1/*
2 * Copyright (C) 1999 Eric Youngdale
3 * Copyright (C) 2014 Christoph Hellwig
4 *
5 *  SCSI queueing library.
6 *      Initial versions: Eric Youngdale (eric@andante.org).
7 *                        Based upon conversations with large numbers
8 *                        of people at Linux Expo.
9 */
10
11#include <linux/bio.h>
12#include <linux/bitops.h>
13#include <linux/blkdev.h>
14#include <linux/completion.h>
15#include <linux/kernel.h>
16#include <linux/export.h>
17#include <linux/mempool.h>
18#include <linux/slab.h>
19#include <linux/init.h>
20#include <linux/pci.h>
21#include <linux/delay.h>
22#include <linux/hardirq.h>
23#include <linux/scatterlist.h>
24#include <linux/blk-mq.h>
25#include <linux/ratelimit.h>
26
27#include <scsi/scsi.h>
28#include <scsi/scsi_cmnd.h>
29#include <scsi/scsi_dbg.h>
30#include <scsi/scsi_device.h>
31#include <scsi/scsi_driver.h>
32#include <scsi/scsi_eh.h>
33#include <scsi/scsi_host.h>
34
35#include <trace/events/scsi.h>
36
37#include "scsi_priv.h"
38#include "scsi_logging.h"
39
40
41#define SG_MEMPOOL_NR		ARRAY_SIZE(scsi_sg_pools)
42#define SG_MEMPOOL_SIZE		2
43
44struct scsi_host_sg_pool {
45	size_t		size;
46	char		*name;
47	struct kmem_cache	*slab;
48	mempool_t	*pool;
49};
50
51#define SP(x) { .size = x, "sgpool-" __stringify(x) }
52#if (SCSI_MAX_SG_SEGMENTS < 32)
53#error SCSI_MAX_SG_SEGMENTS is too small (must be 32 or greater)
54#endif
55static struct scsi_host_sg_pool scsi_sg_pools[] = {
56	SP(8),
57	SP(16),
58#if (SCSI_MAX_SG_SEGMENTS > 32)
59	SP(32),
60#if (SCSI_MAX_SG_SEGMENTS > 64)
61	SP(64),
62#if (SCSI_MAX_SG_SEGMENTS > 128)
63	SP(128),
64#if (SCSI_MAX_SG_SEGMENTS > 256)
65#error SCSI_MAX_SG_SEGMENTS is too large (256 MAX)
66#endif
67#endif
68#endif
69#endif
70	SP(SCSI_MAX_SG_SEGMENTS)
71};
72#undef SP
73
74struct kmem_cache *scsi_sdb_cache;
75
76/*
77 * When to reinvoke queueing after a resource shortage. It's 3 msecs to
78 * not change behaviour from the previous unplug mechanism, experimentation
79 * may prove this needs changing.
80 */
81#define SCSI_QUEUE_DELAY	3
82
83static void
84scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
85{
86	struct Scsi_Host *host = cmd->device->host;
87	struct scsi_device *device = cmd->device;
88	struct scsi_target *starget = scsi_target(device);
89
90	/*
91	 * Set the appropriate busy bit for the device/host.
92	 *
93	 * If the host/device isn't busy, assume that something actually
94	 * completed, and that we should be able to queue a command now.
95	 *
96	 * Note that the prior mid-layer assumption that any host could
97	 * always queue at least one command is now broken.  The mid-layer
98	 * will implement a user specifiable stall (see
99	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
100	 * if a command is requeued with no other commands outstanding
101	 * either for the device or for the host.
102	 */
103	switch (reason) {
104	case SCSI_MLQUEUE_HOST_BUSY:
105		atomic_set(&host->host_blocked, host->max_host_blocked);
106		break;
107	case SCSI_MLQUEUE_DEVICE_BUSY:
108	case SCSI_MLQUEUE_EH_RETRY:
109		atomic_set(&device->device_blocked,
110			   device->max_device_blocked);
111		break;
112	case SCSI_MLQUEUE_TARGET_BUSY:
113		atomic_set(&starget->target_blocked,
114			   starget->max_target_blocked);
115		break;
116	}
117}
118
119static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
120{
121	struct scsi_device *sdev = cmd->device;
122	struct request_queue *q = cmd->request->q;
123
124	blk_mq_requeue_request(cmd->request);
125	blk_mq_kick_requeue_list(q);
126	put_device(&sdev->sdev_gendev);
127}
128
129/**
130 * __scsi_queue_insert - private queue insertion
131 * @cmd: The SCSI command being requeued
132 * @reason:  The reason for the requeue
133 * @unbusy: Whether the queue should be unbusied
134 *
135 * This is a private queue insertion.  The public interface
136 * scsi_queue_insert() always assumes the queue should be unbusied
137 * because it's always called before the completion.  This function is
138 * for a requeue after completion, which should only occur in this
139 * file.
140 */
141static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, int unbusy)
142{
143	struct scsi_device *device = cmd->device;
144	struct request_queue *q = device->request_queue;
145	unsigned long flags;
146
147	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
148		"Inserting command %p into mlqueue\n", cmd));
149
150	scsi_set_blocked(cmd, reason);
151
152	/*
153	 * Decrement the counters, since these commands are no longer
154	 * active on the host/device.
155	 */
156	if (unbusy)
157		scsi_device_unbusy(device);
158
159	/*
160	 * Requeue this command.  It will go before all other commands
161	 * that are already in the queue. Schedule requeue work under
162	 * lock such that the kblockd_schedule_work() call happens
163	 * before blk_cleanup_queue() finishes.
164	 */
165	cmd->result = 0;
166	if (q->mq_ops) {
167		scsi_mq_requeue_cmd(cmd);
168		return;
169	}
170	spin_lock_irqsave(q->queue_lock, flags);
171	blk_requeue_request(q, cmd->request);
172	kblockd_schedule_work(&device->requeue_work);
173	spin_unlock_irqrestore(q->queue_lock, flags);
174}
175
176/*
177 * Function:    scsi_queue_insert()
178 *
179 * Purpose:     Insert a command in the midlevel queue.
180 *
181 * Arguments:   cmd    - command that we are adding to queue.
182 *              reason - why we are inserting command to queue.
183 *
184 * Lock status: Assumed that lock is not held upon entry.
185 *
186 * Returns:     Nothing.
187 *
188 * Notes:       We do this for one of two cases.  Either the host is busy
189 *              and it cannot accept any more commands for the time being,
190 *              or the device returned QUEUE_FULL and can accept no more
191 *              commands.
192 * Notes:       This could be called either from an interrupt context or a
193 *              normal process context.
194 */
195void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
196{
197	__scsi_queue_insert(cmd, reason, 1);
198}
199/**
200 * scsi_execute - insert request and wait for the result
201 * @sdev:	scsi device
202 * @cmd:	scsi command
203 * @data_direction: data direction
204 * @buffer:	data buffer
205 * @bufflen:	len of buffer
206 * @sense:	optional sense buffer
207 * @timeout:	request timeout in seconds
208 * @retries:	number of times to retry request
209 * @flags:	or into request flags;
210 * @resid:	optional residual length
211 *
212 * returns the req->errors value which is the scsi_cmnd result
213 * field.
214 */
215int scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
216		 int data_direction, void *buffer, unsigned bufflen,
217		 unsigned char *sense, int timeout, int retries, u64 flags,
218		 int *resid)
219{
220	struct request *req;
221	int write = (data_direction == DMA_TO_DEVICE);
222	int ret = DRIVER_ERROR << 24;
223
224	req = blk_get_request(sdev->request_queue, write, __GFP_WAIT);
225	if (IS_ERR(req))
226		return ret;
227	blk_rq_set_block_pc(req);
228
229	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
230					buffer, bufflen, __GFP_WAIT))
231		goto out;
232
233	req->cmd_len = COMMAND_SIZE(cmd[0]);
234	memcpy(req->cmd, cmd, req->cmd_len);
235	req->sense = sense;
236	req->sense_len = 0;
237	req->retries = retries;
238	req->timeout = timeout;
239	req->cmd_flags |= flags | REQ_QUIET | REQ_PREEMPT;
240
241	/*
242	 * head injection *required* here otherwise quiesce won't work
243	 */
244	blk_execute_rq(req->q, NULL, req, 1);
245
246	/*
247	 * Some devices (USB mass-storage in particular) may transfer
248	 * garbage data together with a residue indicating that the data
249	 * is invalid.  Prevent the garbage from being misinterpreted
250	 * and prevent security leaks by zeroing out the excess data.
251	 */
252	if (unlikely(req->resid_len > 0 && req->resid_len <= bufflen))
253		memset(buffer + (bufflen - req->resid_len), 0, req->resid_len);
254
255	if (resid)
256		*resid = req->resid_len;
257	ret = req->errors;
258 out:
259	blk_put_request(req);
260
261	return ret;
262}
263EXPORT_SYMBOL(scsi_execute);
264
265int scsi_execute_req_flags(struct scsi_device *sdev, const unsigned char *cmd,
266		     int data_direction, void *buffer, unsigned bufflen,
267		     struct scsi_sense_hdr *sshdr, int timeout, int retries,
268		     int *resid, u64 flags)
269{
270	char *sense = NULL;
271	int result;
272
273	if (sshdr) {
274		sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_NOIO);
275		if (!sense)
276			return DRIVER_ERROR << 24;
277	}
278	result = scsi_execute(sdev, cmd, data_direction, buffer, bufflen,
279			      sense, timeout, retries, flags, resid);
280	if (sshdr)
281		scsi_normalize_sense(sense, SCSI_SENSE_BUFFERSIZE, sshdr);
282
283	kfree(sense);
284	return result;
285}
286EXPORT_SYMBOL(scsi_execute_req_flags);
287
288/*
289 * Function:    scsi_init_cmd_errh()
290 *
291 * Purpose:     Initialize cmd fields related to error handling.
292 *
293 * Arguments:   cmd	- command that is ready to be queued.
294 *
295 * Notes:       This function has the job of initializing a number of
296 *              fields related to error handling.   Typically this will
297 *              be called once for each command, as required.
298 */
299static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
300{
301	cmd->serial_number = 0;
302	scsi_set_resid(cmd, 0);
303	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
304	if (cmd->cmd_len == 0)
305		cmd->cmd_len = scsi_command_size(cmd->cmnd);
306}
307
308void scsi_device_unbusy(struct scsi_device *sdev)
309{
310	struct Scsi_Host *shost = sdev->host;
311	struct scsi_target *starget = scsi_target(sdev);
312	unsigned long flags;
313
314	atomic_dec(&shost->host_busy);
315	if (starget->can_queue > 0)
316		atomic_dec(&starget->target_busy);
317
318	if (unlikely(scsi_host_in_recovery(shost) &&
319		     (shost->host_failed || shost->host_eh_scheduled))) {
320		spin_lock_irqsave(shost->host_lock, flags);
321		scsi_eh_wakeup(shost);
322		spin_unlock_irqrestore(shost->host_lock, flags);
323	}
324
325	atomic_dec(&sdev->device_busy);
326}
327
328static void scsi_kick_queue(struct request_queue *q)
329{
330	if (q->mq_ops)
331		blk_mq_start_hw_queues(q);
332	else
333		blk_run_queue(q);
334}
335
336/*
337 * Called for single_lun devices on IO completion. Clear starget_sdev_user,
338 * and call blk_run_queue for all the scsi_devices on the target -
339 * including current_sdev first.
340 *
341 * Called with *no* scsi locks held.
342 */
343static void scsi_single_lun_run(struct scsi_device *current_sdev)
344{
345	struct Scsi_Host *shost = current_sdev->host;
346	struct scsi_device *sdev, *tmp;
347	struct scsi_target *starget = scsi_target(current_sdev);
348	unsigned long flags;
349
350	spin_lock_irqsave(shost->host_lock, flags);
351	starget->starget_sdev_user = NULL;
352	spin_unlock_irqrestore(shost->host_lock, flags);
353
354	/*
355	 * Call blk_run_queue for all LUNs on the target, starting with
356	 * current_sdev. We race with others (to set starget_sdev_user),
357	 * but in most cases, we will be first. Ideally, each LU on the
358	 * target would get some limited time or requests on the target.
359	 */
360	scsi_kick_queue(current_sdev->request_queue);
361
362	spin_lock_irqsave(shost->host_lock, flags);
363	if (starget->starget_sdev_user)
364		goto out;
365	list_for_each_entry_safe(sdev, tmp, &starget->devices,
366			same_target_siblings) {
367		if (sdev == current_sdev)
368			continue;
369		if (scsi_device_get(sdev))
370			continue;
371
372		spin_unlock_irqrestore(shost->host_lock, flags);
373		scsi_kick_queue(sdev->request_queue);
374		spin_lock_irqsave(shost->host_lock, flags);
375
376		scsi_device_put(sdev);
377	}
378 out:
379	spin_unlock_irqrestore(shost->host_lock, flags);
380}
381
382static inline bool scsi_device_is_busy(struct scsi_device *sdev)
383{
384	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
385		return true;
386	if (atomic_read(&sdev->device_blocked) > 0)
387		return true;
388	return false;
389}
390
391static inline bool scsi_target_is_busy(struct scsi_target *starget)
392{
393	if (starget->can_queue > 0) {
394		if (atomic_read(&starget->target_busy) >= starget->can_queue)
395			return true;
396		if (atomic_read(&starget->target_blocked) > 0)
397			return true;
398	}
399	return false;
400}
401
402static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
403{
404	if (shost->can_queue > 0 &&
405	    atomic_read(&shost->host_busy) >= shost->can_queue)
406		return true;
407	if (atomic_read(&shost->host_blocked) > 0)
408		return true;
409	if (shost->host_self_blocked)
410		return true;
411	return false;
412}
413
414static void scsi_starved_list_run(struct Scsi_Host *shost)
415{
416	LIST_HEAD(starved_list);
417	struct scsi_device *sdev;
418	unsigned long flags;
419
420	spin_lock_irqsave(shost->host_lock, flags);
421	list_splice_init(&shost->starved_list, &starved_list);
422
423	while (!list_empty(&starved_list)) {
424		struct request_queue *slq;
425
426		/*
427		 * As long as shost is accepting commands and we have
428		 * starved queues, call blk_run_queue. scsi_request_fn
429		 * drops the queue_lock and can add us back to the
430		 * starved_list.
431		 *
432		 * host_lock protects the starved_list and starved_entry.
433		 * scsi_request_fn must get the host_lock before checking
434		 * or modifying starved_list or starved_entry.
435		 */
436		if (scsi_host_is_busy(shost))
437			break;
438
439		sdev = list_entry(starved_list.next,
440				  struct scsi_device, starved_entry);
441		list_del_init(&sdev->starved_entry);
442		if (scsi_target_is_busy(scsi_target(sdev))) {
443			list_move_tail(&sdev->starved_entry,
444				       &shost->starved_list);
445			continue;
446		}
447
448		/*
449		 * Once we drop the host lock, a racing scsi_remove_device()
450		 * call may remove the sdev from the starved list and destroy
451		 * it and the queue.  Mitigate by taking a reference to the
452		 * queue and never touching the sdev again after we drop the
453		 * host lock.  Note: if __scsi_remove_device() invokes
454		 * blk_cleanup_queue() before the queue is run from this
455		 * function then blk_run_queue() will return immediately since
456		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
457		 */
458		slq = sdev->request_queue;
459		if (!blk_get_queue(slq))
460			continue;
461		spin_unlock_irqrestore(shost->host_lock, flags);
462
463		scsi_kick_queue(slq);
464		blk_put_queue(slq);
465
466		spin_lock_irqsave(shost->host_lock, flags);
467	}
468	/* put any unprocessed entries back */
469	list_splice(&starved_list, &shost->starved_list);
470	spin_unlock_irqrestore(shost->host_lock, flags);
471}
472
473/*
474 * Function:   scsi_run_queue()
475 *
476 * Purpose:    Select a proper request queue to serve next
477 *
478 * Arguments:  q       - last request's queue
479 *
480 * Returns:     Nothing
481 *
482 * Notes:      The previous command was completely finished, start
483 *             a new one if possible.
484 */
485static void scsi_run_queue(struct request_queue *q)
486{
487	struct scsi_device *sdev = q->queuedata;
488
489	if (scsi_target(sdev)->single_lun)
490		scsi_single_lun_run(sdev);
491	if (!list_empty(&sdev->host->starved_list))
492		scsi_starved_list_run(sdev->host);
493
494	if (q->mq_ops)
495		blk_mq_start_stopped_hw_queues(q, false);
496	else
497		blk_run_queue(q);
498}
499
500void scsi_requeue_run_queue(struct work_struct *work)
501{
502	struct scsi_device *sdev;
503	struct request_queue *q;
504
505	sdev = container_of(work, struct scsi_device, requeue_work);
506	q = sdev->request_queue;
507	scsi_run_queue(q);
508}
509
510/*
511 * Function:	scsi_requeue_command()
512 *
513 * Purpose:	Handle post-processing of completed commands.
514 *
515 * Arguments:	q	- queue to operate on
516 *		cmd	- command that may need to be requeued.
517 *
518 * Returns:	Nothing
519 *
520 * Notes:	After command completion, there may be blocks left
521 *		over which weren't finished by the previous command
522 *		this can be for a number of reasons - the main one is
523 *		I/O errors in the middle of the request, in which case
524 *		we need to request the blocks that come after the bad
525 *		sector.
526 * Notes:	Upon return, cmd is a stale pointer.
527 */
528static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
529{
530	struct scsi_device *sdev = cmd->device;
531	struct request *req = cmd->request;
532	unsigned long flags;
533
534	spin_lock_irqsave(q->queue_lock, flags);
535	blk_unprep_request(req);
536	req->special = NULL;
537	scsi_put_command(cmd);
538	blk_requeue_request(q, req);
539	spin_unlock_irqrestore(q->queue_lock, flags);
540
541	scsi_run_queue(q);
542
543	put_device(&sdev->sdev_gendev);
544}
545
546void scsi_run_host_queues(struct Scsi_Host *shost)
547{
548	struct scsi_device *sdev;
549
550	shost_for_each_device(sdev, shost)
551		scsi_run_queue(sdev->request_queue);
552}
553
554static inline unsigned int scsi_sgtable_index(unsigned short nents)
555{
556	unsigned int index;
557
558	BUG_ON(nents > SCSI_MAX_SG_SEGMENTS);
559
560	if (nents <= 8)
561		index = 0;
562	else
563		index = get_count_order(nents) - 3;
564
565	return index;
566}
567
568static void scsi_sg_free(struct scatterlist *sgl, unsigned int nents)
569{
570	struct scsi_host_sg_pool *sgp;
571
572	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
573	mempool_free(sgl, sgp->pool);
574}
575
576static struct scatterlist *scsi_sg_alloc(unsigned int nents, gfp_t gfp_mask)
577{
578	struct scsi_host_sg_pool *sgp;
579
580	sgp = scsi_sg_pools + scsi_sgtable_index(nents);
581	return mempool_alloc(sgp->pool, gfp_mask);
582}
583
584static void scsi_free_sgtable(struct scsi_data_buffer *sdb, bool mq)
585{
586	if (mq && sdb->table.orig_nents <= SCSI_MAX_SG_SEGMENTS)
587		return;
588	__sg_free_table(&sdb->table, SCSI_MAX_SG_SEGMENTS, mq, scsi_sg_free);
589}
590
591static int scsi_alloc_sgtable(struct scsi_data_buffer *sdb, int nents, bool mq)
592{
593	struct scatterlist *first_chunk = NULL;
594	int ret;
595
596	BUG_ON(!nents);
597
598	if (mq) {
599		if (nents <= SCSI_MAX_SG_SEGMENTS) {
600			sdb->table.nents = sdb->table.orig_nents = nents;
601			sg_init_table(sdb->table.sgl, nents);
602			return 0;
603		}
604		first_chunk = sdb->table.sgl;
605	}
606
607	ret = __sg_alloc_table(&sdb->table, nents, SCSI_MAX_SG_SEGMENTS,
608			       first_chunk, GFP_ATOMIC, scsi_sg_alloc);
609	if (unlikely(ret))
610		scsi_free_sgtable(sdb, mq);
611	return ret;
612}
613
614static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
615{
616	if (cmd->request->cmd_type == REQ_TYPE_FS) {
617		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
618
619		if (drv->uninit_command)
620			drv->uninit_command(cmd);
621	}
622}
623
624static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
625{
626	if (cmd->sdb.table.nents)
627		scsi_free_sgtable(&cmd->sdb, true);
628	if (cmd->request->next_rq && cmd->request->next_rq->special)
629		scsi_free_sgtable(cmd->request->next_rq->special, true);
630	if (scsi_prot_sg_count(cmd))
631		scsi_free_sgtable(cmd->prot_sdb, true);
632}
633
634static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
635{
636	struct scsi_device *sdev = cmd->device;
637	struct Scsi_Host *shost = sdev->host;
638	unsigned long flags;
639
640	scsi_mq_free_sgtables(cmd);
641	scsi_uninit_cmd(cmd);
642
643	if (shost->use_cmd_list) {
644		BUG_ON(list_empty(&cmd->list));
645		spin_lock_irqsave(&sdev->list_lock, flags);
646		list_del_init(&cmd->list);
647		spin_unlock_irqrestore(&sdev->list_lock, flags);
648	}
649}
650
651/*
652 * Function:    scsi_release_buffers()
653 *
654 * Purpose:     Free resources allocate for a scsi_command.
655 *
656 * Arguments:   cmd	- command that we are bailing.
657 *
658 * Lock status: Assumed that no lock is held upon entry.
659 *
660 * Returns:     Nothing
661 *
662 * Notes:       In the event that an upper level driver rejects a
663 *		command, we must release resources allocated during
664 *		the __init_io() function.  Primarily this would involve
665 *		the scatter-gather table.
666 */
667static void scsi_release_buffers(struct scsi_cmnd *cmd)
668{
669	if (cmd->sdb.table.nents)
670		scsi_free_sgtable(&cmd->sdb, false);
671
672	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
673
674	if (scsi_prot_sg_count(cmd))
675		scsi_free_sgtable(cmd->prot_sdb, false);
676}
677
678static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
679{
680	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
681
682	scsi_free_sgtable(bidi_sdb, false);
683	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
684	cmd->request->next_rq->special = NULL;
685}
686
687static bool scsi_end_request(struct request *req, int error,
688		unsigned int bytes, unsigned int bidi_bytes)
689{
690	struct scsi_cmnd *cmd = req->special;
691	struct scsi_device *sdev = cmd->device;
692	struct request_queue *q = sdev->request_queue;
693
694	if (blk_update_request(req, error, bytes))
695		return true;
696
697	/* Bidi request must be completed as a whole */
698	if (unlikely(bidi_bytes) &&
699	    blk_update_request(req->next_rq, error, bidi_bytes))
700		return true;
701
702	if (blk_queue_add_random(q))
703		add_disk_randomness(req->rq_disk);
704
705	if (req->mq_ctx) {
706		/*
707		 * In the MQ case the command gets freed by __blk_mq_end_request,
708		 * so we have to do all cleanup that depends on it earlier.
709		 *
710		 * We also can't kick the queues from irq context, so we
711		 * will have to defer it to a workqueue.
712		 */
713		scsi_mq_uninit_cmd(cmd);
714
715		__blk_mq_end_request(req, error);
716
717		if (scsi_target(sdev)->single_lun ||
718		    !list_empty(&sdev->host->starved_list))
719			kblockd_schedule_work(&sdev->requeue_work);
720		else
721			blk_mq_start_stopped_hw_queues(q, true);
722	} else {
723		unsigned long flags;
724
725		if (bidi_bytes)
726			scsi_release_bidi_buffers(cmd);
727
728		spin_lock_irqsave(q->queue_lock, flags);
729		blk_finish_request(req, error);
730		spin_unlock_irqrestore(q->queue_lock, flags);
731
732		scsi_release_buffers(cmd);
733
734		scsi_put_command(cmd);
735		scsi_run_queue(q);
736	}
737
738	put_device(&sdev->sdev_gendev);
739	return false;
740}
741
742/**
743 * __scsi_error_from_host_byte - translate SCSI error code into errno
744 * @cmd:	SCSI command (unused)
745 * @result:	scsi error code
746 *
747 * Translate SCSI error code into standard UNIX errno.
748 * Return values:
749 * -ENOLINK	temporary transport failure
750 * -EREMOTEIO	permanent target failure, do not retry
751 * -EBADE	permanent nexus failure, retry on other path
752 * -ENOSPC	No write space available
753 * -ENODATA	Medium error
754 * -EIO		unspecified I/O error
755 */
756static int __scsi_error_from_host_byte(struct scsi_cmnd *cmd, int result)
757{
758	int error = 0;
759
760	switch(host_byte(result)) {
761	case DID_TRANSPORT_FAILFAST:
762		error = -ENOLINK;
763		break;
764	case DID_TARGET_FAILURE:
765		set_host_byte(cmd, DID_OK);
766		error = -EREMOTEIO;
767		break;
768	case DID_NEXUS_FAILURE:
769		set_host_byte(cmd, DID_OK);
770		error = -EBADE;
771		break;
772	case DID_ALLOC_FAILURE:
773		set_host_byte(cmd, DID_OK);
774		error = -ENOSPC;
775		break;
776	case DID_MEDIUM_ERROR:
777		set_host_byte(cmd, DID_OK);
778		error = -ENODATA;
779		break;
780	default:
781		error = -EIO;
782		break;
783	}
784
785	return error;
786}
787
788/*
789 * Function:    scsi_io_completion()
790 *
791 * Purpose:     Completion processing for block device I/O requests.
792 *
793 * Arguments:   cmd   - command that is finished.
794 *
795 * Lock status: Assumed that no lock is held upon entry.
796 *
797 * Returns:     Nothing
798 *
799 * Notes:       We will finish off the specified number of sectors.  If we
800 *		are done, the command block will be released and the queue
801 *		function will be goosed.  If we are not done then we have to
802 *		figure out what to do next:
803 *
804 *		a) We can call scsi_requeue_command().  The request
805 *		   will be unprepared and put back on the queue.  Then
806 *		   a new command will be created for it.  This should
807 *		   be used if we made forward progress, or if we want
808 *		   to switch from READ(10) to READ(6) for example.
809 *
810 *		b) We can call __scsi_queue_insert().  The request will
811 *		   be put back on the queue and retried using the same
812 *		   command as before, possibly after a delay.
813 *
814 *		c) We can call scsi_end_request() with -EIO to fail
815 *		   the remainder of the request.
816 */
817void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
818{
819	int result = cmd->result;
820	struct request_queue *q = cmd->device->request_queue;
821	struct request *req = cmd->request;
822	int error = 0;
823	struct scsi_sense_hdr sshdr;
824	bool sense_valid = false;
825	int sense_deferred = 0, level = 0;
826	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
827	      ACTION_DELAYED_RETRY} action;
828	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
829
830	if (result) {
831		sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
832		if (sense_valid)
833			sense_deferred = scsi_sense_is_deferred(&sshdr);
834	}
835
836	if (req->cmd_type == REQ_TYPE_BLOCK_PC) { /* SG_IO ioctl from block level */
837		if (result) {
838			if (sense_valid && req->sense) {
839				/*
840				 * SG_IO wants current and deferred errors
841				 */
842				int len = 8 + cmd->sense_buffer[7];
843
844				if (len > SCSI_SENSE_BUFFERSIZE)
845					len = SCSI_SENSE_BUFFERSIZE;
846				memcpy(req->sense, cmd->sense_buffer,  len);
847				req->sense_len = len;
848			}
849			if (!sense_deferred)
850				error = __scsi_error_from_host_byte(cmd, result);
851		}
852		/*
853		 * __scsi_error_from_host_byte may have reset the host_byte
854		 */
855		req->errors = cmd->result;
856
857		req->resid_len = scsi_get_resid(cmd);
858
859		if (scsi_bidi_cmnd(cmd)) {
860			/*
861			 * Bidi commands Must be complete as a whole,
862			 * both sides at once.
863			 */
864			req->next_rq->resid_len = scsi_in(cmd)->resid;
865			if (scsi_end_request(req, 0, blk_rq_bytes(req),
866					blk_rq_bytes(req->next_rq)))
867				BUG();
868			return;
869		}
870	} else if (blk_rq_bytes(req) == 0 && result && !sense_deferred) {
871		/*
872		 * Certain non BLOCK_PC requests are commands that don't
873		 * actually transfer anything (FLUSH), so cannot use
874		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
875		 * This sets the error explicitly for the problem case.
876		 */
877		error = __scsi_error_from_host_byte(cmd, result);
878	}
879
880	/* no bidi support for !REQ_TYPE_BLOCK_PC yet */
881	BUG_ON(blk_bidi_rq(req));
882
883	/*
884	 * Next deal with any sectors which we were able to correctly
885	 * handle.
886	 */
887	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
888		"%u sectors total, %d bytes done.\n",
889		blk_rq_sectors(req), good_bytes));
890
891	/*
892	 * Recovered errors need reporting, but they're always treated
893	 * as success, so fiddle the result code here.  For BLOCK_PC
894	 * we already took a copy of the original into rq->errors which
895	 * is what gets returned to the user
896	 */
897	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
898		/* if ATA PASS-THROUGH INFORMATION AVAILABLE skip
899		 * print since caller wants ATA registers. Only occurs on
900		 * SCSI ATA PASS_THROUGH commands when CK_COND=1
901		 */
902		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
903			;
904		else if (!(req->cmd_flags & REQ_QUIET))
905			scsi_print_sense(cmd);
906		result = 0;
907		/* BLOCK_PC may have set error */
908		error = 0;
909	}
910
911	/*
912	 * special case: failed zero length commands always need to
913	 * drop down into the retry code. Otherwise, if we finished
914	 * all bytes in the request we are done now.
915	 */
916	if (!(blk_rq_bytes(req) == 0 && error) &&
917	    !scsi_end_request(req, error, good_bytes, 0))
918		return;
919
920	/*
921	 * Kill remainder if no retrys.
922	 */
923	if (error && scsi_noretry_cmd(cmd)) {
924		if (scsi_end_request(req, error, blk_rq_bytes(req), 0))
925			BUG();
926		return;
927	}
928
929	/*
930	 * If there had been no error, but we have leftover bytes in the
931	 * requeues just queue the command up again.
932	 */
933	if (result == 0)
934		goto requeue;
935
936	error = __scsi_error_from_host_byte(cmd, result);
937
938	if (host_byte(result) == DID_RESET) {
939		/* Third party bus reset or reset for error recovery
940		 * reasons.  Just retry the command and see what
941		 * happens.
942		 */
943		action = ACTION_RETRY;
944	} else if (sense_valid && !sense_deferred) {
945		switch (sshdr.sense_key) {
946		case UNIT_ATTENTION:
947			if (cmd->device->removable) {
948				/* Detected disc change.  Set a bit
949				 * and quietly refuse further access.
950				 */
951				cmd->device->changed = 1;
952				action = ACTION_FAIL;
953			} else {
954				/* Must have been a power glitch, or a
955				 * bus reset.  Could not have been a
956				 * media change, so we just retry the
957				 * command and see what happens.
958				 */
959				action = ACTION_RETRY;
960			}
961			break;
962		case ILLEGAL_REQUEST:
963			/* If we had an ILLEGAL REQUEST returned, then
964			 * we may have performed an unsupported
965			 * command.  The only thing this should be
966			 * would be a ten byte read where only a six
967			 * byte read was supported.  Also, on a system
968			 * where READ CAPACITY failed, we may have
969			 * read past the end of the disk.
970			 */
971			if ((cmd->device->use_10_for_rw &&
972			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
973			    (cmd->cmnd[0] == READ_10 ||
974			     cmd->cmnd[0] == WRITE_10)) {
975				/* This will issue a new 6-byte command. */
976				cmd->device->use_10_for_rw = 0;
977				action = ACTION_REPREP;
978			} else if (sshdr.asc == 0x10) /* DIX */ {
979				action = ACTION_FAIL;
980				error = -EILSEQ;
981			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
982			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
983				action = ACTION_FAIL;
984				error = -EREMOTEIO;
985			} else
986				action = ACTION_FAIL;
987			break;
988		case ABORTED_COMMAND:
989			action = ACTION_FAIL;
990			if (sshdr.asc == 0x10) /* DIF */
991				error = -EILSEQ;
992			break;
993		case NOT_READY:
994			/* If the device is in the process of becoming
995			 * ready, or has a temporary blockage, retry.
996			 */
997			if (sshdr.asc == 0x04) {
998				switch (sshdr.ascq) {
999				case 0x01: /* becoming ready */
1000				case 0x04: /* format in progress */
1001				case 0x05: /* rebuild in progress */
1002				case 0x06: /* recalculation in progress */
1003				case 0x07: /* operation in progress */
1004				case 0x08: /* Long write in progress */
1005				case 0x09: /* self test in progress */
1006				case 0x14: /* space allocation in progress */
1007					action = ACTION_DELAYED_RETRY;
1008					break;
1009				default:
1010					action = ACTION_FAIL;
1011					break;
1012				}
1013			} else
1014				action = ACTION_FAIL;
1015			break;
1016		case VOLUME_OVERFLOW:
1017			/* See SSC3rXX or current. */
1018			action = ACTION_FAIL;
1019			break;
1020		default:
1021			action = ACTION_FAIL;
1022			break;
1023		}
1024	} else
1025		action = ACTION_FAIL;
1026
1027	if (action != ACTION_FAIL &&
1028	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
1029		action = ACTION_FAIL;
1030
1031	switch (action) {
1032	case ACTION_FAIL:
1033		/* Give up and fail the remainder of the request */
1034		if (!(req->cmd_flags & REQ_QUIET)) {
1035			static DEFINE_RATELIMIT_STATE(_rs,
1036					DEFAULT_RATELIMIT_INTERVAL,
1037					DEFAULT_RATELIMIT_BURST);
1038
1039			if (unlikely(scsi_logging_level))
1040				level = SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
1041						       SCSI_LOG_MLCOMPLETE_BITS);
1042
1043			/*
1044			 * if logging is enabled the failure will be printed
1045			 * in scsi_log_completion(), so avoid duplicate messages
1046			 */
1047			if (!level && __ratelimit(&_rs)) {
1048				scsi_print_result(cmd, NULL, FAILED);
1049				if (driver_byte(result) & DRIVER_SENSE)
1050					scsi_print_sense(cmd);
1051				scsi_print_command(cmd);
1052			}
1053		}
1054		if (!scsi_end_request(req, error, blk_rq_err_bytes(req), 0))
1055			return;
1056		/*FALLTHRU*/
1057	case ACTION_REPREP:
1058	requeue:
1059		/* Unprep the request and put it back at the head of the queue.
1060		 * A new command will be prepared and issued.
1061		 */
1062		if (q->mq_ops) {
1063			cmd->request->cmd_flags &= ~REQ_DONTPREP;
1064			scsi_mq_uninit_cmd(cmd);
1065			scsi_mq_requeue_cmd(cmd);
1066		} else {
1067			scsi_release_buffers(cmd);
1068			scsi_requeue_command(q, cmd);
1069		}
1070		break;
1071	case ACTION_RETRY:
1072		/* Retry the same command immediately */
1073		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, 0);
1074		break;
1075	case ACTION_DELAYED_RETRY:
1076		/* Retry the same command after a delay */
1077		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, 0);
1078		break;
1079	}
1080}
1081
1082static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1083{
1084	int count;
1085
1086	/*
1087	 * If sg table allocation fails, requeue request later.
1088	 */
1089	if (unlikely(scsi_alloc_sgtable(sdb, req->nr_phys_segments,
1090					req->mq_ctx != NULL)))
1091		return BLKPREP_DEFER;
1092
1093	/*
1094	 * Next, walk the list, and fill in the addresses and sizes of
1095	 * each segment.
1096	 */
1097	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1098	BUG_ON(count > sdb->table.nents);
1099	sdb->table.nents = count;
1100	sdb->length = blk_rq_bytes(req);
1101	return BLKPREP_OK;
1102}
1103
1104/*
1105 * Function:    scsi_init_io()
1106 *
1107 * Purpose:     SCSI I/O initialize function.
1108 *
1109 * Arguments:   cmd   - Command descriptor we wish to initialize
1110 *
1111 * Returns:     0 on success
1112 *		BLKPREP_DEFER if the failure is retryable
1113 *		BLKPREP_KILL if the failure is fatal
1114 */
1115int scsi_init_io(struct scsi_cmnd *cmd)
1116{
1117	struct scsi_device *sdev = cmd->device;
1118	struct request *rq = cmd->request;
1119	bool is_mq = (rq->mq_ctx != NULL);
1120	int error;
1121
1122	BUG_ON(!rq->nr_phys_segments);
1123
1124	error = scsi_init_sgtable(rq, &cmd->sdb);
1125	if (error)
1126		goto err_exit;
1127
1128	if (blk_bidi_rq(rq)) {
1129		if (!rq->q->mq_ops) {
1130			struct scsi_data_buffer *bidi_sdb =
1131				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1132			if (!bidi_sdb) {
1133				error = BLKPREP_DEFER;
1134				goto err_exit;
1135			}
1136
1137			rq->next_rq->special = bidi_sdb;
1138		}
1139
1140		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1141		if (error)
1142			goto err_exit;
1143	}
1144
1145	if (blk_integrity_rq(rq)) {
1146		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1147		int ivecs, count;
1148
1149		if (prot_sdb == NULL) {
1150			/*
1151			 * This can happen if someone (e.g. multipath)
1152			 * queues a command to a device on an adapter
1153			 * that does not support DIX.
1154			 */
1155			WARN_ON_ONCE(1);
1156			error = BLKPREP_KILL;
1157			goto err_exit;
1158		}
1159
1160		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1161
1162		if (scsi_alloc_sgtable(prot_sdb, ivecs, is_mq)) {
1163			error = BLKPREP_DEFER;
1164			goto err_exit;
1165		}
1166
1167		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1168						prot_sdb->table.sgl);
1169		BUG_ON(unlikely(count > ivecs));
1170		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1171
1172		cmd->prot_sdb = prot_sdb;
1173		cmd->prot_sdb->table.nents = count;
1174	}
1175
1176	return BLKPREP_OK;
1177err_exit:
1178	if (is_mq) {
1179		scsi_mq_free_sgtables(cmd);
1180	} else {
1181		scsi_release_buffers(cmd);
1182		cmd->request->special = NULL;
1183		scsi_put_command(cmd);
1184		put_device(&sdev->sdev_gendev);
1185	}
1186	return error;
1187}
1188EXPORT_SYMBOL(scsi_init_io);
1189
1190static struct scsi_cmnd *scsi_get_cmd_from_req(struct scsi_device *sdev,
1191		struct request *req)
1192{
1193	struct scsi_cmnd *cmd;
1194
1195	if (!req->special) {
1196		/* Bail if we can't get a reference to the device */
1197		if (!get_device(&sdev->sdev_gendev))
1198			return NULL;
1199
1200		cmd = scsi_get_command(sdev, GFP_ATOMIC);
1201		if (unlikely(!cmd)) {
1202			put_device(&sdev->sdev_gendev);
1203			return NULL;
1204		}
1205		req->special = cmd;
1206	} else {
1207		cmd = req->special;
1208	}
1209
1210	/* pull a tag out of the request if we have one */
1211	cmd->tag = req->tag;
1212	cmd->request = req;
1213
1214	cmd->cmnd = req->cmd;
1215	cmd->prot_op = SCSI_PROT_NORMAL;
1216
1217	return cmd;
1218}
1219
1220static int scsi_setup_blk_pc_cmnd(struct scsi_device *sdev, struct request *req)
1221{
1222	struct scsi_cmnd *cmd = req->special;
1223
1224	/*
1225	 * BLOCK_PC requests may transfer data, in which case they must
1226	 * a bio attached to them.  Or they might contain a SCSI command
1227	 * that does not transfer data, in which case they may optionally
1228	 * submit a request without an attached bio.
1229	 */
1230	if (req->bio) {
1231		int ret = scsi_init_io(cmd);
1232		if (unlikely(ret))
1233			return ret;
1234	} else {
1235		BUG_ON(blk_rq_bytes(req));
1236
1237		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1238	}
1239
1240	cmd->cmd_len = req->cmd_len;
1241	cmd->transfersize = blk_rq_bytes(req);
1242	cmd->allowed = req->retries;
1243	return BLKPREP_OK;
1244}
1245
1246/*
1247 * Setup a REQ_TYPE_FS command.  These are simple request from filesystems
1248 * that still need to be translated to SCSI CDBs from the ULD.
1249 */
1250static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1251{
1252	struct scsi_cmnd *cmd = req->special;
1253
1254	if (unlikely(sdev->scsi_dh_data && sdev->scsi_dh_data->scsi_dh
1255			 && sdev->scsi_dh_data->scsi_dh->prep_fn)) {
1256		int ret = sdev->scsi_dh_data->scsi_dh->prep_fn(sdev, req);
1257		if (ret != BLKPREP_OK)
1258			return ret;
1259	}
1260
1261	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1262	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1263}
1264
1265static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1266{
1267	struct scsi_cmnd *cmd = req->special;
1268
1269	if (!blk_rq_bytes(req))
1270		cmd->sc_data_direction = DMA_NONE;
1271	else if (rq_data_dir(req) == WRITE)
1272		cmd->sc_data_direction = DMA_TO_DEVICE;
1273	else
1274		cmd->sc_data_direction = DMA_FROM_DEVICE;
1275
1276	switch (req->cmd_type) {
1277	case REQ_TYPE_FS:
1278		return scsi_setup_fs_cmnd(sdev, req);
1279	case REQ_TYPE_BLOCK_PC:
1280		return scsi_setup_blk_pc_cmnd(sdev, req);
1281	default:
1282		return BLKPREP_KILL;
1283	}
1284}
1285
1286static int
1287scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1288{
1289	int ret = BLKPREP_OK;
1290
1291	/*
1292	 * If the device is not in running state we will reject some
1293	 * or all commands.
1294	 */
1295	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1296		switch (sdev->sdev_state) {
1297		case SDEV_OFFLINE:
1298		case SDEV_TRANSPORT_OFFLINE:
1299			/*
1300			 * If the device is offline we refuse to process any
1301			 * commands.  The device must be brought online
1302			 * before trying any recovery commands.
1303			 */
1304			sdev_printk(KERN_ERR, sdev,
1305				    "rejecting I/O to offline device\n");
1306			ret = BLKPREP_KILL;
1307			break;
1308		case SDEV_DEL:
1309			/*
1310			 * If the device is fully deleted, we refuse to
1311			 * process any commands as well.
1312			 */
1313			sdev_printk(KERN_ERR, sdev,
1314				    "rejecting I/O to dead device\n");
1315			ret = BLKPREP_KILL;
1316			break;
1317		case SDEV_BLOCK:
1318		case SDEV_CREATED_BLOCK:
1319			ret = BLKPREP_DEFER;
1320			break;
1321		case SDEV_QUIESCE:
1322			/*
1323			 * If the devices is blocked we defer normal commands.
1324			 */
1325			if (!(req->cmd_flags & REQ_PREEMPT))
1326				ret = BLKPREP_DEFER;
1327			break;
1328		default:
1329			/*
1330			 * For any other not fully online state we only allow
1331			 * special commands.  In particular any user initiated
1332			 * command is not allowed.
1333			 */
1334			if (!(req->cmd_flags & REQ_PREEMPT))
1335				ret = BLKPREP_KILL;
1336			break;
1337		}
1338	}
1339	return ret;
1340}
1341
1342static int
1343scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1344{
1345	struct scsi_device *sdev = q->queuedata;
1346
1347	switch (ret) {
1348	case BLKPREP_KILL:
1349		req->errors = DID_NO_CONNECT << 16;
1350		/* release the command and kill it */
1351		if (req->special) {
1352			struct scsi_cmnd *cmd = req->special;
1353			scsi_release_buffers(cmd);
1354			scsi_put_command(cmd);
1355			put_device(&sdev->sdev_gendev);
1356			req->special = NULL;
1357		}
1358		break;
1359	case BLKPREP_DEFER:
1360		/*
1361		 * If we defer, the blk_peek_request() returns NULL, but the
1362		 * queue must be restarted, so we schedule a callback to happen
1363		 * shortly.
1364		 */
1365		if (atomic_read(&sdev->device_busy) == 0)
1366			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1367		break;
1368	default:
1369		req->cmd_flags |= REQ_DONTPREP;
1370	}
1371
1372	return ret;
1373}
1374
1375static int scsi_prep_fn(struct request_queue *q, struct request *req)
1376{
1377	struct scsi_device *sdev = q->queuedata;
1378	struct scsi_cmnd *cmd;
1379	int ret;
1380
1381	ret = scsi_prep_state_check(sdev, req);
1382	if (ret != BLKPREP_OK)
1383		goto out;
1384
1385	cmd = scsi_get_cmd_from_req(sdev, req);
1386	if (unlikely(!cmd)) {
1387		ret = BLKPREP_DEFER;
1388		goto out;
1389	}
1390
1391	ret = scsi_setup_cmnd(sdev, req);
1392out:
1393	return scsi_prep_return(q, req, ret);
1394}
1395
1396static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1397{
1398	scsi_uninit_cmd(req->special);
1399}
1400
1401/*
1402 * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1403 * return 0.
1404 *
1405 * Called with the queue_lock held.
1406 */
1407static inline int scsi_dev_queue_ready(struct request_queue *q,
1408				  struct scsi_device *sdev)
1409{
1410	unsigned int busy;
1411
1412	busy = atomic_inc_return(&sdev->device_busy) - 1;
1413	if (atomic_read(&sdev->device_blocked)) {
1414		if (busy)
1415			goto out_dec;
1416
1417		/*
1418		 * unblock after device_blocked iterates to zero
1419		 */
1420		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1421			/*
1422			 * For the MQ case we take care of this in the caller.
1423			 */
1424			if (!q->mq_ops)
1425				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1426			goto out_dec;
1427		}
1428		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1429				   "unblocking device at zero depth\n"));
1430	}
1431
1432	if (busy >= sdev->queue_depth)
1433		goto out_dec;
1434
1435	return 1;
1436out_dec:
1437	atomic_dec(&sdev->device_busy);
1438	return 0;
1439}
1440
1441/*
1442 * scsi_target_queue_ready: checks if there we can send commands to target
1443 * @sdev: scsi device on starget to check.
1444 */
1445static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1446					   struct scsi_device *sdev)
1447{
1448	struct scsi_target *starget = scsi_target(sdev);
1449	unsigned int busy;
1450
1451	if (starget->single_lun) {
1452		spin_lock_irq(shost->host_lock);
1453		if (starget->starget_sdev_user &&
1454		    starget->starget_sdev_user != sdev) {
1455			spin_unlock_irq(shost->host_lock);
1456			return 0;
1457		}
1458		starget->starget_sdev_user = sdev;
1459		spin_unlock_irq(shost->host_lock);
1460	}
1461
1462	if (starget->can_queue <= 0)
1463		return 1;
1464
1465	busy = atomic_inc_return(&starget->target_busy) - 1;
1466	if (atomic_read(&starget->target_blocked) > 0) {
1467		if (busy)
1468			goto starved;
1469
1470		/*
1471		 * unblock after target_blocked iterates to zero
1472		 */
1473		if (atomic_dec_return(&starget->target_blocked) > 0)
1474			goto out_dec;
1475
1476		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1477				 "unblocking target at zero depth\n"));
1478	}
1479
1480	if (busy >= starget->can_queue)
1481		goto starved;
1482
1483	return 1;
1484
1485starved:
1486	spin_lock_irq(shost->host_lock);
1487	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1488	spin_unlock_irq(shost->host_lock);
1489out_dec:
1490	if (starget->can_queue > 0)
1491		atomic_dec(&starget->target_busy);
1492	return 0;
1493}
1494
1495/*
1496 * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1497 * return 0. We must end up running the queue again whenever 0 is
1498 * returned, else IO can hang.
1499 */
1500static inline int scsi_host_queue_ready(struct request_queue *q,
1501				   struct Scsi_Host *shost,
1502				   struct scsi_device *sdev)
1503{
1504	unsigned int busy;
1505
1506	if (scsi_host_in_recovery(shost))
1507		return 0;
1508
1509	busy = atomic_inc_return(&shost->host_busy) - 1;
1510	if (atomic_read(&shost->host_blocked) > 0) {
1511		if (busy)
1512			goto starved;
1513
1514		/*
1515		 * unblock after host_blocked iterates to zero
1516		 */
1517		if (atomic_dec_return(&shost->host_blocked) > 0)
1518			goto out_dec;
1519
1520		SCSI_LOG_MLQUEUE(3,
1521			shost_printk(KERN_INFO, shost,
1522				     "unblocking host at zero depth\n"));
1523	}
1524
1525	if (shost->can_queue > 0 && busy >= shost->can_queue)
1526		goto starved;
1527	if (shost->host_self_blocked)
1528		goto starved;
1529
1530	/* We're OK to process the command, so we can't be starved */
1531	if (!list_empty(&sdev->starved_entry)) {
1532		spin_lock_irq(shost->host_lock);
1533		if (!list_empty(&sdev->starved_entry))
1534			list_del_init(&sdev->starved_entry);
1535		spin_unlock_irq(shost->host_lock);
1536	}
1537
1538	return 1;
1539
1540starved:
1541	spin_lock_irq(shost->host_lock);
1542	if (list_empty(&sdev->starved_entry))
1543		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1544	spin_unlock_irq(shost->host_lock);
1545out_dec:
1546	atomic_dec(&shost->host_busy);
1547	return 0;
1548}
1549
1550/*
1551 * Busy state exporting function for request stacking drivers.
1552 *
1553 * For efficiency, no lock is taken to check the busy state of
1554 * shost/starget/sdev, since the returned value is not guaranteed and
1555 * may be changed after request stacking drivers call the function,
1556 * regardless of taking lock or not.
1557 *
1558 * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1559 * needs to return 'not busy'. Otherwise, request stacking drivers
1560 * may hold requests forever.
1561 */
1562static int scsi_lld_busy(struct request_queue *q)
1563{
1564	struct scsi_device *sdev = q->queuedata;
1565	struct Scsi_Host *shost;
1566
1567	if (blk_queue_dying(q))
1568		return 0;
1569
1570	shost = sdev->host;
1571
1572	/*
1573	 * Ignore host/starget busy state.
1574	 * Since block layer does not have a concept of fairness across
1575	 * multiple queues, congestion of host/starget needs to be handled
1576	 * in SCSI layer.
1577	 */
1578	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1579		return 1;
1580
1581	return 0;
1582}
1583
1584/*
1585 * Kill a request for a dead device
1586 */
1587static void scsi_kill_request(struct request *req, struct request_queue *q)
1588{
1589	struct scsi_cmnd *cmd = req->special;
1590	struct scsi_device *sdev;
1591	struct scsi_target *starget;
1592	struct Scsi_Host *shost;
1593
1594	blk_start_request(req);
1595
1596	scmd_printk(KERN_INFO, cmd, "killing request\n");
1597
1598	sdev = cmd->device;
1599	starget = scsi_target(sdev);
1600	shost = sdev->host;
1601	scsi_init_cmd_errh(cmd);
1602	cmd->result = DID_NO_CONNECT << 16;
1603	atomic_inc(&cmd->device->iorequest_cnt);
1604
1605	/*
1606	 * SCSI request completion path will do scsi_device_unbusy(),
1607	 * bump busy counts.  To bump the counters, we need to dance
1608	 * with the locks as normal issue path does.
1609	 */
1610	atomic_inc(&sdev->device_busy);
1611	atomic_inc(&shost->host_busy);
1612	if (starget->can_queue > 0)
1613		atomic_inc(&starget->target_busy);
1614
1615	blk_complete_request(req);
1616}
1617
1618static void scsi_softirq_done(struct request *rq)
1619{
1620	struct scsi_cmnd *cmd = rq->special;
1621	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1622	int disposition;
1623
1624	INIT_LIST_HEAD(&cmd->eh_entry);
1625
1626	atomic_inc(&cmd->device->iodone_cnt);
1627	if (cmd->result)
1628		atomic_inc(&cmd->device->ioerr_cnt);
1629
1630	disposition = scsi_decide_disposition(cmd);
1631	if (disposition != SUCCESS &&
1632	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1633		sdev_printk(KERN_ERR, cmd->device,
1634			    "timing out command, waited %lus\n",
1635			    wait_for/HZ);
1636		disposition = SUCCESS;
1637	}
1638
1639	scsi_log_completion(cmd, disposition);
1640
1641	switch (disposition) {
1642		case SUCCESS:
1643			scsi_finish_command(cmd);
1644			break;
1645		case NEEDS_RETRY:
1646			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1647			break;
1648		case ADD_TO_MLQUEUE:
1649			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1650			break;
1651		default:
1652			if (!scsi_eh_scmd_add(cmd, 0))
1653				scsi_finish_command(cmd);
1654	}
1655}
1656
1657/**
1658 * scsi_dispatch_command - Dispatch a command to the low-level driver.
1659 * @cmd: command block we are dispatching.
1660 *
1661 * Return: nonzero return request was rejected and device's queue needs to be
1662 * plugged.
1663 */
1664static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1665{
1666	struct Scsi_Host *host = cmd->device->host;
1667	int rtn = 0;
1668
1669	atomic_inc(&cmd->device->iorequest_cnt);
1670
1671	/* check if the device is still usable */
1672	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1673		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1674		 * returns an immediate error upwards, and signals
1675		 * that the device is no longer present */
1676		cmd->result = DID_NO_CONNECT << 16;
1677		goto done;
1678	}
1679
1680	/* Check to see if the scsi lld made this device blocked. */
1681	if (unlikely(scsi_device_blocked(cmd->device))) {
1682		/*
1683		 * in blocked state, the command is just put back on
1684		 * the device queue.  The suspend state has already
1685		 * blocked the queue so future requests should not
1686		 * occur until the device transitions out of the
1687		 * suspend state.
1688		 */
1689		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1690			"queuecommand : device blocked\n"));
1691		return SCSI_MLQUEUE_DEVICE_BUSY;
1692	}
1693
1694	/* Store the LUN value in cmnd, if needed. */
1695	if (cmd->device->lun_in_cdb)
1696		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1697			       (cmd->device->lun << 5 & 0xe0);
1698
1699	scsi_log_send(cmd);
1700
1701	/*
1702	 * Before we queue this command, check if the command
1703	 * length exceeds what the host adapter can handle.
1704	 */
1705	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1706		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1707			       "queuecommand : command too long. "
1708			       "cdb_size=%d host->max_cmd_len=%d\n",
1709			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1710		cmd->result = (DID_ABORT << 16);
1711		goto done;
1712	}
1713
1714	if (unlikely(host->shost_state == SHOST_DEL)) {
1715		cmd->result = (DID_NO_CONNECT << 16);
1716		goto done;
1717
1718	}
1719
1720	trace_scsi_dispatch_cmd_start(cmd);
1721	rtn = host->hostt->queuecommand(host, cmd);
1722	if (rtn) {
1723		trace_scsi_dispatch_cmd_error(cmd, rtn);
1724		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1725		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1726			rtn = SCSI_MLQUEUE_HOST_BUSY;
1727
1728		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1729			"queuecommand : request rejected\n"));
1730	}
1731
1732	return rtn;
1733 done:
1734	cmd->scsi_done(cmd);
1735	return 0;
1736}
1737
1738/**
1739 * scsi_done - Invoke completion on finished SCSI command.
1740 * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1741 * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1742 *
1743 * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1744 * which regains ownership of the SCSI command (de facto) from a LLDD, and
1745 * calls blk_complete_request() for further processing.
1746 *
1747 * This function is interrupt context safe.
1748 */
1749static void scsi_done(struct scsi_cmnd *cmd)
1750{
1751	trace_scsi_dispatch_cmd_done(cmd);
1752	blk_complete_request(cmd->request);
1753}
1754
1755/*
1756 * Function:    scsi_request_fn()
1757 *
1758 * Purpose:     Main strategy routine for SCSI.
1759 *
1760 * Arguments:   q       - Pointer to actual queue.
1761 *
1762 * Returns:     Nothing
1763 *
1764 * Lock status: IO request lock assumed to be held when called.
1765 */
1766static void scsi_request_fn(struct request_queue *q)
1767	__releases(q->queue_lock)
1768	__acquires(q->queue_lock)
1769{
1770	struct scsi_device *sdev = q->queuedata;
1771	struct Scsi_Host *shost;
1772	struct scsi_cmnd *cmd;
1773	struct request *req;
1774
1775	/*
1776	 * To start with, we keep looping until the queue is empty, or until
1777	 * the host is no longer able to accept any more requests.
1778	 */
1779	shost = sdev->host;
1780	for (;;) {
1781		int rtn;
1782		/*
1783		 * get next queueable request.  We do this early to make sure
1784		 * that the request is fully prepared even if we cannot
1785		 * accept it.
1786		 */
1787		req = blk_peek_request(q);
1788		if (!req)
1789			break;
1790
1791		if (unlikely(!scsi_device_online(sdev))) {
1792			sdev_printk(KERN_ERR, sdev,
1793				    "rejecting I/O to offline device\n");
1794			scsi_kill_request(req, q);
1795			continue;
1796		}
1797
1798		if (!scsi_dev_queue_ready(q, sdev))
1799			break;
1800
1801		/*
1802		 * Remove the request from the request list.
1803		 */
1804		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1805			blk_start_request(req);
1806
1807		spin_unlock_irq(q->queue_lock);
1808		cmd = req->special;
1809		if (unlikely(cmd == NULL)) {
1810			printk(KERN_CRIT "impossible request in %s.\n"
1811					 "please mail a stack trace to "
1812					 "linux-scsi@vger.kernel.org\n",
1813					 __func__);
1814			blk_dump_rq_flags(req, "foo");
1815			BUG();
1816		}
1817
1818		/*
1819		 * We hit this when the driver is using a host wide
1820		 * tag map. For device level tag maps the queue_depth check
1821		 * in the device ready fn would prevent us from trying
1822		 * to allocate a tag. Since the map is a shared host resource
1823		 * we add the dev to the starved list so it eventually gets
1824		 * a run when a tag is freed.
1825		 */
1826		if (blk_queue_tagged(q) && !(req->cmd_flags & REQ_QUEUED)) {
1827			spin_lock_irq(shost->host_lock);
1828			if (list_empty(&sdev->starved_entry))
1829				list_add_tail(&sdev->starved_entry,
1830					      &shost->starved_list);
1831			spin_unlock_irq(shost->host_lock);
1832			goto not_ready;
1833		}
1834
1835		if (!scsi_target_queue_ready(shost, sdev))
1836			goto not_ready;
1837
1838		if (!scsi_host_queue_ready(q, shost, sdev))
1839			goto host_not_ready;
1840
1841		if (sdev->simple_tags)
1842			cmd->flags |= SCMD_TAGGED;
1843		else
1844			cmd->flags &= ~SCMD_TAGGED;
1845
1846		/*
1847		 * Finally, initialize any error handling parameters, and set up
1848		 * the timers for timeouts.
1849		 */
1850		scsi_init_cmd_errh(cmd);
1851
1852		/*
1853		 * Dispatch the command to the low-level driver.
1854		 */
1855		cmd->scsi_done = scsi_done;
1856		rtn = scsi_dispatch_cmd(cmd);
1857		if (rtn) {
1858			scsi_queue_insert(cmd, rtn);
1859			spin_lock_irq(q->queue_lock);
1860			goto out_delay;
1861		}
1862		spin_lock_irq(q->queue_lock);
1863	}
1864
1865	return;
1866
1867 host_not_ready:
1868	if (scsi_target(sdev)->can_queue > 0)
1869		atomic_dec(&scsi_target(sdev)->target_busy);
1870 not_ready:
1871	/*
1872	 * lock q, handle tag, requeue req, and decrement device_busy. We
1873	 * must return with queue_lock held.
1874	 *
1875	 * Decrementing device_busy without checking it is OK, as all such
1876	 * cases (host limits or settings) should run the queue at some
1877	 * later time.
1878	 */
1879	spin_lock_irq(q->queue_lock);
1880	blk_requeue_request(q, req);
1881	atomic_dec(&sdev->device_busy);
1882out_delay:
1883	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1884		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1885}
1886
1887static inline int prep_to_mq(int ret)
1888{
1889	switch (ret) {
1890	case BLKPREP_OK:
1891		return 0;
1892	case BLKPREP_DEFER:
1893		return BLK_MQ_RQ_QUEUE_BUSY;
1894	default:
1895		return BLK_MQ_RQ_QUEUE_ERROR;
1896	}
1897}
1898
1899static int scsi_mq_prep_fn(struct request *req)
1900{
1901	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1902	struct scsi_device *sdev = req->q->queuedata;
1903	struct Scsi_Host *shost = sdev->host;
1904	unsigned char *sense_buf = cmd->sense_buffer;
1905	struct scatterlist *sg;
1906
1907	memset(cmd, 0, sizeof(struct scsi_cmnd));
1908
1909	req->special = cmd;
1910
1911	cmd->request = req;
1912	cmd->device = sdev;
1913	cmd->sense_buffer = sense_buf;
1914
1915	cmd->tag = req->tag;
1916
1917	cmd->cmnd = req->cmd;
1918	cmd->prot_op = SCSI_PROT_NORMAL;
1919
1920	INIT_LIST_HEAD(&cmd->list);
1921	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1922	cmd->jiffies_at_alloc = jiffies;
1923
1924	if (shost->use_cmd_list) {
1925		spin_lock_irq(&sdev->list_lock);
1926		list_add_tail(&cmd->list, &sdev->cmd_list);
1927		spin_unlock_irq(&sdev->list_lock);
1928	}
1929
1930	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
1931	cmd->sdb.table.sgl = sg;
1932
1933	if (scsi_host_get_prot(shost)) {
1934		cmd->prot_sdb = (void *)sg +
1935			min_t(unsigned int,
1936			      shost->sg_tablesize, SCSI_MAX_SG_SEGMENTS) *
1937			sizeof(struct scatterlist);
1938		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
1939
1940		cmd->prot_sdb->table.sgl =
1941			(struct scatterlist *)(cmd->prot_sdb + 1);
1942	}
1943
1944	if (blk_bidi_rq(req)) {
1945		struct request *next_rq = req->next_rq;
1946		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
1947
1948		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
1949		bidi_sdb->table.sgl =
1950			(struct scatterlist *)(bidi_sdb + 1);
1951
1952		next_rq->special = bidi_sdb;
1953	}
1954
1955	blk_mq_start_request(req);
1956
1957	return scsi_setup_cmnd(sdev, req);
1958}
1959
1960static void scsi_mq_done(struct scsi_cmnd *cmd)
1961{
1962	trace_scsi_dispatch_cmd_done(cmd);
1963	blk_mq_complete_request(cmd->request);
1964}
1965
1966static int scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
1967			 const struct blk_mq_queue_data *bd)
1968{
1969	struct request *req = bd->rq;
1970	struct request_queue *q = req->q;
1971	struct scsi_device *sdev = q->queuedata;
1972	struct Scsi_Host *shost = sdev->host;
1973	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1974	int ret;
1975	int reason;
1976
1977	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
1978	if (ret)
1979		goto out;
1980
1981	ret = BLK_MQ_RQ_QUEUE_BUSY;
1982	if (!get_device(&sdev->sdev_gendev))
1983		goto out;
1984
1985	if (!scsi_dev_queue_ready(q, sdev))
1986		goto out_put_device;
1987	if (!scsi_target_queue_ready(shost, sdev))
1988		goto out_dec_device_busy;
1989	if (!scsi_host_queue_ready(q, shost, sdev))
1990		goto out_dec_target_busy;
1991
1992
1993	if (!(req->cmd_flags & REQ_DONTPREP)) {
1994		ret = prep_to_mq(scsi_mq_prep_fn(req));
1995		if (ret)
1996			goto out_dec_host_busy;
1997		req->cmd_flags |= REQ_DONTPREP;
1998	} else {
1999		blk_mq_start_request(req);
2000	}
2001
2002	if (sdev->simple_tags)
2003		cmd->flags |= SCMD_TAGGED;
2004	else
2005		cmd->flags &= ~SCMD_TAGGED;
2006
2007	scsi_init_cmd_errh(cmd);
2008	cmd->scsi_done = scsi_mq_done;
2009
2010	reason = scsi_dispatch_cmd(cmd);
2011	if (reason) {
2012		scsi_set_blocked(cmd, reason);
2013		ret = BLK_MQ_RQ_QUEUE_BUSY;
2014		goto out_dec_host_busy;
2015	}
2016
2017	return BLK_MQ_RQ_QUEUE_OK;
2018
2019out_dec_host_busy:
2020	atomic_dec(&shost->host_busy);
2021out_dec_target_busy:
2022	if (scsi_target(sdev)->can_queue > 0)
2023		atomic_dec(&scsi_target(sdev)->target_busy);
2024out_dec_device_busy:
2025	atomic_dec(&sdev->device_busy);
2026out_put_device:
2027	put_device(&sdev->sdev_gendev);
2028out:
2029	switch (ret) {
2030	case BLK_MQ_RQ_QUEUE_BUSY:
2031		blk_mq_stop_hw_queue(hctx);
2032		if (atomic_read(&sdev->device_busy) == 0 &&
2033		    !scsi_device_blocked(sdev))
2034			blk_mq_delay_queue(hctx, SCSI_QUEUE_DELAY);
2035		break;
2036	case BLK_MQ_RQ_QUEUE_ERROR:
2037		/*
2038		 * Make sure to release all allocated ressources when
2039		 * we hit an error, as we will never see this command
2040		 * again.
2041		 */
2042		if (req->cmd_flags & REQ_DONTPREP)
2043			scsi_mq_uninit_cmd(cmd);
2044		break;
2045	default:
2046		break;
2047	}
2048	return ret;
2049}
2050
2051static enum blk_eh_timer_return scsi_timeout(struct request *req,
2052		bool reserved)
2053{
2054	if (reserved)
2055		return BLK_EH_RESET_TIMER;
2056	return scsi_times_out(req);
2057}
2058
2059static int scsi_init_request(void *data, struct request *rq,
2060		unsigned int hctx_idx, unsigned int request_idx,
2061		unsigned int numa_node)
2062{
2063	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2064
2065	cmd->sense_buffer = kzalloc_node(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL,
2066			numa_node);
2067	if (!cmd->sense_buffer)
2068		return -ENOMEM;
2069	return 0;
2070}
2071
2072static void scsi_exit_request(void *data, struct request *rq,
2073		unsigned int hctx_idx, unsigned int request_idx)
2074{
2075	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2076
2077	kfree(cmd->sense_buffer);
2078}
2079
2080static u64 scsi_calculate_bounce_limit(struct Scsi_Host *shost)
2081{
2082	struct device *host_dev;
2083	u64 bounce_limit = 0xffffffff;
2084
2085	if (shost->unchecked_isa_dma)
2086		return BLK_BOUNCE_ISA;
2087	/*
2088	 * Platforms with virtual-DMA translation
2089	 * hardware have no practical limit.
2090	 */
2091	if (!PCI_DMA_BUS_IS_PHYS)
2092		return BLK_BOUNCE_ANY;
2093
2094	host_dev = scsi_get_device(shost);
2095	if (host_dev && host_dev->dma_mask)
2096		bounce_limit = (u64)dma_max_pfn(host_dev) << PAGE_SHIFT;
2097
2098	return bounce_limit;
2099}
2100
2101static void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2102{
2103	struct device *dev = shost->dma_dev;
2104
2105	/*
2106	 * this limit is imposed by hardware restrictions
2107	 */
2108	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2109					SCSI_MAX_SG_CHAIN_SEGMENTS));
2110
2111	if (scsi_host_prot_dma(shost)) {
2112		shost->sg_prot_tablesize =
2113			min_not_zero(shost->sg_prot_tablesize,
2114				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2115		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2116		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2117	}
2118
2119	blk_queue_max_hw_sectors(q, shost->max_sectors);
2120	blk_queue_bounce_limit(q, scsi_calculate_bounce_limit(shost));
2121	blk_queue_segment_boundary(q, shost->dma_boundary);
2122	dma_set_seg_boundary(dev, shost->dma_boundary);
2123
2124	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2125
2126	if (!shost->use_clustering)
2127		q->limits.cluster = 0;
2128
2129	/*
2130	 * set a reasonable default alignment on word boundaries: the
2131	 * host and device may alter it using
2132	 * blk_queue_update_dma_alignment() later.
2133	 */
2134	blk_queue_dma_alignment(q, 0x03);
2135}
2136
2137struct request_queue *__scsi_alloc_queue(struct Scsi_Host *shost,
2138					 request_fn_proc *request_fn)
2139{
2140	struct request_queue *q;
2141
2142	q = blk_init_queue(request_fn, NULL);
2143	if (!q)
2144		return NULL;
2145	__scsi_init_queue(shost, q);
2146	return q;
2147}
2148EXPORT_SYMBOL(__scsi_alloc_queue);
2149
2150struct request_queue *scsi_alloc_queue(struct scsi_device *sdev)
2151{
2152	struct request_queue *q;
2153
2154	q = __scsi_alloc_queue(sdev->host, scsi_request_fn);
2155	if (!q)
2156		return NULL;
2157
2158	blk_queue_prep_rq(q, scsi_prep_fn);
2159	blk_queue_unprep_rq(q, scsi_unprep_fn);
2160	blk_queue_softirq_done(q, scsi_softirq_done);
2161	blk_queue_rq_timed_out(q, scsi_times_out);
2162	blk_queue_lld_busy(q, scsi_lld_busy);
2163	return q;
2164}
2165
2166static struct blk_mq_ops scsi_mq_ops = {
2167	.map_queue	= blk_mq_map_queue,
2168	.queue_rq	= scsi_queue_rq,
2169	.complete	= scsi_softirq_done,
2170	.timeout	= scsi_timeout,
2171	.init_request	= scsi_init_request,
2172	.exit_request	= scsi_exit_request,
2173};
2174
2175struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2176{
2177	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2178	if (IS_ERR(sdev->request_queue))
2179		return NULL;
2180
2181	sdev->request_queue->queuedata = sdev;
2182	__scsi_init_queue(sdev->host, sdev->request_queue);
2183	return sdev->request_queue;
2184}
2185
2186int scsi_mq_setup_tags(struct Scsi_Host *shost)
2187{
2188	unsigned int cmd_size, sgl_size, tbl_size;
2189
2190	tbl_size = shost->sg_tablesize;
2191	if (tbl_size > SCSI_MAX_SG_SEGMENTS)
2192		tbl_size = SCSI_MAX_SG_SEGMENTS;
2193	sgl_size = tbl_size * sizeof(struct scatterlist);
2194	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2195	if (scsi_host_get_prot(shost))
2196		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2197
2198	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2199	shost->tag_set.ops = &scsi_mq_ops;
2200	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2201	shost->tag_set.queue_depth = shost->can_queue;
2202	shost->tag_set.cmd_size = cmd_size;
2203	shost->tag_set.numa_node = NUMA_NO_NODE;
2204	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2205	shost->tag_set.flags |=
2206		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2207	shost->tag_set.driver_data = shost;
2208
2209	return blk_mq_alloc_tag_set(&shost->tag_set);
2210}
2211
2212void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2213{
2214	blk_mq_free_tag_set(&shost->tag_set);
2215}
2216
2217/*
2218 * Function:    scsi_block_requests()
2219 *
2220 * Purpose:     Utility function used by low-level drivers to prevent further
2221 *		commands from being queued to the device.
2222 *
2223 * Arguments:   shost       - Host in question
2224 *
2225 * Returns:     Nothing
2226 *
2227 * Lock status: No locks are assumed held.
2228 *
2229 * Notes:       There is no timer nor any other means by which the requests
2230 *		get unblocked other than the low-level driver calling
2231 *		scsi_unblock_requests().
2232 */
2233void scsi_block_requests(struct Scsi_Host *shost)
2234{
2235	shost->host_self_blocked = 1;
2236}
2237EXPORT_SYMBOL(scsi_block_requests);
2238
2239/*
2240 * Function:    scsi_unblock_requests()
2241 *
2242 * Purpose:     Utility function used by low-level drivers to allow further
2243 *		commands from being queued to the device.
2244 *
2245 * Arguments:   shost       - Host in question
2246 *
2247 * Returns:     Nothing
2248 *
2249 * Lock status: No locks are assumed held.
2250 *
2251 * Notes:       There is no timer nor any other means by which the requests
2252 *		get unblocked other than the low-level driver calling
2253 *		scsi_unblock_requests().
2254 *
2255 *		This is done as an API function so that changes to the
2256 *		internals of the scsi mid-layer won't require wholesale
2257 *		changes to drivers that use this feature.
2258 */
2259void scsi_unblock_requests(struct Scsi_Host *shost)
2260{
2261	shost->host_self_blocked = 0;
2262	scsi_run_host_queues(shost);
2263}
2264EXPORT_SYMBOL(scsi_unblock_requests);
2265
2266int __init scsi_init_queue(void)
2267{
2268	int i;
2269
2270	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2271					   sizeof(struct scsi_data_buffer),
2272					   0, 0, NULL);
2273	if (!scsi_sdb_cache) {
2274		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2275		return -ENOMEM;
2276	}
2277
2278	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2279		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2280		int size = sgp->size * sizeof(struct scatterlist);
2281
2282		sgp->slab = kmem_cache_create(sgp->name, size, 0,
2283				SLAB_HWCACHE_ALIGN, NULL);
2284		if (!sgp->slab) {
2285			printk(KERN_ERR "SCSI: can't init sg slab %s\n",
2286					sgp->name);
2287			goto cleanup_sdb;
2288		}
2289
2290		sgp->pool = mempool_create_slab_pool(SG_MEMPOOL_SIZE,
2291						     sgp->slab);
2292		if (!sgp->pool) {
2293			printk(KERN_ERR "SCSI: can't init sg mempool %s\n",
2294					sgp->name);
2295			goto cleanup_sdb;
2296		}
2297	}
2298
2299	return 0;
2300
2301cleanup_sdb:
2302	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2303		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2304		if (sgp->pool)
2305			mempool_destroy(sgp->pool);
2306		if (sgp->slab)
2307			kmem_cache_destroy(sgp->slab);
2308	}
2309	kmem_cache_destroy(scsi_sdb_cache);
2310
2311	return -ENOMEM;
2312}
2313
2314void scsi_exit_queue(void)
2315{
2316	int i;
2317
2318	kmem_cache_destroy(scsi_sdb_cache);
2319
2320	for (i = 0; i < SG_MEMPOOL_NR; i++) {
2321		struct scsi_host_sg_pool *sgp = scsi_sg_pools + i;
2322		mempool_destroy(sgp->pool);
2323		kmem_cache_destroy(sgp->slab);
2324	}
2325}
2326
2327/**
2328 *	scsi_mode_select - issue a mode select
2329 *	@sdev:	SCSI device to be queried
2330 *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2331 *	@sp:	Save page bit (0 == don't save, 1 == save)
2332 *	@modepage: mode page being requested
2333 *	@buffer: request buffer (may not be smaller than eight bytes)
2334 *	@len:	length of request buffer.
2335 *	@timeout: command timeout
2336 *	@retries: number of retries before failing
2337 *	@data: returns a structure abstracting the mode header data
2338 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2339 *		must be SCSI_SENSE_BUFFERSIZE big.
2340 *
2341 *	Returns zero if successful; negative error number or scsi
2342 *	status on error
2343 *
2344 */
2345int
2346scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2347		 unsigned char *buffer, int len, int timeout, int retries,
2348		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2349{
2350	unsigned char cmd[10];
2351	unsigned char *real_buffer;
2352	int ret;
2353
2354	memset(cmd, 0, sizeof(cmd));
2355	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2356
2357	if (sdev->use_10_for_ms) {
2358		if (len > 65535)
2359			return -EINVAL;
2360		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2361		if (!real_buffer)
2362			return -ENOMEM;
2363		memcpy(real_buffer + 8, buffer, len);
2364		len += 8;
2365		real_buffer[0] = 0;
2366		real_buffer[1] = 0;
2367		real_buffer[2] = data->medium_type;
2368		real_buffer[3] = data->device_specific;
2369		real_buffer[4] = data->longlba ? 0x01 : 0;
2370		real_buffer[5] = 0;
2371		real_buffer[6] = data->block_descriptor_length >> 8;
2372		real_buffer[7] = data->block_descriptor_length;
2373
2374		cmd[0] = MODE_SELECT_10;
2375		cmd[7] = len >> 8;
2376		cmd[8] = len;
2377	} else {
2378		if (len > 255 || data->block_descriptor_length > 255 ||
2379		    data->longlba)
2380			return -EINVAL;
2381
2382		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2383		if (!real_buffer)
2384			return -ENOMEM;
2385		memcpy(real_buffer + 4, buffer, len);
2386		len += 4;
2387		real_buffer[0] = 0;
2388		real_buffer[1] = data->medium_type;
2389		real_buffer[2] = data->device_specific;
2390		real_buffer[3] = data->block_descriptor_length;
2391
2392
2393		cmd[0] = MODE_SELECT;
2394		cmd[4] = len;
2395	}
2396
2397	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2398			       sshdr, timeout, retries, NULL);
2399	kfree(real_buffer);
2400	return ret;
2401}
2402EXPORT_SYMBOL_GPL(scsi_mode_select);
2403
2404/**
2405 *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2406 *	@sdev:	SCSI device to be queried
2407 *	@dbd:	set if mode sense will allow block descriptors to be returned
2408 *	@modepage: mode page being requested
2409 *	@buffer: request buffer (may not be smaller than eight bytes)
2410 *	@len:	length of request buffer.
2411 *	@timeout: command timeout
2412 *	@retries: number of retries before failing
2413 *	@data: returns a structure abstracting the mode header data
2414 *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2415 *		must be SCSI_SENSE_BUFFERSIZE big.
2416 *
2417 *	Returns zero if unsuccessful, or the header offset (either 4
2418 *	or 8 depending on whether a six or ten byte command was
2419 *	issued) if successful.
2420 */
2421int
2422scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2423		  unsigned char *buffer, int len, int timeout, int retries,
2424		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2425{
2426	unsigned char cmd[12];
2427	int use_10_for_ms;
2428	int header_length;
2429	int result;
2430	struct scsi_sense_hdr my_sshdr;
2431
2432	memset(data, 0, sizeof(*data));
2433	memset(&cmd[0], 0, 12);
2434	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2435	cmd[2] = modepage;
2436
2437	/* caller might not be interested in sense, but we need it */
2438	if (!sshdr)
2439		sshdr = &my_sshdr;
2440
2441 retry:
2442	use_10_for_ms = sdev->use_10_for_ms;
2443
2444	if (use_10_for_ms) {
2445		if (len < 8)
2446			len = 8;
2447
2448		cmd[0] = MODE_SENSE_10;
2449		cmd[8] = len;
2450		header_length = 8;
2451	} else {
2452		if (len < 4)
2453			len = 4;
2454
2455		cmd[0] = MODE_SENSE;
2456		cmd[4] = len;
2457		header_length = 4;
2458	}
2459
2460	memset(buffer, 0, len);
2461
2462	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2463				  sshdr, timeout, retries, NULL);
2464
2465	/* This code looks awful: what it's doing is making sure an
2466	 * ILLEGAL REQUEST sense return identifies the actual command
2467	 * byte as the problem.  MODE_SENSE commands can return
2468	 * ILLEGAL REQUEST if the code page isn't supported */
2469
2470	if (use_10_for_ms && !scsi_status_is_good(result) &&
2471	    (driver_byte(result) & DRIVER_SENSE)) {
2472		if (scsi_sense_valid(sshdr)) {
2473			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2474			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2475				/*
2476				 * Invalid command operation code
2477				 */
2478				sdev->use_10_for_ms = 0;
2479				goto retry;
2480			}
2481		}
2482	}
2483
2484	if(scsi_status_is_good(result)) {
2485		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2486			     (modepage == 6 || modepage == 8))) {
2487			/* Initio breakage? */
2488			header_length = 0;
2489			data->length = 13;
2490			data->medium_type = 0;
2491			data->device_specific = 0;
2492			data->longlba = 0;
2493			data->block_descriptor_length = 0;
2494		} else if(use_10_for_ms) {
2495			data->length = buffer[0]*256 + buffer[1] + 2;
2496			data->medium_type = buffer[2];
2497			data->device_specific = buffer[3];
2498			data->longlba = buffer[4] & 0x01;
2499			data->block_descriptor_length = buffer[6]*256
2500				+ buffer[7];
2501		} else {
2502			data->length = buffer[0] + 1;
2503			data->medium_type = buffer[1];
2504			data->device_specific = buffer[2];
2505			data->block_descriptor_length = buffer[3];
2506		}
2507		data->header_length = header_length;
2508	}
2509
2510	return result;
2511}
2512EXPORT_SYMBOL(scsi_mode_sense);
2513
2514/**
2515 *	scsi_test_unit_ready - test if unit is ready
2516 *	@sdev:	scsi device to change the state of.
2517 *	@timeout: command timeout
2518 *	@retries: number of retries before failing
2519 *	@sshdr_external: Optional pointer to struct scsi_sense_hdr for
2520 *		returning sense. Make sure that this is cleared before passing
2521 *		in.
2522 *
2523 *	Returns zero if unsuccessful or an error if TUR failed.  For
2524 *	removable media, UNIT_ATTENTION sets ->changed flag.
2525 **/
2526int
2527scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2528		     struct scsi_sense_hdr *sshdr_external)
2529{
2530	char cmd[] = {
2531		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2532	};
2533	struct scsi_sense_hdr *sshdr;
2534	int result;
2535
2536	if (!sshdr_external)
2537		sshdr = kzalloc(sizeof(*sshdr), GFP_KERNEL);
2538	else
2539		sshdr = sshdr_external;
2540
2541	/* try to eat the UNIT_ATTENTION if there are enough retries */
2542	do {
2543		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2544					  timeout, retries, NULL);
2545		if (sdev->removable && scsi_sense_valid(sshdr) &&
2546		    sshdr->sense_key == UNIT_ATTENTION)
2547			sdev->changed = 1;
2548	} while (scsi_sense_valid(sshdr) &&
2549		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2550
2551	if (!sshdr_external)
2552		kfree(sshdr);
2553	return result;
2554}
2555EXPORT_SYMBOL(scsi_test_unit_ready);
2556
2557/**
2558 *	scsi_device_set_state - Take the given device through the device state model.
2559 *	@sdev:	scsi device to change the state of.
2560 *	@state:	state to change to.
2561 *
2562 *	Returns zero if unsuccessful or an error if the requested
2563 *	transition is illegal.
2564 */
2565int
2566scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2567{
2568	enum scsi_device_state oldstate = sdev->sdev_state;
2569
2570	if (state == oldstate)
2571		return 0;
2572
2573	switch (state) {
2574	case SDEV_CREATED:
2575		switch (oldstate) {
2576		case SDEV_CREATED_BLOCK:
2577			break;
2578		default:
2579			goto illegal;
2580		}
2581		break;
2582
2583	case SDEV_RUNNING:
2584		switch (oldstate) {
2585		case SDEV_CREATED:
2586		case SDEV_OFFLINE:
2587		case SDEV_TRANSPORT_OFFLINE:
2588		case SDEV_QUIESCE:
2589		case SDEV_BLOCK:
2590			break;
2591		default:
2592			goto illegal;
2593		}
2594		break;
2595
2596	case SDEV_QUIESCE:
2597		switch (oldstate) {
2598		case SDEV_RUNNING:
2599		case SDEV_OFFLINE:
2600		case SDEV_TRANSPORT_OFFLINE:
2601			break;
2602		default:
2603			goto illegal;
2604		}
2605		break;
2606
2607	case SDEV_OFFLINE:
2608	case SDEV_TRANSPORT_OFFLINE:
2609		switch (oldstate) {
2610		case SDEV_CREATED:
2611		case SDEV_RUNNING:
2612		case SDEV_QUIESCE:
2613		case SDEV_BLOCK:
2614			break;
2615		default:
2616			goto illegal;
2617		}
2618		break;
2619
2620	case SDEV_BLOCK:
2621		switch (oldstate) {
2622		case SDEV_RUNNING:
2623		case SDEV_CREATED_BLOCK:
2624			break;
2625		default:
2626			goto illegal;
2627		}
2628		break;
2629
2630	case SDEV_CREATED_BLOCK:
2631		switch (oldstate) {
2632		case SDEV_CREATED:
2633			break;
2634		default:
2635			goto illegal;
2636		}
2637		break;
2638
2639	case SDEV_CANCEL:
2640		switch (oldstate) {
2641		case SDEV_CREATED:
2642		case SDEV_RUNNING:
2643		case SDEV_QUIESCE:
2644		case SDEV_OFFLINE:
2645		case SDEV_TRANSPORT_OFFLINE:
2646		case SDEV_BLOCK:
2647			break;
2648		default:
2649			goto illegal;
2650		}
2651		break;
2652
2653	case SDEV_DEL:
2654		switch (oldstate) {
2655		case SDEV_CREATED:
2656		case SDEV_RUNNING:
2657		case SDEV_OFFLINE:
2658		case SDEV_TRANSPORT_OFFLINE:
2659		case SDEV_CANCEL:
2660		case SDEV_CREATED_BLOCK:
2661			break;
2662		default:
2663			goto illegal;
2664		}
2665		break;
2666
2667	}
2668	sdev->sdev_state = state;
2669	return 0;
2670
2671 illegal:
2672	SCSI_LOG_ERROR_RECOVERY(1,
2673				sdev_printk(KERN_ERR, sdev,
2674					    "Illegal state transition %s->%s",
2675					    scsi_device_state_name(oldstate),
2676					    scsi_device_state_name(state))
2677				);
2678	return -EINVAL;
2679}
2680EXPORT_SYMBOL(scsi_device_set_state);
2681
2682/**
2683 * 	sdev_evt_emit - emit a single SCSI device uevent
2684 *	@sdev: associated SCSI device
2685 *	@evt: event to emit
2686 *
2687 *	Send a single uevent (scsi_event) to the associated scsi_device.
2688 */
2689static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2690{
2691	int idx = 0;
2692	char *envp[3];
2693
2694	switch (evt->evt_type) {
2695	case SDEV_EVT_MEDIA_CHANGE:
2696		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2697		break;
2698	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2699		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2700		break;
2701	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2702		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2703		break;
2704	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2705	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2706		break;
2707	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2708		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2709		break;
2710	case SDEV_EVT_LUN_CHANGE_REPORTED:
2711		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2712		break;
2713	default:
2714		/* do nothing */
2715		break;
2716	}
2717
2718	envp[idx++] = NULL;
2719
2720	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2721}
2722
2723/**
2724 * 	sdev_evt_thread - send a uevent for each scsi event
2725 *	@work: work struct for scsi_device
2726 *
2727 *	Dispatch queued events to their associated scsi_device kobjects
2728 *	as uevents.
2729 */
2730void scsi_evt_thread(struct work_struct *work)
2731{
2732	struct scsi_device *sdev;
2733	enum scsi_device_event evt_type;
2734	LIST_HEAD(event_list);
2735
2736	sdev = container_of(work, struct scsi_device, event_work);
2737
2738	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2739		if (test_and_clear_bit(evt_type, sdev->pending_events))
2740			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2741
2742	while (1) {
2743		struct scsi_event *evt;
2744		struct list_head *this, *tmp;
2745		unsigned long flags;
2746
2747		spin_lock_irqsave(&sdev->list_lock, flags);
2748		list_splice_init(&sdev->event_list, &event_list);
2749		spin_unlock_irqrestore(&sdev->list_lock, flags);
2750
2751		if (list_empty(&event_list))
2752			break;
2753
2754		list_for_each_safe(this, tmp, &event_list) {
2755			evt = list_entry(this, struct scsi_event, node);
2756			list_del(&evt->node);
2757			scsi_evt_emit(sdev, evt);
2758			kfree(evt);
2759		}
2760	}
2761}
2762
2763/**
2764 * 	sdev_evt_send - send asserted event to uevent thread
2765 *	@sdev: scsi_device event occurred on
2766 *	@evt: event to send
2767 *
2768 *	Assert scsi device event asynchronously.
2769 */
2770void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2771{
2772	unsigned long flags;
2773
2774#if 0
2775	/* FIXME: currently this check eliminates all media change events
2776	 * for polled devices.  Need to update to discriminate between AN
2777	 * and polled events */
2778	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2779		kfree(evt);
2780		return;
2781	}
2782#endif
2783
2784	spin_lock_irqsave(&sdev->list_lock, flags);
2785	list_add_tail(&evt->node, &sdev->event_list);
2786	schedule_work(&sdev->event_work);
2787	spin_unlock_irqrestore(&sdev->list_lock, flags);
2788}
2789EXPORT_SYMBOL_GPL(sdev_evt_send);
2790
2791/**
2792 * 	sdev_evt_alloc - allocate a new scsi event
2793 *	@evt_type: type of event to allocate
2794 *	@gfpflags: GFP flags for allocation
2795 *
2796 *	Allocates and returns a new scsi_event.
2797 */
2798struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2799				  gfp_t gfpflags)
2800{
2801	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2802	if (!evt)
2803		return NULL;
2804
2805	evt->evt_type = evt_type;
2806	INIT_LIST_HEAD(&evt->node);
2807
2808	/* evt_type-specific initialization, if any */
2809	switch (evt_type) {
2810	case SDEV_EVT_MEDIA_CHANGE:
2811	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2812	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2813	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2814	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2815	case SDEV_EVT_LUN_CHANGE_REPORTED:
2816	default:
2817		/* do nothing */
2818		break;
2819	}
2820
2821	return evt;
2822}
2823EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2824
2825/**
2826 * 	sdev_evt_send_simple - send asserted event to uevent thread
2827 *	@sdev: scsi_device event occurred on
2828 *	@evt_type: type of event to send
2829 *	@gfpflags: GFP flags for allocation
2830 *
2831 *	Assert scsi device event asynchronously, given an event type.
2832 */
2833void sdev_evt_send_simple(struct scsi_device *sdev,
2834			  enum scsi_device_event evt_type, gfp_t gfpflags)
2835{
2836	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2837	if (!evt) {
2838		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2839			    evt_type);
2840		return;
2841	}
2842
2843	sdev_evt_send(sdev, evt);
2844}
2845EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2846
2847/**
2848 *	scsi_device_quiesce - Block user issued commands.
2849 *	@sdev:	scsi device to quiesce.
2850 *
2851 *	This works by trying to transition to the SDEV_QUIESCE state
2852 *	(which must be a legal transition).  When the device is in this
2853 *	state, only special requests will be accepted, all others will
2854 *	be deferred.  Since special requests may also be requeued requests,
2855 *	a successful return doesn't guarantee the device will be
2856 *	totally quiescent.
2857 *
2858 *	Must be called with user context, may sleep.
2859 *
2860 *	Returns zero if unsuccessful or an error if not.
2861 */
2862int
2863scsi_device_quiesce(struct scsi_device *sdev)
2864{
2865	int err = scsi_device_set_state(sdev, SDEV_QUIESCE);
2866	if (err)
2867		return err;
2868
2869	scsi_run_queue(sdev->request_queue);
2870	while (atomic_read(&sdev->device_busy)) {
2871		msleep_interruptible(200);
2872		scsi_run_queue(sdev->request_queue);
2873	}
2874	return 0;
2875}
2876EXPORT_SYMBOL(scsi_device_quiesce);
2877
2878/**
2879 *	scsi_device_resume - Restart user issued commands to a quiesced device.
2880 *	@sdev:	scsi device to resume.
2881 *
2882 *	Moves the device from quiesced back to running and restarts the
2883 *	queues.
2884 *
2885 *	Must be called with user context, may sleep.
2886 */
2887void scsi_device_resume(struct scsi_device *sdev)
2888{
2889	/* check if the device state was mutated prior to resume, and if
2890	 * so assume the state is being managed elsewhere (for example
2891	 * device deleted during suspend)
2892	 */
2893	if (sdev->sdev_state != SDEV_QUIESCE ||
2894	    scsi_device_set_state(sdev, SDEV_RUNNING))
2895		return;
2896	scsi_run_queue(sdev->request_queue);
2897}
2898EXPORT_SYMBOL(scsi_device_resume);
2899
2900static void
2901device_quiesce_fn(struct scsi_device *sdev, void *data)
2902{
2903	scsi_device_quiesce(sdev);
2904}
2905
2906void
2907scsi_target_quiesce(struct scsi_target *starget)
2908{
2909	starget_for_each_device(starget, NULL, device_quiesce_fn);
2910}
2911EXPORT_SYMBOL(scsi_target_quiesce);
2912
2913static void
2914device_resume_fn(struct scsi_device *sdev, void *data)
2915{
2916	scsi_device_resume(sdev);
2917}
2918
2919void
2920scsi_target_resume(struct scsi_target *starget)
2921{
2922	starget_for_each_device(starget, NULL, device_resume_fn);
2923}
2924EXPORT_SYMBOL(scsi_target_resume);
2925
2926/**
2927 * scsi_internal_device_block - internal function to put a device temporarily into the SDEV_BLOCK state
2928 * @sdev:	device to block
2929 *
2930 * Block request made by scsi lld's to temporarily stop all
2931 * scsi commands on the specified device.  Called from interrupt
2932 * or normal process context.
2933 *
2934 * Returns zero if successful or error if not
2935 *
2936 * Notes:
2937 *	This routine transitions the device to the SDEV_BLOCK state
2938 *	(which must be a legal transition).  When the device is in this
2939 *	state, all commands are deferred until the scsi lld reenables
2940 *	the device with scsi_device_unblock or device_block_tmo fires.
2941 */
2942int
2943scsi_internal_device_block(struct scsi_device *sdev)
2944{
2945	struct request_queue *q = sdev->request_queue;
2946	unsigned long flags;
2947	int err = 0;
2948
2949	err = scsi_device_set_state(sdev, SDEV_BLOCK);
2950	if (err) {
2951		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
2952
2953		if (err)
2954			return err;
2955	}
2956
2957	/*
2958	 * The device has transitioned to SDEV_BLOCK.  Stop the
2959	 * block layer from calling the midlayer with this device's
2960	 * request queue.
2961	 */
2962	if (q->mq_ops) {
2963		blk_mq_stop_hw_queues(q);
2964	} else {
2965		spin_lock_irqsave(q->queue_lock, flags);
2966		blk_stop_queue(q);
2967		spin_unlock_irqrestore(q->queue_lock, flags);
2968	}
2969
2970	return 0;
2971}
2972EXPORT_SYMBOL_GPL(scsi_internal_device_block);
2973
2974/**
2975 * scsi_internal_device_unblock - resume a device after a block request
2976 * @sdev:	device to resume
2977 * @new_state:	state to set devices to after unblocking
2978 *
2979 * Called by scsi lld's or the midlayer to restart the device queue
2980 * for the previously suspended scsi device.  Called from interrupt or
2981 * normal process context.
2982 *
2983 * Returns zero if successful or error if not.
2984 *
2985 * Notes:
2986 *	This routine transitions the device to the SDEV_RUNNING state
2987 *	or to one of the offline states (which must be a legal transition)
2988 *	allowing the midlayer to goose the queue for this device.
2989 */
2990int
2991scsi_internal_device_unblock(struct scsi_device *sdev,
2992			     enum scsi_device_state new_state)
2993{
2994	struct request_queue *q = sdev->request_queue;
2995	unsigned long flags;
2996
2997	/*
2998	 * Try to transition the scsi device to SDEV_RUNNING or one of the
2999	 * offlined states and goose the device queue if successful.
3000	 */
3001	if ((sdev->sdev_state == SDEV_BLOCK) ||
3002	    (sdev->sdev_state == SDEV_TRANSPORT_OFFLINE))
3003		sdev->sdev_state = new_state;
3004	else if (sdev->sdev_state == SDEV_CREATED_BLOCK) {
3005		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3006		    new_state == SDEV_OFFLINE)
3007			sdev->sdev_state = new_state;
3008		else
3009			sdev->sdev_state = SDEV_CREATED;
3010	} else if (sdev->sdev_state != SDEV_CANCEL &&
3011		 sdev->sdev_state != SDEV_OFFLINE)
3012		return -EINVAL;
3013
3014	if (q->mq_ops) {
3015		blk_mq_start_stopped_hw_queues(q, false);
3016	} else {
3017		spin_lock_irqsave(q->queue_lock, flags);
3018		blk_start_queue(q);
3019		spin_unlock_irqrestore(q->queue_lock, flags);
3020	}
3021
3022	return 0;
3023}
3024EXPORT_SYMBOL_GPL(scsi_internal_device_unblock);
3025
3026static void
3027device_block(struct scsi_device *sdev, void *data)
3028{
3029	scsi_internal_device_block(sdev);
3030}
3031
3032static int
3033target_block(struct device *dev, void *data)
3034{
3035	if (scsi_is_target_device(dev))
3036		starget_for_each_device(to_scsi_target(dev), NULL,
3037					device_block);
3038	return 0;
3039}
3040
3041void
3042scsi_target_block(struct device *dev)
3043{
3044	if (scsi_is_target_device(dev))
3045		starget_for_each_device(to_scsi_target(dev), NULL,
3046					device_block);
3047	else
3048		device_for_each_child(dev, NULL, target_block);
3049}
3050EXPORT_SYMBOL_GPL(scsi_target_block);
3051
3052static void
3053device_unblock(struct scsi_device *sdev, void *data)
3054{
3055	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3056}
3057
3058static int
3059target_unblock(struct device *dev, void *data)
3060{
3061	if (scsi_is_target_device(dev))
3062		starget_for_each_device(to_scsi_target(dev), data,
3063					device_unblock);
3064	return 0;
3065}
3066
3067void
3068scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3069{
3070	if (scsi_is_target_device(dev))
3071		starget_for_each_device(to_scsi_target(dev), &new_state,
3072					device_unblock);
3073	else
3074		device_for_each_child(dev, &new_state, target_unblock);
3075}
3076EXPORT_SYMBOL_GPL(scsi_target_unblock);
3077
3078/**
3079 * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3080 * @sgl:	scatter-gather list
3081 * @sg_count:	number of segments in sg
3082 * @offset:	offset in bytes into sg, on return offset into the mapped area
3083 * @len:	bytes to map, on return number of bytes mapped
3084 *
3085 * Returns virtual address of the start of the mapped page
3086 */
3087void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3088			  size_t *offset, size_t *len)
3089{
3090	int i;
3091	size_t sg_len = 0, len_complete = 0;
3092	struct scatterlist *sg;
3093	struct page *page;
3094
3095	WARN_ON(!irqs_disabled());
3096
3097	for_each_sg(sgl, sg, sg_count, i) {
3098		len_complete = sg_len; /* Complete sg-entries */
3099		sg_len += sg->length;
3100		if (sg_len > *offset)
3101			break;
3102	}
3103
3104	if (unlikely(i == sg_count)) {
3105		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3106			"elements %d\n",
3107		       __func__, sg_len, *offset, sg_count);
3108		WARN_ON(1);
3109		return NULL;
3110	}
3111
3112	/* Offset starting from the beginning of first page in this sg-entry */
3113	*offset = *offset - len_complete + sg->offset;
3114
3115	/* Assumption: contiguous pages can be accessed as "page + i" */
3116	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3117	*offset &= ~PAGE_MASK;
3118
3119	/* Bytes in this sg-entry from *offset to the end of the page */
3120	sg_len = PAGE_SIZE - *offset;
3121	if (*len > sg_len)
3122		*len = sg_len;
3123
3124	return kmap_atomic(page);
3125}
3126EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3127
3128/**
3129 * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3130 * @virt:	virtual address to be unmapped
3131 */
3132void scsi_kunmap_atomic_sg(void *virt)
3133{
3134	kunmap_atomic(virt);
3135}
3136EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3137
3138void sdev_disable_disk_events(struct scsi_device *sdev)
3139{
3140	atomic_inc(&sdev->disk_events_disable_depth);
3141}
3142EXPORT_SYMBOL(sdev_disable_disk_events);
3143
3144void sdev_enable_disk_events(struct scsi_device *sdev)
3145{
3146	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3147		return;
3148	atomic_dec(&sdev->disk_events_disable_depth);
3149}
3150EXPORT_SYMBOL(sdev_enable_disk_events);
3151