1/*
2 * Octeon HCD hardware register definitions.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Some parts of the code were originally released under BSD license:
9 *
10 * Copyright (c) 2003-2010 Cavium Networks (support@cavium.com). All rights
11 * reserved.
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions are
15 * met:
16 *
17 *   * Redistributions of source code must retain the above copyright
18 *     notice, this list of conditions and the following disclaimer.
19 *
20 *   * Redistributions in binary form must reproduce the above
21 *     copyright notice, this list of conditions and the following
22 *     disclaimer in the documentation and/or other materials provided
23 *     with the distribution.
24 *
25 *   * Neither the name of Cavium Networks nor the names of
26 *     its contributors may be used to endorse or promote products
27 *     derived from this software without specific prior written
28 *     permission.
29 *
30 * This Software, including technical data, may be subject to U.S. export
31 * control laws, including the U.S. Export Administration Act and its associated
32 * regulations, and may be subject to export or import regulations in other
33 * countries.
34 *
35 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
36 * AND WITH ALL FAULTS AND CAVIUM NETWORKS MAKES NO PROMISES, REPRESENTATIONS OR
37 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
38 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION
39 * OR DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
40 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
41 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
42 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
43 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
44 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
45 */
46
47#ifndef __OCTEON_HCD_H__
48#define __OCTEON_HCD_H__
49
50#include <asm/bitfield.h>
51
52#define CVMX_USBCXBASE 0x00016F0010000000ull
53#define CVMX_USBCXREG1(reg, bid) \
54	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
55	 ((bid) & 1) * 0x100000000000ull)
56#define CVMX_USBCXREG2(reg, bid, off) \
57	(CVMX_ADD_IO_SEG(CVMX_USBCXBASE | reg) + \
58	 (((off) & 7) + ((bid) & 1) * 0x8000000000ull) * 32)
59
60#define CVMX_USBCX_GAHBCFG(bid)		CVMX_USBCXREG1(0x008, bid)
61#define CVMX_USBCX_GHWCFG3(bid)		CVMX_USBCXREG1(0x04c, bid)
62#define CVMX_USBCX_GINTMSK(bid)		CVMX_USBCXREG1(0x018, bid)
63#define CVMX_USBCX_GINTSTS(bid)		CVMX_USBCXREG1(0x014, bid)
64#define CVMX_USBCX_GNPTXFSIZ(bid)	CVMX_USBCXREG1(0x028, bid)
65#define CVMX_USBCX_GNPTXSTS(bid)	CVMX_USBCXREG1(0x02c, bid)
66#define CVMX_USBCX_GOTGCTL(bid)		CVMX_USBCXREG1(0x000, bid)
67#define CVMX_USBCX_GRSTCTL(bid)		CVMX_USBCXREG1(0x010, bid)
68#define CVMX_USBCX_GRXFSIZ(bid)		CVMX_USBCXREG1(0x024, bid)
69#define CVMX_USBCX_GRXSTSPH(bid)	CVMX_USBCXREG1(0x020, bid)
70#define CVMX_USBCX_GUSBCFG(bid)		CVMX_USBCXREG1(0x00c, bid)
71#define CVMX_USBCX_HAINT(bid)		CVMX_USBCXREG1(0x414, bid)
72#define CVMX_USBCX_HAINTMSK(bid)	CVMX_USBCXREG1(0x418, bid)
73#define CVMX_USBCX_HCCHARX(off, bid)	CVMX_USBCXREG2(0x500, bid, off)
74#define CVMX_USBCX_HCFG(bid)		CVMX_USBCXREG1(0x400, bid)
75#define CVMX_USBCX_HCINTMSKX(off, bid)	CVMX_USBCXREG2(0x50c, bid, off)
76#define CVMX_USBCX_HCINTX(off, bid)	CVMX_USBCXREG2(0x508, bid, off)
77#define CVMX_USBCX_HCSPLTX(off, bid)	CVMX_USBCXREG2(0x504, bid, off)
78#define CVMX_USBCX_HCTSIZX(off, bid)	CVMX_USBCXREG2(0x510, bid, off)
79#define CVMX_USBCX_HFIR(bid)		CVMX_USBCXREG1(0x404, bid)
80#define CVMX_USBCX_HFNUM(bid)		CVMX_USBCXREG1(0x408, bid)
81#define CVMX_USBCX_HPRT(bid)		CVMX_USBCXREG1(0x440, bid)
82#define CVMX_USBCX_HPTXFSIZ(bid)	CVMX_USBCXREG1(0x100, bid)
83#define CVMX_USBCX_HPTXSTS(bid)		CVMX_USBCXREG1(0x410, bid)
84
85#define CVMX_USBNXBID1(bid) (((bid) & 1) * 0x10000000ull)
86#define CVMX_USBNXBID2(bid) (((bid) & 1) * 0x100000000000ull)
87
88#define CVMX_USBNXREG1(reg, bid) \
89	(CVMX_ADD_IO_SEG(0x0001180068000000ull | reg) + CVMX_USBNXBID1(bid))
90#define CVMX_USBNXREG2(reg, bid) \
91	(CVMX_ADD_IO_SEG(0x00016F0000000000ull | reg) + CVMX_USBNXBID2(bid))
92
93#define CVMX_USBNX_CLK_CTL(bid)		CVMX_USBNXREG1(0x10, bid)
94#define CVMX_USBNX_DMA0_INB_CHN0(bid)	CVMX_USBNXREG2(0x818, bid)
95#define CVMX_USBNX_DMA0_OUTB_CHN0(bid)	CVMX_USBNXREG2(0x858, bid)
96#define CVMX_USBNX_USBP_CTL_STATUS(bid)	CVMX_USBNXREG1(0x18, bid)
97
98/**
99 * cvmx_usbc#_gahbcfg
100 *
101 * Core AHB Configuration Register (GAHBCFG)
102 *
103 * This register can be used to configure the core after power-on or a change in
104 * mode of operation. This register mainly contains AHB system-related
105 * configuration parameters. The AHB is the processor interface to the O2P USB
106 * core. In general, software need not know about this interface except to
107 * program the values as specified.
108 *
109 * The application must program this register as part of the O2P USB core
110 * initialization. Do not change this register after the initial programming.
111 */
112union cvmx_usbcx_gahbcfg {
113	uint32_t u32;
114	/**
115	 * struct cvmx_usbcx_gahbcfg_s
116	 * @ptxfemplvl: Periodic TxFIFO Empty Level (PTxFEmpLvl)
117	 *	Software should set this bit to 0x1.
118	 *	Indicates when the Periodic TxFIFO Empty Interrupt bit in the
119	 *	Core Interrupt register (GINTSTS.PTxFEmp) is triggered. This
120	 *	bit is used only in Slave mode.
121	 *	* 1'b0: GINTSTS.PTxFEmp interrupt indicates that the Periodic
122	 *	TxFIFO is half empty
123	 *	* 1'b1: GINTSTS.PTxFEmp interrupt indicates that the Periodic
124	 *	TxFIFO is completely empty
125	 * @nptxfemplvl: Non-Periodic TxFIFO Empty Level (NPTxFEmpLvl)
126	 *	Software should set this bit to 0x1.
127	 *	Indicates when the Non-Periodic TxFIFO Empty Interrupt bit in
128	 *	the Core Interrupt register (GINTSTS.NPTxFEmp) is triggered.
129	 *	This bit is used only in Slave mode.
130	 *	* 1'b0: GINTSTS.NPTxFEmp interrupt indicates that the Non-
131	 *	Periodic TxFIFO is half empty
132	 *	* 1'b1: GINTSTS.NPTxFEmp interrupt indicates that the Non-
133	 *	Periodic TxFIFO is completely empty
134	 * @dmaen: DMA Enable (DMAEn)
135	 *	* 1'b0: Core operates in Slave mode
136	 *	* 1'b1: Core operates in a DMA mode
137	 * @hbstlen: Burst Length/Type (HBstLen)
138	 *	This field has not effect and should be left as 0x0.
139	 * @glblintrmsk: Global Interrupt Mask (GlblIntrMsk)
140	 *	Software should set this field to 0x1.
141	 *	The application uses this bit to mask or unmask the interrupt
142	 *	line assertion to itself. Irrespective of this bit's setting,
143	 *	the interrupt status registers are updated by the core.
144	 *	* 1'b0: Mask the interrupt assertion to the application.
145	 *	* 1'b1: Unmask the interrupt assertion to the application.
146	 */
147	struct cvmx_usbcx_gahbcfg_s {
148		__BITFIELD_FIELD(uint32_t reserved_9_31	: 23,
149		__BITFIELD_FIELD(uint32_t ptxfemplvl	: 1,
150		__BITFIELD_FIELD(uint32_t nptxfemplvl	: 1,
151		__BITFIELD_FIELD(uint32_t reserved_6_6	: 1,
152		__BITFIELD_FIELD(uint32_t dmaen		: 1,
153		__BITFIELD_FIELD(uint32_t hbstlen	: 4,
154		__BITFIELD_FIELD(uint32_t glblintrmsk	: 1,
155		;)))))))
156	} s;
157};
158
159/**
160 * cvmx_usbc#_ghwcfg3
161 *
162 * User HW Config3 Register (GHWCFG3)
163 *
164 * This register contains the configuration options of the O2P USB core.
165 */
166union cvmx_usbcx_ghwcfg3 {
167	uint32_t u32;
168	/**
169	 * struct cvmx_usbcx_ghwcfg3_s
170	 * @dfifodepth: DFIFO Depth (DfifoDepth)
171	 *	This value is in terms of 32-bit words.
172	 *	* Minimum value is 32
173	 *	* Maximum value is 32768
174	 * @ahbphysync: AHB and PHY Synchronous (AhbPhySync)
175	 *	Indicates whether AHB and PHY clocks are synchronous to
176	 *	each other.
177	 *	* 1'b0: No
178	 *	* 1'b1: Yes
179	 *	This bit is tied to 1.
180	 * @rsttype: Reset Style for Clocked always Blocks in RTL (RstType)
181	 *	* 1'b0: Asynchronous reset is used in the core
182	 *	* 1'b1: Synchronous reset is used in the core
183	 * @optfeature: Optional Features Removed (OptFeature)
184	 *	Indicates whether the User ID register, GPIO interface ports,
185	 *	and SOF toggle and counter ports were removed for gate count
186	 *	optimization.
187	 * @vendor_control_interface_support: Vendor Control Interface Support
188	 *	* 1'b0: Vendor Control Interface is not available on the core.
189	 *	* 1'b1: Vendor Control Interface is available.
190	 * @i2c_selection: I2C Selection
191	 *	* 1'b0: I2C Interface is not available on the core.
192	 *	* 1'b1: I2C Interface is available on the core.
193	 * @otgen: OTG Function Enabled (OtgEn)
194	 *	The application uses this bit to indicate the O2P USB core's
195	 *	OTG capabilities.
196	 *	* 1'b0: Not OTG capable
197	 *	* 1'b1: OTG Capable
198	 * @pktsizewidth: Width of Packet Size Counters (PktSizeWidth)
199	 *	* 3'b000: 4 bits
200	 *	* 3'b001: 5 bits
201	 *	* 3'b010: 6 bits
202	 *	* 3'b011: 7 bits
203	 *	* 3'b100: 8 bits
204	 *	* 3'b101: 9 bits
205	 *	* 3'b110: 10 bits
206	 *	* Others: Reserved
207	 * @xfersizewidth: Width of Transfer Size Counters (XferSizeWidth)
208	 *	* 4'b0000: 11 bits
209	 *	* 4'b0001: 12 bits
210	 *	- ...
211	 *	* 4'b1000: 19 bits
212	 *	* Others: Reserved
213	 */
214	struct cvmx_usbcx_ghwcfg3_s {
215		__BITFIELD_FIELD(uint32_t dfifodepth			: 16,
216		__BITFIELD_FIELD(uint32_t reserved_13_15		: 3,
217		__BITFIELD_FIELD(uint32_t ahbphysync			: 1,
218		__BITFIELD_FIELD(uint32_t rsttype			: 1,
219		__BITFIELD_FIELD(uint32_t optfeature			: 1,
220		__BITFIELD_FIELD(uint32_t vendor_control_interface_support : 1,
221		__BITFIELD_FIELD(uint32_t i2c_selection			: 1,
222		__BITFIELD_FIELD(uint32_t otgen				: 1,
223		__BITFIELD_FIELD(uint32_t pktsizewidth			: 3,
224		__BITFIELD_FIELD(uint32_t xfersizewidth			: 4,
225		;))))))))))
226	} s;
227};
228
229/**
230 * cvmx_usbc#_gintmsk
231 *
232 * Core Interrupt Mask Register (GINTMSK)
233 *
234 * This register works with the Core Interrupt register to interrupt the
235 * application. When an interrupt bit is masked, the interrupt associated with
236 * that bit will not be generated. However, the Core Interrupt (GINTSTS)
237 * register bit corresponding to that interrupt will still be set.
238 * Mask interrupt: 1'b0, Unmask interrupt: 1'b1
239 */
240union cvmx_usbcx_gintmsk {
241	uint32_t u32;
242	/**
243	 * struct cvmx_usbcx_gintmsk_s
244	 * @wkupintmsk: Resume/Remote Wakeup Detected Interrupt Mask
245	 *	(WkUpIntMsk)
246	 * @sessreqintmsk: Session Request/New Session Detected Interrupt Mask
247	 *	(SessReqIntMsk)
248	 * @disconnintmsk: Disconnect Detected Interrupt Mask (DisconnIntMsk)
249	 * @conidstschngmsk: Connector ID Status Change Mask (ConIDStsChngMsk)
250	 * @ptxfempmsk: Periodic TxFIFO Empty Mask (PTxFEmpMsk)
251	 * @hchintmsk: Host Channels Interrupt Mask (HChIntMsk)
252	 * @prtintmsk: Host Port Interrupt Mask (PrtIntMsk)
253	 * @fetsuspmsk: Data Fetch Suspended Mask (FetSuspMsk)
254	 * @incomplpmsk: Incomplete Periodic Transfer Mask (incomplPMsk)
255	 *	Incomplete Isochronous OUT Transfer Mask
256	 *	(incompISOOUTMsk)
257	 * @incompisoinmsk: Incomplete Isochronous IN Transfer Mask
258	 *		    (incompISOINMsk)
259	 * @oepintmsk: OUT Endpoints Interrupt Mask (OEPIntMsk)
260	 * @inepintmsk: IN Endpoints Interrupt Mask (INEPIntMsk)
261	 * @epmismsk: Endpoint Mismatch Interrupt Mask (EPMisMsk)
262	 * @eopfmsk: End of Periodic Frame Interrupt Mask (EOPFMsk)
263	 * @isooutdropmsk: Isochronous OUT Packet Dropped Interrupt Mask
264	 *	(ISOOutDropMsk)
265	 * @enumdonemsk: Enumeration Done Mask (EnumDoneMsk)
266	 * @usbrstmsk: USB Reset Mask (USBRstMsk)
267	 * @usbsuspmsk: USB Suspend Mask (USBSuspMsk)
268	 * @erlysuspmsk: Early Suspend Mask (ErlySuspMsk)
269	 * @i2cint: I2C Interrupt Mask (I2CINT)
270	 * @ulpickintmsk: ULPI Carkit Interrupt Mask (ULPICKINTMsk)
271	 *	I2C Carkit Interrupt Mask (I2CCKINTMsk)
272	 * @goutnakeffmsk: Global OUT NAK Effective Mask (GOUTNakEffMsk)
273	 * @ginnakeffmsk: Global Non-Periodic IN NAK Effective Mask
274	 *		  (GINNakEffMsk)
275	 * @nptxfempmsk: Non-Periodic TxFIFO Empty Mask (NPTxFEmpMsk)
276	 * @rxflvlmsk: Receive FIFO Non-Empty Mask (RxFLvlMsk)
277	 * @sofmsk: Start of (micro)Frame Mask (SofMsk)
278	 * @otgintmsk: OTG Interrupt Mask (OTGIntMsk)
279	 * @modemismsk: Mode Mismatch Interrupt Mask (ModeMisMsk)
280	 */
281	struct cvmx_usbcx_gintmsk_s {
282		__BITFIELD_FIELD(uint32_t wkupintmsk		: 1,
283		__BITFIELD_FIELD(uint32_t sessreqintmsk		: 1,
284		__BITFIELD_FIELD(uint32_t disconnintmsk		: 1,
285		__BITFIELD_FIELD(uint32_t conidstschngmsk	: 1,
286		__BITFIELD_FIELD(uint32_t reserved_27_27	: 1,
287		__BITFIELD_FIELD(uint32_t ptxfempmsk		: 1,
288		__BITFIELD_FIELD(uint32_t hchintmsk		: 1,
289		__BITFIELD_FIELD(uint32_t prtintmsk		: 1,
290		__BITFIELD_FIELD(uint32_t reserved_23_23	: 1,
291		__BITFIELD_FIELD(uint32_t fetsuspmsk		: 1,
292		__BITFIELD_FIELD(uint32_t incomplpmsk		: 1,
293		__BITFIELD_FIELD(uint32_t incompisoinmsk	: 1,
294		__BITFIELD_FIELD(uint32_t oepintmsk		: 1,
295		__BITFIELD_FIELD(uint32_t inepintmsk		: 1,
296		__BITFIELD_FIELD(uint32_t epmismsk		: 1,
297		__BITFIELD_FIELD(uint32_t reserved_16_16	: 1,
298		__BITFIELD_FIELD(uint32_t eopfmsk		: 1,
299		__BITFIELD_FIELD(uint32_t isooutdropmsk		: 1,
300		__BITFIELD_FIELD(uint32_t enumdonemsk		: 1,
301		__BITFIELD_FIELD(uint32_t usbrstmsk		: 1,
302		__BITFIELD_FIELD(uint32_t usbsuspmsk		: 1,
303		__BITFIELD_FIELD(uint32_t erlysuspmsk		: 1,
304		__BITFIELD_FIELD(uint32_t i2cint		: 1,
305		__BITFIELD_FIELD(uint32_t ulpickintmsk		: 1,
306		__BITFIELD_FIELD(uint32_t goutnakeffmsk		: 1,
307		__BITFIELD_FIELD(uint32_t ginnakeffmsk		: 1,
308		__BITFIELD_FIELD(uint32_t nptxfempmsk		: 1,
309		__BITFIELD_FIELD(uint32_t rxflvlmsk		: 1,
310		__BITFIELD_FIELD(uint32_t sofmsk		: 1,
311		__BITFIELD_FIELD(uint32_t otgintmsk		: 1,
312		__BITFIELD_FIELD(uint32_t modemismsk		: 1,
313		__BITFIELD_FIELD(uint32_t reserved_0_0		: 1,
314		;))))))))))))))))))))))))))))))))
315	} s;
316};
317
318/**
319 * cvmx_usbc#_gintsts
320 *
321 * Core Interrupt Register (GINTSTS)
322 *
323 * This register interrupts the application for system-level events in the
324 * current mode of operation (Device mode or Host mode). It is shown in
325 * Interrupt. Some of the bits in this register are valid only in Host mode,
326 * while others are valid in Device mode only. This register also indicates the
327 * current mode of operation. In order to clear the interrupt status bits of
328 * type R_SS_WC, the application must write 1'b1 into the bit. The FIFO status
329 * interrupts are read only; once software reads from or writes to the FIFO
330 * while servicing these interrupts, FIFO interrupt conditions are cleared
331 * automatically.
332 */
333union cvmx_usbcx_gintsts {
334	uint32_t u32;
335	/**
336	 * struct cvmx_usbcx_gintsts_s
337	 * @wkupint: Resume/Remote Wakeup Detected Interrupt (WkUpInt)
338	 *	In Device mode, this interrupt is asserted when a resume is
339	 *	detected on the USB. In Host mode, this interrupt is asserted
340	 *	when a remote wakeup is detected on the USB.
341	 *	For more information on how to use this interrupt, see "Partial
342	 *	Power-Down and Clock Gating Programming Model" on
343	 *	page 353.
344	 * @sessreqint: Session Request/New Session Detected Interrupt
345	 *		(SessReqInt)
346	 *	In Host mode, this interrupt is asserted when a session request
347	 *	is detected from the device. In Device mode, this interrupt is
348	 *	asserted when the utmiotg_bvalid signal goes high.
349	 *	For more information on how to use this interrupt, see "Partial
350	 *	Power-Down and Clock Gating Programming Model" on
351	 *	page 353.
352	 * @disconnint: Disconnect Detected Interrupt (DisconnInt)
353	 *	Asserted when a device disconnect is detected.
354	 * @conidstschng: Connector ID Status Change (ConIDStsChng)
355	 *	The core sets this bit when there is a change in connector ID
356	 *	status.
357	 * @ptxfemp: Periodic TxFIFO Empty (PTxFEmp)
358	 *	Asserted when the Periodic Transmit FIFO is either half or
359	 *	completely empty and there is space for at least one entry to be
360	 *	written in the Periodic Request Queue. The half or completely
361	 *	empty status is determined by the Periodic TxFIFO Empty Level
362	 *	bit in the Core AHB Configuration register
363	 *	(GAHBCFG.PTxFEmpLvl).
364	 * @hchint: Host Channels Interrupt (HChInt)
365	 *	The core sets this bit to indicate that an interrupt is pending
366	 *	on one of the channels of the core (in Host mode). The
367	 *	application must read the Host All Channels Interrupt (HAINT)
368	 *	register to determine the exact number of the channel on which
369	 *	the interrupt occurred, and then read the corresponding Host
370	 *	Channel-n Interrupt (HCINTn) register to determine the exact
371	 *	cause of the interrupt. The application must clear the
372	 *	appropriate status bit in the HCINTn register to clear this bit.
373	 * @prtint: Host Port Interrupt (PrtInt)
374	 *	The core sets this bit to indicate a change in port status of
375	 *	one of the O2P USB core ports in Host mode. The application must
376	 *	read the Host Port Control and Status (HPRT) register to
377	 *	determine the exact event that caused this interrupt. The
378	 *	application must clear the appropriate status bit in the Host
379	 *	Port Control and Status register to clear this bit.
380	 * @fetsusp: Data Fetch Suspended (FetSusp)
381	 *	This interrupt is valid only in DMA mode. This interrupt
382	 *	indicates that the core has stopped fetching data for IN
383	 *	endpoints due to the unavailability of TxFIFO space or Request
384	 *	Queue space. This interrupt is used by the application for an
385	 *	endpoint mismatch algorithm.
386	 * @incomplp: Incomplete Periodic Transfer (incomplP)
387	 *	In Host mode, the core sets this interrupt bit when there are
388	 *	incomplete periodic transactions still pending which are
389	 *	scheduled for the current microframe.
390	 *	Incomplete Isochronous OUT Transfer (incompISOOUT)
391	 *	The Device mode, the core sets this interrupt to indicate that
392	 *	there is at least one isochronous OUT endpoint on which the
393	 *	transfer is not completed in the current microframe. This
394	 *	interrupt is asserted along with the End of Periodic Frame
395	 *	Interrupt (EOPF) bit in this register.
396	 * @incompisoin: Incomplete Isochronous IN Transfer (incompISOIN)
397	 *	The core sets this interrupt to indicate that there is at least
398	 *	one isochronous IN endpoint on which the transfer is not
399	 *	completed in the current microframe. This interrupt is asserted
400	 *	along with the End of Periodic Frame Interrupt (EOPF) bit in
401	 *	this register.
402	 * @oepint: OUT Endpoints Interrupt (OEPInt)
403	 *	The core sets this bit to indicate that an interrupt is pending
404	 *	on one of the OUT endpoints of the core (in Device mode). The
405	 *	application must read the Device All Endpoints Interrupt
406	 *	(DAINT) register to determine the exact number of the OUT
407	 *	endpoint on which the interrupt occurred, and then read the
408	 *	corresponding Device OUT Endpoint-n Interrupt (DOEPINTn)
409	 *	register to determine the exact cause of the interrupt. The
410	 *	application must clear the appropriate status bit in the
411	 *	corresponding DOEPINTn register to clear this bit.
412	 * @iepint: IN Endpoints Interrupt (IEPInt)
413	 *	The core sets this bit to indicate that an interrupt is pending
414	 *	on one of the IN endpoints of the core (in Device mode). The
415	 *	application must read the Device All Endpoints Interrupt
416	 *	(DAINT) register to determine the exact number of the IN
417	 *	endpoint on which the interrupt occurred, and then read the
418	 *	corresponding Device IN Endpoint-n Interrupt (DIEPINTn)
419	 *	register to determine the exact cause of the interrupt. The
420	 *	application must clear the appropriate status bit in the
421	 *	corresponding DIEPINTn register to clear this bit.
422	 * @epmis: Endpoint Mismatch Interrupt (EPMis)
423	 *	Indicates that an IN token has been received for a non-periodic
424	 *	endpoint, but the data for another endpoint is present in the
425	 *	top of the Non-Periodic Transmit FIFO and the IN endpoint
426	 *	mismatch count programmed by the application has expired.
427	 * @eopf: End of Periodic Frame Interrupt (EOPF)
428	 *	Indicates that the period specified in the Periodic Frame
429	 *	Interval field of the Device Configuration register
430	 *	(DCFG.PerFrInt) has been reached in the current microframe.
431	 * @isooutdrop: Isochronous OUT Packet Dropped Interrupt (ISOOutDrop)
432	 *	The core sets this bit when it fails to write an isochronous OUT
433	 *	packet into the RxFIFO because the RxFIFO doesn't have
434	 *	enough space to accommodate a maximum packet size packet
435	 *	for the isochronous OUT endpoint.
436	 * @enumdone: Enumeration Done (EnumDone)
437	 *	The core sets this bit to indicate that speed enumeration is
438	 *	complete. The application must read the Device Status (DSTS)
439	 *	register to obtain the enumerated speed.
440	 * @usbrst: USB Reset (USBRst)
441	 *	The core sets this bit to indicate that a reset is detected on
442	 *	the USB.
443	 * @usbsusp: USB Suspend (USBSusp)
444	 *	The core sets this bit to indicate that a suspend was detected
445	 *	on the USB. The core enters the Suspended state when there
446	 *	is no activity on the phy_line_state_i signal for an extended
447	 *	period of time.
448	 * @erlysusp: Early Suspend (ErlySusp)
449	 *	The core sets this bit to indicate that an Idle state has been
450	 *	detected on the USB for 3 ms.
451	 * @i2cint: I2C Interrupt (I2CINT)
452	 *	This bit is always 0x0.
453	 * @ulpickint: ULPI Carkit Interrupt (ULPICKINT)
454	 *	This bit is always 0x0.
455	 * @goutnakeff: Global OUT NAK Effective (GOUTNakEff)
456	 *	Indicates that the Set Global OUT NAK bit in the Device Control
457	 *	register (DCTL.SGOUTNak), set by the application, has taken
458	 *	effect in the core. This bit can be cleared by writing the Clear
459	 *	Global OUT NAK bit in the Device Control register
460	 *	(DCTL.CGOUTNak).
461	 * @ginnakeff: Global IN Non-Periodic NAK Effective (GINNakEff)
462	 *	Indicates that the Set Global Non-Periodic IN NAK bit in the
463	 *	Device Control register (DCTL.SGNPInNak), set by the
464	 *	application, has taken effect in the core. That is, the core has
465	 *	sampled the Global IN NAK bit set by the application. This bit
466	 *	can be cleared by clearing the Clear Global Non-Periodic IN
467	 *	NAK bit in the Device Control register (DCTL.CGNPInNak).
468	 *	This interrupt does not necessarily mean that a NAK handshake
469	 *	is sent out on the USB. The STALL bit takes precedence over
470	 *	the NAK bit.
471	 * @nptxfemp: Non-Periodic TxFIFO Empty (NPTxFEmp)
472	 *	This interrupt is asserted when the Non-Periodic TxFIFO is
473	 *	either half or completely empty, and there is space for at least
474	 *	one entry to be written to the Non-Periodic Transmit Request
475	 *	Queue. The half or completely empty status is determined by
476	 *	the Non-Periodic TxFIFO Empty Level bit in the Core AHB
477	 *	Configuration register (GAHBCFG.NPTxFEmpLvl).
478	 * @rxflvl: RxFIFO Non-Empty (RxFLvl)
479	 *	Indicates that there is at least one packet pending to be read
480	 *	from the RxFIFO.
481	 * @sof: Start of (micro)Frame (Sof)
482	 *	In Host mode, the core sets this bit to indicate that an SOF
483	 *	(FS), micro-SOF (HS), or Keep-Alive (LS) is transmitted on the
484	 *	USB. The application must write a 1 to this bit to clear the
485	 *	interrupt.
486	 *	In Device mode, in the core sets this bit to indicate that an
487	 *	SOF token has been received on the USB. The application can read
488	 *	the Device Status register to get the current (micro)frame
489	 *	number. This interrupt is seen only when the core is operating
490	 *	at either HS or FS.
491	 * @otgint: OTG Interrupt (OTGInt)
492	 *	The core sets this bit to indicate an OTG protocol event. The
493	 *	application must read the OTG Interrupt Status (GOTGINT)
494	 *	register to determine the exact event that caused this
495	 *	interrupt. The application must clear the appropriate status bit
496	 *	in the GOTGINT register to clear this bit.
497	 * @modemis: Mode Mismatch Interrupt (ModeMis)
498	 *	The core sets this bit when the application is trying to access:
499	 *	* A Host mode register, when the core is operating in Device
500	 *	mode
501	 *	* A Device mode register, when the core is operating in Host
502	 *	mode
503	 *	The register access is completed on the AHB with an OKAY
504	 *	response, but is ignored by the core internally and doesn't
505	 *	affect the operation of the core.
506	 * @curmod: Current Mode of Operation (CurMod)
507	 *	Indicates the current mode of operation.
508	 *	* 1'b0: Device mode
509	 *	* 1'b1: Host mode
510	 */
511	struct cvmx_usbcx_gintsts_s {
512		__BITFIELD_FIELD(uint32_t wkupint		: 1,
513		__BITFIELD_FIELD(uint32_t sessreqint		: 1,
514		__BITFIELD_FIELD(uint32_t disconnint		: 1,
515		__BITFIELD_FIELD(uint32_t conidstschng		: 1,
516		__BITFIELD_FIELD(uint32_t reserved_27_27	: 1,
517		__BITFIELD_FIELD(uint32_t ptxfemp		: 1,
518		__BITFIELD_FIELD(uint32_t hchint		: 1,
519		__BITFIELD_FIELD(uint32_t prtint		: 1,
520		__BITFIELD_FIELD(uint32_t reserved_23_23	: 1,
521		__BITFIELD_FIELD(uint32_t fetsusp		: 1,
522		__BITFIELD_FIELD(uint32_t incomplp		: 1,
523		__BITFIELD_FIELD(uint32_t incompisoin		: 1,
524		__BITFIELD_FIELD(uint32_t oepint		: 1,
525		__BITFIELD_FIELD(uint32_t iepint		: 1,
526		__BITFIELD_FIELD(uint32_t epmis			: 1,
527		__BITFIELD_FIELD(uint32_t reserved_16_16	: 1,
528		__BITFIELD_FIELD(uint32_t eopf			: 1,
529		__BITFIELD_FIELD(uint32_t isooutdrop		: 1,
530		__BITFIELD_FIELD(uint32_t enumdone		: 1,
531		__BITFIELD_FIELD(uint32_t usbrst		: 1,
532		__BITFIELD_FIELD(uint32_t usbsusp		: 1,
533		__BITFIELD_FIELD(uint32_t erlysusp		: 1,
534		__BITFIELD_FIELD(uint32_t i2cint		: 1,
535		__BITFIELD_FIELD(uint32_t ulpickint		: 1,
536		__BITFIELD_FIELD(uint32_t goutnakeff		: 1,
537		__BITFIELD_FIELD(uint32_t ginnakeff		: 1,
538		__BITFIELD_FIELD(uint32_t nptxfemp		: 1,
539		__BITFIELD_FIELD(uint32_t rxflvl		: 1,
540		__BITFIELD_FIELD(uint32_t sof			: 1,
541		__BITFIELD_FIELD(uint32_t otgint		: 1,
542		__BITFIELD_FIELD(uint32_t modemis		: 1,
543		__BITFIELD_FIELD(uint32_t curmod		: 1,
544		;))))))))))))))))))))))))))))))))
545	} s;
546};
547
548/**
549 * cvmx_usbc#_gnptxfsiz
550 *
551 * Non-Periodic Transmit FIFO Size Register (GNPTXFSIZ)
552 *
553 * The application can program the RAM size and the memory start address for the
554 * Non-Periodic TxFIFO.
555 */
556union cvmx_usbcx_gnptxfsiz {
557	uint32_t u32;
558	/**
559	 * struct cvmx_usbcx_gnptxfsiz_s
560	 * @nptxfdep: Non-Periodic TxFIFO Depth (NPTxFDep)
561	 *	This value is in terms of 32-bit words.
562	 *	Minimum value is 16
563	 *	Maximum value is 32768
564	 * @nptxfstaddr: Non-Periodic Transmit RAM Start Address (NPTxFStAddr)
565	 *	This field contains the memory start address for Non-Periodic
566	 *	Transmit FIFO RAM.
567	 */
568	struct cvmx_usbcx_gnptxfsiz_s {
569		__BITFIELD_FIELD(uint32_t nptxfdep	: 16,
570		__BITFIELD_FIELD(uint32_t nptxfstaddr	: 16,
571		;))
572	} s;
573};
574
575/**
576 * cvmx_usbc#_gnptxsts
577 *
578 * Non-Periodic Transmit FIFO/Queue Status Register (GNPTXSTS)
579 *
580 * This read-only register contains the free space information for the
581 * Non-Periodic TxFIFO and the Non-Periodic Transmit Request Queue.
582 */
583union cvmx_usbcx_gnptxsts {
584	uint32_t u32;
585	/**
586	 * struct cvmx_usbcx_gnptxsts_s
587	 * @nptxqtop: Top of the Non-Periodic Transmit Request Queue (NPTxQTop)
588	 *	Entry in the Non-Periodic Tx Request Queue that is currently
589	 *	being processed by the MAC.
590	 *	* Bits [30:27]: Channel/endpoint number
591	 *	* Bits [26:25]:
592	 *	- 2'b00: IN/OUT token
593	 *	- 2'b01: Zero-length transmit packet (device IN/host OUT)
594	 *	- 2'b10: PING/CSPLIT token
595	 *	- 2'b11: Channel halt command
596	 *	* Bit [24]: Terminate (last entry for selected channel/endpoint)
597	 * @nptxqspcavail: Non-Periodic Transmit Request Queue Space Available
598	 *	(NPTxQSpcAvail)
599	 *	Indicates the amount of free space available in the Non-
600	 *	Periodic Transmit Request Queue. This queue holds both IN
601	 *	and OUT requests in Host mode. Device mode has only IN
602	 *	requests.
603	 *	* 8'h0: Non-Periodic Transmit Request Queue is full
604	 *	* 8'h1: 1 location available
605	 *	* 8'h2: 2 locations available
606	 *	* n: n locations available (0..8)
607	 *	* Others: Reserved
608	 * @nptxfspcavail: Non-Periodic TxFIFO Space Avail (NPTxFSpcAvail)
609	 *	Indicates the amount of free space available in the Non-
610	 *	Periodic TxFIFO.
611	 *	Values are in terms of 32-bit words.
612	 *	* 16'h0: Non-Periodic TxFIFO is full
613	 *	* 16'h1: 1 word available
614	 *	* 16'h2: 2 words available
615	 *	* 16'hn: n words available (where 0..32768)
616	 *	* 16'h8000: 32768 words available
617	 *	* Others: Reserved
618	 */
619	struct cvmx_usbcx_gnptxsts_s {
620		__BITFIELD_FIELD(uint32_t reserved_31_31	: 1,
621		__BITFIELD_FIELD(uint32_t nptxqtop		: 7,
622		__BITFIELD_FIELD(uint32_t nptxqspcavail		: 8,
623		__BITFIELD_FIELD(uint32_t nptxfspcavail		: 16,
624		;))))
625	} s;
626};
627
628/**
629 * cvmx_usbc#_grstctl
630 *
631 * Core Reset Register (GRSTCTL)
632 *
633 * The application uses this register to reset various hardware features inside
634 * the core.
635 */
636union cvmx_usbcx_grstctl {
637	uint32_t u32;
638	/**
639	 * struct cvmx_usbcx_grstctl_s
640	 * @ahbidle: AHB Master Idle (AHBIdle)
641	 *	Indicates that the AHB Master State Machine is in the IDLE
642	 *	condition.
643	 * @dmareq: DMA Request Signal (DMAReq)
644	 *	Indicates that the DMA request is in progress. Used for debug.
645	 * @txfnum: TxFIFO Number (TxFNum)
646	 *	This is the FIFO number that must be flushed using the TxFIFO
647	 *	Flush bit. This field must not be changed until the core clears
648	 *	the TxFIFO Flush bit.
649	 *	* 5'h0: Non-Periodic TxFIFO flush
650	 *	* 5'h1: Periodic TxFIFO 1 flush in Device mode or Periodic
651	 *	TxFIFO flush in Host mode
652	 *	* 5'h2: Periodic TxFIFO 2 flush in Device mode
653	 *	- ...
654	 *	* 5'hF: Periodic TxFIFO 15 flush in Device mode
655	 *	* 5'h10: Flush all the Periodic and Non-Periodic TxFIFOs in the
656	 *	core
657	 * @txfflsh: TxFIFO Flush (TxFFlsh)
658	 *	This bit selectively flushes a single or all transmit FIFOs, but
659	 *	cannot do so if the core is in the midst of a transaction.
660	 *	The application must only write this bit after checking that the
661	 *	core is neither writing to the TxFIFO nor reading from the
662	 *	TxFIFO.
663	 *	The application must wait until the core clears this bit before
664	 *	performing any operations. This bit takes 8 clocks (of phy_clk
665	 *	or hclk, whichever is slower) to clear.
666	 * @rxfflsh: RxFIFO Flush (RxFFlsh)
667	 *	The application can flush the entire RxFIFO using this bit, but
668	 *	must first ensure that the core is not in the middle of a
669	 *	transaction.
670	 *	The application must only write to this bit after checking that
671	 *	the core is neither reading from the RxFIFO nor writing to the
672	 *	RxFIFO.
673	 *	The application must wait until the bit is cleared before
674	 *	performing any other operations. This bit will take 8 clocks
675	 *	(slowest of PHY or AHB clock) to clear.
676	 * @intknqflsh: IN Token Sequence Learning Queue Flush (INTknQFlsh)
677	 *	The application writes this bit to flush the IN Token Sequence
678	 *	Learning Queue.
679	 * @frmcntrrst: Host Frame Counter Reset (FrmCntrRst)
680	 *	The application writes this bit to reset the (micro)frame number
681	 *	counter inside the core. When the (micro)frame counter is reset,
682	 *	the subsequent SOF sent out by the core will have a
683	 *	(micro)frame number of 0.
684	 * @hsftrst: HClk Soft Reset (HSftRst)
685	 *	The application uses this bit to flush the control logic in the
686	 *	AHB Clock domain. Only AHB Clock Domain pipelines are reset.
687	 *	* FIFOs are not flushed with this bit.
688	 *	* All state machines in the AHB clock domain are reset to the
689	 *	Idle state after terminating the transactions on the AHB,
690	 *	following the protocol.
691	 *	* CSR control bits used by the AHB clock domain state
692	 *	machines are cleared.
693	 *	* To clear this interrupt, status mask bits that control the
694	 *	interrupt status and are generated by the AHB clock domain
695	 *	state machine are cleared.
696	 *	* Because interrupt status bits are not cleared, the application
697	 *	can get the status of any core events that occurred after it set
698	 *	this bit.
699	 *	This is a self-clearing bit that the core clears after all
700	 *	necessary logic is reset in the core. This may take several
701	 *	clocks, depending on the core's current state.
702	 * @csftrst: Core Soft Reset (CSftRst)
703	 *	Resets the hclk and phy_clock domains as follows:
704	 *	* Clears the interrupts and all the CSR registers except the
705	 *	following register bits:
706	 *	- PCGCCTL.RstPdwnModule
707	 *	- PCGCCTL.GateHclk
708	 *	- PCGCCTL.PwrClmp
709	 *	- PCGCCTL.StopPPhyLPwrClkSelclk
710	 *	- GUSBCFG.PhyLPwrClkSel
711	 *	- GUSBCFG.DDRSel
712	 *	- GUSBCFG.PHYSel
713	 *	- GUSBCFG.FSIntf
714	 *	- GUSBCFG.ULPI_UTMI_Sel
715	 *	- GUSBCFG.PHYIf
716	 *	- HCFG.FSLSPclkSel
717	 *	- DCFG.DevSpd
718	 *	* All module state machines (except the AHB Slave Unit) are
719	 *	reset to the IDLE state, and all the transmit FIFOs and the
720	 *	receive FIFO are flushed.
721	 *	* Any transactions on the AHB Master are terminated as soon
722	 *	as possible, after gracefully completing the last data phase of
723	 *	an AHB transfer. Any transactions on the USB are terminated
724	 *	immediately.
725	 *	The application can write to this bit any time it wants to reset
726	 *	the core. This is a self-clearing bit and the core clears this
727	 *	bit after all the necessary logic is reset in the core, which
728	 *	may take several clocks, depending on the current state of the
729	 *	core. Once this bit is cleared software should wait at least 3
730	 *	PHY clocks before doing any access to the PHY domain
731	 *	(synchronization delay). Software should also should check that
732	 *	bit 31 of this register is 1 (AHB Master is IDLE) before
733	 *	starting any operation.
734	 *	Typically software reset is used during software development
735	 *	and also when you dynamically change the PHY selection bits
736	 *	in the USB configuration registers listed above. When you
737	 *	change the PHY, the corresponding clock for the PHY is
738	 *	selected and used in the PHY domain. Once a new clock is
739	 *	selected, the PHY domain has to be reset for proper operation.
740	 */
741	struct cvmx_usbcx_grstctl_s {
742		__BITFIELD_FIELD(uint32_t ahbidle		: 1,
743		__BITFIELD_FIELD(uint32_t dmareq		: 1,
744		__BITFIELD_FIELD(uint32_t reserved_11_29	: 19,
745		__BITFIELD_FIELD(uint32_t txfnum		: 5,
746		__BITFIELD_FIELD(uint32_t txfflsh		: 1,
747		__BITFIELD_FIELD(uint32_t rxfflsh		: 1,
748		__BITFIELD_FIELD(uint32_t intknqflsh		: 1,
749		__BITFIELD_FIELD(uint32_t frmcntrrst		: 1,
750		__BITFIELD_FIELD(uint32_t hsftrst		: 1,
751		__BITFIELD_FIELD(uint32_t csftrst		: 1,
752		;))))))))))
753	} s;
754};
755
756/**
757 * cvmx_usbc#_grxfsiz
758 *
759 * Receive FIFO Size Register (GRXFSIZ)
760 *
761 * The application can program the RAM size that must be allocated to the
762 * RxFIFO.
763 */
764union cvmx_usbcx_grxfsiz {
765	uint32_t u32;
766	/**
767	 * struct cvmx_usbcx_grxfsiz_s
768	 * @rxfdep: RxFIFO Depth (RxFDep)
769	 *	This value is in terms of 32-bit words.
770	 *	* Minimum value is 16
771	 *	* Maximum value is 32768
772	 */
773	struct cvmx_usbcx_grxfsiz_s {
774		__BITFIELD_FIELD(uint32_t reserved_16_31	: 16,
775		__BITFIELD_FIELD(uint32_t rxfdep		: 16,
776		;))
777	} s;
778};
779
780/**
781 * cvmx_usbc#_grxstsph
782 *
783 * Receive Status Read and Pop Register, Host Mode (GRXSTSPH)
784 *
785 * A read to the Receive Status Read and Pop register returns and additionally
786 * pops the top data entry out of the RxFIFO.
787 * This Description is only valid when the core is in Host Mode. For Device Mode
788 * use USBC_GRXSTSPD instead.
789 * NOTE: GRXSTSPH and GRXSTSPD are physically the same register and share the
790 *	 same offset in the O2P USB core. The offset difference shown in this
791 *	 document is for software clarity and is actually ignored by the
792 *       hardware.
793 */
794union cvmx_usbcx_grxstsph {
795	uint32_t u32;
796	/**
797	 * struct cvmx_usbcx_grxstsph_s
798	 * @pktsts: Packet Status (PktSts)
799	 *	Indicates the status of the received packet
800	 *	* 4'b0010: IN data packet received
801	 *	* 4'b0011: IN transfer completed (triggers an interrupt)
802	 *	* 4'b0101: Data toggle error (triggers an interrupt)
803	 *	* 4'b0111: Channel halted (triggers an interrupt)
804	 *	* Others: Reserved
805	 * @dpid: Data PID (DPID)
806	 *	* 2'b00: DATA0
807	 *	* 2'b10: DATA1
808	 *	* 2'b01: DATA2
809	 *	* 2'b11: MDATA
810	 * @bcnt: Byte Count (BCnt)
811	 *	Indicates the byte count of the received IN data packet
812	 * @chnum: Channel Number (ChNum)
813	 *	Indicates the channel number to which the current received
814	 *	packet belongs.
815	 */
816	struct cvmx_usbcx_grxstsph_s {
817		__BITFIELD_FIELD(uint32_t reserved_21_31	: 11,
818		__BITFIELD_FIELD(uint32_t pktsts		: 4,
819		__BITFIELD_FIELD(uint32_t dpid			: 2,
820		__BITFIELD_FIELD(uint32_t bcnt			: 11,
821		__BITFIELD_FIELD(uint32_t chnum			: 4,
822		;)))))
823	} s;
824};
825
826/**
827 * cvmx_usbc#_gusbcfg
828 *
829 * Core USB Configuration Register (GUSBCFG)
830 *
831 * This register can be used to configure the core after power-on or a changing
832 * to Host mode or Device mode. It contains USB and USB-PHY related
833 * configuration parameters. The application must program this register before
834 * starting any transactions on either the AHB or the USB. Do not make changes
835 * to this register after the initial programming.
836 */
837union cvmx_usbcx_gusbcfg {
838	uint32_t u32;
839	/**
840	 * struct cvmx_usbcx_gusbcfg_s
841	 * @otgi2csel: UTMIFS or I2C Interface Select (OtgI2CSel)
842	 *	This bit is always 0x0.
843	 * @phylpwrclksel: PHY Low-Power Clock Select (PhyLPwrClkSel)
844	 *	Software should set this bit to 0x0.
845	 *	Selects either 480-MHz or 48-MHz (low-power) PHY mode. In
846	 *	FS and LS modes, the PHY can usually operate on a 48-MHz
847	 *	clock to save power.
848	 *	* 1'b0: 480-MHz Internal PLL clock
849	 *	* 1'b1: 48-MHz External Clock
850	 *	In 480 MHz mode, the UTMI interface operates at either 60 or
851	 *	30-MHz, depending upon whether 8- or 16-bit data width is
852	 *	selected. In 48-MHz mode, the UTMI interface operates at 48
853	 *	MHz in FS mode and at either 48 or 6 MHz in LS mode
854	 *	(depending on the PHY vendor).
855	 *	This bit drives the utmi_fsls_low_power core output signal, and
856	 *	is valid only for UTMI+ PHYs.
857	 * @usbtrdtim: USB Turnaround Time (USBTrdTim)
858	 *	Sets the turnaround time in PHY clocks.
859	 *	Specifies the response time for a MAC request to the Packet
860	 *	FIFO Controller (PFC) to fetch data from the DFIFO (SPRAM).
861	 *	This must be programmed to 0x5.
862	 * @hnpcap: HNP-Capable (HNPCap)
863	 *	This bit is always 0x0.
864	 * @srpcap: SRP-Capable (SRPCap)
865	 *	This bit is always 0x0.
866	 * @ddrsel: ULPI DDR Select (DDRSel)
867	 *	Software should set this bit to 0x0.
868	 * @physel: USB 2.0 High-Speed PHY or USB 1.1 Full-Speed Serial
869	 *	Software should set this bit to 0x0.
870	 * @fsintf: Full-Speed Serial Interface Select (FSIntf)
871	 *	Software should set this bit to 0x0.
872	 * @ulpi_utmi_sel: ULPI or UTMI+ Select (ULPI_UTMI_Sel)
873	 *	This bit is always 0x0.
874	 * @phyif: PHY Interface (PHYIf)
875	 *	This bit is always 0x1.
876	 * @toutcal: HS/FS Timeout Calibration (TOutCal)
877	 *	The number of PHY clocks that the application programs in this
878	 *	field is added to the high-speed/full-speed interpacket timeout
879	 *	duration in the core to account for any additional delays
880	 *	introduced by the PHY. This may be required, since the delay
881	 *	introduced by the PHY in generating the linestate condition may
882	 *	vary from one PHY to another.
883	 *	The USB standard timeout value for high-speed operation is
884	 *	736 to 816 (inclusive) bit times. The USB standard timeout
885	 *	value for full-speed operation is 16 to 18 (inclusive) bit
886	 *	times. The application must program this field based on the
887	 *	speed of enumeration. The number of bit times added per PHY
888	 *	clock are:
889	 *	High-speed operation:
890	 *	* One 30-MHz PHY clock = 16 bit times
891	 *	* One 60-MHz PHY clock = 8 bit times
892	 *	Full-speed operation:
893	 *	* One 30-MHz PHY clock = 0.4 bit times
894	 *	* One 60-MHz PHY clock = 0.2 bit times
895	 *	* One 48-MHz PHY clock = 0.25 bit times
896	 */
897	struct cvmx_usbcx_gusbcfg_s {
898		__BITFIELD_FIELD(uint32_t reserved_17_31	: 15,
899		__BITFIELD_FIELD(uint32_t otgi2csel		: 1,
900		__BITFIELD_FIELD(uint32_t phylpwrclksel		: 1,
901		__BITFIELD_FIELD(uint32_t reserved_14_14	: 1,
902		__BITFIELD_FIELD(uint32_t usbtrdtim		: 4,
903		__BITFIELD_FIELD(uint32_t hnpcap		: 1,
904		__BITFIELD_FIELD(uint32_t srpcap		: 1,
905		__BITFIELD_FIELD(uint32_t ddrsel		: 1,
906		__BITFIELD_FIELD(uint32_t physel		: 1,
907		__BITFIELD_FIELD(uint32_t fsintf		: 1,
908		__BITFIELD_FIELD(uint32_t ulpi_utmi_sel		: 1,
909		__BITFIELD_FIELD(uint32_t phyif			: 1,
910		__BITFIELD_FIELD(uint32_t toutcal		: 3,
911		;)))))))))))))
912	} s;
913};
914
915/**
916 * cvmx_usbc#_haint
917 *
918 * Host All Channels Interrupt Register (HAINT)
919 *
920 * When a significant event occurs on a channel, the Host All Channels Interrupt
921 * register interrupts the application using the Host Channels Interrupt bit of
922 * the Core Interrupt register (GINTSTS.HChInt). This is shown in Interrupt.
923 * There is one interrupt bit per channel, up to a maximum of 16 bits. Bits in
924 * this register are set and cleared when the application sets and clears bits
925 * in the corresponding Host Channel-n Interrupt register.
926 */
927union cvmx_usbcx_haint {
928	uint32_t u32;
929	/**
930	 * struct cvmx_usbcx_haint_s
931	 * @haint: Channel Interrupts (HAINT)
932	 *	One bit per channel: Bit 0 for Channel 0, bit 15 for Channel 15
933	 */
934	struct cvmx_usbcx_haint_s {
935		__BITFIELD_FIELD(uint32_t reserved_16_31	: 16,
936		__BITFIELD_FIELD(uint32_t haint			: 16,
937		;))
938	} s;
939};
940
941/**
942 * cvmx_usbc#_haintmsk
943 *
944 * Host All Channels Interrupt Mask Register (HAINTMSK)
945 *
946 * The Host All Channel Interrupt Mask register works with the Host All Channel
947 * Interrupt register to interrupt the application when an event occurs on a
948 * channel. There is one interrupt mask bit per channel, up to a maximum of 16
949 * bits.
950 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
951 */
952union cvmx_usbcx_haintmsk {
953	uint32_t u32;
954	/**
955	 * struct cvmx_usbcx_haintmsk_s
956	 * @haintmsk: Channel Interrupt Mask (HAINTMsk)
957	 *	One bit per channel: Bit 0 for channel 0, bit 15 for channel 15
958	 */
959	struct cvmx_usbcx_haintmsk_s {
960		__BITFIELD_FIELD(uint32_t reserved_16_31	: 16,
961		__BITFIELD_FIELD(uint32_t haintmsk		: 16,
962		;))
963	} s;
964};
965
966/**
967 * cvmx_usbc#_hcchar#
968 *
969 * Host Channel-n Characteristics Register (HCCHAR)
970 *
971 */
972union cvmx_usbcx_hccharx {
973	uint32_t u32;
974	/**
975	 * struct cvmx_usbcx_hccharx_s
976	 * @chena: Channel Enable (ChEna)
977	 *	This field is set by the application and cleared by the OTG
978	 *	host.
979	 *	* 1'b0: Channel disabled
980	 *	* 1'b1: Channel enabled
981	 * @chdis: Channel Disable (ChDis)
982	 *	The application sets this bit to stop transmitting/receiving
983	 *	data on a channel, even before the transfer for that channel is
984	 *	complete. The application must wait for the Channel Disabled
985	 *	interrupt before treating the channel as disabled.
986	 * @oddfrm: Odd Frame (OddFrm)
987	 *	This field is set (reset) by the application to indicate that
988	 *	the OTG host must perform a transfer in an odd (micro)frame.
989	 *	This field is applicable for only periodic (isochronous and
990	 *	interrupt) transactions.
991	 *	* 1'b0: Even (micro)frame
992	 *	* 1'b1: Odd (micro)frame
993	 * @devaddr: Device Address (DevAddr)
994	 *	This field selects the specific device serving as the data
995	 *	source or sink.
996	 * @ec: Multi Count (MC) / Error Count (EC)
997	 *	When the Split Enable bit of the Host Channel-n Split Control
998	 *	register (HCSPLTn.SpltEna) is reset (1'b0), this field indicates
999	 *	to the host the number of transactions that should be executed
1000	 *	per microframe for this endpoint.
1001	 *	* 2'b00: Reserved. This field yields undefined results.
1002	 *	* 2'b01: 1 transaction
1003	 *	* 2'b10: 2 transactions to be issued for this endpoint per
1004	 *	microframe
1005	 *	* 2'b11: 3 transactions to be issued for this endpoint per
1006	 *	microframe
1007	 *	When HCSPLTn.SpltEna is set (1'b1), this field indicates the
1008	 *	number of immediate retries to be performed for a periodic split
1009	 *	transactions on transaction errors. This field must be set to at
1010	 *	least 2'b01.
1011	 * @eptype: Endpoint Type (EPType)
1012	 *	Indicates the transfer type selected.
1013	 *	* 2'b00: Control
1014	 *	* 2'b01: Isochronous
1015	 *	* 2'b10: Bulk
1016	 *	* 2'b11: Interrupt
1017	 * @lspddev: Low-Speed Device (LSpdDev)
1018	 *	This field is set by the application to indicate that this
1019	 *	channel is communicating to a low-speed device.
1020	 * @epdir: Endpoint Direction (EPDir)
1021	 *	Indicates whether the transaction is IN or OUT.
1022	 *	* 1'b0: OUT
1023	 *	* 1'b1: IN
1024	 * @epnum: Endpoint Number (EPNum)
1025	 *	Indicates the endpoint number on the device serving as the
1026	 *	data source or sink.
1027	 * @mps: Maximum Packet Size (MPS)
1028	 *	Indicates the maximum packet size of the associated endpoint.
1029	 */
1030	struct cvmx_usbcx_hccharx_s {
1031		__BITFIELD_FIELD(uint32_t chena			: 1,
1032		__BITFIELD_FIELD(uint32_t chdis			: 1,
1033		__BITFIELD_FIELD(uint32_t oddfrm		: 1,
1034		__BITFIELD_FIELD(uint32_t devaddr		: 7,
1035		__BITFIELD_FIELD(uint32_t ec			: 2,
1036		__BITFIELD_FIELD(uint32_t eptype		: 2,
1037		__BITFIELD_FIELD(uint32_t lspddev		: 1,
1038		__BITFIELD_FIELD(uint32_t reserved_16_16	: 1,
1039		__BITFIELD_FIELD(uint32_t epdir			: 1,
1040		__BITFIELD_FIELD(uint32_t epnum			: 4,
1041		__BITFIELD_FIELD(uint32_t mps			: 11,
1042		;)))))))))))
1043	} s;
1044};
1045
1046/**
1047 * cvmx_usbc#_hcfg
1048 *
1049 * Host Configuration Register (HCFG)
1050 *
1051 * This register configures the core after power-on. Do not make changes to this
1052 * register after initializing the host.
1053 */
1054union cvmx_usbcx_hcfg {
1055	uint32_t u32;
1056	/**
1057	 * struct cvmx_usbcx_hcfg_s
1058	 * @fslssupp: FS- and LS-Only Support (FSLSSupp)
1059	 *	The application uses this bit to control the core's enumeration
1060	 *	speed. Using this bit, the application can make the core
1061	 *	enumerate as a FS host, even if the connected device supports
1062	 *	HS traffic. Do not make changes to this field after initial
1063	 *	programming.
1064	 *	* 1'b0: HS/FS/LS, based on the maximum speed supported by
1065	 *	the connected device
1066	 *	* 1'b1: FS/LS-only, even if the connected device can support HS
1067	 * @fslspclksel: FS/LS PHY Clock Select (FSLSPclkSel)
1068	 *	When the core is in FS Host mode
1069	 *	* 2'b00: PHY clock is running at 30/60 MHz
1070	 *	* 2'b01: PHY clock is running at 48 MHz
1071	 *	* Others: Reserved
1072	 *	When the core is in LS Host mode
1073	 *	* 2'b00: PHY clock is running at 30/60 MHz. When the
1074	 *	UTMI+/ULPI PHY Low Power mode is not selected, use
1075	 *	30/60 MHz.
1076	 *	* 2'b01: PHY clock is running at 48 MHz. When the UTMI+
1077	 *	PHY Low Power mode is selected, use 48MHz if the PHY
1078	 *	supplies a 48 MHz clock during LS mode.
1079	 *	* 2'b10: PHY clock is running at 6 MHz. In USB 1.1 FS mode,
1080	 *	use 6 MHz when the UTMI+ PHY Low Power mode is
1081	 *	selected and the PHY supplies a 6 MHz clock during LS
1082	 *	mode. If you select a 6 MHz clock during LS mode, you must
1083	 *	do a soft reset.
1084	 *	* 2'b11: Reserved
1085	 */
1086	struct cvmx_usbcx_hcfg_s {
1087		__BITFIELD_FIELD(uint32_t reserved_3_31	: 29,
1088		__BITFIELD_FIELD(uint32_t fslssupp	: 1,
1089		__BITFIELD_FIELD(uint32_t fslspclksel	: 2,
1090		;)))
1091	} s;
1092};
1093
1094/**
1095 * cvmx_usbc#_hcint#
1096 *
1097 * Host Channel-n Interrupt Register (HCINT)
1098 *
1099 * This register indicates the status of a channel with respect to USB- and
1100 * AHB-related events. The application must read this register when the Host
1101 * Channels Interrupt bit of the Core Interrupt register (GINTSTS.HChInt) is
1102 * set. Before the application can read this register, it must first read
1103 * the Host All Channels Interrupt (HAINT) register to get the exact channel
1104 * number for the Host Channel-n Interrupt register. The application must clear
1105 * the appropriate bit in this register to clear the corresponding bits in the
1106 * HAINT and GINTSTS registers.
1107 */
1108union cvmx_usbcx_hcintx {
1109	uint32_t u32;
1110	/**
1111	 * struct cvmx_usbcx_hcintx_s
1112	 * @datatglerr: Data Toggle Error (DataTglErr)
1113	 * @frmovrun: Frame Overrun (FrmOvrun)
1114	 * @bblerr: Babble Error (BblErr)
1115	 * @xacterr: Transaction Error (XactErr)
1116	 * @nyet: NYET Response Received Interrupt (NYET)
1117	 * @ack: ACK Response Received Interrupt (ACK)
1118	 * @nak: NAK Response Received Interrupt (NAK)
1119	 * @stall: STALL Response Received Interrupt (STALL)
1120	 * @ahberr: This bit is always 0x0.
1121	 * @chhltd: Channel Halted (ChHltd)
1122	 *	Indicates the transfer completed abnormally either because of
1123	 *	any USB transaction error or in response to disable request by
1124	 *	the application.
1125	 * @xfercompl: Transfer Completed (XferCompl)
1126	 *	Transfer completed normally without any errors.
1127	 */
1128	struct cvmx_usbcx_hcintx_s {
1129		__BITFIELD_FIELD(uint32_t reserved_11_31	: 21,
1130		__BITFIELD_FIELD(uint32_t datatglerr		: 1,
1131		__BITFIELD_FIELD(uint32_t frmovrun		: 1,
1132		__BITFIELD_FIELD(uint32_t bblerr		: 1,
1133		__BITFIELD_FIELD(uint32_t xacterr		: 1,
1134		__BITFIELD_FIELD(uint32_t nyet			: 1,
1135		__BITFIELD_FIELD(uint32_t ack			: 1,
1136		__BITFIELD_FIELD(uint32_t nak			: 1,
1137		__BITFIELD_FIELD(uint32_t stall			: 1,
1138		__BITFIELD_FIELD(uint32_t ahberr		: 1,
1139		__BITFIELD_FIELD(uint32_t chhltd		: 1,
1140		__BITFIELD_FIELD(uint32_t xfercompl		: 1,
1141		;))))))))))))
1142	} s;
1143};
1144
1145/**
1146 * cvmx_usbc#_hcintmsk#
1147 *
1148 * Host Channel-n Interrupt Mask Register (HCINTMSKn)
1149 *
1150 * This register reflects the mask for each channel status described in the
1151 * previous section.
1152 * Mask interrupt: 1'b0 Unmask interrupt: 1'b1
1153 */
1154union cvmx_usbcx_hcintmskx {
1155	uint32_t u32;
1156	/**
1157	 * struct cvmx_usbcx_hcintmskx_s
1158	 * @datatglerrmsk: Data Toggle Error Mask (DataTglErrMsk)
1159	 * @frmovrunmsk: Frame Overrun Mask (FrmOvrunMsk)
1160	 * @bblerrmsk: Babble Error Mask (BblErrMsk)
1161	 * @xacterrmsk: Transaction Error Mask (XactErrMsk)
1162	 * @nyetmsk: NYET Response Received Interrupt Mask (NyetMsk)
1163	 * @ackmsk: ACK Response Received Interrupt Mask (AckMsk)
1164	 * @nakmsk: NAK Response Received Interrupt Mask (NakMsk)
1165	 * @stallmsk: STALL Response Received Interrupt Mask (StallMsk)
1166	 * @ahberrmsk: AHB Error Mask (AHBErrMsk)
1167	 * @chhltdmsk: Channel Halted Mask (ChHltdMsk)
1168	 * @xfercomplmsk: Transfer Completed Mask (XferComplMsk)
1169	 */
1170	struct cvmx_usbcx_hcintmskx_s {
1171		__BITFIELD_FIELD(uint32_t reserved_11_31		: 21,
1172		__BITFIELD_FIELD(uint32_t datatglerrmsk			: 1,
1173		__BITFIELD_FIELD(uint32_t frmovrunmsk			: 1,
1174		__BITFIELD_FIELD(uint32_t bblerrmsk			: 1,
1175		__BITFIELD_FIELD(uint32_t xacterrmsk			: 1,
1176		__BITFIELD_FIELD(uint32_t nyetmsk			: 1,
1177		__BITFIELD_FIELD(uint32_t ackmsk			: 1,
1178		__BITFIELD_FIELD(uint32_t nakmsk			: 1,
1179		__BITFIELD_FIELD(uint32_t stallmsk			: 1,
1180		__BITFIELD_FIELD(uint32_t ahberrmsk			: 1,
1181		__BITFIELD_FIELD(uint32_t chhltdmsk			: 1,
1182		__BITFIELD_FIELD(uint32_t xfercomplmsk			: 1,
1183		;))))))))))))
1184	} s;
1185};
1186
1187/**
1188 * cvmx_usbc#_hcsplt#
1189 *
1190 * Host Channel-n Split Control Register (HCSPLT)
1191 *
1192 */
1193union cvmx_usbcx_hcspltx {
1194	uint32_t u32;
1195	/**
1196	 * struct cvmx_usbcx_hcspltx_s
1197	 * @spltena: Split Enable (SpltEna)
1198	 *	The application sets this field to indicate that this channel is
1199	 *	enabled to perform split transactions.
1200	 * @compsplt: Do Complete Split (CompSplt)
1201	 *	The application sets this field to request the OTG host to
1202	 *	perform a complete split transaction.
1203	 * @xactpos: Transaction Position (XactPos)
1204	 *	This field is used to determine whether to send all, first,
1205	 *	middle, or last payloads with each OUT transaction.
1206	 *	* 2'b11: All. This is the entire data payload is of this
1207	 *	transaction (which is less than or equal to 188 bytes).
1208	 *	* 2'b10: Begin. This is the first data payload of this
1209	 *	transaction (which is larger than 188 bytes).
1210	 *	* 2'b00: Mid. This is the middle payload of this transaction
1211	 *	(which is larger than 188 bytes).
1212	 *	* 2'b01: End. This is the last payload of this transaction
1213	 *	(which is larger than 188 bytes).
1214	 * @hubaddr: Hub Address (HubAddr)
1215	 *	This field holds the device address of the transaction
1216	 *	translator's hub.
1217	 * @prtaddr: Port Address (PrtAddr)
1218	 *	This field is the port number of the recipient transaction
1219	 *	translator.
1220	 */
1221	struct cvmx_usbcx_hcspltx_s {
1222		__BITFIELD_FIELD(uint32_t spltena			: 1,
1223		__BITFIELD_FIELD(uint32_t reserved_17_30		: 14,
1224		__BITFIELD_FIELD(uint32_t compsplt			: 1,
1225		__BITFIELD_FIELD(uint32_t xactpos			: 2,
1226		__BITFIELD_FIELD(uint32_t hubaddr			: 7,
1227		__BITFIELD_FIELD(uint32_t prtaddr			: 7,
1228		;))))))
1229	} s;
1230};
1231
1232/**
1233 * cvmx_usbc#_hctsiz#
1234 *
1235 * Host Channel-n Transfer Size Register (HCTSIZ)
1236 *
1237 */
1238union cvmx_usbcx_hctsizx {
1239	uint32_t u32;
1240	/**
1241	 * struct cvmx_usbcx_hctsizx_s
1242	 * @dopng: Do Ping (DoPng)
1243	 *	Setting this field to 1 directs the host to do PING protocol.
1244	 * @pid: PID (Pid)
1245	 *	The application programs this field with the type of PID to use
1246	 *	for the initial transaction. The host will maintain this field
1247	 *	for the rest of the transfer.
1248	 *	* 2'b00: DATA0
1249	 *	* 2'b01: DATA2
1250	 *	* 2'b10: DATA1
1251	 *	* 2'b11: MDATA (non-control)/SETUP (control)
1252	 * @pktcnt: Packet Count (PktCnt)
1253	 *	This field is programmed by the application with the expected
1254	 *	number of packets to be transmitted (OUT) or received (IN).
1255	 *	The host decrements this count on every successful
1256	 *	transmission or reception of an OUT/IN packet. Once this count
1257	 *	reaches zero, the application is interrupted to indicate normal
1258	 *	completion.
1259	 * @xfersize: Transfer Size (XferSize)
1260	 *	For an OUT, this field is the number of data bytes the host will
1261	 *	send during the transfer.
1262	 *	For an IN, this field is the buffer size that the application
1263	 *	has reserved for the transfer. The application is expected to
1264	 *	program this field as an integer multiple of the maximum packet
1265	 *	size for IN transactions (periodic and non-periodic).
1266	 */
1267	struct cvmx_usbcx_hctsizx_s {
1268		__BITFIELD_FIELD(uint32_t dopng			: 1,
1269		__BITFIELD_FIELD(uint32_t pid			: 2,
1270		__BITFIELD_FIELD(uint32_t pktcnt		: 10,
1271		__BITFIELD_FIELD(uint32_t xfersize		: 19,
1272		;))))
1273	} s;
1274};
1275
1276/**
1277 * cvmx_usbc#_hfir
1278 *
1279 * Host Frame Interval Register (HFIR)
1280 *
1281 * This register stores the frame interval information for the current speed to
1282 * which the O2P USB core has enumerated.
1283 */
1284union cvmx_usbcx_hfir {
1285	uint32_t u32;
1286	/**
1287	 * struct cvmx_usbcx_hfir_s
1288	 * @frint: Frame Interval (FrInt)
1289	 *	The value that the application programs to this field specifies
1290	 *	the interval between two consecutive SOFs (FS) or micro-
1291	 *	SOFs (HS) or Keep-Alive tokens (HS). This field contains the
1292	 *	number of PHY clocks that constitute the required frame
1293	 *	interval. The default value set in this field for a FS operation
1294	 *	when the PHY clock frequency is 60 MHz. The application can
1295	 *	write a value to this register only after the Port Enable bit of
1296	 *	the Host Port Control and Status register (HPRT.PrtEnaPort)
1297	 *	has been set. If no value is programmed, the core calculates
1298	 *	the value based on the PHY clock specified in the FS/LS PHY
1299	 *	Clock Select field of the Host Configuration register
1300	 *	(HCFG.FSLSPclkSel). Do not change the value of this field
1301	 *	after the initial configuration.
1302	 *	* 125 us (PHY clock frequency for HS)
1303	 *	* 1 ms (PHY clock frequency for FS/LS)
1304	 */
1305	struct cvmx_usbcx_hfir_s {
1306		__BITFIELD_FIELD(uint32_t reserved_16_31		: 16,
1307		__BITFIELD_FIELD(uint32_t frint				: 16,
1308		;))
1309	} s;
1310};
1311
1312/**
1313 * cvmx_usbc#_hfnum
1314 *
1315 * Host Frame Number/Frame Time Remaining Register (HFNUM)
1316 *
1317 * This register indicates the current frame number.
1318 * It also indicates the time remaining (in terms of the number of PHY clocks)
1319 * in the current (micro)frame.
1320 */
1321union cvmx_usbcx_hfnum {
1322	uint32_t u32;
1323	/**
1324	 * struct cvmx_usbcx_hfnum_s
1325	 * @frrem: Frame Time Remaining (FrRem)
1326	 *	Indicates the amount of time remaining in the current
1327	 *	microframe (HS) or frame (FS/LS), in terms of PHY clocks.
1328	 *	This field decrements on each PHY clock. When it reaches
1329	 *	zero, this field is reloaded with the value in the Frame
1330	 *	Interval register and a new SOF is transmitted on the USB.
1331	 * @frnum: Frame Number (FrNum)
1332	 *	This field increments when a new SOF is transmitted on the
1333	 *	USB, and is reset to 0 when it reaches 16'h3FFF.
1334	 */
1335	struct cvmx_usbcx_hfnum_s {
1336		__BITFIELD_FIELD(uint32_t frrem		: 16,
1337		__BITFIELD_FIELD(uint32_t frnum		: 16,
1338		;))
1339	} s;
1340};
1341
1342/**
1343 * cvmx_usbc#_hprt
1344 *
1345 * Host Port Control and Status Register (HPRT)
1346 *
1347 * This register is available in both Host and Device modes.
1348 * Currently, the OTG Host supports only one port.
1349 * A single register holds USB port-related information such as USB reset,
1350 * enable, suspend, resume, connect status, and test mode for each port. The
1351 * R_SS_WC bits in this register can trigger an interrupt to the application
1352 * through the Host Port Interrupt bit of the Core Interrupt register
1353 * (GINTSTS.PrtInt). On a Port Interrupt, the application must read this
1354 * register and clear the bit that caused the interrupt. For the R_SS_WC bits,
1355 * the application must write a 1 to the bit to clear the interrupt.
1356 */
1357union cvmx_usbcx_hprt {
1358	uint32_t u32;
1359	/**
1360	 * struct cvmx_usbcx_hprt_s
1361	 * @prtspd: Port Speed (PrtSpd)
1362	 *	Indicates the speed of the device attached to this port.
1363	 *	* 2'b00: High speed
1364	 *	* 2'b01: Full speed
1365	 *	* 2'b10: Low speed
1366	 *	* 2'b11: Reserved
1367	 * @prttstctl: Port Test Control (PrtTstCtl)
1368	 *	The application writes a nonzero value to this field to put
1369	 *	the port into a Test mode, and the corresponding pattern is
1370	 *	signaled on the port.
1371	 *	* 4'b0000: Test mode disabled
1372	 *	* 4'b0001: Test_J mode
1373	 *	* 4'b0010: Test_K mode
1374	 *	* 4'b0011: Test_SE0_NAK mode
1375	 *	* 4'b0100: Test_Packet mode
1376	 *	* 4'b0101: Test_Force_Enable
1377	 *	* Others: Reserved
1378	 *	PrtSpd must be zero (i.e. the interface must be in high-speed
1379	 *	mode) to use the PrtTstCtl test modes.
1380	 * @prtpwr: Port Power (PrtPwr)
1381	 *	The application uses this field to control power to this port,
1382	 *	and the core clears this bit on an overcurrent condition.
1383	 *	* 1'b0: Power off
1384	 *	* 1'b1: Power on
1385	 * @prtlnsts: Port Line Status (PrtLnSts)
1386	 *	Indicates the current logic level USB data lines
1387	 *	* Bit [10]: Logic level of D-
1388	 *	* Bit [11]: Logic level of D+
1389	 * @prtrst: Port Reset (PrtRst)
1390	 *	When the application sets this bit, a reset sequence is
1391	 *	started on this port. The application must time the reset
1392	 *	period and clear this bit after the reset sequence is
1393	 *	complete.
1394	 *	* 1'b0: Port not in reset
1395	 *	* 1'b1: Port in reset
1396	 *	The application must leave this bit set for at least a
1397	 *	minimum duration mentioned below to start a reset on the
1398	 *	port. The application can leave it set for another 10 ms in
1399	 *	addition to the required minimum duration, before clearing
1400	 *	the bit, even though there is no maximum limit set by the
1401	 *	USB standard.
1402	 *	* High speed: 50 ms
1403	 *	* Full speed/Low speed: 10 ms
1404	 * @prtsusp: Port Suspend (PrtSusp)
1405	 *	The application sets this bit to put this port in Suspend
1406	 *	mode. The core only stops sending SOFs when this is set.
1407	 *	To stop the PHY clock, the application must set the Port
1408	 *	Clock Stop bit, which will assert the suspend input pin of
1409	 *	the PHY.
1410	 *	The read value of this bit reflects the current suspend
1411	 *	status of the port. This bit is cleared by the core after a
1412	 *	remote wakeup signal is detected or the application sets
1413	 *	the Port Reset bit or Port Resume bit in this register or the
1414	 *	Resume/Remote Wakeup Detected Interrupt bit or
1415	 *	Disconnect Detected Interrupt bit in the Core Interrupt
1416	 *	register (GINTSTS.WkUpInt or GINTSTS.DisconnInt,
1417	 *	respectively).
1418	 *	* 1'b0: Port not in Suspend mode
1419	 *	* 1'b1: Port in Suspend mode
1420	 * @prtres: Port Resume (PrtRes)
1421	 *	The application sets this bit to drive resume signaling on
1422	 *	the port. The core continues to drive the resume signal
1423	 *	until the application clears this bit.
1424	 *	If the core detects a USB remote wakeup sequence, as
1425	 *	indicated by the Port Resume/Remote Wakeup Detected
1426	 *	Interrupt bit of the Core Interrupt register
1427	 *	(GINTSTS.WkUpInt), the core starts driving resume
1428	 *	signaling without application intervention and clears this bit
1429	 *	when it detects a disconnect condition. The read value of
1430	 *	this bit indicates whether the core is currently driving
1431	 *	resume signaling.
1432	 *	* 1'b0: No resume driven
1433	 *	* 1'b1: Resume driven
1434	 * @prtovrcurrchng: Port Overcurrent Change (PrtOvrCurrChng)
1435	 *	The core sets this bit when the status of the Port
1436	 *	Overcurrent Active bit (bit 4) in this register changes.
1437	 * @prtovrcurract: Port Overcurrent Active (PrtOvrCurrAct)
1438	 *	Indicates the overcurrent condition of the port.
1439	 *	* 1'b0: No overcurrent condition
1440	 *	* 1'b1: Overcurrent condition
1441	 * @prtenchng: Port Enable/Disable Change (PrtEnChng)
1442	 *	The core sets this bit when the status of the Port Enable bit
1443	 *	[2] of this register changes.
1444	 * @prtena: Port Enable (PrtEna)
1445	 *	A port is enabled only by the core after a reset sequence,
1446	 *	and is disabled by an overcurrent condition, a disconnect
1447	 *	condition, or by the application clearing this bit. The
1448	 *	application cannot set this bit by a register write. It can only
1449	 *	clear it to disable the port. This bit does not trigger any
1450	 *	interrupt to the application.
1451	 *	* 1'b0: Port disabled
1452	 *	* 1'b1: Port enabled
1453	 * @prtconndet: Port Connect Detected (PrtConnDet)
1454	 *	The core sets this bit when a device connection is detected
1455	 *	to trigger an interrupt to the application using the Host Port
1456	 *	Interrupt bit of the Core Interrupt register (GINTSTS.PrtInt).
1457	 *	The application must write a 1 to this bit to clear the
1458	 *	interrupt.
1459	 * @prtconnsts: Port Connect Status (PrtConnSts)
1460	 *	* 0: No device is attached to the port.
1461	 *	* 1: A device is attached to the port.
1462	 */
1463	struct cvmx_usbcx_hprt_s {
1464		__BITFIELD_FIELD(uint32_t reserved_19_31	: 13,
1465		__BITFIELD_FIELD(uint32_t prtspd		: 2,
1466		__BITFIELD_FIELD(uint32_t prttstctl		: 4,
1467		__BITFIELD_FIELD(uint32_t prtpwr		: 1,
1468		__BITFIELD_FIELD(uint32_t prtlnsts		: 2,
1469		__BITFIELD_FIELD(uint32_t reserved_9_9		: 1,
1470		__BITFIELD_FIELD(uint32_t prtrst		: 1,
1471		__BITFIELD_FIELD(uint32_t prtsusp		: 1,
1472		__BITFIELD_FIELD(uint32_t prtres		: 1,
1473		__BITFIELD_FIELD(uint32_t prtovrcurrchng	: 1,
1474		__BITFIELD_FIELD(uint32_t prtovrcurract		: 1,
1475		__BITFIELD_FIELD(uint32_t prtenchng		: 1,
1476		__BITFIELD_FIELD(uint32_t prtena		: 1,
1477		__BITFIELD_FIELD(uint32_t prtconndet		: 1,
1478		__BITFIELD_FIELD(uint32_t prtconnsts		: 1,
1479		;)))))))))))))))
1480	} s;
1481};
1482
1483/**
1484 * cvmx_usbc#_hptxfsiz
1485 *
1486 * Host Periodic Transmit FIFO Size Register (HPTXFSIZ)
1487 *
1488 * This register holds the size and the memory start address of the Periodic
1489 * TxFIFO, as shown in Figures 310 and 311.
1490 */
1491union cvmx_usbcx_hptxfsiz {
1492	uint32_t u32;
1493	/**
1494	 * struct cvmx_usbcx_hptxfsiz_s
1495	 * @ptxfsize: Host Periodic TxFIFO Depth (PTxFSize)
1496	 *	This value is in terms of 32-bit words.
1497	 *	* Minimum value is 16
1498	 *	* Maximum value is 32768
1499	 * @ptxfstaddr: Host Periodic TxFIFO Start Address (PTxFStAddr)
1500	 */
1501	struct cvmx_usbcx_hptxfsiz_s {
1502		__BITFIELD_FIELD(uint32_t ptxfsize	: 16,
1503		__BITFIELD_FIELD(uint32_t ptxfstaddr	: 16,
1504		;))
1505	} s;
1506};
1507
1508/**
1509 * cvmx_usbc#_hptxsts
1510 *
1511 * Host Periodic Transmit FIFO/Queue Status Register (HPTXSTS)
1512 *
1513 * This read-only register contains the free space information for the Periodic
1514 * TxFIFO and the Periodic Transmit Request Queue
1515 */
1516union cvmx_usbcx_hptxsts {
1517	uint32_t u32;
1518	/**
1519	 * struct cvmx_usbcx_hptxsts_s
1520	 * @ptxqtop: Top of the Periodic Transmit Request Queue (PTxQTop)
1521	 *	This indicates the entry in the Periodic Tx Request Queue that
1522	 *	is currently being processes by the MAC.
1523	 *	This register is used for debugging.
1524	 *	* Bit [31]: Odd/Even (micro)frame
1525	 *	- 1'b0: send in even (micro)frame
1526	 *	- 1'b1: send in odd (micro)frame
1527	 *	* Bits [30:27]: Channel/endpoint number
1528	 *	* Bits [26:25]: Type
1529	 *	- 2'b00: IN/OUT
1530	 *	- 2'b01: Zero-length packet
1531	 *	- 2'b10: CSPLIT
1532	 *	- 2'b11: Disable channel command
1533	 *	* Bit [24]: Terminate (last entry for the selected
1534	 *	channel/endpoint)
1535	 * @ptxqspcavail: Periodic Transmit Request Queue Space Available
1536	 *	(PTxQSpcAvail)
1537	 *	Indicates the number of free locations available to be written
1538	 *	in the Periodic Transmit Request Queue. This queue holds both
1539	 *	IN and OUT requests.
1540	 *	* 8'h0: Periodic Transmit Request Queue is full
1541	 *	* 8'h1: 1 location available
1542	 *	* 8'h2: 2 locations available
1543	 *	* n: n locations available (0..8)
1544	 *	* Others: Reserved
1545	 * @ptxfspcavail: Periodic Transmit Data FIFO Space Available
1546	 *		  (PTxFSpcAvail)
1547	 *	Indicates the number of free locations available to be written
1548	 *	to in the Periodic TxFIFO.
1549	 *	Values are in terms of 32-bit words
1550	 *	* 16'h0: Periodic TxFIFO is full
1551	 *	* 16'h1: 1 word available
1552	 *	* 16'h2: 2 words available
1553	 *	* 16'hn: n words available (where 0..32768)
1554	 *	* 16'h8000: 32768 words available
1555	 *	* Others: Reserved
1556	 */
1557	struct cvmx_usbcx_hptxsts_s {
1558		__BITFIELD_FIELD(uint32_t ptxqtop	: 8,
1559		__BITFIELD_FIELD(uint32_t ptxqspcavail	: 8,
1560		__BITFIELD_FIELD(uint32_t ptxfspcavail	: 16,
1561		;)))
1562	} s;
1563};
1564
1565/**
1566 * cvmx_usbn#_clk_ctl
1567 *
1568 * USBN_CLK_CTL = USBN's Clock Control
1569 *
1570 * This register is used to control the frequency of the hclk and the
1571 * hreset and phy_rst signals.
1572 */
1573union cvmx_usbnx_clk_ctl {
1574	uint64_t u64;
1575	/**
1576	 * struct cvmx_usbnx_clk_ctl_s
1577	 * @divide2: The 'hclk' used by the USB subsystem is derived
1578	 *	from the eclk.
1579	 *	Also see the field DIVIDE. DIVIDE2<1> must currently
1580	 *	be zero because it is not implemented, so the maximum
1581	 *	ratio of eclk/hclk is currently 16.
1582	 *	The actual divide number for hclk is:
1583	 *	(DIVIDE2 + 1) * (DIVIDE + 1)
1584	 * @hclk_rst: When this field is '0' the HCLK-DIVIDER used to
1585	 *	generate the hclk in the USB Subsystem is held
1586	 *	in reset. This bit must be set to '0' before
1587	 *	changing the value os DIVIDE in this register.
1588	 *	The reset to the HCLK_DIVIDERis also asserted
1589	 *	when core reset is asserted.
1590	 * @p_x_on: Force USB-PHY on during suspend.
1591	 *	'1' USB-PHY XO block is powered-down during
1592	 *	suspend.
1593	 *	'0' USB-PHY XO block is powered-up during
1594	 *	suspend.
1595	 *	The value of this field must be set while POR is
1596	 *	active.
1597	 * @p_rtype: PHY reference clock type
1598	 *	On CN50XX/CN52XX/CN56XX the values are:
1599	 *		'0' The USB-PHY uses a 12MHz crystal as a clock source
1600	 *		    at the USB_XO and USB_XI pins.
1601	 *		'1' Reserved.
1602	 *		'2' The USB_PHY uses 12/24/48MHz 2.5V board clock at the
1603	 *		    USB_XO pin. USB_XI should be tied to ground in this
1604	 *		    case.
1605	 *		'3' Reserved.
1606	 *	On CN3xxx bits 14 and 15 are p_xenbn and p_rclk and values are:
1607	 *		'0' Reserved.
1608	 *		'1' Reserved.
1609	 *		'2' The PHY PLL uses the XO block output as a reference.
1610	 *		    The XO block uses an external clock supplied on the
1611	 *		    XO pin. USB_XI should be tied to ground for this
1612	 *		    usage.
1613	 *		'3' The XO block uses the clock from a crystal.
1614	 * @p_com_on: '0' Force USB-PHY XO Bias, Bandgap and PLL to
1615	 *	remain powered in Suspend Mode.
1616	 *	'1' The USB-PHY XO Bias, Bandgap and PLL are
1617	 *	powered down in suspend mode.
1618	 *	The value of this field must be set while POR is
1619	 *	active.
1620	 * @p_c_sel: Phy clock speed select.
1621	 *	Selects the reference clock / crystal frequency.
1622	 *	'11': Reserved
1623	 *	'10': 48 MHz (reserved when a crystal is used)
1624	 *	'01': 24 MHz (reserved when a crystal is used)
1625	 *	'00': 12 MHz
1626	 *	The value of this field must be set while POR is
1627	 *	active.
1628	 *	NOTE: if a crystal is used as a reference clock,
1629	 *	this field must be set to 12 MHz.
1630	 * @cdiv_byp: Used to enable the bypass input to the USB_CLK_DIV.
1631	 * @sd_mode: Scaledown mode for the USBC. Control timing events
1632	 *	in the USBC, for normal operation this must be '0'.
1633	 * @s_bist: Starts bist on the hclk memories, during the '0'
1634	 *	to '1' transition.
1635	 * @por: Power On Reset for the PHY.
1636	 *	Resets all the PHYS registers and state machines.
1637	 * @enable: When '1' allows the generation of the hclk. When
1638	 *	'0' the hclk will not be generated. SEE DIVIDE
1639	 *	field of this register.
1640	 * @prst: When this field is '0' the reset associated with
1641	 *	the phy_clk functionality in the USB Subsystem is
1642	 *	help in reset. This bit should not be set to '1'
1643	 *	until the time it takes 6 clocks (hclk or phy_clk,
1644	 *	whichever is slower) has passed. Under normal
1645	 *	operation once this bit is set to '1' it should not
1646	 *	be set to '0'.
1647	 * @hrst: When this field is '0' the reset associated with
1648	 *	the hclk functioanlity in the USB Subsystem is
1649	 *	held in reset.This bit should not be set to '1'
1650	 *	until 12ms after phy_clk is stable. Under normal
1651	 *	operation, once this bit is set to '1' it should
1652	 *	not be set to '0'.
1653	 * @divide: The frequency of 'hclk' used by the USB subsystem
1654	 *	is the eclk frequency divided by the value of
1655	 *	(DIVIDE2 + 1) * (DIVIDE + 1), also see the field
1656	 *	DIVIDE2 of this register.
1657	 *	The hclk frequency should be less than 125Mhz.
1658	 *	After writing a value to this field the SW should
1659	 *	read the field for the value written.
1660	 *	The ENABLE field of this register should not be set
1661	 *	until AFTER this field is set and then read.
1662	 */
1663	struct cvmx_usbnx_clk_ctl_s {
1664		__BITFIELD_FIELD(uint64_t reserved_20_63	: 44,
1665		__BITFIELD_FIELD(uint64_t divide2		: 2,
1666		__BITFIELD_FIELD(uint64_t hclk_rst		: 1,
1667		__BITFIELD_FIELD(uint64_t p_x_on		: 1,
1668		__BITFIELD_FIELD(uint64_t p_rtype		: 2,
1669		__BITFIELD_FIELD(uint64_t p_com_on		: 1,
1670		__BITFIELD_FIELD(uint64_t p_c_sel		: 2,
1671		__BITFIELD_FIELD(uint64_t cdiv_byp		: 1,
1672		__BITFIELD_FIELD(uint64_t sd_mode		: 2,
1673		__BITFIELD_FIELD(uint64_t s_bist		: 1,
1674		__BITFIELD_FIELD(uint64_t por			: 1,
1675		__BITFIELD_FIELD(uint64_t enable		: 1,
1676		__BITFIELD_FIELD(uint64_t prst			: 1,
1677		__BITFIELD_FIELD(uint64_t hrst			: 1,
1678		__BITFIELD_FIELD(uint64_t divide		: 3,
1679		;)))))))))))))))
1680	} s;
1681};
1682
1683/**
1684 * cvmx_usbn#_usbp_ctl_status
1685 *
1686 * USBN_USBP_CTL_STATUS = USBP Control And Status Register
1687 *
1688 * Contains general control and status information for the USBN block.
1689 */
1690union cvmx_usbnx_usbp_ctl_status {
1691	uint64_t u64;
1692	/**
1693	 * struct cvmx_usbnx_usbp_ctl_status_s
1694	 * @txrisetune: HS Transmitter Rise/Fall Time Adjustment
1695	 * @txvreftune: HS DC Voltage Level Adjustment
1696	 * @txfslstune: FS/LS Source Impedence Adjustment
1697	 * @txhsxvtune: Transmitter High-Speed Crossover Adjustment
1698	 * @sqrxtune: Squelch Threshold Adjustment
1699	 * @compdistune: Disconnect Threshold Adjustment
1700	 * @otgtune: VBUS Valid Threshold Adjustment
1701	 * @otgdisable: OTG Block Disable
1702	 * @portreset: Per_Port Reset
1703	 * @drvvbus: Drive VBUS
1704	 * @lsbist: Low-Speed BIST Enable.
1705	 * @fsbist: Full-Speed BIST Enable.
1706	 * @hsbist: High-Speed BIST Enable.
1707	 * @bist_done: PHY Bist Done.
1708	 *	Asserted at the end of the PHY BIST sequence.
1709	 * @bist_err: PHY Bist Error.
1710	 *	Indicates an internal error was detected during
1711	 *	the BIST sequence.
1712	 * @tdata_out: PHY Test Data Out.
1713	 *	Presents either internaly generated signals or
1714	 *	test register contents, based upon the value of
1715	 *	test_data_out_sel.
1716	 * @siddq: Drives the USBP (USB-PHY) SIDDQ input.
1717	 *	Normally should be set to zero.
1718	 *	When customers have no intent to use USB PHY
1719	 *	interface, they should:
1720	 *	- still provide 3.3V to USB_VDD33, and
1721	 *	- tie USB_REXT to 3.3V supply, and
1722	 *	- set USBN*_USBP_CTL_STATUS[SIDDQ]=1
1723	 * @txpreemphasistune: HS Transmitter Pre-Emphasis Enable
1724	 * @dma_bmode: When set to 1 the L2C DMA address will be updated
1725	 *	with byte-counts between packets. When set to 0
1726	 *	the L2C DMA address is incremented to the next
1727	 *	4-byte aligned address after adding byte-count.
1728	 * @usbc_end: Bigendian input to the USB Core. This should be
1729	 *	set to '0' for operation.
1730	 * @usbp_bist: PHY, This is cleared '0' to run BIST on the USBP.
1731	 * @tclk: PHY Test Clock, used to load TDATA_IN to the USBP.
1732	 * @dp_pulld: PHY DP_PULLDOWN input to the USB-PHY.
1733	 *	This signal enables the pull-down resistance on
1734	 *	the D+ line. '1' pull down-resistance is connected
1735	 *	to D+/ '0' pull down resistance is not connected
1736	 *	to D+. When an A/B device is acting as a host
1737	 *	(downstream-facing port), dp_pulldown and
1738	 *	dm_pulldown are enabled. This must not toggle
1739	 *	during normal opeartion.
1740	 * @dm_pulld: PHY DM_PULLDOWN input to the USB-PHY.
1741	 *	This signal enables the pull-down resistance on
1742	 *	the D- line. '1' pull down-resistance is connected
1743	 *	to D-. '0' pull down resistance is not connected
1744	 *	to D-. When an A/B device is acting as a host
1745	 *	(downstream-facing port), dp_pulldown and
1746	 *	dm_pulldown are enabled. This must not toggle
1747	 *	during normal opeartion.
1748	 * @hst_mode: When '0' the USB is acting as HOST, when '1'
1749	 *	USB is acting as device. This field needs to be
1750	 *	set while the USB is in reset.
1751	 * @tuning: Transmitter Tuning for High-Speed Operation.
1752	 *	Tunes the current supply and rise/fall output
1753	 *	times for high-speed operation.
1754	 *	[20:19] == 11: Current supply increased
1755	 *	approximately 9%
1756	 *	[20:19] == 10: Current supply increased
1757	 *	approximately 4.5%
1758	 *	[20:19] == 01: Design default.
1759	 *	[20:19] == 00: Current supply decreased
1760	 *	approximately 4.5%
1761	 *	[22:21] == 11: Rise and fall times are increased.
1762	 *	[22:21] == 10: Design default.
1763	 *	[22:21] == 01: Rise and fall times are decreased.
1764	 *	[22:21] == 00: Rise and fall times are decreased
1765	 *	further as compared to the 01 setting.
1766	 * @tx_bs_enh: Transmit Bit Stuffing on [15:8].
1767	 *	Enables or disables bit stuffing on data[15:8]
1768	 *	when bit-stuffing is enabled.
1769	 * @tx_bs_en: Transmit Bit Stuffing on [7:0].
1770	 *	Enables or disables bit stuffing on data[7:0]
1771	 *	when bit-stuffing is enabled.
1772	 * @loop_enb: PHY Loopback Test Enable.
1773	 *	'1': During data transmission the receive is
1774	 *	enabled.
1775	 *	'0': During data transmission the receive is
1776	 *	disabled.
1777	 *	Must be '0' for normal operation.
1778	 * @vtest_enb: Analog Test Pin Enable.
1779	 *	'1' The PHY's analog_test pin is enabled for the
1780	 *	input and output of applicable analog test signals.
1781	 *	'0' THe analog_test pin is disabled.
1782	 * @bist_enb: Built-In Self Test Enable.
1783	 *	Used to activate BIST in the PHY.
1784	 * @tdata_sel: Test Data Out Select.
1785	 *	'1' test_data_out[3:0] (PHY) register contents
1786	 *	are output. '0' internaly generated signals are
1787	 *	output.
1788	 * @taddr_in: Mode Address for Test Interface.
1789	 *	Specifies the register address for writing to or
1790	 *	reading from the PHY test interface register.
1791	 * @tdata_in: Internal Testing Register Input Data and Select
1792	 *	This is a test bus. Data is present on [3:0],
1793	 *	and its corresponding select (enable) is present
1794	 *	on bits [7:4].
1795	 * @ate_reset: Reset input from automatic test equipment.
1796	 *	This is a test signal. When the USB Core is
1797	 *	powered up (not in Susned Mode), an automatic
1798	 *	tester can use this to disable phy_clock and
1799	 *	free_clk, then re-eanable them with an aligned
1800	 *	phase.
1801	 *	'1': The phy_clk and free_clk outputs are
1802	 *	disabled. "0": The phy_clock and free_clk outputs
1803	 *	are available within a specific period after the
1804	 *	de-assertion.
1805	 */
1806	struct cvmx_usbnx_usbp_ctl_status_s {
1807		__BITFIELD_FIELD(uint64_t txrisetune		: 1,
1808		__BITFIELD_FIELD(uint64_t txvreftune		: 4,
1809		__BITFIELD_FIELD(uint64_t txfslstune		: 4,
1810		__BITFIELD_FIELD(uint64_t txhsxvtune		: 2,
1811		__BITFIELD_FIELD(uint64_t sqrxtune		: 3,
1812		__BITFIELD_FIELD(uint64_t compdistune		: 3,
1813		__BITFIELD_FIELD(uint64_t otgtune		: 3,
1814		__BITFIELD_FIELD(uint64_t otgdisable		: 1,
1815		__BITFIELD_FIELD(uint64_t portreset		: 1,
1816		__BITFIELD_FIELD(uint64_t drvvbus		: 1,
1817		__BITFIELD_FIELD(uint64_t lsbist		: 1,
1818		__BITFIELD_FIELD(uint64_t fsbist		: 1,
1819		__BITFIELD_FIELD(uint64_t hsbist		: 1,
1820		__BITFIELD_FIELD(uint64_t bist_done		: 1,
1821		__BITFIELD_FIELD(uint64_t bist_err		: 1,
1822		__BITFIELD_FIELD(uint64_t tdata_out		: 4,
1823		__BITFIELD_FIELD(uint64_t siddq			: 1,
1824		__BITFIELD_FIELD(uint64_t txpreemphasistune	: 1,
1825		__BITFIELD_FIELD(uint64_t dma_bmode		: 1,
1826		__BITFIELD_FIELD(uint64_t usbc_end		: 1,
1827		__BITFIELD_FIELD(uint64_t usbp_bist		: 1,
1828		__BITFIELD_FIELD(uint64_t tclk			: 1,
1829		__BITFIELD_FIELD(uint64_t dp_pulld		: 1,
1830		__BITFIELD_FIELD(uint64_t dm_pulld		: 1,
1831		__BITFIELD_FIELD(uint64_t hst_mode		: 1,
1832		__BITFIELD_FIELD(uint64_t tuning		: 4,
1833		__BITFIELD_FIELD(uint64_t tx_bs_enh		: 1,
1834		__BITFIELD_FIELD(uint64_t tx_bs_en		: 1,
1835		__BITFIELD_FIELD(uint64_t loop_enb		: 1,
1836		__BITFIELD_FIELD(uint64_t vtest_enb		: 1,
1837		__BITFIELD_FIELD(uint64_t bist_enb		: 1,
1838		__BITFIELD_FIELD(uint64_t tdata_sel		: 1,
1839		__BITFIELD_FIELD(uint64_t taddr_in		: 4,
1840		__BITFIELD_FIELD(uint64_t tdata_in		: 8,
1841		__BITFIELD_FIELD(uint64_t ate_reset		: 1,
1842		;)))))))))))))))))))))))))))))))))))
1843	} s;
1844};
1845
1846#endif /* __OCTEON_HCD_H__ */
1847