1874	if (!ioc->rdpq_array_enable_assigned) {
1875		ioc->rdpq_array_enable = ioc->rdpq_array_capable;
1876		ioc->rdpq_array_enable_assigned = 1;
1877	}
1878
1879	r = _base_enable_msix(ioc);
1880	if (r)
1881		goto out_fail;
1882
1883	list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
1884		pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
1885		    reply_q->name,  ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
1886		    "IO-APIC enabled"), reply_q->vector);
1887
1888	pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
1889	    ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
1890	pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
1891	    ioc->name, (unsigned long long)pio_chip, pio_sz);
1892
1893	/* Save PCI configuration state for recovery from PCI AER/EEH errors */
1894	pci_save_state(pdev);
1895	return 0;
1896
1897 out_fail:
1898	if (ioc->chip_phys)
1899		iounmap(ioc->chip);
1900	ioc->chip_phys = 0;
1901	pci_release_selected_regions(ioc->pdev, ioc->bars);
1902	pci_disable_pcie_error_reporting(pdev);
1903	pci_disable_device(pdev);
1904	return r;
1905}
1906
1907/**
1908 * mpt3sas_base_get_msg_frame - obtain request mf pointer
1909 * @ioc: per adapter object
1910 * @smid: system request message index(smid zero is invalid)
1911 *
1912 * Returns virt pointer to message frame.
1913 */
1914void *
1915mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1916{
1917	return (void *)(ioc->request + (smid * ioc->request_sz));
1918}
1919
1920/**
1921 * mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
1922 * @ioc: per adapter object
1923 * @smid: system request message index
1924 *
1925 * Returns virt pointer to sense buffer.
1926 */
1927void *
1928mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1929{
1930	return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
1931}
1932
1933/**
1934 * mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
1935 * @ioc: per adapter object
1936 * @smid: system request message index
1937 *
1938 * Returns phys pointer to the low 32bit address of the sense buffer.
1939 */
1940__le32
1941mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
1942{
1943	return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
1944	    SCSI_SENSE_BUFFERSIZE));
1945}
1946
1947/**
1948 * mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
1949 * @ioc: per adapter object
1950 * @phys_addr: lower 32 physical addr of the reply
1951 *
1952 * Converts 32bit lower physical addr into a virt address.
1953 */
1954void *
1955mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
1956{
1957	if (!phys_addr)
1958		return NULL;
1959	return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
1960}
1961
1962/**
1963 * mpt3sas_base_get_smid - obtain a free smid from internal queue
1964 * @ioc: per adapter object
1965 * @cb_idx: callback index
1966 *
1967 * Returns smid (zero is invalid)
1968 */
1969u16
1970mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
1971{
1972	unsigned long flags;
1973	struct request_tracker *request;
1974	u16 smid;
1975
1976	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
1977	if (list_empty(&ioc->internal_free_list)) {
1978		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1979		pr_err(MPT3SAS_FMT "%s: smid not available\n",
1980		    ioc->name, __func__);
1981		return 0;
1982	}
1983
1984	request = list_entry(ioc->internal_free_list.next,
1985	    struct request_tracker, tracker_list);
1986	request->cb_idx = cb_idx;
1987	smid = request->smid;
1988	list_del(&request->tracker_list);
1989	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
1990	return smid;
1991}
1992
1993/**
1994 * mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
1995 * @ioc: per adapter object
1996 * @cb_idx: callback index
1997 * @scmd: pointer to scsi command object
1998 *
1999 * Returns smid (zero is invalid)
2000 */
2001u16
2002mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
2003	struct scsi_cmnd *scmd)
2004{
2005	unsigned long flags;
2006	struct scsiio_tracker *request;
2007	u16 smid;
2008
2009	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2010	if (list_empty(&ioc->free_list)) {
2011		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2012		pr_err(MPT3SAS_FMT "%s: smid not available\n",
2013		    ioc->name, __func__);
2014		return 0;
2015	}
2016
2017	request = list_entry(ioc->free_list.next,
2018	    struct scsiio_tracker, tracker_list);
2019	request->scmd = scmd;
2020	request->cb_idx = cb_idx;
2021	smid = request->smid;
2022	list_del(&request->tracker_list);
2023	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2024	return smid;
2025}
2026
2027/**
2028 * mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
2029 * @ioc: per adapter object
2030 * @cb_idx: callback index
2031 *
2032 * Returns smid (zero is invalid)
2033 */
2034u16
2035mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
2036{
2037	unsigned long flags;
2038	struct request_tracker *request;
2039	u16 smid;
2040
2041	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2042	if (list_empty(&ioc->hpr_free_list)) {
2043		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2044		return 0;
2045	}
2046
2047	request = list_entry(ioc->hpr_free_list.next,
2048	    struct request_tracker, tracker_list);
2049	request->cb_idx = cb_idx;
2050	smid = request->smid;
2051	list_del(&request->tracker_list);
2052	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2053	return smid;
2054}
2055
2056/**
2057 * mpt3sas_base_free_smid - put smid back on free_list
2058 * @ioc: per adapter object
2059 * @smid: system request message index
2060 *
2061 * Return nothing.
2062 */
2063void
2064mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2065{
2066	unsigned long flags;
2067	int i;
2068	struct chain_tracker *chain_req, *next;
2069
2070	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
2071	if (smid < ioc->hi_priority_smid) {
2072		/* scsiio queue */
2073		i = smid - 1;
2074		if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
2075			list_for_each_entry_safe(chain_req, next,
2076			    &ioc->scsi_lookup[i].chain_list, tracker_list) {
2077				list_del_init(&chain_req->tracker_list);
2078				list_add(&chain_req->tracker_list,
2079				    &ioc->free_chain_list);
2080			}
2081		}
2082		ioc->scsi_lookup[i].cb_idx = 0xFF;
2083		ioc->scsi_lookup[i].scmd = NULL;
2084		list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
2085		spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2086
2087		/*
2088		 * See _wait_for_commands_to_complete() call with regards
2089		 * to this code.
2090		 */
2091		if (ioc->shost_recovery && ioc->pending_io_count) {
2092			if (ioc->pending_io_count == 1)
2093				wake_up(&ioc->reset_wq);
2094			ioc->pending_io_count--;
2095		}
2096		return;
2097	} else if (smid < ioc->internal_smid) {
2098		/* hi-priority */
2099		i = smid - ioc->hi_priority_smid;
2100		ioc->hpr_lookup[i].cb_idx = 0xFF;
2101		list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
2102	} else if (smid <= ioc->hba_queue_depth) {
2103		/* internal queue */
2104		i = smid - ioc->internal_smid;
2105		ioc->internal_lookup[i].cb_idx = 0xFF;
2106		list_add(&ioc->internal_lookup[i].tracker_list,
2107		    &ioc->internal_free_list);
2108	}
2109	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
2110}
2111
2112/**
2113 * _base_writeq - 64 bit write to MMIO
2114 * @ioc: per adapter object
2115 * @b: data payload
2116 * @addr: address in MMIO space
2117 * @writeq_lock: spin lock
2118 *
2119 * Glue for handling an atomic 64 bit word to MMIO. This special handling takes
2120 * care of 32 bit environment where its not quarenteed to send the entire word
2121 * in one transfer.
2122 */
2123#if defined(writeq) && defined(CONFIG_64BIT)
2124static inline void
2125_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2126{
2127	writeq(cpu_to_le64(b), addr);
2128}
2129#else
2130static inline void
2131_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
2132{
2133	unsigned long flags;
2134	__u64 data_out = cpu_to_le64(b);
2135
2136	spin_lock_irqsave(writeq_lock, flags);
2137	writel((u32)(data_out), addr);
2138	writel((u32)(data_out >> 32), (addr + 4));
2139	spin_unlock_irqrestore(writeq_lock, flags);
2140}
2141#endif
2142
2143static inline u8
2144_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
2145{
2146	return ioc->cpu_msix_table[raw_smp_processor_id()];
2147}
2148
2149/**
2150 * mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
2151 * @ioc: per adapter object
2152 * @smid: system request message index
2153 * @handle: device handle
2154 *
2155 * Return nothing.
2156 */
2157void
2158mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
2159{
2160	Mpi2RequestDescriptorUnion_t descriptor;
2161	u64 *request = (u64 *)&descriptor;
2162
2163
2164	descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
2165	descriptor.SCSIIO.MSIxIndex =  _base_get_msix_index(ioc);
2166	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2167	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2168	descriptor.SCSIIO.LMID = 0;
2169	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2170	    &ioc->scsi_lookup_lock);
2171}
2172
2173/**
2174 * mpt3sas_base_put_smid_fast_path - send fast path request to firmware
2175 * @ioc: per adapter object
2176 * @smid: system request message index
2177 * @handle: device handle
2178 *
2179 * Return nothing.
2180 */
2181void
2182mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
2183	u16 handle)
2184{
2185	Mpi2RequestDescriptorUnion_t descriptor;
2186	u64 *request = (u64 *)&descriptor;
2187
2188	descriptor.SCSIIO.RequestFlags =
2189	    MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
2190	descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
2191	descriptor.SCSIIO.SMID = cpu_to_le16(smid);
2192	descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
2193	descriptor.SCSIIO.LMID = 0;
2194	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2195	    &ioc->scsi_lookup_lock);
2196}
2197
2198/**
2199 * mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
2200 * @ioc: per adapter object
2201 * @smid: system request message index
2202 *
2203 * Return nothing.
2204 */
2205void
2206mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2207{
2208	Mpi2RequestDescriptorUnion_t descriptor;
2209	u64 *request = (u64 *)&descriptor;
2210
2211	descriptor.HighPriority.RequestFlags =
2212	    MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
2213	descriptor.HighPriority.MSIxIndex =  0;
2214	descriptor.HighPriority.SMID = cpu_to_le16(smid);
2215	descriptor.HighPriority.LMID = 0;
2216	descriptor.HighPriority.Reserved1 = 0;
2217	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2218	    &ioc->scsi_lookup_lock);
2219}
2220
2221/**
2222 * mpt3sas_base_put_smid_default - Default, primarily used for config pages
2223 * @ioc: per adapter object
2224 * @smid: system request message index
2225 *
2226 * Return nothing.
2227 */
2228void
2229mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
2230{
2231	Mpi2RequestDescriptorUnion_t descriptor;
2232	u64 *request = (u64 *)&descriptor;
2233
2234	descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
2235	descriptor.Default.MSIxIndex =  _base_get_msix_index(ioc);
2236	descriptor.Default.SMID = cpu_to_le16(smid);
2237	descriptor.Default.LMID = 0;
2238	descriptor.Default.DescriptorTypeDependent = 0;
2239	_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
2240	    &ioc->scsi_lookup_lock);
2241}
2242
2243/**
2244 * _base_display_intel_branding - Display branding string
2245 * @ioc: per adapter object
2246 *
2247 * Return nothing.
2248 */
2249static void
2250_base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
2251{
2252	if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
2253		return;
2254
2255	switch (ioc->pdev->device) {
2256	case MPI25_MFGPAGE_DEVID_SAS3008:
2257		switch (ioc->pdev->subsystem_device) {
2258		case MPT3SAS_INTEL_RMS3JC080_SSDID:
2259			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2260				MPT3SAS_INTEL_RMS3JC080_BRANDING);
2261			break;
2262
2263		case MPT3SAS_INTEL_RS3GC008_SSDID:
2264			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2265				MPT3SAS_INTEL_RS3GC008_BRANDING);
2266			break;
2267		case MPT3SAS_INTEL_RS3FC044_SSDID:
2268			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2269				MPT3SAS_INTEL_RS3FC044_BRANDING);
2270			break;
2271		case MPT3SAS_INTEL_RS3UC080_SSDID:
2272			pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2273				MPT3SAS_INTEL_RS3UC080_BRANDING);
2274			break;
2275		default:
2276			pr_info(MPT3SAS_FMT
2277				"Intel(R) Controller: Subsystem ID: 0x%X\n",
2278				ioc->name, ioc->pdev->subsystem_device);
2279			break;
2280		}
2281		break;
2282	default:
2283		pr_info(MPT3SAS_FMT
2284			"Intel(R) Controller: Subsystem ID: 0x%X\n",
2285			ioc->name, ioc->pdev->subsystem_device);
2286		break;
2287	}
2288}
2289
2290
2291
2292/**
2293 * _base_display_ioc_capabilities - Disply IOC's capabilities.
2294 * @ioc: per adapter object
2295 *
2296 * Return nothing.
2297 */
2298static void
2299_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
2300{
2301	int i = 0;
2302	char desc[16];
2303	u32 iounit_pg1_flags;
2304	u32 bios_version;
2305
2306	bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
2307	strncpy(desc, ioc->manu_pg0.ChipName, 16);
2308	pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
2309	   "ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
2310	    ioc->name, desc,
2311	   (ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
2312	   (ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
2313	   (ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
2314	   ioc->facts.FWVersion.Word & 0x000000FF,
2315	   ioc->pdev->revision,
2316	   (bios_version & 0xFF000000) >> 24,
2317	   (bios_version & 0x00FF0000) >> 16,
2318	   (bios_version & 0x0000FF00) >> 8,
2319	    bios_version & 0x000000FF);
2320
2321	_base_display_intel_branding(ioc);
2322
2323	pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
2324
2325	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
2326		pr_info("Initiator");
2327		i++;
2328	}
2329
2330	if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
2331		pr_info("%sTarget", i ? "," : "");
2332		i++;
2333	}
2334
2335	i = 0;
2336	pr_info("), ");
2337	pr_info("Capabilities=(");
2338
2339	if (ioc->facts.IOCCapabilities &
2340		    MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
2341			pr_info("Raid");
2342			i++;
2343	}
2344
2345	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
2346		pr_info("%sTLR", i ? "," : "");
2347		i++;
2348	}
2349
2350	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
2351		pr_info("%sMulticast", i ? "," : "");
2352		i++;
2353	}
2354
2355	if (ioc->facts.IOCCapabilities &
2356	    MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
2357		pr_info("%sBIDI Target", i ? "," : "");
2358		i++;
2359	}
2360
2361	if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
2362		pr_info("%sEEDP", i ? "," : "");
2363		i++;
2364	}
2365
2366	if (ioc->facts.IOCCapabilities &
2367	    MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
2368		pr_info("%sSnapshot Buffer", i ? "," : "");
2369		i++;
2370	}
2371
2372	if (ioc->facts.IOCCapabilities &
2373	    MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
2374		pr_info("%sDiag Trace Buffer", i ? "," : "");
2375		i++;
2376	}
2377
2378	if (ioc->facts.IOCCapabilities &
2379	    MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
2380		pr_info("%sDiag Extended Buffer", i ? "," : "");
2381		i++;
2382	}
2383
2384	if (ioc->facts.IOCCapabilities &
2385	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
2386		pr_info("%sTask Set Full", i ? "," : "");
2387		i++;
2388	}
2389
2390	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2391	if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
2392		pr_info("%sNCQ", i ? "," : "");
2393		i++;
2394	}
2395
2396	pr_info(")\n");
2397}
2398
2399/**
2400 * mpt3sas_base_update_missing_delay - change the missing delay timers
2401 * @ioc: per adapter object
2402 * @device_missing_delay: amount of time till device is reported missing
2403 * @io_missing_delay: interval IO is returned when there is a missing device
2404 *
2405 * Return nothing.
2406 *
2407 * Passed on the command line, this function will modify the device missing
2408 * delay, as well as the io missing delay. This should be called at driver
2409 * load time.
2410 */
2411void
2412mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
2413	u16 device_missing_delay, u8 io_missing_delay)
2414{
2415	u16 dmd, dmd_new, dmd_orignal;
2416	u8 io_missing_delay_original;
2417	u16 sz;
2418	Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
2419	Mpi2ConfigReply_t mpi_reply;
2420	u8 num_phys = 0;
2421	u16 ioc_status;
2422
2423	mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
2424	if (!num_phys)
2425		return;
2426
2427	sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
2428	    sizeof(Mpi2SasIOUnit1PhyData_t));
2429	sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
2430	if (!sas_iounit_pg1) {
2431		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2432		    ioc->name, __FILE__, __LINE__, __func__);
2433		goto out;
2434	}
2435	if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
2436	    sas_iounit_pg1, sz))) {
2437		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2438		    ioc->name, __FILE__, __LINE__, __func__);
2439		goto out;
2440	}
2441	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
2442	    MPI2_IOCSTATUS_MASK;
2443	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
2444		pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
2445		    ioc->name, __FILE__, __LINE__, __func__);
2446		goto out;
2447	}
2448
2449	/* device missing delay */
2450	dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
2451	if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2452		dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2453	else
2454		dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2455	dmd_orignal = dmd;
2456	if (device_missing_delay > 0x7F) {
2457		dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
2458		    device_missing_delay;
2459		dmd = dmd / 16;
2460		dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
2461	} else
2462		dmd = device_missing_delay;
2463	sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
2464
2465	/* io missing delay */
2466	io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
2467	sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
2468
2469	if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
2470	    sz)) {
2471		if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
2472			dmd_new = (dmd &
2473			    MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
2474		else
2475			dmd_new =
2476		    dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
2477		pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
2478			ioc->name, dmd_orignal, dmd_new);
2479		pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
2480			ioc->name, io_missing_delay_original,
2481		    io_missing_delay);
2482		ioc->device_missing_delay = dmd_new;
2483		ioc->io_missing_delay = io_missing_delay;
2484	}
2485
2486out:
2487	kfree(sas_iounit_pg1);
2488}
2489/**
2490 * _base_static_config_pages - static start of day config pages
2491 * @ioc: per adapter object
2492 *
2493 * Return nothing.
2494 */
2495static void
2496_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
2497{
2498	Mpi2ConfigReply_t mpi_reply;
2499	u32 iounit_pg1_flags;
2500
2501	mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
2502	if (ioc->ir_firmware)
2503		mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
2504		    &ioc->manu_pg10);
2505
2506	/*
2507	 * Ensure correct T10 PI operation if vendor left EEDPTagMode
2508	 * flag unset in NVDATA.
2509	 */
2510	mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
2511	if (ioc->manu_pg11.EEDPTagMode == 0) {
2512		pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
2513		    ioc->name);
2514		ioc->manu_pg11.EEDPTagMode &= ~0x3;
2515		ioc->manu_pg11.EEDPTagMode |= 0x1;
2516		mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
2517		    &ioc->manu_pg11);
2518	}
2519
2520	mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
2521	mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
2522	mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
2523	mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
2524	mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2525	mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
2526	_base_display_ioc_capabilities(ioc);
2527
2528	/*
2529	 * Enable task_set_full handling in iounit_pg1 when the
2530	 * facts capabilities indicate that its supported.
2531	 */
2532	iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
2533	if ((ioc->facts.IOCCapabilities &
2534	    MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
2535		iounit_pg1_flags &=
2536		    ~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2537	else
2538		iounit_pg1_flags |=
2539		    MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
2540	ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
2541	mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
2542
2543	if (ioc->iounit_pg8.NumSensors)
2544		ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
2545}
2546
2547/**
2548 * _base_release_memory_pools - release memory
2549 * @ioc: per adapter object
2550 *
2551 * Free memory allocated from _base_allocate_memory_pools.
2552 *
2553 * Return nothing.
2554 */
2555static void
2556_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
2557{
2558	int i = 0;
2559	struct reply_post_struct *rps;
2560
2561	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2562	    __func__));
2563
2564	if (ioc->request) {
2565		pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
2566		    ioc->request,  ioc->request_dma);
2567		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2568			"request_pool(0x%p): free\n",
2569			ioc->name, ioc->request));
2570		ioc->request = NULL;
2571	}
2572
2573	if (ioc->sense) {
2574		pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
2575		if (ioc->sense_dma_pool)
2576			pci_pool_destroy(ioc->sense_dma_pool);
2577		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2578			"sense_pool(0x%p): free\n",
2579			ioc->name, ioc->sense));
2580		ioc->sense = NULL;
2581	}
2582
2583	if (ioc->reply) {
2584		pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
2585		if (ioc->reply_dma_pool)
2586			pci_pool_destroy(ioc->reply_dma_pool);
2587		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2588			"reply_pool(0x%p): free\n",
2589			ioc->name, ioc->reply));
2590		ioc->reply = NULL;
2591	}
2592
2593	if (ioc->reply_free) {
2594		pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
2595		    ioc->reply_free_dma);
2596		if (ioc->reply_free_dma_pool)
2597			pci_pool_destroy(ioc->reply_free_dma_pool);
2598		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2599			"reply_free_pool(0x%p): free\n",
2600			ioc->name, ioc->reply_free));
2601		ioc->reply_free = NULL;
2602	}
2603
2604	if (ioc->reply_post) {
2605		do {
2606			rps = &ioc->reply_post[i];
2607			if (rps->reply_post_free) {
2608				pci_pool_free(
2609				    ioc->reply_post_free_dma_pool,
2610				    rps->reply_post_free,
2611				    rps->reply_post_free_dma);
2612				dexitprintk(ioc, pr_info(MPT3SAS_FMT
2613				    "reply_post_free_pool(0x%p): free\n",
2614				    ioc->name, rps->reply_post_free));
2615				rps->reply_post_free = NULL;
2616			}
2617		} while (ioc->rdpq_array_enable &&
2618			   (++i < ioc->reply_queue_count));
2619
2620		if (ioc->reply_post_free_dma_pool)
2621			pci_pool_destroy(ioc->reply_post_free_dma_pool);
2622		kfree(ioc->reply_post);
2623	}
2624
2625	if (ioc->config_page) {
2626		dexitprintk(ioc, pr_info(MPT3SAS_FMT
2627		    "config_page(0x%p): free\n", ioc->name,
2628		    ioc->config_page));
2629		pci_free_consistent(ioc->pdev, ioc->config_page_sz,
2630		    ioc->config_page, ioc->config_page_dma);
2631	}
2632
2633	if (ioc->scsi_lookup) {
2634		free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
2635		ioc->scsi_lookup = NULL;
2636	}
2637	kfree(ioc->hpr_lookup);
2638	kfree(ioc->internal_lookup);
2639	if (ioc->chain_lookup) {
2640		for (i = 0; i < ioc->chain_depth; i++) {
2641			if (ioc->chain_lookup[i].chain_buffer)
2642				pci_pool_free(ioc->chain_dma_pool,
2643				    ioc->chain_lookup[i].chain_buffer,
2644				    ioc->chain_lookup[i].chain_buffer_dma);
2645		}
2646		if (ioc->chain_dma_pool)
2647			pci_pool_destroy(ioc->chain_dma_pool);
2648		free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
2649		ioc->chain_lookup = NULL;
2650	}
2651}
2652
2653/**
2654 * _base_allocate_memory_pools - allocate start of day memory pools
2655 * @ioc: per adapter object
2656 * @sleep_flag: CAN_SLEEP or NO_SLEEP
2657 *
2658 * Returns 0 success, anything else error
2659 */
2660static int
2661_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc,  int sleep_flag)
2662{
2663	struct mpt3sas_facts *facts;
2664	u16 max_sge_elements;
2665	u16 chains_needed_per_io;
2666	u32 sz, total_sz, reply_post_free_sz;
2667	u32 retry_sz;
2668	u16 max_request_credit;
2669	unsigned short sg_tablesize;
2670	u16 sge_size;
2671	int i;
2672
2673	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
2674	    __func__));
2675
2676
2677	retry_sz = 0;
2678	facts = &ioc->facts;
2679
2680	/* command line tunables for max sgl entries */
2681	if (max_sgl_entries != -1)
2682		sg_tablesize = max_sgl_entries;
2683	else
2684		sg_tablesize = MPT3SAS_SG_DEPTH;
2685
2686	if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
2687		sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
2688	else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
2689		sg_tablesize = min_t(unsigned short, sg_tablesize,
2690				      SCSI_MAX_SG_CHAIN_SEGMENTS);
2691		pr_warn(MPT3SAS_FMT
2692		 "sg_tablesize(%u) is bigger than kernel"
2693		 " defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
2694		 sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
2695	}
2696	ioc->shost->sg_tablesize = sg_tablesize;
2697
2698	ioc->hi_priority_depth = facts->HighPriorityCredit;
2699	ioc->internal_depth = ioc->hi_priority_depth + (5);
2700	/* command line tunables  for max controller queue depth */
2701	if (max_queue_depth != -1 && max_queue_depth != 0) {
2702		max_request_credit = min_t(u16, max_queue_depth +
2703		    ioc->hi_priority_depth + ioc->internal_depth,
2704		    facts->RequestCredit);
2705		if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
2706			max_request_credit =  MAX_HBA_QUEUE_DEPTH;
2707	} else
2708		max_request_credit = min_t(u16, facts->RequestCredit,
2709		    MAX_HBA_QUEUE_DEPTH);
2710
2711	ioc->hba_queue_depth = max_request_credit;
2712
2713	/* request frame size */
2714	ioc->request_sz = facts->IOCRequestFrameSize * 4;
2715
2716	/* reply frame size */
2717	ioc->reply_sz = facts->ReplyFrameSize * 4;
2718
2719	/* calculate the max scatter element size */
2720	sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
2721
2722 retry_allocation:
2723	total_sz = 0;
2724	/* calculate number of sg elements left over in the 1st frame */
2725	max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
2726	    sizeof(Mpi2SGEIOUnion_t)) + sge_size);
2727	ioc->max_sges_in_main_message = max_sge_elements/sge_size;
2728
2729	/* now do the same for a chain buffer */
2730	max_sge_elements = ioc->request_sz - sge_size;
2731	ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
2732
2733	/*
2734	 *  MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
2735	 */
2736	chains_needed_per_io = ((ioc->shost->sg_tablesize -
2737	   ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
2738	    + 1;
2739	if (chains_needed_per_io > facts->MaxChainDepth) {
2740		chains_needed_per_io = facts->MaxChainDepth;
2741		ioc->shost->sg_tablesize = min_t(u16,
2742		ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
2743		* chains_needed_per_io), ioc->shost->sg_tablesize);
2744	}
2745	ioc->chains_needed_per_io = chains_needed_per_io;
2746
2747	/* reply free queue sizing - taking into account for 64 FW events */
2748	ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2749
2750	/* calculate reply descriptor post queue depth */
2751	ioc->reply_post_queue_depth = ioc->hba_queue_depth +
2752				ioc->reply_free_queue_depth +  1 ;
2753	/* align the reply post queue on the next 16 count boundary */
2754	if (ioc->reply_post_queue_depth % 16)
2755		ioc->reply_post_queue_depth += 16 -
2756		(ioc->reply_post_queue_depth % 16);
2757
2758
2759	if (ioc->reply_post_queue_depth >
2760	    facts->MaxReplyDescriptorPostQueueDepth) {
2761		ioc->reply_post_queue_depth =
2762				facts->MaxReplyDescriptorPostQueueDepth -
2763		    (facts->MaxReplyDescriptorPostQueueDepth % 16);
2764		ioc->hba_queue_depth =
2765				((ioc->reply_post_queue_depth - 64) / 2) - 1;
2766		ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
2767	}
2768
2769	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
2770	    "sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
2771	    "chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
2772	    ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
2773	    ioc->chains_needed_per_io));
2774
2775	/* reply post queue, 16 byte align */
2776	reply_post_free_sz = ioc->reply_post_queue_depth *
2777	    sizeof(Mpi2DefaultReplyDescriptor_t);
2778
2779	sz = reply_post_free_sz;
2780	if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
2781		sz *= ioc->reply_queue_count;
2782
2783	ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
2784	    (ioc->reply_queue_count):1,
2785	    sizeof(struct reply_post_struct), GFP_KERNEL);
2786
2787	if (!ioc->reply_post) {
2788		pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
2789			ioc->name);
2790		goto out;
2791	}
2792	ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
2793	    ioc->pdev, sz, 16, 0);
2794	if (!ioc->reply_post_free_dma_pool) {
2795		pr_err(MPT3SAS_FMT
2796		 "reply_post_free pool: pci_pool_create failed\n",
2797		 ioc->name);
2798		goto out;
2799	}
2800	i = 0;
2801	do {
2802		ioc->reply_post[i].reply_post_free =
2803		    pci_pool_alloc(ioc->reply_post_free_dma_pool,
2804		    GFP_KERNEL,
2805		    &ioc->reply_post[i].reply_post_free_dma);
2806		if (!ioc->reply_post[i].reply_post_free) {
2807			pr_err(MPT3SAS_FMT
2808			"reply_post_free pool: pci_pool_alloc failed\n",
2809			ioc->name);
2810			goto out;
2811		}
2812		memset(ioc->reply_post[i].reply_post_free, 0, sz);
2813		dinitprintk(ioc, pr_info(MPT3SAS_FMT
2814		    "reply post free pool (0x%p): depth(%d),"
2815		    "element_size(%d), pool_size(%d kB)\n", ioc->name,
2816		    ioc->reply_post[i].reply_post_free,
2817		    ioc->reply_post_queue_depth, 8, sz/1024));
2818		dinitprintk(ioc, pr_info(MPT3SAS_FMT
2819		    "reply_post_free_dma = (0x%llx)\n", ioc->name,
2820		    (unsigned long long)
2821		    ioc->reply_post[i].reply_post_free_dma));
2822		total_sz += sz;
2823	} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
2824
2825	if (ioc->dma_mask == 64) {
2826		if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
2827			pr_warn(MPT3SAS_FMT
2828			    "no suitable consistent DMA mask for %s\n",
2829			    ioc->name, pci_name(ioc->pdev));
2830			goto out;
2831		}
2832	}
2833
2834	ioc->scsiio_depth = ioc->hba_queue_depth -
2835	    ioc->hi_priority_depth - ioc->internal_depth;
2836
2837	/* set the scsi host can_queue depth
2838	 * with some internal commands that could be outstanding
2839	 */
2840	ioc->shost->can_queue = ioc->scsiio_depth;
2841	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2842		"scsi host: can_queue depth (%d)\n",
2843		ioc->name, ioc->shost->can_queue));
2844
2845
2846	/* contiguous pool for request and chains, 16 byte align, one extra "
2847	 * "frame for smid=0
2848	 */
2849	ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
2850	sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
2851
2852	/* hi-priority queue */
2853	sz += (ioc->hi_priority_depth * ioc->request_sz);
2854
2855	/* internal queue */
2856	sz += (ioc->internal_depth * ioc->request_sz);
2857
2858	ioc->request_dma_sz = sz;
2859	ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
2860	if (!ioc->request) {
2861		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2862		    "failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2863		    "total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
2864		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2865		if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
2866			goto out;
2867		retry_sz += 64;
2868		ioc->hba_queue_depth = max_request_credit - retry_sz;
2869		goto retry_allocation;
2870	}
2871
2872	if (retry_sz)
2873		pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
2874		    "succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
2875		    "total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
2876		    ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
2877
2878	/* hi-priority queue */
2879	ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
2880	    ioc->request_sz);
2881	ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
2882	    ioc->request_sz);
2883
2884	/* internal queue */
2885	ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
2886	    ioc->request_sz);
2887	ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
2888	    ioc->request_sz);
2889
2890	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2891		"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
2892		ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
2893	    (ioc->hba_queue_depth * ioc->request_sz)/1024));
2894
2895	dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
2896	    ioc->name, (unsigned long long) ioc->request_dma));
2897	total_sz += sz;
2898
2899	sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
2900	ioc->scsi_lookup_pages = get_order(sz);
2901	ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
2902	    GFP_KERNEL, ioc->scsi_lookup_pages);
2903	if (!ioc->scsi_lookup) {
2904		pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
2905			ioc->name, (int)sz);
2906		goto out;
2907	}
2908
2909	dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
2910		ioc->name, ioc->request, ioc->scsiio_depth));
2911
2912	ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
2913	sz = ioc->chain_depth * sizeof(struct chain_tracker);
2914	ioc->chain_pages = get_order(sz);
2915	ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
2916	    GFP_KERNEL, ioc->chain_pages);
2917	if (!ioc->chain_lookup) {
2918		pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
2919			ioc->name);
2920		goto out;
2921	}
2922	ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
2923	    ioc->request_sz, 16, 0);
2924	if (!ioc->chain_dma_pool) {
2925		pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
2926			ioc->name);
2927		goto out;
2928	}
2929	for (i = 0; i < ioc->chain_depth; i++) {
2930		ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
2931		    ioc->chain_dma_pool , GFP_KERNEL,
2932		    &ioc->chain_lookup[i].chain_buffer_dma);
2933		if (!ioc->chain_lookup[i].chain_buffer) {
2934			ioc->chain_depth = i;
2935			goto chain_done;
2936		}
2937		total_sz += ioc->request_sz;
2938	}
2939 chain_done:
2940	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2941		"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
2942		ioc->name, ioc->chain_depth, ioc->request_sz,
2943		((ioc->chain_depth *  ioc->request_sz))/1024));
2944
2945	/* initialize hi-priority queue smid's */
2946	ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
2947	    sizeof(struct request_tracker), GFP_KERNEL);
2948	if (!ioc->hpr_lookup) {
2949		pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
2950		    ioc->name);
2951		goto out;
2952	}
2953	ioc->hi_priority_smid = ioc->scsiio_depth + 1;
2954	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2955		"hi_priority(0x%p): depth(%d), start smid(%d)\n",
2956		ioc->name, ioc->hi_priority,
2957	    ioc->hi_priority_depth, ioc->hi_priority_smid));
2958
2959	/* initialize internal queue smid's */
2960	ioc->internal_lookup = kcalloc(ioc->internal_depth,
2961	    sizeof(struct request_tracker), GFP_KERNEL);
2962	if (!ioc->internal_lookup) {
2963		pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
2964		    ioc->name);
2965		goto out;
2966	}
2967	ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
2968	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2969		"internal(0x%p): depth(%d), start smid(%d)\n",
2970		ioc->name, ioc->internal,
2971	    ioc->internal_depth, ioc->internal_smid));
2972
2973	/* sense buffers, 4 byte align */
2974	sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
2975	ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
2976	    0);
2977	if (!ioc->sense_dma_pool) {
2978		pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
2979		    ioc->name);
2980		goto out;
2981	}
2982	ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
2983	    &ioc->sense_dma);
2984	if (!ioc->sense) {
2985		pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
2986		    ioc->name);
2987		goto out;
2988	}
2989	dinitprintk(ioc, pr_info(MPT3SAS_FMT
2990	    "sense pool(0x%p): depth(%d), element_size(%d), pool_size"
2991	    "(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
2992	    SCSI_SENSE_BUFFERSIZE, sz/1024));
2993	dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
2994	    ioc->name, (unsigned long long)ioc->sense_dma));
2995	total_sz += sz;
2996
2997	/* reply pool, 4 byte align */
2998	sz = ioc->reply_free_queue_depth * ioc->reply_sz;
2999	ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
3000	    0);
3001	if (!ioc->reply_dma_pool) {
3002		pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
3003		    ioc->name);
3004		goto out;
3005	}
3006	ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
3007	    &ioc->reply_dma);
3008	if (!ioc->reply) {
3009		pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
3010		    ioc->name);
3011		goto out;
3012	}
3013	ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
3014	ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
3015	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3016		"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
3017		ioc->name, ioc->reply,
3018	    ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
3019	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
3020	    ioc->name, (unsigned long long)ioc->reply_dma));
3021	total_sz += sz;
3022
3023	/* reply free queue, 16 byte align */
3024	sz = ioc->reply_free_queue_depth * 4;
3025	ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
3026	    ioc->pdev, sz, 16, 0);
3027	if (!ioc->reply_free_dma_pool) {
3028		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
3029			ioc->name);
3030		goto out;
3031	}
3032	ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
3033	    &ioc->reply_free_dma);
3034	if (!ioc->reply_free) {
3035		pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
3036			ioc->name);
3037		goto out;
3038	}
3039	memset(ioc->reply_free, 0, sz);
3040	dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
3041	    "depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
3042	    ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
3043	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3044		"reply_free_dma (0x%llx)\n",
3045		ioc->name, (unsigned long long)ioc->reply_free_dma));
3046	total_sz += sz;
3047
3048	ioc->config_page_sz = 512;
3049	ioc->config_page = pci_alloc_consistent(ioc->pdev,
3050	    ioc->config_page_sz, &ioc->config_page_dma);
3051	if (!ioc->config_page) {
3052		pr_err(MPT3SAS_FMT
3053			"config page: pci_pool_alloc failed\n",
3054			ioc->name);
3055		goto out;
3056	}
3057	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3058		"config page(0x%p): size(%d)\n",
3059		ioc->name, ioc->config_page, ioc->config_page_sz));
3060	dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
3061		ioc->name, (unsigned long long)ioc->config_page_dma));
3062	total_sz += ioc->config_page_sz;
3063
3064	pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
3065	    ioc->name, total_sz/1024);
3066	pr_info(MPT3SAS_FMT
3067		"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
3068	    ioc->name, ioc->shost->can_queue, facts->RequestCredit);
3069	pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
3070	    ioc->name, ioc->shost->sg_tablesize);
3071	return 0;
3072
3073 out:
3074	return -ENOMEM;
3075}
3076
3077/**
3078 * mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
3079 * @ioc: Pointer to MPT_ADAPTER structure
3080 * @cooked: Request raw or cooked IOC state
3081 *
3082 * Returns all IOC Doorbell register bits if cooked==0, else just the
3083 * Doorbell bits in MPI_IOC_STATE_MASK.
3084 */
3085u32
3086mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
3087{
3088	u32 s, sc;
3089
3090	s = readl(&ioc->chip->Doorbell);
3091	sc = s & MPI2_IOC_STATE_MASK;
3092	return cooked ? sc : s;
3093}
3094
3095/**
3096 * _base_wait_on_iocstate - waiting on a particular ioc state
3097 * @ioc_state: controller state { READY, OPERATIONAL, or RESET }
3098 * @timeout: timeout in second
3099 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3100 *
3101 * Returns 0 for success, non-zero for failure.
3102 */
3103static int
3104_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
3105	int sleep_flag)
3106{
3107	u32 count, cntdn;
3108	u32 current_state;
3109
3110	count = 0;
3111	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3112	do {
3113		current_state = mpt3sas_base_get_iocstate(ioc, 1);
3114		if (current_state == ioc_state)
3115			return 0;
3116		if (count && current_state == MPI2_IOC_STATE_FAULT)
3117			break;
3118		if (sleep_flag == CAN_SLEEP)
3119			usleep_range(1000, 1500);
3120		else
3121			udelay(500);
3122		count++;
3123	} while (--cntdn);
3124
3125	return current_state;
3126}
3127
3128/**
3129 * _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
3130 * a write to the doorbell)
3131 * @ioc: per adapter object
3132 * @timeout: timeout in second
3133 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3134 *
3135 * Returns 0 for success, non-zero for failure.
3136 *
3137 * Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
3138 */
3139static int
3140_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
3141	int sleep_flag)
3142{
3143	u32 cntdn, count;
3144	u32 int_status;
3145
3146	count = 0;
3147	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3148	do {
3149		int_status = readl(&ioc->chip->HostInterruptStatus);
3150		if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3151			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3152				"%s: successful count(%d), timeout(%d)\n",
3153				ioc->name, __func__, count, timeout));
3154			return 0;
3155		}
3156		if (sleep_flag == CAN_SLEEP)
3157			usleep_range(1000, 1500);
3158		else
3159			udelay(500);
3160		count++;
3161	} while (--cntdn);
3162
3163	pr_err(MPT3SAS_FMT
3164		"%s: failed due to timeout count(%d), int_status(%x)!\n",
3165		ioc->name, __func__, count, int_status);
3166	return -EFAULT;
3167}
3168
3169/**
3170 * _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
3171 * @ioc: per adapter object
3172 * @timeout: timeout in second
3173 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3174 *
3175 * Returns 0 for success, non-zero for failure.
3176 *
3177 * Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
3178 * doorbell.
3179 */
3180static int
3181_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
3182	int sleep_flag)
3183{
3184	u32 cntdn, count;
3185	u32 int_status;
3186	u32 doorbell;
3187
3188	count = 0;
3189	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3190	do {
3191		int_status = readl(&ioc->chip->HostInterruptStatus);
3192		if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
3193			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3194				"%s: successful count(%d), timeout(%d)\n",
3195				ioc->name, __func__, count, timeout));
3196			return 0;
3197		} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
3198			doorbell = readl(&ioc->chip->Doorbell);
3199			if ((doorbell & MPI2_IOC_STATE_MASK) ==
3200			    MPI2_IOC_STATE_FAULT) {
3201				mpt3sas_base_fault_info(ioc , doorbell);
3202				return -EFAULT;
3203			}
3204		} else if (int_status == 0xFFFFFFFF)
3205			goto out;
3206
3207		if (sleep_flag == CAN_SLEEP)
3208			usleep_range(1000, 1500);
3209		else
3210			udelay(500);
3211		count++;
3212	} while (--cntdn);
3213
3214 out:
3215	pr_err(MPT3SAS_FMT
3216	 "%s: failed due to timeout count(%d), int_status(%x)!\n",
3217	 ioc->name, __func__, count, int_status);
3218	return -EFAULT;
3219}
3220
3221/**
3222 * _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
3223 * @ioc: per adapter object
3224 * @timeout: timeout in second
3225 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3226 *
3227 * Returns 0 for success, non-zero for failure.
3228 *
3229 */
3230static int
3231_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
3232	int sleep_flag)
3233{
3234	u32 cntdn, count;
3235	u32 doorbell_reg;
3236
3237	count = 0;
3238	cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
3239	do {
3240		doorbell_reg = readl(&ioc->chip->Doorbell);
3241		if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
3242			dhsprintk(ioc, pr_info(MPT3SAS_FMT
3243				"%s: successful count(%d), timeout(%d)\n",
3244				ioc->name, __func__, count, timeout));
3245			return 0;
3246		}
3247		if (sleep_flag == CAN_SLEEP)
3248			usleep_range(1000, 1500);
3249		else
3250			udelay(500);
3251		count++;
3252	} while (--cntdn);
3253
3254	pr_err(MPT3SAS_FMT
3255		"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
3256		ioc->name, __func__, count, doorbell_reg);
3257	return -EFAULT;
3258}
3259
3260/**
3261 * _base_send_ioc_reset - send doorbell reset
3262 * @ioc: per adapter object
3263 * @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
3264 * @timeout: timeout in second
3265 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3266 *
3267 * Returns 0 for success, non-zero for failure.
3268 */
3269static int
3270_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
3271	int sleep_flag)
3272{
3273	u32 ioc_state;
3274	int r = 0;
3275
3276	if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
3277		pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
3278		    ioc->name, __func__);
3279		return -EFAULT;
3280	}
3281
3282	if (!(ioc->facts.IOCCapabilities &
3283	   MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
3284		return -EFAULT;
3285
3286	pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
3287
3288	writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
3289	    &ioc->chip->Doorbell);
3290	if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
3291		r = -EFAULT;
3292		goto out;
3293	}
3294	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
3295	    timeout, sleep_flag);
3296	if (ioc_state) {
3297		pr_err(MPT3SAS_FMT
3298			"%s: failed going to ready state (ioc_state=0x%x)\n",
3299			ioc->name, __func__, ioc_state);
3300		r = -EFAULT;
3301		goto out;
3302	}
3303 out:
3304	pr_info(MPT3SAS_FMT "message unit reset: %s\n",
3305	    ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
3306	return r;
3307}
3308
3309/**
3310 * _base_handshake_req_reply_wait - send request thru doorbell interface
3311 * @ioc: per adapter object
3312 * @request_bytes: request length
3313 * @request: pointer having request payload
3314 * @reply_bytes: reply length
3315 * @reply: pointer to reply payload
3316 * @timeout: timeout in second
3317 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3318 *
3319 * Returns 0 for success, non-zero for failure.
3320 */
3321static int
3322_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
3323	u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
3324{
3325	MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
3326	int i;
3327	u8 failed;
3328	u16 dummy;
3329	__le32 *mfp;
3330
3331	/* make sure doorbell is not in use */
3332	if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
3333		pr_err(MPT3SAS_FMT
3334			"doorbell is in use (line=%d)\n",
3335			ioc->name, __LINE__);
3336		return -EFAULT;
3337	}
3338
3339	/* clear pending doorbell interrupts from previous state changes */
3340	if (readl(&ioc->chip->HostInterruptStatus) &
3341	    MPI2_HIS_IOC2SYS_DB_STATUS)
3342		writel(0, &ioc->chip->HostInterruptStatus);
3343
3344	/* send message to ioc */
3345	writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
3346	    ((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
3347	    &ioc->chip->Doorbell);
3348
3349	if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
3350		pr_err(MPT3SAS_FMT
3351			"doorbell handshake int failed (line=%d)\n",
3352			ioc->name, __LINE__);
3353		return -EFAULT;
3354	}
3355	writel(0, &ioc->chip->HostInterruptStatus);
3356
3357	if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
3358		pr_err(MPT3SAS_FMT
3359			"doorbell handshake ack failed (line=%d)\n",
3360			ioc->name, __LINE__);
3361		return -EFAULT;
3362	}
3363
3364	/* send message 32-bits at a time */
3365	for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
3366		writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
3367		if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
3368			failed = 1;
3369	}
3370
3371	if (failed) {
3372		pr_err(MPT3SAS_FMT
3373			"doorbell handshake sending request failed (line=%d)\n",
3374			ioc->name, __LINE__);
3375		return -EFAULT;
3376	}
3377
3378	/* now wait for the reply */
3379	if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
3380		pr_err(MPT3SAS_FMT
3381			"doorbell handshake int failed (line=%d)\n",
3382			ioc->name, __LINE__);
3383		return -EFAULT;
3384	}
3385
3386	/* read the first two 16-bits, it gives the total length of the reply */
3387	reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3388	    & MPI2_DOORBELL_DATA_MASK);
3389	writel(0, &ioc->chip->HostInterruptStatus);
3390	if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3391		pr_err(MPT3SAS_FMT
3392			"doorbell handshake int failed (line=%d)\n",
3393			ioc->name, __LINE__);
3394		return -EFAULT;
3395	}
3396	reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3397	    & MPI2_DOORBELL_DATA_MASK);
3398	writel(0, &ioc->chip->HostInterruptStatus);
3399
3400	for (i = 2; i < default_reply->MsgLength * 2; i++)  {
3401		if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
3402			pr_err(MPT3SAS_FMT
3403				"doorbell handshake int failed (line=%d)\n",
3404				ioc->name, __LINE__);
3405			return -EFAULT;
3406		}
3407		if (i >=  reply_bytes/2) /* overflow case */
3408			dummy = readl(&ioc->chip->Doorbell);
3409		else
3410			reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
3411			    & MPI2_DOORBELL_DATA_MASK);
3412		writel(0, &ioc->chip->HostInterruptStatus);
3413	}
3414
3415	_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
3416	if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
3417		dhsprintk(ioc, pr_info(MPT3SAS_FMT
3418			"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
3419	}
3420	writel(0, &ioc->chip->HostInterruptStatus);
3421
3422	if (ioc->logging_level & MPT_DEBUG_INIT) {
3423		mfp = (__le32 *)reply;
3424		pr_info("\toffset:data\n");
3425		for (i = 0; i < reply_bytes/4; i++)
3426			pr_info("\t[0x%02x]:%08x\n", i*4,
3427			    le32_to_cpu(mfp[i]));
3428	}
3429	return 0;
3430}
3431
3432/**
3433 * mpt3sas_base_sas_iounit_control - send sas iounit control to FW
3434 * @ioc: per adapter object
3435 * @mpi_reply: the reply payload from FW
3436 * @mpi_request: the request payload sent to FW
3437 *
3438 * The SAS IO Unit Control Request message allows the host to perform low-level
3439 * operations, such as resets on the PHYs of the IO Unit, also allows the host
3440 * to obtain the IOC assigned device handles for a device if it has other
3441 * identifying information about the device, in addition allows the host to
3442 * remove IOC resources associated with the device.
3443 *
3444 * Returns 0 for success, non-zero for failure.
3445 */
3446int
3447mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
3448	Mpi2SasIoUnitControlReply_t *mpi_reply,
3449	Mpi2SasIoUnitControlRequest_t *mpi_request)
3450{
3451	u16 smid;
3452	u32 ioc_state;
3453	unsigned long timeleft;
3454	bool issue_reset = false;
3455	int rc;
3456	void *request;
3457	u16 wait_state_count;
3458
3459	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3460	    __func__));
3461
3462	mutex_lock(&ioc->base_cmds.mutex);
3463
3464	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3465		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3466		    ioc->name, __func__);
3467		rc = -EAGAIN;
3468		goto out;
3469	}
3470
3471	wait_state_count = 0;
3472	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3473	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3474		if (wait_state_count++ == 10) {
3475			pr_err(MPT3SAS_FMT
3476			    "%s: failed due to ioc not operational\n",
3477			    ioc->name, __func__);
3478			rc = -EFAULT;
3479			goto out;
3480		}
3481		ssleep(1);
3482		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3483		pr_info(MPT3SAS_FMT
3484			"%s: waiting for operational state(count=%d)\n",
3485			ioc->name, __func__, wait_state_count);
3486	}
3487
3488	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3489	if (!smid) {
3490		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3491		    ioc->name, __func__);
3492		rc = -EAGAIN;
3493		goto out;
3494	}
3495
3496	rc = 0;
3497	ioc->base_cmds.status = MPT3_CMD_PENDING;
3498	request = mpt3sas_base_get_msg_frame(ioc, smid);
3499	ioc->base_cmds.smid = smid;
3500	memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
3501	if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3502	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
3503		ioc->ioc_link_reset_in_progress = 1;
3504	init_completion(&ioc->base_cmds.done);
3505	mpt3sas_base_put_smid_default(ioc, smid);
3506	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3507	    msecs_to_jiffies(10000));
3508	if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
3509	    mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
3510	    ioc->ioc_link_reset_in_progress)
3511		ioc->ioc_link_reset_in_progress = 0;
3512	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3513		pr_err(MPT3SAS_FMT "%s: timeout\n",
3514		    ioc->name, __func__);
3515		_debug_dump_mf(mpi_request,
3516		    sizeof(Mpi2SasIoUnitControlRequest_t)/4);
3517		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3518			issue_reset = true;
3519		goto issue_host_reset;
3520	}
3521	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3522		memcpy(mpi_reply, ioc->base_cmds.reply,
3523		    sizeof(Mpi2SasIoUnitControlReply_t));
3524	else
3525		memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
3526	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3527	goto out;
3528
3529 issue_host_reset:
3530	if (issue_reset)
3531		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3532		    FORCE_BIG_HAMMER);
3533	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3534	rc = -EFAULT;
3535 out:
3536	mutex_unlock(&ioc->base_cmds.mutex);
3537	return rc;
3538}
3539
3540/**
3541 * mpt3sas_base_scsi_enclosure_processor - sending request to sep device
3542 * @ioc: per adapter object
3543 * @mpi_reply: the reply payload from FW
3544 * @mpi_request: the request payload sent to FW
3545 *
3546 * The SCSI Enclosure Processor request message causes the IOC to
3547 * communicate with SES devices to control LED status signals.
3548 *
3549 * Returns 0 for success, non-zero for failure.
3550 */
3551int
3552mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
3553	Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
3554{
3555	u16 smid;
3556	u32 ioc_state;
3557	unsigned long timeleft;
3558	bool issue_reset = false;
3559	int rc;
3560	void *request;
3561	u16 wait_state_count;
3562
3563	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3564	    __func__));
3565
3566	mutex_lock(&ioc->base_cmds.mutex);
3567
3568	if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
3569		pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
3570		    ioc->name, __func__);
3571		rc = -EAGAIN;
3572		goto out;
3573	}
3574
3575	wait_state_count = 0;
3576	ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3577	while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
3578		if (wait_state_count++ == 10) {
3579			pr_err(MPT3SAS_FMT
3580			    "%s: failed due to ioc not operational\n",
3581			    ioc->name, __func__);
3582			rc = -EFAULT;
3583			goto out;
3584		}
3585		ssleep(1);
3586		ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
3587		pr_info(MPT3SAS_FMT
3588			"%s: waiting for operational state(count=%d)\n",
3589			ioc->name,
3590		    __func__, wait_state_count);
3591	}
3592
3593	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
3594	if (!smid) {
3595		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3596		    ioc->name, __func__);
3597		rc = -EAGAIN;
3598		goto out;
3599	}
3600
3601	rc = 0;
3602	ioc->base_cmds.status = MPT3_CMD_PENDING;
3603	request = mpt3sas_base_get_msg_frame(ioc, smid);
3604	ioc->base_cmds.smid = smid;
3605	memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
3606	init_completion(&ioc->base_cmds.done);
3607	mpt3sas_base_put_smid_default(ioc, smid);
3608	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
3609	    msecs_to_jiffies(10000));
3610	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
3611		pr_err(MPT3SAS_FMT "%s: timeout\n",
3612		    ioc->name, __func__);
3613		_debug_dump_mf(mpi_request,
3614		    sizeof(Mpi2SepRequest_t)/4);
3615		if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
3616			issue_reset = false;
3617		goto issue_host_reset;
3618	}
3619	if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
3620		memcpy(mpi_reply, ioc->base_cmds.reply,
3621		    sizeof(Mpi2SepReply_t));
3622	else
3623		memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
3624	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3625	goto out;
3626
3627 issue_host_reset:
3628	if (issue_reset)
3629		mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
3630		    FORCE_BIG_HAMMER);
3631	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
3632	rc = -EFAULT;
3633 out:
3634	mutex_unlock(&ioc->base_cmds.mutex);
3635	return rc;
3636}
3637
3638/**
3639 * _base_get_port_facts - obtain port facts reply and save in ioc
3640 * @ioc: per adapter object
3641 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3642 *
3643 * Returns 0 for success, non-zero for failure.
3644 */
3645static int
3646_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
3647{
3648	Mpi2PortFactsRequest_t mpi_request;
3649	Mpi2PortFactsReply_t mpi_reply;
3650	struct mpt3sas_port_facts *pfacts;
3651	int mpi_reply_sz, mpi_request_sz, r;
3652
3653	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3654	    __func__));
3655
3656	mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
3657	mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
3658	memset(&mpi_request, 0, mpi_request_sz);
3659	mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
3660	mpi_request.PortNumber = port;
3661	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3662	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3663
3664	if (r != 0) {
3665		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3666		    ioc->name, __func__, r);
3667		return r;
3668	}
3669
3670	pfacts = &ioc->pfacts[port];
3671	memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
3672	pfacts->PortNumber = mpi_reply.PortNumber;
3673	pfacts->VP_ID = mpi_reply.VP_ID;
3674	pfacts->VF_ID = mpi_reply.VF_ID;
3675	pfacts->MaxPostedCmdBuffers =
3676	    le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
3677
3678	return 0;
3679}
3680
3681/**
3682 * _base_get_ioc_facts - obtain ioc facts reply and save in ioc
3683 * @ioc: per adapter object
3684 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3685 *
3686 * Returns 0 for success, non-zero for failure.
3687 */
3688static int
3689_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3690{
3691	Mpi2IOCFactsRequest_t mpi_request;
3692	Mpi2IOCFactsReply_t mpi_reply;
3693	struct mpt3sas_facts *facts;
3694	int mpi_reply_sz, mpi_request_sz, r;
3695
3696	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3697	    __func__));
3698
3699	mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
3700	mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
3701	memset(&mpi_request, 0, mpi_request_sz);
3702	mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
3703	r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
3704	    (u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
3705
3706	if (r != 0) {
3707		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3708		    ioc->name, __func__, r);
3709		return r;
3710	}
3711
3712	facts = &ioc->facts;
3713	memset(facts, 0, sizeof(struct mpt3sas_facts));
3714	facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
3715	facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
3716	facts->VP_ID = mpi_reply.VP_ID;
3717	facts->VF_ID = mpi_reply.VF_ID;
3718	facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
3719	facts->MaxChainDepth = mpi_reply.MaxChainDepth;
3720	facts->WhoInit = mpi_reply.WhoInit;
3721	facts->NumberOfPorts = mpi_reply.NumberOfPorts;
3722	facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
3723	facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
3724	facts->MaxReplyDescriptorPostQueueDepth =
3725	    le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
3726	facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
3727	facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
3728	if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
3729		ioc->ir_firmware = 1;
3730	if ((facts->IOCCapabilities &
3731	      MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
3732		ioc->rdpq_array_capable = 1;
3733	facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
3734	facts->IOCRequestFrameSize =
3735	    le16_to_cpu(mpi_reply.IOCRequestFrameSize);
3736	facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
3737	facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
3738	ioc->shost->max_id = -1;
3739	facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
3740	facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
3741	facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
3742	facts->HighPriorityCredit =
3743	    le16_to_cpu(mpi_reply.HighPriorityCredit);
3744	facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
3745	facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
3746
3747	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3748		"hba queue depth(%d), max chains per io(%d)\n",
3749		ioc->name, facts->RequestCredit,
3750	    facts->MaxChainDepth));
3751	dinitprintk(ioc, pr_info(MPT3SAS_FMT
3752		"request frame size(%d), reply frame size(%d)\n", ioc->name,
3753	    facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
3754	return 0;
3755}
3756
3757/**
3758 * _base_send_ioc_init - send ioc_init to firmware
3759 * @ioc: per adapter object
3760 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3761 *
3762 * Returns 0 for success, non-zero for failure.
3763 */
3764static int
3765_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3766{
3767	Mpi2IOCInitRequest_t mpi_request;
3768	Mpi2IOCInitReply_t mpi_reply;
3769	int i, r = 0;
3770	struct timeval current_time;
3771	u16 ioc_status;
3772	u32 reply_post_free_array_sz = 0;
3773	Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
3774	dma_addr_t reply_post_free_array_dma;
3775
3776	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
3777	    __func__));
3778
3779	memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
3780	mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
3781	mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
3782	mpi_request.VF_ID = 0; /* TODO */
3783	mpi_request.VP_ID = 0;
3784	mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
3785	mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
3786
3787	if (_base_is_controller_msix_enabled(ioc))
3788		mpi_request.HostMSIxVectors = ioc->reply_queue_count;
3789	mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
3790	mpi_request.ReplyDescriptorPostQueueDepth =
3791	    cpu_to_le16(ioc->reply_post_queue_depth);
3792	mpi_request.ReplyFreeQueueDepth =
3793	    cpu_to_le16(ioc->reply_free_queue_depth);
3794
3795	mpi_request.SenseBufferAddressHigh =
3796	    cpu_to_le32((u64)ioc->sense_dma >> 32);
3797	mpi_request.SystemReplyAddressHigh =
3798	    cpu_to_le32((u64)ioc->reply_dma >> 32);
3799	mpi_request.SystemRequestFrameBaseAddress =
3800	    cpu_to_le64((u64)ioc->request_dma);
3801	mpi_request.ReplyFreeQueueAddress =
3802	    cpu_to_le64((u64)ioc->reply_free_dma);
3803
3804	if (ioc->rdpq_array_enable) {
3805		reply_post_free_array_sz = ioc->reply_queue_count *
3806		    sizeof(Mpi2IOCInitRDPQArrayEntry);
3807		reply_post_free_array = pci_alloc_consistent(ioc->pdev,
3808			reply_post_free_array_sz, &reply_post_free_array_dma);
3809		if (!reply_post_free_array) {
3810			pr_err(MPT3SAS_FMT
3811			"reply_post_free_array: pci_alloc_consistent failed\n",
3812			ioc->name);
3813			r = -ENOMEM;
3814			goto out;
3815		}
3816		memset(reply_post_free_array, 0, reply_post_free_array_sz);
3817		for (i = 0; i < ioc->reply_queue_count; i++)
3818			reply_post_free_array[i].RDPQBaseAddress =
3819			    cpu_to_le64(
3820				(u64)ioc->reply_post[i].reply_post_free_dma);
3821		mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
3822		mpi_request.ReplyDescriptorPostQueueAddress =
3823		    cpu_to_le64((u64)reply_post_free_array_dma);
3824	} else {
3825		mpi_request.ReplyDescriptorPostQueueAddress =
3826		    cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
3827	}
3828
3829	/* This time stamp specifies number of milliseconds
3830	 * since epoch ~ midnight January 1, 1970.
3831	 */
3832	do_gettimeofday(&current_time);
3833	mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
3834	    (current_time.tv_usec / 1000));
3835
3836	if (ioc->logging_level & MPT_DEBUG_INIT) {
3837		__le32 *mfp;
3838		int i;
3839
3840		mfp = (__le32 *)&mpi_request;
3841		pr_info("\toffset:data\n");
3842		for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
3843			pr_info("\t[0x%02x]:%08x\n", i*4,
3844			    le32_to_cpu(mfp[i]));
3845	}
3846
3847	r = _base_handshake_req_reply_wait(ioc,
3848	    sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
3849	    sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
3850	    sleep_flag);
3851
3852	if (r != 0) {
3853		pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
3854		    ioc->name, __func__, r);
3855		goto out;
3856	}
3857
3858	ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
3859	if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
3860	    mpi_reply.IOCLogInfo) {
3861		pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
3862		r = -EIO;
3863	}
3864
3865out:
3866	if (reply_post_free_array)
3867		pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
3868				    reply_post_free_array,
3869				    reply_post_free_array_dma);
3870	return r;
3871}
3872
3873/**
3874 * mpt3sas_port_enable_done - command completion routine for port enable
3875 * @ioc: per adapter object
3876 * @smid: system request message index
3877 * @msix_index: MSIX table index supplied by the OS
3878 * @reply: reply message frame(lower 32bit addr)
3879 *
3880 * Return 1 meaning mf should be freed from _base_interrupt
3881 *        0 means the mf is freed from this function.
3882 */
3883u8
3884mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
3885	u32 reply)
3886{
3887	MPI2DefaultReply_t *mpi_reply;
3888	u16 ioc_status;
3889
3890	if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
3891		return 1;
3892
3893	mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
3894	if (!mpi_reply)
3895		return 1;
3896
3897	if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
3898		return 1;
3899
3900	ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
3901	ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
3902	ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
3903	memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
3904	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3905	if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
3906		ioc->port_enable_failed = 1;
3907
3908	if (ioc->is_driver_loading) {
3909		if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
3910			mpt3sas_port_enable_complete(ioc);
3911			return 1;
3912		} else {
3913			ioc->start_scan_failed = ioc_status;
3914			ioc->start_scan = 0;
3915			return 1;
3916		}
3917	}
3918	complete(&ioc->port_enable_cmds.done);
3919	return 1;
3920}
3921
3922/**
3923 * _base_send_port_enable - send port_enable(discovery stuff) to firmware
3924 * @ioc: per adapter object
3925 * @sleep_flag: CAN_SLEEP or NO_SLEEP
3926 *
3927 * Returns 0 for success, non-zero for failure.
3928 */
3929static int
3930_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
3931{
3932	Mpi2PortEnableRequest_t *mpi_request;
3933	Mpi2PortEnableReply_t *mpi_reply;
3934	unsigned long timeleft;
3935	int r = 0;
3936	u16 smid;
3937	u16 ioc_status;
3938
3939	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
3940
3941	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
3942		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
3943		    ioc->name, __func__);
3944		return -EAGAIN;
3945	}
3946
3947	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
3948	if (!smid) {
3949		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
3950		    ioc->name, __func__);
3951		return -EAGAIN;
3952	}
3953
3954	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
3955	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
3956	ioc->port_enable_cmds.smid = smid;
3957	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
3958	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
3959
3960	init_completion(&ioc->port_enable_cmds.done);
3961	mpt3sas_base_put_smid_default(ioc, smid);
3962	timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
3963	    300*HZ);
3964	if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
3965		pr_err(MPT3SAS_FMT "%s: timeout\n",
3966		    ioc->name, __func__);
3967		_debug_dump_mf(mpi_request,
3968		    sizeof(Mpi2PortEnableRequest_t)/4);
3969		if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
3970			r = -EFAULT;
3971		else
3972			r = -ETIME;
3973		goto out;
3974	}
3975
3976	mpi_reply = ioc->port_enable_cmds.reply;
3977	ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
3978	if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
3979		pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
3980		    ioc->name, __func__, ioc_status);
3981		r = -EFAULT;
3982		goto out;
3983	}
3984
3985 out:
3986	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
3987	pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
3988	    "SUCCESS" : "FAILED"));
3989	return r;
3990}
3991
3992/**
3993 * mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
3994 * @ioc: per adapter object
3995 *
3996 * Returns 0 for success, non-zero for failure.
3997 */
3998int
3999mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
4000{
4001	Mpi2PortEnableRequest_t *mpi_request;
4002	u16 smid;
4003
4004	pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
4005
4006	if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4007		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4008		    ioc->name, __func__);
4009		return -EAGAIN;
4010	}
4011
4012	smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
4013	if (!smid) {
4014		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4015		    ioc->name, __func__);
4016		return -EAGAIN;
4017	}
4018
4019	ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
4020	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4021	ioc->port_enable_cmds.smid = smid;
4022	memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
4023	mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
4024
4025	mpt3sas_base_put_smid_default(ioc, smid);
4026	return 0;
4027}
4028
4029/**
4030 * _base_determine_wait_on_discovery - desposition
4031 * @ioc: per adapter object
4032 *
4033 * Decide whether to wait on discovery to complete. Used to either
4034 * locate boot device, or report volumes ahead of physical devices.
4035 *
4036 * Returns 1 for wait, 0 for don't wait
4037 */
4038static int
4039_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
4040{
4041	/* We wait for discovery to complete if IR firmware is loaded.
4042	 * The sas topology events arrive before PD events, so we need time to
4043	 * turn on the bit in ioc->pd_handles to indicate PD
4044	 * Also, it maybe required to report Volumes ahead of physical
4045	 * devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
4046	 */
4047	if (ioc->ir_firmware)
4048		return 1;
4049
4050	/* if no Bios, then we don't need to wait */
4051	if (!ioc->bios_pg3.BiosVersion)
4052		return 0;
4053
4054	/* Bios is present, then we drop down here.
4055	 *
4056	 * If there any entries in the Bios Page 2, then we wait
4057	 * for discovery to complete.
4058	 */
4059
4060	/* Current Boot Device */
4061	if ((ioc->bios_pg2.CurrentBootDeviceForm &
4062	    MPI2_BIOSPAGE2_FORM_MASK) ==
4063	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4064	/* Request Boot Device */
4065	   (ioc->bios_pg2.ReqBootDeviceForm &
4066	    MPI2_BIOSPAGE2_FORM_MASK) ==
4067	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
4068	/* Alternate Request Boot Device */
4069	   (ioc->bios_pg2.ReqAltBootDeviceForm &
4070	    MPI2_BIOSPAGE2_FORM_MASK) ==
4071	    MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
4072		return 0;
4073
4074	return 1;
4075}
4076
4077/**
4078 * _base_unmask_events - turn on notification for this event
4079 * @ioc: per adapter object
4080 * @event: firmware event
4081 *
4082 * The mask is stored in ioc->event_masks.
4083 */
4084static void
4085_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
4086{
4087	u32 desired_event;
4088
4089	if (event >= 128)
4090		return;
4091
4092	desired_event = (1 << (event % 32));
4093
4094	if (event < 32)
4095		ioc->event_masks[0] &= ~desired_event;
4096	else if (event < 64)
4097		ioc->event_masks[1] &= ~desired_event;
4098	else if (event < 96)
4099		ioc->event_masks[2] &= ~desired_event;
4100	else if (event < 128)
4101		ioc->event_masks[3] &= ~desired_event;
4102}
4103
4104/**
4105 * _base_event_notification - send event notification
4106 * @ioc: per adapter object
4107 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4108 *
4109 * Returns 0 for success, non-zero for failure.
4110 */
4111static int
4112_base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4113{
4114	Mpi2EventNotificationRequest_t *mpi_request;
4115	unsigned long timeleft;
4116	u16 smid;
4117	int r = 0;
4118	int i;
4119
4120	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4121	    __func__));
4122
4123	if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4124		pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
4125		    ioc->name, __func__);
4126		return -EAGAIN;
4127	}
4128
4129	smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
4130	if (!smid) {
4131		pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
4132		    ioc->name, __func__);
4133		return -EAGAIN;
4134	}
4135	ioc->base_cmds.status = MPT3_CMD_PENDING;
4136	mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
4137	ioc->base_cmds.smid = smid;
4138	memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
4139	mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
4140	mpi_request->VF_ID = 0; /* TODO */
4141	mpi_request->VP_ID = 0;
4142	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4143		mpi_request->EventMasks[i] =
4144		    cpu_to_le32(ioc->event_masks[i]);
4145	init_completion(&ioc->base_cmds.done);
4146	mpt3sas_base_put_smid_default(ioc, smid);
4147	timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
4148	if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
4149		pr_err(MPT3SAS_FMT "%s: timeout\n",
4150		    ioc->name, __func__);
4151		_debug_dump_mf(mpi_request,
4152		    sizeof(Mpi2EventNotificationRequest_t)/4);
4153		if (ioc->base_cmds.status & MPT3_CMD_RESET)
4154			r = -EFAULT;
4155		else
4156			r = -ETIME;
4157	} else
4158		dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
4159		    ioc->name, __func__));
4160	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4161	return r;
4162}
4163
4164/**
4165 * mpt3sas_base_validate_event_type - validating event types
4166 * @ioc: per adapter object
4167 * @event: firmware event
4168 *
4169 * This will turn on firmware event notification when application
4170 * ask for that event. We don't mask events that are already enabled.
4171 */
4172void
4173mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
4174{
4175	int i, j;
4176	u32 event_mask, desired_event;
4177	u8 send_update_to_fw;
4178
4179	for (i = 0, send_update_to_fw = 0; i <
4180	    MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
4181		event_mask = ~event_type[i];
4182		desired_event = 1;
4183		for (j = 0; j < 32; j++) {
4184			if (!(event_mask & desired_event) &&
4185			    (ioc->event_masks[i] & desired_event)) {
4186				ioc->event_masks[i] &= ~desired_event;
4187				send_update_to_fw = 1;
4188			}
4189			desired_event = (desired_event << 1);
4190		}
4191	}
4192
4193	if (!send_update_to_fw)
4194		return;
4195
4196	mutex_lock(&ioc->base_cmds.mutex);
4197	_base_event_notification(ioc, CAN_SLEEP);
4198	mutex_unlock(&ioc->base_cmds.mutex);
4199}
4200
4201/**
4202 * _base_diag_reset - the "big hammer" start of day reset
4203 * @ioc: per adapter object
4204 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4205 *
4206 * Returns 0 for success, non-zero for failure.
4207 */
4208static int
4209_base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4210{
4211	u32 host_diagnostic;
4212	u32 ioc_state;
4213	u32 count;
4214	u32 hcb_size;
4215
4216	pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
4217
4218	drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
4219	    ioc->name));
4220
4221	count = 0;
4222	do {
4223		/* Write magic sequence to WriteSequence register
4224		 * Loop until in diagnostic mode
4225		 */
4226		drsprintk(ioc, pr_info(MPT3SAS_FMT
4227			"write magic sequence\n", ioc->name));
4228		writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4229		writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
4230		writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
4231		writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
4232		writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
4233		writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
4234		writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
4235
4236		/* wait 100 msec */
4237		if (sleep_flag == CAN_SLEEP)
4238			msleep(100);
4239		else
4240			mdelay(100);
4241
4242		if (count++ > 20)
4243			goto out;
4244
4245		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4246		drsprintk(ioc, pr_info(MPT3SAS_FMT
4247			"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
4248		    ioc->name, count, host_diagnostic));
4249
4250	} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
4251
4252	hcb_size = readl(&ioc->chip->HCBSize);
4253
4254	drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
4255	    ioc->name));
4256	writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
4257	     &ioc->chip->HostDiagnostic);
4258
4259	/*This delay allows the chip PCIe hardware time to finish reset tasks*/
4260	if (sleep_flag == CAN_SLEEP)
4261		msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4262	else
4263		mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
4264
4265	/* Approximately 300 second max wait */
4266	for (count = 0; count < (300000000 /
4267		MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
4268
4269		host_diagnostic = readl(&ioc->chip->HostDiagnostic);
4270
4271		if (host_diagnostic == 0xFFFFFFFF)
4272			goto out;
4273		if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
4274			break;
4275
4276		/* Wait to pass the second read delay window */
4277		if (sleep_flag == CAN_SLEEP)
4278			msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4279								/ 1000);
4280		else
4281			mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
4282								/ 1000);
4283	}
4284
4285	if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
4286
4287		drsprintk(ioc, pr_info(MPT3SAS_FMT
4288		"restart the adapter assuming the HCB Address points to good F/W\n",
4289		    ioc->name));
4290		host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
4291		host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
4292		writel(host_diagnostic, &ioc->chip->HostDiagnostic);
4293
4294		drsprintk(ioc, pr_info(MPT3SAS_FMT
4295		    "re-enable the HCDW\n", ioc->name));
4296		writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
4297		    &ioc->chip->HCBSize);
4298	}
4299
4300	drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
4301	    ioc->name));
4302	writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
4303	    &ioc->chip->HostDiagnostic);
4304
4305	drsprintk(ioc, pr_info(MPT3SAS_FMT
4306		"disable writes to the diagnostic register\n", ioc->name));
4307	writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
4308
4309	drsprintk(ioc, pr_info(MPT3SAS_FMT
4310		"Wait for FW to go to the READY state\n", ioc->name));
4311	ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
4312	    sleep_flag);
4313	if (ioc_state) {
4314		pr_err(MPT3SAS_FMT
4315			"%s: failed going to ready state (ioc_state=0x%x)\n",
4316			ioc->name, __func__, ioc_state);
4317		goto out;
4318	}
4319
4320	pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
4321	return 0;
4322
4323 out:
4324	pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
4325	return -EFAULT;
4326}
4327
4328/**
4329 * _base_make_ioc_ready - put controller in READY state
4330 * @ioc: per adapter object
4331 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4332 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4333 *
4334 * Returns 0 for success, non-zero for failure.
4335 */
4336static int
4337_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4338	enum reset_type type)
4339{
4340	u32 ioc_state;
4341	int rc;
4342	int count;
4343
4344	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4345	    __func__));
4346
4347	if (ioc->pci_error_recovery)
4348		return 0;
4349
4350	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4351	dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
4352	    ioc->name, __func__, ioc_state));
4353
4354	/* if in RESET state, it should move to READY state shortly */
4355	count = 0;
4356	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
4357		while ((ioc_state & MPI2_IOC_STATE_MASK) !=
4358		    MPI2_IOC_STATE_READY) {
4359			if (count++ == 10) {
4360				pr_err(MPT3SAS_FMT
4361					"%s: failed going to ready state (ioc_state=0x%x)\n",
4362				    ioc->name, __func__, ioc_state);
4363				return -EFAULT;
4364			}
4365			if (sleep_flag == CAN_SLEEP)
4366				ssleep(1);
4367			else
4368				mdelay(1000);
4369			ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4370		}
4371	}
4372
4373	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
4374		return 0;
4375
4376	if (ioc_state & MPI2_DOORBELL_USED) {
4377		dhsprintk(ioc, pr_info(MPT3SAS_FMT
4378			"unexpected doorbell active!\n",
4379			ioc->name));
4380		goto issue_diag_reset;
4381	}
4382
4383	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
4384		mpt3sas_base_fault_info(ioc, ioc_state &
4385		    MPI2_DOORBELL_DATA_MASK);
4386		goto issue_diag_reset;
4387	}
4388
4389	if (type == FORCE_BIG_HAMMER)
4390		goto issue_diag_reset;
4391
4392	if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
4393		if (!(_base_send_ioc_reset(ioc,
4394		    MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
4395			return 0;
4396	}
4397
4398 issue_diag_reset:
4399	rc = _base_diag_reset(ioc, CAN_SLEEP);
4400	return rc;
4401}
4402
4403/**
4404 * _base_make_ioc_operational - put controller in OPERATIONAL state
4405 * @ioc: per adapter object
4406 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4407 *
4408 * Returns 0 for success, non-zero for failure.
4409 */
4410static int
4411_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4412{
4413	int r, i;
4414	unsigned long	flags;
4415	u32 reply_address;
4416	u16 smid;
4417	struct _tr_list *delayed_tr, *delayed_tr_next;
4418	struct adapter_reply_queue *reply_q;
4419	long reply_post_free;
4420	u32 reply_post_free_sz, index = 0;
4421
4422	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4423	    __func__));
4424
4425	/* clean the delayed target reset list */
4426	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4427	    &ioc->delayed_tr_list, list) {
4428		list_del(&delayed_tr->list);
4429		kfree(delayed_tr);
4430	}
4431
4432
4433	list_for_each_entry_safe(delayed_tr, delayed_tr_next,
4434	    &ioc->delayed_tr_volume_list, list) {
4435		list_del(&delayed_tr->list);
4436		kfree(delayed_tr);
4437	}
4438
4439	/* initialize the scsi lookup free list */
4440	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4441	INIT_LIST_HEAD(&ioc->free_list);
4442	smid = 1;
4443	for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
4444		INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
4445		ioc->scsi_lookup[i].cb_idx = 0xFF;
4446		ioc->scsi_lookup[i].smid = smid;
4447		ioc->scsi_lookup[i].scmd = NULL;
4448		list_add_tail(&ioc->scsi_lookup[i].tracker_list,
4449		    &ioc->free_list);
4450	}
4451
4452	/* hi-priority queue */
4453	INIT_LIST_HEAD(&ioc->hpr_free_list);
4454	smid = ioc->hi_priority_smid;
4455	for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
4456		ioc->hpr_lookup[i].cb_idx = 0xFF;
4457		ioc->hpr_lookup[i].smid = smid;
4458		list_add_tail(&ioc->hpr_lookup[i].tracker_list,
4459		    &ioc->hpr_free_list);
4460	}
4461
4462	/* internal queue */
4463	INIT_LIST_HEAD(&ioc->internal_free_list);
4464	smid = ioc->internal_smid;
4465	for (i = 0; i < ioc->internal_depth; i++, smid++) {
4466		ioc->internal_lookup[i].cb_idx = 0xFF;
4467		ioc->internal_lookup[i].smid = smid;
4468		list_add_tail(&ioc->internal_lookup[i].tracker_list,
4469		    &ioc->internal_free_list);
4470	}
4471
4472	/* chain pool */
4473	INIT_LIST_HEAD(&ioc->free_chain_list);
4474	for (i = 0; i < ioc->chain_depth; i++)
4475		list_add_tail(&ioc->chain_lookup[i].tracker_list,
4476		    &ioc->free_chain_list);
4477
4478	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4479
4480	/* initialize Reply Free Queue */
4481	for (i = 0, reply_address = (u32)ioc->reply_dma ;
4482	    i < ioc->reply_free_queue_depth ; i++, reply_address +=
4483	    ioc->reply_sz)
4484		ioc->reply_free[i] = cpu_to_le32(reply_address);
4485
4486	/* initialize reply queues */
4487	if (ioc->is_driver_loading)
4488		_base_assign_reply_queues(ioc);
4489
4490	/* initialize Reply Post Free Queue */
4491	reply_post_free_sz = ioc->reply_post_queue_depth *
4492	    sizeof(Mpi2DefaultReplyDescriptor_t);
4493	reply_post_free = (long)ioc->reply_post[index].reply_post_free;
4494	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4495		reply_q->reply_post_host_index = 0;
4496		reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
4497		    reply_post_free;
4498		for (i = 0; i < ioc->reply_post_queue_depth; i++)
4499			reply_q->reply_post_free[i].Words =
4500			    cpu_to_le64(ULLONG_MAX);
4501		if (!_base_is_controller_msix_enabled(ioc))
4502			goto skip_init_reply_post_free_queue;
4503		/*
4504		 * If RDPQ is enabled, switch to the next allocation.
4505		 * Otherwise advance within the contiguous region.
4506		 */
4507		if (ioc->rdpq_array_enable)
4508			reply_post_free = (long)
4509			    ioc->reply_post[++index].reply_post_free;
4510		else
4511			reply_post_free += reply_post_free_sz;
4512	}
4513 skip_init_reply_post_free_queue:
4514
4515	r = _base_send_ioc_init(ioc, sleep_flag);
4516	if (r)
4517		return r;
4518
4519	/* initialize reply free host index */
4520	ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
4521	writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
4522
4523	/* initialize reply post host index */
4524	list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
4525		writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
4526		    &ioc->chip->ReplyPostHostIndex);
4527		if (!_base_is_controller_msix_enabled(ioc))
4528			goto skip_init_reply_post_host_index;
4529	}
4530
4531 skip_init_reply_post_host_index:
4532
4533	_base_unmask_interrupts(ioc);
4534	r = _base_event_notification(ioc, sleep_flag);
4535	if (r)
4536		return r;
4537
4538	if (sleep_flag == CAN_SLEEP)
4539		_base_static_config_pages(ioc);
4540
4541
4542	if (ioc->is_driver_loading) {
4543		ioc->wait_for_discovery_to_complete =
4544		    _base_determine_wait_on_discovery(ioc);
4545
4546		return r; /* scan_start and scan_finished support */
4547	}
4548
4549	r = _base_send_port_enable(ioc, sleep_flag);
4550	if (r)
4551		return r;
4552
4553	return r;
4554}
4555
4556/**
4557 * mpt3sas_base_free_resources - free resources controller resources
4558 * @ioc: per adapter object
4559 *
4560 * Return nothing.
4561 */
4562void
4563mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
4564{
4565	struct pci_dev *pdev = ioc->pdev;
4566
4567	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4568	    __func__));
4569
4570	if (ioc->chip_phys && ioc->chip) {
4571		_base_mask_interrupts(ioc);
4572		ioc->shost_recovery = 1;
4573		_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4574		ioc->shost_recovery = 0;
4575	}
4576
4577	_base_free_irq(ioc);
4578	_base_disable_msix(ioc);
4579
4580	if (ioc->chip_phys && ioc->chip)
4581		iounmap(ioc->chip);
4582	ioc->chip_phys = 0;
4583
4584	if (pci_is_enabled(pdev)) {
4585		pci_release_selected_regions(ioc->pdev, ioc->bars);
4586		pci_disable_pcie_error_reporting(pdev);
4587		pci_disable_device(pdev);
4588	}
4589	return;
4590}
4591
4592/**
4593 * mpt3sas_base_attach - attach controller instance
4594 * @ioc: per adapter object
4595 *
4596 * Returns 0 for success, non-zero for failure.
4597 */
4598int
4599mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
4600{
4601	int r, i;
4602	int cpu_id, last_cpu_id = 0;
4603
4604	dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4605	    __func__));
4606
4607	/* setup cpu_msix_table */
4608	ioc->cpu_count = num_online_cpus();
4609	for_each_online_cpu(cpu_id)
4610		last_cpu_id = cpu_id;
4611	ioc->cpu_msix_table_sz = last_cpu_id + 1;
4612	ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
4613	ioc->reply_queue_count = 1;
4614	if (!ioc->cpu_msix_table) {
4615		dfailprintk(ioc, pr_info(MPT3SAS_FMT
4616			"allocation for cpu_msix_table failed!!!\n",
4617			ioc->name));
4618		r = -ENOMEM;
4619		goto out_free_resources;
4620	}
4621
4622	ioc->rdpq_array_enable_assigned = 0;
4623	ioc->dma_mask = 0;
4624	r = mpt3sas_base_map_resources(ioc);
4625	if (r)
4626		goto out_free_resources;
4627
4628
4629	pci_set_drvdata(ioc->pdev, ioc->shost);
4630	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4631	if (r)
4632		goto out_free_resources;
4633
4634	/*
4635	 * In SAS3.0,
4636	 * SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
4637	 * Target Status - all require the IEEE formated scatter gather
4638	 * elements.
4639	 */
4640
4641	ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
4642	ioc->build_sg = &_base_build_sg_ieee;
4643	ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
4644	ioc->mpi25 = 1;
4645	ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
4646
4647	/*
4648	 * These function pointers for other requests that don't
4649	 * the require IEEE scatter gather elements.
4650	 *
4651	 * For example Configuration Pages and SAS IOUNIT Control don't.
4652	 */
4653	ioc->build_sg_mpi = &_base_build_sg;
4654	ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
4655
4656	r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
4657	if (r)
4658		goto out_free_resources;
4659
4660	ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
4661	    sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
4662	if (!ioc->pfacts) {
4663		r = -ENOMEM;
4664		goto out_free_resources;
4665	}
4666
4667	for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
4668		r = _base_get_port_facts(ioc, i, CAN_SLEEP);
4669		if (r)
4670			goto out_free_resources;
4671	}
4672
4673	r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
4674	if (r)
4675		goto out_free_resources;
4676
4677	init_waitqueue_head(&ioc->reset_wq);
4678
4679	/* allocate memory pd handle bitmask list */
4680	ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
4681	if (ioc->facts.MaxDevHandle % 8)
4682		ioc->pd_handles_sz++;
4683	ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
4684	    GFP_KERNEL);
4685	if (!ioc->pd_handles) {
4686		r = -ENOMEM;
4687		goto out_free_resources;
4688	}
4689	ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
4690	    GFP_KERNEL);
4691	if (!ioc->blocking_handles) {
4692		r = -ENOMEM;
4693		goto out_free_resources;
4694	}
4695
4696	ioc->fwfault_debug = mpt3sas_fwfault_debug;
4697
4698	/* base internal command bits */
4699	mutex_init(&ioc->base_cmds.mutex);
4700	ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4701	ioc->base_cmds.status = MPT3_CMD_NOT_USED;
4702
4703	/* port_enable command bits */
4704	ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4705	ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
4706
4707	/* transport internal command bits */
4708	ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4709	ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
4710	mutex_init(&ioc->transport_cmds.mutex);
4711
4712	/* scsih internal command bits */
4713	ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4714	ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
4715	mutex_init(&ioc->scsih_cmds.mutex);
4716
4717	/* task management internal command bits */
4718	ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4719	ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
4720	mutex_init(&ioc->tm_cmds.mutex);
4721
4722	/* config page internal command bits */
4723	ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4724	ioc->config_cmds.status = MPT3_CMD_NOT_USED;
4725	mutex_init(&ioc->config_cmds.mutex);
4726
4727	/* ctl module internal command bits */
4728	ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
4729	ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
4730	ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
4731	mutex_init(&ioc->ctl_cmds.mutex);
4732
4733	if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
4734	    !ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
4735	    !ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
4736	    !ioc->ctl_cmds.sense) {
4737		r = -ENOMEM;
4738		goto out_free_resources;
4739	}
4740
4741	for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
4742		ioc->event_masks[i] = -1;
4743
4744	/* here we enable the events we care about */
4745	_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
4746	_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
4747	_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
4748	_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
4749	_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
4750	_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
4751	_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
4752	_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
4753	_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
4754	_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
4755	_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
4756
4757	r = _base_make_ioc_operational(ioc, CAN_SLEEP);
4758	if (r)
4759		goto out_free_resources;
4760
4761	return 0;
4762
4763 out_free_resources:
4764
4765	ioc->remove_host = 1;
4766
4767	mpt3sas_base_free_resources(ioc);
4768	_base_release_memory_pools(ioc);
4769	pci_set_drvdata(ioc->pdev, NULL);
4770	kfree(ioc->cpu_msix_table);
4771	kfree(ioc->pd_handles);
4772	kfree(ioc->blocking_handles);
4773	kfree(ioc->tm_cmds.reply);
4774	kfree(ioc->transport_cmds.reply);
4775	kfree(ioc->scsih_cmds.reply);
4776	kfree(ioc->config_cmds.reply);
4777	kfree(ioc->base_cmds.reply);
4778	kfree(ioc->port_enable_cmds.reply);
4779	kfree(ioc->ctl_cmds.reply);
4780	kfree(ioc->ctl_cmds.sense);
4781	kfree(ioc->pfacts);
4782	ioc->ctl_cmds.reply = NULL;
4783	ioc->base_cmds.reply = NULL;
4784	ioc->tm_cmds.reply = NULL;
4785	ioc->scsih_cmds.reply = NULL;
4786	ioc->transport_cmds.reply = NULL;
4787	ioc->config_cmds.reply = NULL;
4788	ioc->pfacts = NULL;
4789	return r;
4790}
4791
4792
4793/**
4794 * mpt3sas_base_detach - remove controller instance
4795 * @ioc: per adapter object
4796 *
4797 * Return nothing.
4798 */
4799void
4800mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
4801{
4802	dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
4803	    __func__));
4804
4805	mpt3sas_base_stop_watchdog(ioc);
4806	mpt3sas_base_free_resources(ioc);
4807	_base_release_memory_pools(ioc);
4808	pci_set_drvdata(ioc->pdev, NULL);
4809	kfree(ioc->cpu_msix_table);
4810	kfree(ioc->pd_handles);
4811	kfree(ioc->blocking_handles);
4812	kfree(ioc->pfacts);
4813	kfree(ioc->ctl_cmds.reply);
4814	kfree(ioc->ctl_cmds.sense);
4815	kfree(ioc->base_cmds.reply);
4816	kfree(ioc->port_enable_cmds.reply);
4817	kfree(ioc->tm_cmds.reply);
4818	kfree(ioc->transport_cmds.reply);
4819	kfree(ioc->scsih_cmds.reply);
4820	kfree(ioc->config_cmds.reply);
4821}
4822
4823/**
4824 * _base_reset_handler - reset callback handler (for base)
4825 * @ioc: per adapter object
4826 * @reset_phase: phase
4827 *
4828 * The handler for doing any required cleanup or initialization.
4829 *
4830 * The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
4831 * MPT3_IOC_DONE_RESET
4832 *
4833 * Return nothing.
4834 */
4835static void
4836_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
4837{
4838	mpt3sas_scsih_reset_handler(ioc, reset_phase);
4839	mpt3sas_ctl_reset_handler(ioc, reset_phase);
4840	switch (reset_phase) {
4841	case MPT3_IOC_PRE_RESET:
4842		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4843		"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
4844		break;
4845	case MPT3_IOC_AFTER_RESET:
4846		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4847		"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
4848		if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
4849			ioc->transport_cmds.status |= MPT3_CMD_RESET;
4850			mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
4851			complete(&ioc->transport_cmds.done);
4852		}
4853		if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
4854			ioc->base_cmds.status |= MPT3_CMD_RESET;
4855			mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
4856			complete(&ioc->base_cmds.done);
4857		}
4858		if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
4859			ioc->port_enable_failed = 1;
4860			ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
4861			mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
4862			if (ioc->is_driver_loading) {
4863				ioc->start_scan_failed =
4864				    MPI2_IOCSTATUS_INTERNAL_ERROR;
4865				ioc->start_scan = 0;
4866				ioc->port_enable_cmds.status =
4867				    MPT3_CMD_NOT_USED;
4868			} else
4869				complete(&ioc->port_enable_cmds.done);
4870		}
4871		if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
4872			ioc->config_cmds.status |= MPT3_CMD_RESET;
4873			mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
4874			ioc->config_cmds.smid = USHRT_MAX;
4875			complete(&ioc->config_cmds.done);
4876		}
4877		break;
4878	case MPT3_IOC_DONE_RESET:
4879		dtmprintk(ioc, pr_info(MPT3SAS_FMT
4880			"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
4881		break;
4882	}
4883}
4884
4885/**
4886 * _wait_for_commands_to_complete - reset controller
4887 * @ioc: Pointer to MPT_ADAPTER structure
4888 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4889 *
4890 * This function waiting(3s) for all pending commands to complete
4891 * prior to putting controller in reset.
4892 */
4893static void
4894_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
4895{
4896	u32 ioc_state;
4897	unsigned long flags;
4898	u16 i;
4899
4900	ioc->pending_io_count = 0;
4901	if (sleep_flag != CAN_SLEEP)
4902		return;
4903
4904	ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4905	if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
4906		return;
4907
4908	/* pending command count */
4909	spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
4910	for (i = 0; i < ioc->scsiio_depth; i++)
4911		if (ioc->scsi_lookup[i].cb_idx != 0xFF)
4912			ioc->pending_io_count++;
4913	spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
4914
4915	if (!ioc->pending_io_count)
4916		return;
4917
4918	/* wait for pending commands to complete */
4919	wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
4920}
4921
4922/**
4923 * mpt3sas_base_hard_reset_handler - reset controller
4924 * @ioc: Pointer to MPT_ADAPTER structure
4925 * @sleep_flag: CAN_SLEEP or NO_SLEEP
4926 * @type: FORCE_BIG_HAMMER or SOFT_RESET
4927 *
4928 * Returns 0 for success, non-zero for failure.
4929 */
4930int
4931mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
4932	enum reset_type type)
4933{
4934	int r;
4935	unsigned long flags;
4936	u32 ioc_state;
4937	u8 is_fault = 0, is_trigger = 0;
4938
4939	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
4940	    __func__));
4941
4942	if (ioc->pci_error_recovery) {
4943		pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
4944		    ioc->name, __func__);
4945		r = 0;
4946		goto out_unlocked;
4947	}
4948
4949	if (mpt3sas_fwfault_debug)
4950		mpt3sas_halt_firmware(ioc);
4951
4952	/* TODO - What we really should be doing is pulling
4953	 * out all the code associated with NO_SLEEP; its never used.
4954	 * That is legacy code from mpt fusion driver, ported over.
4955	 * I will leave this BUG_ON here for now till its been resolved.
4956	 */
4957	BUG_ON(sleep_flag == NO_SLEEP);
4958
4959	/* wait for an active reset in progress to complete */
4960	if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
4961		do {
4962			ssleep(1);
4963		} while (ioc->shost_recovery == 1);
4964		dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
4965		    __func__));
4966		return ioc->ioc_reset_in_progress_status;
4967	}
4968
4969	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
4970	ioc->shost_recovery = 1;
4971	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
4972
4973	if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4974	    MPT3_DIAG_BUFFER_IS_REGISTERED) &&
4975	    (!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
4976	    MPT3_DIAG_BUFFER_IS_RELEASED))) {
4977		is_trigger = 1;
4978		ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
4979		if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
4980			is_fault = 1;
4981	}
4982	_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
4983	_wait_for_commands_to_complete(ioc, sleep_flag);
4984	_base_mask_interrupts(ioc);
4985	r = _base_make_ioc_ready(ioc, sleep_flag, type);
4986	if (r)
4987		goto out;
4988	_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
4989
4990	/* If this hard reset is called while port enable is active, then
4991	 * there is no reason to call make_ioc_operational
4992	 */
4993	if (ioc->is_driver_loading && ioc->port_enable_failed) {
4994		ioc->remove_host = 1;
4995		r = -EFAULT;
4996		goto out;
4997	}
4998	r = _base_get_ioc_facts(ioc, CAN_SLEEP);
4999	if (r)
5000		goto out;
5001
5002	if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
5003		panic("%s: Issue occurred with flashing controller firmware."
5004		      "Please reboot the system and ensure that the correct"
5005		      " firmware version is running\n", ioc->name);
5006
5007	r = _base_make_ioc_operational(ioc, sleep_flag);
5008	if (!r)
5009		_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
5010
5011 out:
5012	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
5013	    ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
5014
5015	spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
5016	ioc->ioc_reset_in_progress_status = r;
5017	ioc->shost_recovery = 0;
5018	spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
5019	ioc->ioc_reset_count++;
5020	mutex_unlock(&ioc->reset_in_progress_mutex);
5021
5022 out_unlocked:
5023	if ((r == 0) && is_trigger) {
5024		if (is_fault)
5025			mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
5026		else
5027			mpt3sas_trigger_master(ioc,
5028			    MASTER_TRIGGER_ADAPTER_RESET);
5029	}
5030	dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
5031	    __func__));
5032	return r;
5033}
5034