1/***********************************************************************
2**
3** Implementation of the Skein block functions.
4**
5** Source code author: Doug Whiting, 2008.
6**
7** This algorithm and source code is released to the public domain.
8**
9** Compile-time switches:
10**
11**  SKEIN_USE_ASM  -- set bits (256/512/1024) to select which
12**                    versions use ASM code for block processing
13**                    [default: use C for all block sizes]
14**
15************************************************************************/
16
17#include <linux/string.h>
18#include "skein_base.h"
19#include "skein_block.h"
20
21#ifndef SKEIN_USE_ASM
22#define SKEIN_USE_ASM   (0) /* default is all C code (no ASM) */
23#endif
24
25#ifndef SKEIN_LOOP
26#define SKEIN_LOOP 001 /* default: unroll 256 and 512, but not 1024 */
27#endif
28
29#define BLK_BITS        (WCNT * 64) /* some useful definitions for code here */
30#define KW_TWK_BASE     (0)
31#define KW_KEY_BASE     (3)
32#define ks              (kw + KW_KEY_BASE)
33#define ts              (kw + KW_TWK_BASE)
34
35#ifdef SKEIN_DEBUG
36#define debug_save_tweak(ctx)       \
37{                                   \
38	ctx->h.tweak[0] = ts[0];    \
39	ctx->h.tweak[1] = ts[1];    \
40}
41#else
42#define debug_save_tweak(ctx)
43#endif
44
45#if !(SKEIN_USE_ASM & 256)
46#undef  RCNT
47#define RCNT (SKEIN_256_ROUNDS_TOTAL / 8)
48#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
49#define SKEIN_UNROLL_256 (((SKEIN_LOOP) / 100) % 10)
50#else
51#define SKEIN_UNROLL_256 (0)
52#endif
53
54#if SKEIN_UNROLL_256
55#if (RCNT % SKEIN_UNROLL_256)
56#error "Invalid SKEIN_UNROLL_256" /* sanity check on unroll count */
57#endif
58#endif
59#define ROUND256(p0, p1, p2, p3, ROT, r_num) \
60do {                                         \
61	X##p0 += X##p1;                      \
62	X##p1 = rotl_64(X##p1, ROT##_0);     \
63	X##p1 ^= X##p0;                      \
64	X##p2 += X##p3;                      \
65	X##p3 = rotl_64(X##p3, ROT##_1);     \
66	X##p3 ^= X##p2;                      \
67} while (0)
68
69#if SKEIN_UNROLL_256 == 0
70#define R256(p0, p1, p2, p3, ROT, r_num) /* fully unrolled */ \
71	ROUND256(p0, p1, p2, p3, ROT, r_num)
72
73#define I256(R)                                                           \
74do {                                                                      \
75	/* inject the key schedule value */                               \
76	X0   += ks[((R) + 1) % 5];                                        \
77	X1   += ks[((R) + 2) % 5] + ts[((R) + 1) % 3];                    \
78	X2   += ks[((R) + 3) % 5] + ts[((R) + 2) % 3];                    \
79	X3   += ks[((R) + 4) % 5] + (R) + 1;                              \
80} while (0)
81#else
82/* looping version */
83#define R256(p0, p1, p2, p3, ROT, r_num) ROUND256(p0, p1, p2, p3, ROT, r_num)
84
85#define I256(R) \
86do { \
87	/* inject the key schedule value */ \
88	X0 += ks[r + (R) + 0]; \
89	X1 += ks[r + (R) + 1] + ts[r + (R) + 0];                          \
90	X2 += ks[r + (R) + 2] + ts[r + (R) + 1];                          \
91	X3 += ks[r + (R) + 3] + r + (R);                                  \
92	/* rotate key schedule */                                         \
93	ks[r + (R) + 4] = ks[r + (R) - 1];                                \
94	ts[r + (R) + 2] = ts[r + (R) - 1];                                \
95} while (0)
96#endif
97#define R256_8_ROUNDS(R)                                 \
98do {                                                     \
99		R256(0, 1, 2, 3, R_256_0, 8 * (R) + 1);  \
100		R256(0, 3, 2, 1, R_256_1, 8 * (R) + 2);  \
101		R256(0, 1, 2, 3, R_256_2, 8 * (R) + 3);  \
102		R256(0, 3, 2, 1, R_256_3, 8 * (R) + 4);  \
103		I256(2 * (R));                           \
104		R256(0, 1, 2, 3, R_256_4, 8 * (R) + 5);  \
105		R256(0, 3, 2, 1, R_256_5, 8 * (R) + 6);  \
106		R256(0, 1, 2, 3, R_256_6, 8 * (R) + 7);  \
107		R256(0, 3, 2, 1, R_256_7, 8 * (R) + 8);  \
108		I256(2 * (R) + 1);                       \
109} while (0)
110
111#define R256_UNROLL_R(NN)                     \
112	((SKEIN_UNROLL_256 == 0 &&            \
113	SKEIN_256_ROUNDS_TOTAL / 8 > (NN)) || \
114	(SKEIN_UNROLL_256 > (NN)))
115
116#if  (SKEIN_UNROLL_256 > 14)
117#error  "need more unrolling in skein_256_process_block"
118#endif
119#endif
120
121#if !(SKEIN_USE_ASM & 512)
122#undef  RCNT
123#define RCNT  (SKEIN_512_ROUNDS_TOTAL/8)
124
125#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
126#define SKEIN_UNROLL_512 (((SKEIN_LOOP)/10)%10)
127#else
128#define SKEIN_UNROLL_512 (0)
129#endif
130
131#if SKEIN_UNROLL_512
132#if (RCNT % SKEIN_UNROLL_512)
133#error "Invalid SKEIN_UNROLL_512" /* sanity check on unroll count */
134#endif
135#endif
136#define ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) \
137do {                                                         \
138	X##p0 += X##p1;                                      \
139	X##p1 = rotl_64(X##p1, ROT##_0);                     \
140	X##p1 ^= X##p0;                                      \
141	X##p2 += X##p3;                                      \
142	X##p3 = rotl_64(X##p3, ROT##_1);                     \
143	X##p3 ^= X##p2;                                      \
144	X##p4 += X##p5;					     \
145	X##p5 = rotl_64(X##p5, ROT##_2);                     \
146	X##p5 ^= X##p4;                                      \
147	X##p6 += X##p7; X##p7 = rotl_64(X##p7, ROT##_3);     \
148	X##p7 ^= X##p6;                                      \
149} while (0)
150
151#if SKEIN_UNROLL_512 == 0
152#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num) /* unrolled */ \
153	ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)
154
155#define I512(R)                                                           \
156do {                                                                      \
157	/* inject the key schedule value */                               \
158	X0   += ks[((R) + 1) % 9];                                        \
159	X1   += ks[((R) + 2) % 9];                                        \
160	X2   += ks[((R) + 3) % 9];                                        \
161	X3   += ks[((R) + 4) % 9];                                        \
162	X4   += ks[((R) + 5) % 9];                                        \
163	X5   += ks[((R) + 6) % 9] + ts[((R) + 1) % 3];                    \
164	X6   += ks[((R) + 7) % 9] + ts[((R) + 2) % 3];                    \
165	X7   += ks[((R) + 8) % 9] + (R) + 1;                              \
166} while (0)
167
168#else /* looping version */
169#define R512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)                 \
170	ROUND512(p0, p1, p2, p3, p4, p5, p6, p7, ROT, r_num)             \
171
172#define I512(R)                                                           \
173do {                                                                      \
174	/* inject the key schedule value */                               \
175	X0   += ks[r + (R) + 0];                                          \
176	X1   += ks[r + (R) + 1];                                          \
177	X2   += ks[r + (R) + 2];                                          \
178	X3   += ks[r + (R) + 3];                                          \
179	X4   += ks[r + (R) + 4];                                          \
180	X5   += ks[r + (R) + 5] + ts[r + (R) + 0];                        \
181	X6   += ks[r + (R) + 6] + ts[r + (R) + 1];                        \
182	X7   += ks[r + (R) + 7] + r + (R);                                \
183	/* rotate key schedule */                                         \
184	ks[r + (R) + 8] = ks[r + (R) - 1];                                \
185	ts[r + (R) + 2] = ts[r + (R) - 1];                                \
186} while (0)
187#endif /* end of looped code definitions */
188#define R512_8_ROUNDS(R)  /* do 8 full rounds */                      \
189do {                                                                  \
190		R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_0, 8 * (R) + 1);   \
191		R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_1, 8 * (R) + 2);   \
192		R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_2, 8 * (R) + 3);   \
193		R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_3, 8 * (R) + 4);   \
194		I512(2 * (R));                              \
195		R512(0, 1, 2, 3, 4, 5, 6, 7, R_512_4, 8 * (R) + 5);   \
196		R512(2, 1, 4, 7, 6, 5, 0, 3, R_512_5, 8 * (R) + 6);   \
197		R512(4, 1, 6, 3, 0, 5, 2, 7, R_512_6, 8 * (R) + 7);   \
198		R512(6, 1, 0, 7, 2, 5, 4, 3, R_512_7, 8 * (R) + 8);   \
199		I512(2 * (R) + 1);        /* and key injection */     \
200} while (0)
201#define R512_UNROLL_R(NN)                             \
202		((SKEIN_UNROLL_512 == 0 &&            \
203		SKEIN_512_ROUNDS_TOTAL/8 > (NN)) ||   \
204		(SKEIN_UNROLL_512 > (NN)))
205
206#if  (SKEIN_UNROLL_512 > 14)
207#error  "need more unrolling in skein_512_process_block"
208#endif
209#endif
210
211#if !(SKEIN_USE_ASM & 1024)
212#undef  RCNT
213#define RCNT  (SKEIN_1024_ROUNDS_TOTAL/8)
214#ifdef SKEIN_LOOP /* configure how much to unroll the loop */
215#define SKEIN_UNROLL_1024 ((SKEIN_LOOP)%10)
216#else
217#define SKEIN_UNROLL_1024 (0)
218#endif
219
220#if (SKEIN_UNROLL_1024 != 0)
221#if (RCNT % SKEIN_UNROLL_1024)
222#error "Invalid SKEIN_UNROLL_1024" /* sanity check on unroll count */
223#endif
224#endif
225#define ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
226		  pF, ROT, r_num)                                             \
227do {                                                                          \
228	X##p0 += X##p1;                                                       \
229	X##p1 = rotl_64(X##p1, ROT##_0);                                      \
230	X##p1 ^= X##p0;                                                       \
231	X##p2 += X##p3;                                                       \
232	X##p3 = rotl_64(X##p3, ROT##_1);                                      \
233	X##p3 ^= X##p2;                                                       \
234	X##p4 += X##p5;                                                       \
235	X##p5 = rotl_64(X##p5, ROT##_2);                                      \
236	X##p5 ^= X##p4;                                                       \
237	X##p6 += X##p7;                                                       \
238	X##p7 = rotl_64(X##p7, ROT##_3);                                      \
239	X##p7 ^= X##p6;                                                       \
240	X##p8 += X##p9;                                                       \
241	X##p9 = rotl_64(X##p9, ROT##_4);                                      \
242	X##p9 ^= X##p8;                                                       \
243	X##pA += X##pB;                                                       \
244	X##pB = rotl_64(X##pB, ROT##_5);                                      \
245	X##pB ^= X##pA;                                                       \
246	X##pC += X##pD;                                                       \
247	X##pD = rotl_64(X##pD, ROT##_6);                                      \
248	X##pD ^= X##pC;                                                       \
249	X##pE += X##pF;                                                       \
250	X##pF = rotl_64(X##pF, ROT##_7);                                      \
251	X##pF ^= X##pE;                                                       \
252} while (0)
253
254#if SKEIN_UNROLL_1024 == 0
255#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
256	      ROT, rn)                                                        \
257	ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
258		  pF, ROT, rn)                                                \
259
260#define I1024(R)                                                          \
261do {                                                                      \
262	/* inject the key schedule value */                               \
263	X00 += ks[((R) + 1) % 17];                                        \
264	X01 += ks[((R) + 2) % 17];                                        \
265	X02 += ks[((R) + 3) % 17];                                        \
266	X03 += ks[((R) + 4) % 17];                                        \
267	X04 += ks[((R) + 5) % 17];                                        \
268	X05 += ks[((R) + 6) % 17];                                        \
269	X06 += ks[((R) + 7) % 17];                                        \
270	X07 += ks[((R) + 8) % 17];                                        \
271	X08 += ks[((R) + 9) % 17];                                        \
272	X09 += ks[((R) + 10) % 17];                                       \
273	X10 += ks[((R) + 11) % 17];                                       \
274	X11 += ks[((R) + 12) % 17];                                       \
275	X12 += ks[((R) + 13) % 17];                                       \
276	X13 += ks[((R) + 14) % 17] + ts[((R) + 1) % 3];                   \
277	X14 += ks[((R) + 15) % 17] + ts[((R) + 2) % 3];                   \
278	X15 += ks[((R) + 16) % 17] + (R) + 1;                             \
279} while (0)
280#else /* looping version */
281#define R1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, pF, \
282	      ROT, rn)                                                        \
283	ROUND1024(p0, p1, p2, p3, p4, p5, p6, p7, p8, p9, pA, pB, pC, pD, pE, \
284		  pF, ROT, rn)                                                \
285
286#define I1024(R)                                                           \
287do {                                                                       \
288	/* inject the key schedule value */                                \
289	X00 += ks[r + (R) + 0];                                            \
290	X01 += ks[r + (R) + 1];                                            \
291	X02 += ks[r + (R) + 2];                                            \
292	X03 += ks[r + (R) + 3];                                            \
293	X04 += ks[r + (R) + 4];                                            \
294	X05 += ks[r + (R) + 5];                                            \
295	X06 += ks[r + (R) + 6];                                            \
296	X07 += ks[r + (R) + 7];                                            \
297	X08 += ks[r + (R) + 8];                                            \
298	X09 += ks[r + (R) + 9];                                            \
299	X10 += ks[r + (R) + 10];                                           \
300	X11 += ks[r + (R) + 11];                                           \
301	X12 += ks[r + (R) + 12];                                           \
302	X13 += ks[r + (R) + 13] + ts[r + (R) + 0];                         \
303	X14 += ks[r + (R) + 14] + ts[r + (R) + 1];                         \
304	X15 += ks[r + (R) + 15] + r + (R);                                 \
305	/* rotate key schedule */                                          \
306	ks[r + (R) + 16] = ks[r + (R) - 1];                                \
307	ts[r + (R) + 2] = ts[r + (R) - 1];                                 \
308} while (0)
309
310#endif
311#define R1024_8_ROUNDS(R)                                                     \
312do {                                                                          \
313	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
314	      R1024_0, 8*(R) + 1);                                            \
315	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
316	      R1024_1, 8*(R) + 2);                                            \
317	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
318	      R1024_2, 8*(R) + 3);                                            \
319	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
320	      R1024_3, 8*(R) + 4);                                            \
321	I1024(2*(R));                                                         \
322	R1024(00, 01, 02, 03, 04, 05, 06, 07, 08, 09, 10, 11, 12, 13, 14, 15, \
323	      R1024_4, 8*(R) + 5);                                            \
324	R1024(00, 09, 02, 13, 06, 11, 04, 15, 10, 07, 12, 03, 14, 05, 08, 01, \
325	      R1024_5, 8*(R) + 6);                                            \
326	R1024(00, 07, 02, 05, 04, 03, 06, 01, 12, 15, 14, 13, 08, 11, 10, 09, \
327	      R1024_6, 8*(R) + 7);                                            \
328	R1024(00, 15, 02, 11, 06, 13, 04, 09, 14, 01, 08, 05, 10, 03, 12, 07, \
329	      R1024_7, 8*(R) + 8);                                            \
330	I1024(2*(R)+1);                                                       \
331} while (0)
332
333#define R1024_UNROLL_R(NN)                              \
334		((SKEIN_UNROLL_1024 == 0 &&             \
335		SKEIN_1024_ROUNDS_TOTAL/8 > (NN)) ||  \
336		(SKEIN_UNROLL_1024 > (NN)))
337
338#if  (SKEIN_UNROLL_1024 > 14)
339#error  "need more unrolling in Skein_1024_Process_Block"
340#endif
341#endif
342
343/*****************************  SKEIN_256 ******************************/
344#if !(SKEIN_USE_ASM & 256)
345void skein_256_process_block(struct skein_256_ctx *ctx, const u8 *blk_ptr,
346			     size_t blk_cnt, size_t byte_cnt_add)
347{ /* do it in C */
348	enum {
349		WCNT = SKEIN_256_STATE_WORDS
350	};
351	size_t r;
352#if SKEIN_UNROLL_256
353	/* key schedule: chaining vars + tweak + "rot"*/
354	u64  kw[WCNT+4+RCNT*2];
355#else
356	/* key schedule words : chaining vars + tweak */
357	u64  kw[WCNT+4];
358#endif
359	u64  X0, X1, X2, X3; /* local copy of context vars, for speed */
360	u64  w[WCNT]; /* local copy of input block */
361#ifdef SKEIN_DEBUG
362	const u64 *X_ptr[4]; /* use for debugging (help cc put Xn in regs) */
363
364	X_ptr[0] = &X0;
365	X_ptr[1] = &X1;
366	X_ptr[2] = &X2;
367	X_ptr[3] = &X3;
368#endif
369	skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
370	ts[0] = ctx->h.tweak[0];
371	ts[1] = ctx->h.tweak[1];
372	do  {
373		/*
374		 * this implementation only supports 2**64 input bytes
375		 * (no carry out here)
376		 */
377		ts[0] += byte_cnt_add; /* update processed length */
378
379		/* precompute the key schedule for this block */
380		ks[0] = ctx->x[0];
381		ks[1] = ctx->x[1];
382		ks[2] = ctx->x[2];
383		ks[3] = ctx->x[3];
384		ks[4] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^ SKEIN_KS_PARITY;
385
386		ts[2] = ts[0] ^ ts[1];
387
388		/* get input block in little-endian format */
389		skein_get64_lsb_first(w, blk_ptr, WCNT);
390		debug_save_tweak(ctx);
391
392		/* do the first full key injection */
393		X0 = w[0] + ks[0];
394		X1 = w[1] + ks[1] + ts[0];
395		X2 = w[2] + ks[2] + ts[1];
396		X3 = w[3] + ks[3];
397
398		blk_ptr += SKEIN_256_BLOCK_BYTES;
399
400		/* run the rounds */
401		for (r = 1;
402			r < (SKEIN_UNROLL_256 ? 2 * RCNT : 2);
403			r += (SKEIN_UNROLL_256 ? 2 * SKEIN_UNROLL_256 : 1)) {
404			R256_8_ROUNDS(0);
405#if   R256_UNROLL_R(1)
406			R256_8_ROUNDS(1);
407#endif
408#if   R256_UNROLL_R(2)
409			R256_8_ROUNDS(2);
410#endif
411#if   R256_UNROLL_R(3)
412			R256_8_ROUNDS(3);
413#endif
414#if   R256_UNROLL_R(4)
415			R256_8_ROUNDS(4);
416#endif
417#if   R256_UNROLL_R(5)
418			R256_8_ROUNDS(5);
419#endif
420#if   R256_UNROLL_R(6)
421			R256_8_ROUNDS(6);
422#endif
423#if   R256_UNROLL_R(7)
424			R256_8_ROUNDS(7);
425#endif
426#if   R256_UNROLL_R(8)
427			R256_8_ROUNDS(8);
428#endif
429#if   R256_UNROLL_R(9)
430			R256_8_ROUNDS(9);
431#endif
432#if   R256_UNROLL_R(10)
433			R256_8_ROUNDS(10);
434#endif
435#if   R256_UNROLL_R(11)
436			R256_8_ROUNDS(11);
437#endif
438#if   R256_UNROLL_R(12)
439			R256_8_ROUNDS(12);
440#endif
441#if   R256_UNROLL_R(13)
442			R256_8_ROUNDS(13);
443#endif
444#if   R256_UNROLL_R(14)
445			R256_8_ROUNDS(14);
446#endif
447		}
448		/* do the final "feedforward" xor, update context chaining */
449		ctx->x[0] = X0 ^ w[0];
450		ctx->x[1] = X1 ^ w[1];
451		ctx->x[2] = X2 ^ w[2];
452		ctx->x[3] = X3 ^ w[3];
453
454		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
455	} while (--blk_cnt);
456	ctx->h.tweak[0] = ts[0];
457	ctx->h.tweak[1] = ts[1];
458}
459
460#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
461size_t skein_256_process_block_code_size(void)
462{
463	return ((u8 *) skein_256_process_block_code_size) -
464		((u8 *) skein_256_process_block);
465}
466unsigned int skein_256_unroll_cnt(void)
467{
468	return SKEIN_UNROLL_256;
469}
470#endif
471#endif
472
473/*****************************  SKEIN_512 ******************************/
474#if !(SKEIN_USE_ASM & 512)
475void skein_512_process_block(struct skein_512_ctx *ctx, const u8 *blk_ptr,
476			     size_t blk_cnt, size_t byte_cnt_add)
477{ /* do it in C */
478	enum {
479		WCNT = SKEIN_512_STATE_WORDS
480	};
481	size_t  r;
482#if SKEIN_UNROLL_512
483	u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot"*/
484#else
485	u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
486#endif
487	u64  X0, X1, X2, X3, X4, X5, X6, X7; /* local copies, for speed */
488	u64  w[WCNT]; /* local copy of input block */
489#ifdef SKEIN_DEBUG
490	const u64 *X_ptr[8]; /* use for debugging (help cc put Xn in regs) */
491
492	X_ptr[0] = &X0;
493	X_ptr[1] = &X1;
494	X_ptr[2] = &X2;
495	X_ptr[3] = &X3;
496	X_ptr[4] = &X4;
497	X_ptr[5] = &X5;
498	X_ptr[6] = &X6;
499	X_ptr[7] = &X7;
500#endif
501
502	skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
503	ts[0] = ctx->h.tweak[0];
504	ts[1] = ctx->h.tweak[1];
505	do  {
506		/*
507		 * this implementation only supports 2**64 input bytes
508		 * (no carry out here)
509		 */
510		ts[0] += byte_cnt_add; /* update processed length */
511
512		/* precompute the key schedule for this block */
513		ks[0] = ctx->x[0];
514		ks[1] = ctx->x[1];
515		ks[2] = ctx->x[2];
516		ks[3] = ctx->x[3];
517		ks[4] = ctx->x[4];
518		ks[5] = ctx->x[5];
519		ks[6] = ctx->x[6];
520		ks[7] = ctx->x[7];
521		ks[8] = ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
522			ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^ SKEIN_KS_PARITY;
523
524		ts[2] = ts[0] ^ ts[1];
525
526		/* get input block in little-endian format */
527		skein_get64_lsb_first(w, blk_ptr, WCNT);
528		debug_save_tweak(ctx);
529
530		/* do the first full key injection */
531		X0 = w[0] + ks[0];
532		X1 = w[1] + ks[1];
533		X2 = w[2] + ks[2];
534		X3 = w[3] + ks[3];
535		X4 = w[4] + ks[4];
536		X5 = w[5] + ks[5] + ts[0];
537		X6 = w[6] + ks[6] + ts[1];
538		X7 = w[7] + ks[7];
539
540		blk_ptr += SKEIN_512_BLOCK_BYTES;
541
542		/* run the rounds */
543		for (r = 1;
544			r < (SKEIN_UNROLL_512 ? 2 * RCNT : 2);
545			r += (SKEIN_UNROLL_512 ? 2 * SKEIN_UNROLL_512 : 1)) {
546
547			R512_8_ROUNDS(0);
548
549#if   R512_UNROLL_R(1)
550			R512_8_ROUNDS(1);
551#endif
552#if   R512_UNROLL_R(2)
553			R512_8_ROUNDS(2);
554#endif
555#if   R512_UNROLL_R(3)
556			R512_8_ROUNDS(3);
557#endif
558#if   R512_UNROLL_R(4)
559			R512_8_ROUNDS(4);
560#endif
561#if   R512_UNROLL_R(5)
562			R512_8_ROUNDS(5);
563#endif
564#if   R512_UNROLL_R(6)
565			R512_8_ROUNDS(6);
566#endif
567#if   R512_UNROLL_R(7)
568			R512_8_ROUNDS(7);
569#endif
570#if   R512_UNROLL_R(8)
571			R512_8_ROUNDS(8);
572#endif
573#if   R512_UNROLL_R(9)
574			R512_8_ROUNDS(9);
575#endif
576#if   R512_UNROLL_R(10)
577			R512_8_ROUNDS(10);
578#endif
579#if   R512_UNROLL_R(11)
580			R512_8_ROUNDS(11);
581#endif
582#if   R512_UNROLL_R(12)
583			R512_8_ROUNDS(12);
584#endif
585#if   R512_UNROLL_R(13)
586			R512_8_ROUNDS(13);
587#endif
588#if   R512_UNROLL_R(14)
589			R512_8_ROUNDS(14);
590#endif
591		}
592
593		/* do the final "feedforward" xor, update context chaining */
594		ctx->x[0] = X0 ^ w[0];
595		ctx->x[1] = X1 ^ w[1];
596		ctx->x[2] = X2 ^ w[2];
597		ctx->x[3] = X3 ^ w[3];
598		ctx->x[4] = X4 ^ w[4];
599		ctx->x[5] = X5 ^ w[5];
600		ctx->x[6] = X6 ^ w[6];
601		ctx->x[7] = X7 ^ w[7];
602
603		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
604	} while (--blk_cnt);
605	ctx->h.tweak[0] = ts[0];
606	ctx->h.tweak[1] = ts[1];
607}
608
609#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
610size_t skein_512_process_block_code_size(void)
611{
612	return ((u8 *) skein_512_process_block_code_size) -
613		((u8 *) skein_512_process_block);
614}
615unsigned int skein_512_unroll_cnt(void)
616{
617	return SKEIN_UNROLL_512;
618}
619#endif
620#endif
621
622/*****************************  SKEIN_1024 ******************************/
623#if !(SKEIN_USE_ASM & 1024)
624void skein_1024_process_block(struct skein_1024_ctx *ctx, const u8 *blk_ptr,
625			      size_t blk_cnt, size_t byte_cnt_add)
626{ /* do it in C, always looping (unrolled is bigger AND slower!) */
627	enum {
628		WCNT = SKEIN_1024_STATE_WORDS
629	};
630	size_t  r;
631#if (SKEIN_UNROLL_1024 != 0)
632	u64  kw[WCNT+4+RCNT*2]; /* key sched: chaining vars + tweak + "rot" */
633#else
634	u64  kw[WCNT+4]; /* key schedule words : chaining vars + tweak */
635#endif
636
637	/* local copy of vars, for speed */
638	u64  X00, X01, X02, X03, X04, X05, X06, X07,
639	     X08, X09, X10, X11, X12, X13, X14, X15;
640	u64  w[WCNT]; /* local copy of input block */
641
642	skein_assert(blk_cnt != 0); /* never call with blk_cnt == 0! */
643	ts[0] = ctx->h.tweak[0];
644	ts[1] = ctx->h.tweak[1];
645	do  {
646		/*
647		 * this implementation only supports 2**64 input bytes
648		 * (no carry out here)
649		 */
650		ts[0] += byte_cnt_add; /* update processed length */
651
652		/* precompute the key schedule for this block */
653		ks[0]  = ctx->x[0];
654		ks[1]  = ctx->x[1];
655		ks[2]  = ctx->x[2];
656		ks[3]  = ctx->x[3];
657		ks[4]  = ctx->x[4];
658		ks[5]  = ctx->x[5];
659		ks[6]  = ctx->x[6];
660		ks[7]  = ctx->x[7];
661		ks[8]  = ctx->x[8];
662		ks[9]  = ctx->x[9];
663		ks[10] = ctx->x[10];
664		ks[11] = ctx->x[11];
665		ks[12] = ctx->x[12];
666		ks[13] = ctx->x[13];
667		ks[14] = ctx->x[14];
668		ks[15] = ctx->x[15];
669		ks[16] =  ks[0] ^ ks[1] ^ ks[2] ^ ks[3] ^
670			  ks[4] ^ ks[5] ^ ks[6] ^ ks[7] ^
671			  ks[8] ^ ks[9] ^ ks[10] ^ ks[11] ^
672			  ks[12] ^ ks[13] ^ ks[14] ^ ks[15] ^ SKEIN_KS_PARITY;
673
674		ts[2] = ts[0] ^ ts[1];
675
676		/* get input block in little-endian format */
677		skein_get64_lsb_first(w, blk_ptr, WCNT);
678		debug_save_tweak(ctx);
679
680		/* do the first full key injection */
681		X00 = w[0] + ks[0];
682		X01 = w[1] + ks[1];
683		X02 = w[2] + ks[2];
684		X03 = w[3] + ks[3];
685		X04 = w[4] + ks[4];
686		X05 = w[5] + ks[5];
687		X06 = w[6] + ks[6];
688		X07 = w[7] + ks[7];
689		X08 = w[8] + ks[8];
690		X09 = w[9] + ks[9];
691		X10 = w[10] + ks[10];
692		X11 = w[11] + ks[11];
693		X12 = w[12] + ks[12];
694		X13 = w[13] + ks[13] + ts[0];
695		X14 = w[14] + ks[14] + ts[1];
696		X15 = w[15] + ks[15];
697
698		for (r = 1;
699			r < (SKEIN_UNROLL_1024 ? 2 * RCNT : 2);
700			r += (SKEIN_UNROLL_1024 ? 2 * SKEIN_UNROLL_1024 : 1)) {
701			R1024_8_ROUNDS(0);
702#if   R1024_UNROLL_R(1)
703			R1024_8_ROUNDS(1);
704#endif
705#if   R1024_UNROLL_R(2)
706			R1024_8_ROUNDS(2);
707#endif
708#if   R1024_UNROLL_R(3)
709			R1024_8_ROUNDS(3);
710#endif
711#if   R1024_UNROLL_R(4)
712			R1024_8_ROUNDS(4);
713#endif
714#if   R1024_UNROLL_R(5)
715			R1024_8_ROUNDS(5);
716#endif
717#if   R1024_UNROLL_R(6)
718			R1024_8_ROUNDS(6);
719#endif
720#if   R1024_UNROLL_R(7)
721			R1024_8_ROUNDS(7);
722#endif
723#if   R1024_UNROLL_R(8)
724			R1024_8_ROUNDS(8);
725#endif
726#if   R1024_UNROLL_R(9)
727			R1024_8_ROUNDS(9);
728#endif
729#if   R1024_UNROLL_R(10)
730			R1024_8_ROUNDS(10);
731#endif
732#if   R1024_UNROLL_R(11)
733			R1024_8_ROUNDS(11);
734#endif
735#if   R1024_UNROLL_R(12)
736			R1024_8_ROUNDS(12);
737#endif
738#if   R1024_UNROLL_R(13)
739			R1024_8_ROUNDS(13);
740#endif
741#if   R1024_UNROLL_R(14)
742			R1024_8_ROUNDS(14);
743#endif
744		}
745		/* do the final "feedforward" xor, update context chaining */
746
747		ctx->x[0] = X00 ^ w[0];
748		ctx->x[1] = X01 ^ w[1];
749		ctx->x[2] = X02 ^ w[2];
750		ctx->x[3] = X03 ^ w[3];
751		ctx->x[4] = X04 ^ w[4];
752		ctx->x[5] = X05 ^ w[5];
753		ctx->x[6] = X06 ^ w[6];
754		ctx->x[7] = X07 ^ w[7];
755		ctx->x[8] = X08 ^ w[8];
756		ctx->x[9] = X09 ^ w[9];
757		ctx->x[10] = X10 ^ w[10];
758		ctx->x[11] = X11 ^ w[11];
759		ctx->x[12] = X12 ^ w[12];
760		ctx->x[13] = X13 ^ w[13];
761		ctx->x[14] = X14 ^ w[14];
762		ctx->x[15] = X15 ^ w[15];
763
764		ts[1] &= ~SKEIN_T1_FLAG_FIRST;
765		blk_ptr += SKEIN_1024_BLOCK_BYTES;
766	} while (--blk_cnt);
767	ctx->h.tweak[0] = ts[0];
768	ctx->h.tweak[1] = ts[1];
769}
770
771#if defined(SKEIN_CODE_SIZE) || defined(SKEIN_PERF)
772size_t skein_1024_process_block_code_size(void)
773{
774	return ((u8 *) skein_1024_process_block_code_size) -
775		((u8 *) skein_1024_process_block);
776}
777unsigned int skein_1024_unroll_cnt(void)
778{
779	return SKEIN_UNROLL_1024;
780}
781#endif
782#endif
783