1/****************************************************************************** 2 3 Copyright(c) 2003 - 2004 Intel Corporation. All rights reserved. 4 5 This program is free software; you can redistribute it and/or modify it 6 under the terms of version 2 of the GNU General Public License as 7 published by the Free Software Foundation. 8 9 This program is distributed in the hope that it will be useful, but WITHOUT 10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 12 more details. 13 14 You should have received a copy of the GNU General Public License along with 15 this program; if not, write to the Free Software Foundation, Inc., 59 16 Temple Place - Suite 330, Boston, MA 02111-1307, USA. 17 18 The full GNU General Public License is included in this distribution in the 19 file called LICENSE. 20 21 Contact Information: 22 James P. Ketrenos <ipw2100-admin@linux.intel.com> 23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 24 25****************************************************************************** 26 27 Few modifications for Realtek's Wi-Fi drivers by 28 Andrea Merello <andrea.merello@gmail.com> 29 30 A special thanks goes to Realtek for their support ! 31 32******************************************************************************/ 33 34#include <linux/compiler.h> 35#include <linux/errno.h> 36#include <linux/if_arp.h> 37#include <linux/in6.h> 38#include <linux/in.h> 39#include <linux/ip.h> 40#include <linux/kernel.h> 41#include <linux/module.h> 42#include <linux/netdevice.h> 43#include <linux/pci.h> 44#include <linux/proc_fs.h> 45#include <linux/skbuff.h> 46#include <linux/slab.h> 47#include <linux/tcp.h> 48#include <linux/types.h> 49#include <linux/wireless.h> 50#include <linux/etherdevice.h> 51#include <linux/uaccess.h> 52#include <linux/if_vlan.h> 53 54#include "rtllib.h" 55 56/* 802.11 Data Frame 57 * 58 * 59 * 802.11 frame_control for data frames - 2 bytes 60 * ,-----------------------------------------------------------------------------------------. 61 * bits | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | a | b | c | d | e | 62 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| 63 * val | 0 | 0 | 0 | 1 | x | 0 | 0 | 0 | 1 | 0 | x | x | x | x | x | 64 * |----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------| 65 * desc | ^-ver-^ | ^type-^ | ^-----subtype-----^ | to |from |more |retry| pwr |more |wep | 66 * | | | x=0 data,x=1 data+ack | DS | DS |frag | | mgm |data | | 67 * '-----------------------------------------------------------------------------------------' 68 * /\ 69 * | 70 * 802.11 Data Frame | 71 * ,--------- 'ctrl' expands to >-----------' 72 * | 73 * ,--'---,-------------------------------------------------------------. 74 * Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 | 75 * |------|------|---------|---------|---------|------|---------|------| 76 * Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs | 77 * | | tion | (BSSID) | | | ence | data | | 78 * `--------------------------------------------------| |------' 79 * Total: 28 non-data bytes `----.----' 80 * | 81 * .- 'Frame data' expands to <---------------------------' 82 * | 83 * V 84 * ,---------------------------------------------------. 85 * Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 | 86 * |------|------|---------|----------|------|---------| 87 * Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP | 88 * | DSAP | SSAP | | | | Packet | 89 * | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | | 90 * `-----------------------------------------| | 91 * Total: 8 non-data bytes `----.----' 92 * | 93 * .- 'IP Packet' expands, if WEP enabled, to <--' 94 * | 95 * V 96 * ,-----------------------. 97 * Bytes | 4 | 0-2296 | 4 | 98 * |-----|-----------|-----| 99 * Desc. | IV | Encrypted | ICV | 100 * | | IP Packet | | 101 * `-----------------------' 102 * Total: 8 non-data bytes 103 * 104 * 105 * 802.3 Ethernet Data Frame 106 * 107 * ,-----------------------------------------. 108 * Bytes | 6 | 6 | 2 | Variable | 4 | 109 * |-------|-------|------|-----------|------| 110 * Desc. | Dest. | Source| Type | IP Packet | fcs | 111 * | MAC | MAC | | | | 112 * `-----------------------------------------' 113 * Total: 18 non-data bytes 114 * 115 * In the event that fragmentation is required, the incoming payload is split into 116 * N parts of size ieee->fts. The first fragment contains the SNAP header and the 117 * remaining packets are just data. 118 * 119 * If encryption is enabled, each fragment payload size is reduced by enough space 120 * to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP) 121 * So if you have 1500 bytes of payload with ieee->fts set to 500 without 122 * encryption it will take 3 frames. With WEP it will take 4 frames as the 123 * payload of each frame is reduced to 492 bytes. 124 * 125 * SKB visualization 126 * 127 * ,- skb->data 128 * | 129 * | ETHERNET HEADER ,-<-- PAYLOAD 130 * | | 14 bytes from skb->data 131 * | 2 bytes for Type --> ,T. | (sizeof ethhdr) 132 * | | | | 133 * |,-Dest.--. ,--Src.---. | | | 134 * | 6 bytes| | 6 bytes | | | | 135 * v | | | | | | 136 * 0 | v 1 | v | v 2 137 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 138 * ^ | ^ | ^ | 139 * | | | | | | 140 * | | | | `T' <---- 2 bytes for Type 141 * | | | | 142 * | | '---SNAP--' <-------- 6 bytes for SNAP 143 * | | 144 * `-IV--' <-------------------- 4 bytes for IV (WEP) 145 * 146 * SNAP HEADER 147 * 148 */ 149 150static u8 P802_1H_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0xf8 }; 151static u8 RFC1042_OUI[P80211_OUI_LEN] = { 0x00, 0x00, 0x00 }; 152 153inline int rtllib_put_snap(u8 *data, u16 h_proto) 154{ 155 struct rtllib_snap_hdr *snap; 156 u8 *oui; 157 158 snap = (struct rtllib_snap_hdr *)data; 159 snap->dsap = 0xaa; 160 snap->ssap = 0xaa; 161 snap->ctrl = 0x03; 162 163 if (h_proto == 0x8137 || h_proto == 0x80f3) 164 oui = P802_1H_OUI; 165 else 166 oui = RFC1042_OUI; 167 snap->oui[0] = oui[0]; 168 snap->oui[1] = oui[1]; 169 snap->oui[2] = oui[2]; 170 171 *(__be16 *)(data + SNAP_SIZE) = htons(h_proto); 172 173 return SNAP_SIZE + sizeof(u16); 174} 175 176int rtllib_encrypt_fragment(struct rtllib_device *ieee, struct sk_buff *frag, 177 int hdr_len) 178{ 179 struct lib80211_crypt_data *crypt = NULL; 180 int res; 181 182 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; 183 184 if (!(crypt && crypt->ops)) { 185 netdev_info(ieee->dev, "=========>%s(), crypt is null\n", 186 __func__); 187 return -1; 188 } 189 /* To encrypt, frame format is: 190 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) 191 */ 192 193 /* Host-based IEEE 802.11 fragmentation for TX is not yet supported, so 194 * call both MSDU and MPDU encryption functions from here. 195 */ 196 atomic_inc(&crypt->refcnt); 197 res = 0; 198 if (crypt->ops->encrypt_msdu) 199 res = crypt->ops->encrypt_msdu(frag, hdr_len, crypt->priv); 200 if (res == 0 && crypt->ops->encrypt_mpdu) 201 res = crypt->ops->encrypt_mpdu(frag, hdr_len, crypt->priv); 202 203 atomic_dec(&crypt->refcnt); 204 if (res < 0) { 205 netdev_info(ieee->dev, "%s: Encryption failed: len=%d.\n", 206 ieee->dev->name, frag->len); 207 ieee->ieee_stats.tx_discards++; 208 return -1; 209 } 210 211 return 0; 212} 213 214 215void rtllib_txb_free(struct rtllib_txb *txb) 216{ 217 if (unlikely(!txb)) 218 return; 219 kfree(txb); 220} 221 222static struct rtllib_txb *rtllib_alloc_txb(int nr_frags, int txb_size, 223 gfp_t gfp_mask) 224{ 225 struct rtllib_txb *txb; 226 int i; 227 228 txb = kmalloc(sizeof(struct rtllib_txb) + (sizeof(u8 *) * nr_frags), 229 gfp_mask); 230 if (!txb) 231 return NULL; 232 233 memset(txb, 0, sizeof(struct rtllib_txb)); 234 txb->nr_frags = nr_frags; 235 txb->frag_size = cpu_to_le16(txb_size); 236 237 for (i = 0; i < nr_frags; i++) { 238 txb->fragments[i] = dev_alloc_skb(txb_size); 239 if (unlikely(!txb->fragments[i])) { 240 i--; 241 break; 242 } 243 memset(txb->fragments[i]->cb, 0, sizeof(txb->fragments[i]->cb)); 244 } 245 if (unlikely(i != nr_frags)) { 246 while (i >= 0) 247 dev_kfree_skb_any(txb->fragments[i--]); 248 kfree(txb); 249 return NULL; 250 } 251 return txb; 252} 253 254static int rtllib_classify(struct sk_buff *skb, u8 bIsAmsdu) 255{ 256 struct ethhdr *eth; 257 struct iphdr *ip; 258 259 eth = (struct ethhdr *)skb->data; 260 if (eth->h_proto != htons(ETH_P_IP)) 261 return 0; 262 263 RTLLIB_DEBUG_DATA(RTLLIB_DL_DATA, skb->data, skb->len); 264 ip = ip_hdr(skb); 265 switch (ip->tos & 0xfc) { 266 case 0x20: 267 return 2; 268 case 0x40: 269 return 1; 270 case 0x60: 271 return 3; 272 case 0x80: 273 return 4; 274 case 0xa0: 275 return 5; 276 case 0xc0: 277 return 6; 278 case 0xe0: 279 return 7; 280 default: 281 return 0; 282 } 283} 284 285static void rtllib_tx_query_agg_cap(struct rtllib_device *ieee, 286 struct sk_buff *skb, 287 struct cb_desc *tcb_desc) 288{ 289 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 290 struct tx_ts_record *pTxTs = NULL; 291 struct rtllib_hdr_1addr *hdr = (struct rtllib_hdr_1addr *)skb->data; 292 293 if (rtllib_act_scanning(ieee, false)) 294 return; 295 296 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 297 return; 298 if (!IsQoSDataFrame(skb->data)) 299 return; 300 if (is_multicast_ether_addr(hdr->addr1)) 301 return; 302 303 if (tcb_desc->bdhcp || ieee->CntAfterLink < 2) 304 return; 305 306 if (pHTInfo->IOTAction & HT_IOT_ACT_TX_NO_AGGREGATION) 307 return; 308 309 if (!ieee->GetNmodeSupportBySecCfg(ieee->dev)) 310 return; 311 if (pHTInfo->bCurrentAMPDUEnable) { 312 if (!GetTs(ieee, (struct ts_common_info **)(&pTxTs), hdr->addr1, 313 skb->priority, TX_DIR, true)) { 314 netdev_info(ieee->dev, "%s: can't get TS\n", __func__); 315 return; 316 } 317 if (pTxTs->TxAdmittedBARecord.bValid == false) { 318 if (ieee->wpa_ie_len && (ieee->pairwise_key_type == 319 KEY_TYPE_NA)) { 320 ; 321 } else if (tcb_desc->bdhcp == 1) { 322 ; 323 } else if (!pTxTs->bDisable_AddBa) { 324 TsStartAddBaProcess(ieee, pTxTs); 325 } 326 goto FORCED_AGG_SETTING; 327 } else if (pTxTs->bUsingBa == false) { 328 if (SN_LESS(pTxTs->TxAdmittedBARecord.BaStartSeqCtrl.field.SeqNum, 329 (pTxTs->TxCurSeq+1)%4096)) 330 pTxTs->bUsingBa = true; 331 else 332 goto FORCED_AGG_SETTING; 333 } 334 if (ieee->iw_mode == IW_MODE_INFRA) { 335 tcb_desc->bAMPDUEnable = true; 336 tcb_desc->ampdu_factor = pHTInfo->CurrentAMPDUFactor; 337 tcb_desc->ampdu_density = pHTInfo->CurrentMPDUDensity; 338 } 339 } 340FORCED_AGG_SETTING: 341 switch (pHTInfo->ForcedAMPDUMode) { 342 case HT_AGG_AUTO: 343 break; 344 345 case HT_AGG_FORCE_ENABLE: 346 tcb_desc->bAMPDUEnable = true; 347 tcb_desc->ampdu_density = pHTInfo->ForcedMPDUDensity; 348 tcb_desc->ampdu_factor = pHTInfo->ForcedAMPDUFactor; 349 break; 350 351 case HT_AGG_FORCE_DISABLE: 352 tcb_desc->bAMPDUEnable = false; 353 tcb_desc->ampdu_density = 0; 354 tcb_desc->ampdu_factor = 0; 355 break; 356 } 357} 358 359static void rtllib_qurey_ShortPreambleMode(struct rtllib_device *ieee, 360 struct cb_desc *tcb_desc) 361{ 362 tcb_desc->bUseShortPreamble = false; 363 if (tcb_desc->data_rate == 2) 364 return; 365 else if (ieee->current_network.capability & 366 WLAN_CAPABILITY_SHORT_PREAMBLE) 367 tcb_desc->bUseShortPreamble = true; 368} 369 370static void rtllib_query_HTCapShortGI(struct rtllib_device *ieee, 371 struct cb_desc *tcb_desc) 372{ 373 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 374 375 tcb_desc->bUseShortGI = false; 376 377 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 378 return; 379 380 if (pHTInfo->bForcedShortGI) { 381 tcb_desc->bUseShortGI = true; 382 return; 383 } 384 385 if ((pHTInfo->bCurBW40MHz == true) && pHTInfo->bCurShortGI40MHz) 386 tcb_desc->bUseShortGI = true; 387 else if ((pHTInfo->bCurBW40MHz == false) && pHTInfo->bCurShortGI20MHz) 388 tcb_desc->bUseShortGI = true; 389} 390 391static void rtllib_query_BandwidthMode(struct rtllib_device *ieee, 392 struct cb_desc *tcb_desc) 393{ 394 struct rt_hi_throughput *pHTInfo = ieee->pHTInfo; 395 396 tcb_desc->bPacketBW = false; 397 398 if (!pHTInfo->bCurrentHTSupport || !pHTInfo->bEnableHT) 399 return; 400 401 if (tcb_desc->bMulticast || tcb_desc->bBroadcast) 402 return; 403 404 if ((tcb_desc->data_rate & 0x80) == 0) 405 return; 406 if (pHTInfo->bCurBW40MHz && pHTInfo->bCurTxBW40MHz && 407 !ieee->bandwidth_auto_switch.bforced_tx20Mhz) 408 tcb_desc->bPacketBW = true; 409} 410 411static void rtllib_query_protectionmode(struct rtllib_device *ieee, 412 struct cb_desc *tcb_desc, 413 struct sk_buff *skb) 414{ 415 struct rt_hi_throughput *pHTInfo; 416 417 tcb_desc->bRTSSTBC = false; 418 tcb_desc->bRTSUseShortGI = false; 419 tcb_desc->bCTSEnable = false; 420 tcb_desc->RTSSC = 0; 421 tcb_desc->bRTSBW = false; 422 423 if (tcb_desc->bBroadcast || tcb_desc->bMulticast) 424 return; 425 426 if (is_broadcast_ether_addr(skb->data+16)) 427 return; 428 429 if (ieee->mode < IEEE_N_24G) { 430 if (skb->len > ieee->rts) { 431 tcb_desc->bRTSEnable = true; 432 tcb_desc->rts_rate = MGN_24M; 433 } else if (ieee->current_network.buseprotection) { 434 tcb_desc->bRTSEnable = true; 435 tcb_desc->bCTSEnable = true; 436 tcb_desc->rts_rate = MGN_24M; 437 } 438 return; 439 } 440 441 pHTInfo = ieee->pHTInfo; 442 443 while (true) { 444 if (pHTInfo->IOTAction & HT_IOT_ACT_FORCED_CTS2SELF) { 445 tcb_desc->bCTSEnable = true; 446 tcb_desc->rts_rate = MGN_24M; 447 tcb_desc->bRTSEnable = true; 448 break; 449 } else if (pHTInfo->IOTAction & (HT_IOT_ACT_FORCED_RTS | 450 HT_IOT_ACT_PURE_N_MODE)) { 451 tcb_desc->bRTSEnable = true; 452 tcb_desc->rts_rate = MGN_24M; 453 break; 454 } 455 if (ieee->current_network.buseprotection) { 456 tcb_desc->bRTSEnable = true; 457 tcb_desc->bCTSEnable = true; 458 tcb_desc->rts_rate = MGN_24M; 459 break; 460 } 461 if (pHTInfo->bCurrentHTSupport && pHTInfo->bEnableHT) { 462 u8 HTOpMode = pHTInfo->CurrentOpMode; 463 464 if ((pHTInfo->bCurBW40MHz && (HTOpMode == 2 || 465 HTOpMode == 3)) || 466 (!pHTInfo->bCurBW40MHz && HTOpMode == 3)) { 467 tcb_desc->rts_rate = MGN_24M; 468 tcb_desc->bRTSEnable = true; 469 break; 470 } 471 } 472 if (skb->len > ieee->rts) { 473 tcb_desc->rts_rate = MGN_24M; 474 tcb_desc->bRTSEnable = true; 475 break; 476 } 477 if (tcb_desc->bAMPDUEnable) { 478 tcb_desc->rts_rate = MGN_24M; 479 tcb_desc->bRTSEnable = false; 480 break; 481 } 482 goto NO_PROTECTION; 483 } 484 if (ieee->current_network.capability & WLAN_CAPABILITY_SHORT_PREAMBLE) 485 tcb_desc->bUseShortPreamble = true; 486 if (ieee->iw_mode == IW_MODE_MASTER) 487 goto NO_PROTECTION; 488 return; 489NO_PROTECTION: 490 tcb_desc->bRTSEnable = false; 491 tcb_desc->bCTSEnable = false; 492 tcb_desc->rts_rate = 0; 493 tcb_desc->RTSSC = 0; 494 tcb_desc->bRTSBW = false; 495} 496 497 498static void rtllib_txrate_selectmode(struct rtllib_device *ieee, 499 struct cb_desc *tcb_desc) 500{ 501 if (ieee->bTxDisableRateFallBack) 502 tcb_desc->bTxDisableRateFallBack = true; 503 504 if (ieee->bTxUseDriverAssingedRate) 505 tcb_desc->bTxUseDriverAssingedRate = true; 506 if (!tcb_desc->bTxDisableRateFallBack || 507 !tcb_desc->bTxUseDriverAssingedRate) { 508 if (ieee->iw_mode == IW_MODE_INFRA || 509 ieee->iw_mode == IW_MODE_ADHOC) 510 tcb_desc->RATRIndex = 0; 511 } 512} 513 514u16 rtllib_query_seqnum(struct rtllib_device *ieee, struct sk_buff *skb, 515 u8 *dst) 516{ 517 u16 seqnum = 0; 518 519 if (is_multicast_ether_addr(dst)) 520 return 0; 521 if (IsQoSDataFrame(skb->data)) { 522 struct tx_ts_record *pTS = NULL; 523 524 if (!GetTs(ieee, (struct ts_common_info **)(&pTS), dst, 525 skb->priority, TX_DIR, true)) 526 return 0; 527 seqnum = pTS->TxCurSeq; 528 pTS->TxCurSeq = (pTS->TxCurSeq+1)%4096; 529 return seqnum; 530 } 531 return 0; 532} 533 534static int wme_downgrade_ac(struct sk_buff *skb) 535{ 536 switch (skb->priority) { 537 case 6: 538 case 7: 539 skb->priority = 5; /* VO -> VI */ 540 return 0; 541 case 4: 542 case 5: 543 skb->priority = 3; /* VI -> BE */ 544 return 0; 545 case 0: 546 case 3: 547 skb->priority = 1; /* BE -> BK */ 548 return 0; 549 default: 550 return -1; 551 } 552} 553 554static u8 rtllib_current_rate(struct rtllib_device *ieee) 555{ 556 if (ieee->mode & IEEE_MODE_MASK) 557 return ieee->rate; 558 559 if (ieee->HTCurrentOperaRate) 560 return ieee->HTCurrentOperaRate; 561 else 562 return ieee->rate & 0x7F; 563} 564 565int rtllib_xmit_inter(struct sk_buff *skb, struct net_device *dev) 566{ 567 struct rtllib_device *ieee = (struct rtllib_device *) 568 netdev_priv_rsl(dev); 569 struct rtllib_txb *txb = NULL; 570 struct rtllib_hdr_3addrqos *frag_hdr; 571 int i, bytes_per_frag, nr_frags, bytes_last_frag, frag_size; 572 unsigned long flags; 573 struct net_device_stats *stats = &ieee->stats; 574 int ether_type = 0, encrypt; 575 int bytes, fc, qos_ctl = 0, hdr_len; 576 struct sk_buff *skb_frag; 577 struct rtllib_hdr_3addrqos header = { /* Ensure zero initialized */ 578 .duration_id = 0, 579 .seq_ctl = 0, 580 .qos_ctl = 0 581 }; 582 u8 dest[ETH_ALEN], src[ETH_ALEN]; 583 int qos_actived = ieee->current_network.qos_data.active; 584 struct lib80211_crypt_data *crypt = NULL; 585 struct cb_desc *tcb_desc; 586 u8 bIsMulticast = false; 587 u8 IsAmsdu = false; 588 bool bdhcp = false; 589 590 spin_lock_irqsave(&ieee->lock, flags); 591 592 /* If there is no driver handler to take the TXB, don't bother 593 * creating it... 594 */ 595 if ((!ieee->hard_start_xmit && !(ieee->softmac_features & 596 IEEE_SOFTMAC_TX_QUEUE)) || 597 ((!ieee->softmac_data_hard_start_xmit && 598 (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE)))) { 599 netdev_warn(ieee->dev, "No xmit handler.\n"); 600 goto success; 601 } 602 603 604 if (likely(ieee->raw_tx == 0)) { 605 if (unlikely(skb->len < SNAP_SIZE + sizeof(u16))) { 606 netdev_warn(ieee->dev, "skb too small (%d).\n", 607 skb->len); 608 goto success; 609 } 610 /* Save source and destination addresses */ 611 memcpy(dest, skb->data, ETH_ALEN); 612 memcpy(src, skb->data+ETH_ALEN, ETH_ALEN); 613 614 memset(skb->cb, 0, sizeof(skb->cb)); 615 ether_type = ntohs(((struct ethhdr *)skb->data)->h_proto); 616 617 if (ieee->iw_mode == IW_MODE_MONITOR) { 618 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); 619 if (unlikely(!txb)) { 620 netdev_warn(ieee->dev, 621 "Could not allocate TXB\n"); 622 goto failed; 623 } 624 625 txb->encrypted = 0; 626 txb->payload_size = cpu_to_le16(skb->len); 627 memcpy(skb_put(txb->fragments[0], skb->len), skb->data, 628 skb->len); 629 630 goto success; 631 } 632 633 if (skb->len > 282) { 634 if (ETH_P_IP == ether_type) { 635 const struct iphdr *ip = (struct iphdr *) 636 ((u8 *)skb->data+14); 637 if (IPPROTO_UDP == ip->protocol) { 638 struct udphdr *udp; 639 640 udp = (struct udphdr *)((u8 *)ip + 641 (ip->ihl << 2)); 642 if (((((u8 *)udp)[1] == 68) && 643 (((u8 *)udp)[3] == 67)) || 644 ((((u8 *)udp)[1] == 67) && 645 (((u8 *)udp)[3] == 68))) { 646 bdhcp = true; 647 ieee->LPSDelayCnt = 200; 648 } 649 } 650 } else if (ETH_P_ARP == ether_type) { 651 netdev_info(ieee->dev, 652 "=================>DHCP Protocol start tx ARP pkt!!\n"); 653 bdhcp = true; 654 ieee->LPSDelayCnt = 655 ieee->current_network.tim.tim_count; 656 } 657 } 658 659 skb->priority = rtllib_classify(skb, IsAmsdu); 660 crypt = ieee->crypt_info.crypt[ieee->crypt_info.tx_keyidx]; 661 encrypt = !(ether_type == ETH_P_PAE && ieee->ieee802_1x) && 662 ieee->host_encrypt && crypt && crypt->ops; 663 if (!encrypt && ieee->ieee802_1x && 664 ieee->drop_unencrypted && ether_type != ETH_P_PAE) { 665 stats->tx_dropped++; 666 goto success; 667 } 668 if (crypt && !encrypt && ether_type == ETH_P_PAE) { 669 struct eapol *eap = (struct eapol *)(skb->data + 670 sizeof(struct ethhdr) - SNAP_SIZE - 671 sizeof(u16)); 672 RTLLIB_DEBUG_EAP("TX: IEEE 802.11 EAPOL frame: %s\n", 673 eap_get_type(eap->type)); 674 } 675 676 /* Advance the SKB to the start of the payload */ 677 skb_pull(skb, sizeof(struct ethhdr)); 678 679 /* Determine total amount of storage required for TXB packets */ 680 bytes = skb->len + SNAP_SIZE + sizeof(u16); 681 682 if (encrypt) 683 fc = RTLLIB_FTYPE_DATA | RTLLIB_FCTL_WEP; 684 else 685 fc = RTLLIB_FTYPE_DATA; 686 687 if (qos_actived) 688 fc |= RTLLIB_STYPE_QOS_DATA; 689 else 690 fc |= RTLLIB_STYPE_DATA; 691 692 if (ieee->iw_mode == IW_MODE_INFRA) { 693 fc |= RTLLIB_FCTL_TODS; 694 /* To DS: Addr1 = BSSID, Addr2 = SA, 695 * Addr3 = DA 696 */ 697 memcpy(&header.addr1, ieee->current_network.bssid, 698 ETH_ALEN); 699 memcpy(&header.addr2, &src, ETH_ALEN); 700 if (IsAmsdu) 701 memcpy(&header.addr3, 702 ieee->current_network.bssid, ETH_ALEN); 703 else 704 memcpy(&header.addr3, &dest, ETH_ALEN); 705 } else if (ieee->iw_mode == IW_MODE_ADHOC) { 706 /* not From/To DS: Addr1 = DA, Addr2 = SA, 707 * Addr3 = BSSID 708 */ 709 memcpy(&header.addr1, dest, ETH_ALEN); 710 memcpy(&header.addr2, src, ETH_ALEN); 711 memcpy(&header.addr3, ieee->current_network.bssid, 712 ETH_ALEN); 713 } 714 715 bIsMulticast = is_multicast_ether_addr(header.addr1); 716 717 header.frame_ctl = cpu_to_le16(fc); 718 719 /* Determine fragmentation size based on destination (multicast 720 * and broadcast are not fragmented) 721 */ 722 if (bIsMulticast) { 723 frag_size = MAX_FRAG_THRESHOLD; 724 qos_ctl |= QOS_CTL_NOTCONTAIN_ACK; 725 } else { 726 frag_size = ieee->fts; 727 qos_ctl = 0; 728 } 729 730 if (qos_actived) { 731 hdr_len = RTLLIB_3ADDR_LEN + 2; 732 733 /* in case we are a client verify acm is not set for this ac */ 734 while (unlikely(ieee->wmm_acm & (0x01 << skb->priority))) { 735 netdev_info(ieee->dev, "skb->priority = %x\n", 736 skb->priority); 737 if (wme_downgrade_ac(skb)) 738 break; 739 netdev_info(ieee->dev, "converted skb->priority = %x\n", 740 skb->priority); 741 } 742 qos_ctl |= skb->priority; 743 header.qos_ctl = cpu_to_le16(qos_ctl & RTLLIB_QOS_TID); 744 } else { 745 hdr_len = RTLLIB_3ADDR_LEN; 746 } 747 /* Determine amount of payload per fragment. Regardless of if 748 * this stack is providing the full 802.11 header, one will 749 * eventually be affixed to this fragment -- so we must account 750 * for it when determining the amount of payload space. 751 */ 752 bytes_per_frag = frag_size - hdr_len; 753 if (ieee->config & 754 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) 755 bytes_per_frag -= RTLLIB_FCS_LEN; 756 757 /* Each fragment may need to have room for encrypting 758 * pre/postfix 759 */ 760 if (encrypt) { 761 bytes_per_frag -= crypt->ops->extra_mpdu_prefix_len + 762 crypt->ops->extra_mpdu_postfix_len + 763 crypt->ops->extra_msdu_prefix_len + 764 crypt->ops->extra_msdu_postfix_len; 765 } 766 /* Number of fragments is the total bytes_per_frag / 767 * payload_per_fragment 768 */ 769 nr_frags = bytes / bytes_per_frag; 770 bytes_last_frag = bytes % bytes_per_frag; 771 if (bytes_last_frag) 772 nr_frags++; 773 else 774 bytes_last_frag = bytes_per_frag; 775 776 /* When we allocate the TXB we allocate enough space for the 777 * reserve and full fragment bytes (bytes_per_frag doesn't 778 * include prefix, postfix, header, FCS, etc.) 779 */ 780 txb = rtllib_alloc_txb(nr_frags, frag_size + 781 ieee->tx_headroom, GFP_ATOMIC); 782 if (unlikely(!txb)) { 783 netdev_warn(ieee->dev, "Could not allocate TXB\n"); 784 goto failed; 785 } 786 txb->encrypted = encrypt; 787 txb->payload_size = cpu_to_le16(bytes); 788 789 if (qos_actived) 790 txb->queue_index = UP2AC(skb->priority); 791 else 792 txb->queue_index = WME_AC_BE; 793 794 for (i = 0; i < nr_frags; i++) { 795 skb_frag = txb->fragments[i]; 796 tcb_desc = (struct cb_desc *)(skb_frag->cb + 797 MAX_DEV_ADDR_SIZE); 798 if (qos_actived) { 799 skb_frag->priority = skb->priority; 800 tcb_desc->queue_index = UP2AC(skb->priority); 801 } else { 802 skb_frag->priority = WME_AC_BE; 803 tcb_desc->queue_index = WME_AC_BE; 804 } 805 skb_reserve(skb_frag, ieee->tx_headroom); 806 807 if (encrypt) { 808 if (ieee->hwsec_active) 809 tcb_desc->bHwSec = 1; 810 else 811 tcb_desc->bHwSec = 0; 812 skb_reserve(skb_frag, 813 crypt->ops->extra_mpdu_prefix_len + 814 crypt->ops->extra_msdu_prefix_len); 815 } else { 816 tcb_desc->bHwSec = 0; 817 } 818 frag_hdr = (struct rtllib_hdr_3addrqos *) 819 skb_put(skb_frag, hdr_len); 820 memcpy(frag_hdr, &header, hdr_len); 821 822 /* If this is not the last fragment, then add the 823 * MOREFRAGS bit to the frame control 824 */ 825 if (i != nr_frags - 1) { 826 frag_hdr->frame_ctl = cpu_to_le16( 827 fc | RTLLIB_FCTL_MOREFRAGS); 828 bytes = bytes_per_frag; 829 830 } else { 831 /* The last fragment has the remaining length */ 832 bytes = bytes_last_frag; 833 } 834 if ((qos_actived) && (!bIsMulticast)) { 835 frag_hdr->seq_ctl = 836 cpu_to_le16(rtllib_query_seqnum(ieee, skb_frag, 837 header.addr1)); 838 frag_hdr->seq_ctl = 839 cpu_to_le16(le16_to_cpu(frag_hdr->seq_ctl)<<4 | i); 840 } else { 841 frag_hdr->seq_ctl = 842 cpu_to_le16(ieee->seq_ctrl[0]<<4 | i); 843 } 844 /* Put a SNAP header on the first fragment */ 845 if (i == 0) { 846 rtllib_put_snap( 847 skb_put(skb_frag, SNAP_SIZE + 848 sizeof(u16)), ether_type); 849 bytes -= SNAP_SIZE + sizeof(u16); 850 } 851 852 memcpy(skb_put(skb_frag, bytes), skb->data, bytes); 853 854 /* Advance the SKB... */ 855 skb_pull(skb, bytes); 856 857 /* Encryption routine will move the header forward in 858 * order to insert the IV between the header and the 859 * payload 860 */ 861 if (encrypt) 862 rtllib_encrypt_fragment(ieee, skb_frag, 863 hdr_len); 864 if (ieee->config & 865 (CFG_RTLLIB_COMPUTE_FCS | CFG_RTLLIB_RESERVE_FCS)) 866 skb_put(skb_frag, 4); 867 } 868 869 if ((qos_actived) && (!bIsMulticast)) { 870 if (ieee->seq_ctrl[UP2AC(skb->priority) + 1] == 0xFFF) 871 ieee->seq_ctrl[UP2AC(skb->priority) + 1] = 0; 872 else 873 ieee->seq_ctrl[UP2AC(skb->priority) + 1]++; 874 } else { 875 if (ieee->seq_ctrl[0] == 0xFFF) 876 ieee->seq_ctrl[0] = 0; 877 else 878 ieee->seq_ctrl[0]++; 879 } 880 } else { 881 if (unlikely(skb->len < sizeof(struct rtllib_hdr_3addr))) { 882 netdev_warn(ieee->dev, "skb too small (%d).\n", 883 skb->len); 884 goto success; 885 } 886 887 txb = rtllib_alloc_txb(1, skb->len, GFP_ATOMIC); 888 if (!txb) { 889 netdev_warn(ieee->dev, "Could not allocate TXB\n"); 890 goto failed; 891 } 892 893 txb->encrypted = 0; 894 txb->payload_size = cpu_to_le16(skb->len); 895 memcpy(skb_put(txb->fragments[0], skb->len), skb->data, 896 skb->len); 897 } 898 899 success: 900 if (txb) { 901 struct cb_desc *tcb_desc = (struct cb_desc *) 902 (txb->fragments[0]->cb + MAX_DEV_ADDR_SIZE); 903 tcb_desc->bTxEnableFwCalcDur = 1; 904 tcb_desc->priority = skb->priority; 905 906 if (ether_type == ETH_P_PAE) { 907 if (ieee->pHTInfo->IOTAction & 908 HT_IOT_ACT_WA_IOT_Broadcom) { 909 tcb_desc->data_rate = 910 MgntQuery_TxRateExcludeCCKRates(ieee); 911 tcb_desc->bTxDisableRateFallBack = false; 912 } else { 913 tcb_desc->data_rate = ieee->basic_rate; 914 tcb_desc->bTxDisableRateFallBack = 1; 915 } 916 917 918 tcb_desc->RATRIndex = 7; 919 tcb_desc->bTxUseDriverAssingedRate = 1; 920 } else { 921 if (is_multicast_ether_addr(header.addr1)) 922 tcb_desc->bMulticast = 1; 923 if (is_broadcast_ether_addr(header.addr1)) 924 tcb_desc->bBroadcast = 1; 925 rtllib_txrate_selectmode(ieee, tcb_desc); 926 if (tcb_desc->bMulticast || tcb_desc->bBroadcast) 927 tcb_desc->data_rate = ieee->basic_rate; 928 else 929 tcb_desc->data_rate = rtllib_current_rate(ieee); 930 931 if (bdhcp) { 932 if (ieee->pHTInfo->IOTAction & 933 HT_IOT_ACT_WA_IOT_Broadcom) { 934 tcb_desc->data_rate = 935 MgntQuery_TxRateExcludeCCKRates(ieee); 936 tcb_desc->bTxDisableRateFallBack = false; 937 } else { 938 tcb_desc->data_rate = MGN_1M; 939 tcb_desc->bTxDisableRateFallBack = 1; 940 } 941 942 943 tcb_desc->RATRIndex = 7; 944 tcb_desc->bTxUseDriverAssingedRate = 1; 945 tcb_desc->bdhcp = 1; 946 } 947 948 rtllib_qurey_ShortPreambleMode(ieee, tcb_desc); 949 rtllib_tx_query_agg_cap(ieee, txb->fragments[0], 950 tcb_desc); 951 rtllib_query_HTCapShortGI(ieee, tcb_desc); 952 rtllib_query_BandwidthMode(ieee, tcb_desc); 953 rtllib_query_protectionmode(ieee, tcb_desc, 954 txb->fragments[0]); 955 } 956 } 957 spin_unlock_irqrestore(&ieee->lock, flags); 958 dev_kfree_skb_any(skb); 959 if (txb) { 960 if (ieee->softmac_features & IEEE_SOFTMAC_TX_QUEUE) { 961 dev->stats.tx_packets++; 962 dev->stats.tx_bytes += le16_to_cpu(txb->payload_size); 963 rtllib_softmac_xmit(txb, ieee); 964 } else { 965 if ((*ieee->hard_start_xmit)(txb, dev) == 0) { 966 stats->tx_packets++; 967 stats->tx_bytes += le16_to_cpu(txb->payload_size); 968 return 0; 969 } 970 rtllib_txb_free(txb); 971 } 972 } 973 974 return 0; 975 976 failed: 977 spin_unlock_irqrestore(&ieee->lock, flags); 978 netif_stop_queue(dev); 979 stats->tx_errors++; 980 return 1; 981 982} 983int rtllib_xmit(struct sk_buff *skb, struct net_device *dev) 984{ 985 memset(skb->cb, 0, sizeof(skb->cb)); 986 return rtllib_xmit_inter(skb, dev); 987} 988EXPORT_SYMBOL(rtllib_xmit); 989