1/****************************************************************************
2 *
3 * Driver for the IFX 6x60 spi modem.
4 *
5 * Copyright (C) 2008 Option International
6 * Copyright (C) 2008 Filip Aben <f.aben@option.com>
7 *		      Denis Joseph Barrow <d.barow@option.com>
8 *		      Jan Dumon <j.dumon@option.com>
9 *
10 * Copyright (C) 2009, 2010 Intel Corp
11 * Russ Gorby <russ.gorby@intel.com>
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License version 2 as
15 * published by the Free Software Foundation.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.	 See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301,
25 * USA
26 *
27 * Driver modified by Intel from Option gtm501l_spi.c
28 *
29 * Notes
30 * o	The driver currently assumes a single device only. If you need to
31 *	change this then look for saved_ifx_dev and add a device lookup
32 * o	The driver is intended to be big-endian safe but has never been
33 *	tested that way (no suitable hardware). There are a couple of FIXME
34 *	notes by areas that may need addressing
35 * o	Some of the GPIO naming/setup assumptions may need revisiting if
36 *	you need to use this driver for another platform.
37 *
38 *****************************************************************************/
39#include <linux/dma-mapping.h>
40#include <linux/module.h>
41#include <linux/termios.h>
42#include <linux/tty.h>
43#include <linux/device.h>
44#include <linux/spi/spi.h>
45#include <linux/kfifo.h>
46#include <linux/tty_flip.h>
47#include <linux/timer.h>
48#include <linux/serial.h>
49#include <linux/interrupt.h>
50#include <linux/irq.h>
51#include <linux/rfkill.h>
52#include <linux/fs.h>
53#include <linux/ip.h>
54#include <linux/dmapool.h>
55#include <linux/gpio.h>
56#include <linux/sched.h>
57#include <linux/time.h>
58#include <linux/wait.h>
59#include <linux/pm.h>
60#include <linux/pm_runtime.h>
61#include <linux/spi/ifx_modem.h>
62#include <linux/delay.h>
63#include <linux/reboot.h>
64
65#include "ifx6x60.h"
66
67#define IFX_SPI_MORE_MASK		0x10
68#define IFX_SPI_MORE_BIT		4	/* bit position in u8 */
69#define IFX_SPI_CTS_BIT			6	/* bit position in u8 */
70#define IFX_SPI_MODE			SPI_MODE_1
71#define IFX_SPI_TTY_ID			0
72#define IFX_SPI_TIMEOUT_SEC		2
73#define IFX_SPI_HEADER_0		(-1)
74#define IFX_SPI_HEADER_F		(-2)
75
76#define PO_POST_DELAY		200
77#define IFX_MDM_RST_PMU	4
78
79/* forward reference */
80static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev);
81static int ifx_modem_reboot_callback(struct notifier_block *nfb,
82				unsigned long event, void *data);
83static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev);
84
85/* local variables */
86static int spi_bpw = 16;		/* 8, 16 or 32 bit word length */
87static struct tty_driver *tty_drv;
88static struct ifx_spi_device *saved_ifx_dev;
89static struct lock_class_key ifx_spi_key;
90
91static struct notifier_block ifx_modem_reboot_notifier_block = {
92	.notifier_call = ifx_modem_reboot_callback,
93};
94
95static int ifx_modem_power_off(struct ifx_spi_device *ifx_dev)
96{
97	gpio_set_value(IFX_MDM_RST_PMU, 1);
98	msleep(PO_POST_DELAY);
99
100	return 0;
101}
102
103static int ifx_modem_reboot_callback(struct notifier_block *nfb,
104				 unsigned long event, void *data)
105{
106	if (saved_ifx_dev)
107		ifx_modem_power_off(saved_ifx_dev);
108	else
109		pr_warn("no ifx modem active;\n");
110
111	return NOTIFY_OK;
112}
113
114/* GPIO/GPE settings */
115
116/**
117 *	mrdy_set_high		-	set MRDY GPIO
118 *	@ifx: device we are controlling
119 *
120 */
121static inline void mrdy_set_high(struct ifx_spi_device *ifx)
122{
123	gpio_set_value(ifx->gpio.mrdy, 1);
124}
125
126/**
127 *	mrdy_set_low		-	clear MRDY GPIO
128 *	@ifx: device we are controlling
129 *
130 */
131static inline void mrdy_set_low(struct ifx_spi_device *ifx)
132{
133	gpio_set_value(ifx->gpio.mrdy, 0);
134}
135
136/**
137 *	ifx_spi_power_state_set
138 *	@ifx_dev: our SPI device
139 *	@val: bits to set
140 *
141 *	Set bit in power status and signal power system if status becomes non-0
142 */
143static void
144ifx_spi_power_state_set(struct ifx_spi_device *ifx_dev, unsigned char val)
145{
146	unsigned long flags;
147
148	spin_lock_irqsave(&ifx_dev->power_lock, flags);
149
150	/*
151	 * if power status is already non-0, just update, else
152	 * tell power system
153	 */
154	if (!ifx_dev->power_status)
155		pm_runtime_get(&ifx_dev->spi_dev->dev);
156	ifx_dev->power_status |= val;
157
158	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
159}
160
161/**
162 *	ifx_spi_power_state_clear	-	clear power bit
163 *	@ifx_dev: our SPI device
164 *	@val: bits to clear
165 *
166 *	clear bit in power status and signal power system if status becomes 0
167 */
168static void
169ifx_spi_power_state_clear(struct ifx_spi_device *ifx_dev, unsigned char val)
170{
171	unsigned long flags;
172
173	spin_lock_irqsave(&ifx_dev->power_lock, flags);
174
175	if (ifx_dev->power_status) {
176		ifx_dev->power_status &= ~val;
177		if (!ifx_dev->power_status)
178			pm_runtime_put(&ifx_dev->spi_dev->dev);
179	}
180
181	spin_unlock_irqrestore(&ifx_dev->power_lock, flags);
182}
183
184/**
185 *	swap_buf_8
186 *	@buf: our buffer
187 *	@len : number of bytes (not words) in the buffer
188 *	@end: end of buffer
189 *
190 *	Swap the contents of a buffer into big endian format
191 */
192static inline void swap_buf_8(unsigned char *buf, int len, void *end)
193{
194	/* don't swap buffer if SPI word width is 8 bits */
195	return;
196}
197
198/**
199 *	swap_buf_16
200 *	@buf: our buffer
201 *	@len : number of bytes (not words) in the buffer
202 *	@end: end of buffer
203 *
204 *	Swap the contents of a buffer into big endian format
205 */
206static inline void swap_buf_16(unsigned char *buf, int len, void *end)
207{
208	int n;
209
210	u16 *buf_16 = (u16 *)buf;
211	len = ((len + 1) >> 1);
212	if ((void *)&buf_16[len] > end) {
213		pr_err("swap_buf_16: swap exceeds boundary (%p > %p)!",
214		       &buf_16[len], end);
215		return;
216	}
217	for (n = 0; n < len; n++) {
218		*buf_16 = cpu_to_be16(*buf_16);
219		buf_16++;
220	}
221}
222
223/**
224 *	swap_buf_32
225 *	@buf: our buffer
226 *	@len : number of bytes (not words) in the buffer
227 *	@end: end of buffer
228 *
229 *	Swap the contents of a buffer into big endian format
230 */
231static inline void swap_buf_32(unsigned char *buf, int len, void *end)
232{
233	int n;
234
235	u32 *buf_32 = (u32 *)buf;
236	len = (len + 3) >> 2;
237
238	if ((void *)&buf_32[len] > end) {
239		pr_err("swap_buf_32: swap exceeds boundary (%p > %p)!\n",
240		       &buf_32[len], end);
241		return;
242	}
243	for (n = 0; n < len; n++) {
244		*buf_32 = cpu_to_be32(*buf_32);
245		buf_32++;
246	}
247}
248
249/**
250 *	mrdy_assert		-	assert MRDY line
251 *	@ifx_dev: our SPI device
252 *
253 *	Assert mrdy and set timer to wait for SRDY interrupt, if SRDY is low
254 *	now.
255 *
256 *	FIXME: Can SRDY even go high as we are running this code ?
257 */
258static void mrdy_assert(struct ifx_spi_device *ifx_dev)
259{
260	int val = gpio_get_value(ifx_dev->gpio.srdy);
261	if (!val) {
262		if (!test_and_set_bit(IFX_SPI_STATE_TIMER_PENDING,
263				      &ifx_dev->flags)) {
264			mod_timer(&ifx_dev->spi_timer,jiffies + IFX_SPI_TIMEOUT_SEC*HZ);
265
266		}
267	}
268	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_DATA_PENDING);
269	mrdy_set_high(ifx_dev);
270}
271
272/**
273 *	ifx_spi_timeout		-	SPI timeout
274 *	@arg: our SPI device
275 *
276 *	The SPI has timed out: hang up the tty. Users will then see a hangup
277 *	and error events.
278 */
279static void ifx_spi_timeout(unsigned long arg)
280{
281	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *)arg;
282
283	dev_warn(&ifx_dev->spi_dev->dev, "*** SPI Timeout ***");
284	tty_port_tty_hangup(&ifx_dev->tty_port, false);
285	mrdy_set_low(ifx_dev);
286	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
287}
288
289/* char/tty operations */
290
291/**
292 *	ifx_spi_tiocmget	-	get modem lines
293 *	@tty: our tty device
294 *	@filp: file handle issuing the request
295 *
296 *	Map the signal state into Linux modem flags and report the value
297 *	in Linux terms
298 */
299static int ifx_spi_tiocmget(struct tty_struct *tty)
300{
301	unsigned int value;
302	struct ifx_spi_device *ifx_dev = tty->driver_data;
303
304	value =
305	(test_bit(IFX_SPI_RTS, &ifx_dev->signal_state) ? TIOCM_RTS : 0) |
306	(test_bit(IFX_SPI_DTR, &ifx_dev->signal_state) ? TIOCM_DTR : 0) |
307	(test_bit(IFX_SPI_CTS, &ifx_dev->signal_state) ? TIOCM_CTS : 0) |
308	(test_bit(IFX_SPI_DSR, &ifx_dev->signal_state) ? TIOCM_DSR : 0) |
309	(test_bit(IFX_SPI_DCD, &ifx_dev->signal_state) ? TIOCM_CAR : 0) |
310	(test_bit(IFX_SPI_RI, &ifx_dev->signal_state) ? TIOCM_RNG : 0);
311	return value;
312}
313
314/**
315 *	ifx_spi_tiocmset	-	set modem bits
316 *	@tty: the tty structure
317 *	@set: bits to set
318 *	@clear: bits to clear
319 *
320 *	The IFX6x60 only supports DTR and RTS. Set them accordingly
321 *	and flag that an update to the modem is needed.
322 *
323 *	FIXME: do we need to kick the tranfers when we do this ?
324 */
325static int ifx_spi_tiocmset(struct tty_struct *tty,
326			    unsigned int set, unsigned int clear)
327{
328	struct ifx_spi_device *ifx_dev = tty->driver_data;
329
330	if (set & TIOCM_RTS)
331		set_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
332	if (set & TIOCM_DTR)
333		set_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
334	if (clear & TIOCM_RTS)
335		clear_bit(IFX_SPI_RTS, &ifx_dev->signal_state);
336	if (clear & TIOCM_DTR)
337		clear_bit(IFX_SPI_DTR, &ifx_dev->signal_state);
338
339	set_bit(IFX_SPI_UPDATE, &ifx_dev->signal_state);
340	return 0;
341}
342
343/**
344 *	ifx_spi_open	-	called on tty open
345 *	@tty: our tty device
346 *	@filp: file handle being associated with the tty
347 *
348 *	Open the tty interface. We let the tty_port layer do all the work
349 *	for us.
350 *
351 *	FIXME: Remove single device assumption and saved_ifx_dev
352 */
353static int ifx_spi_open(struct tty_struct *tty, struct file *filp)
354{
355	return tty_port_open(&saved_ifx_dev->tty_port, tty, filp);
356}
357
358/**
359 *	ifx_spi_close	-	called when our tty closes
360 *	@tty: the tty being closed
361 *	@filp: the file handle being closed
362 *
363 *	Perform the close of the tty. We use the tty_port layer to do all
364 *	our hard work.
365 */
366static void ifx_spi_close(struct tty_struct *tty, struct file *filp)
367{
368	struct ifx_spi_device *ifx_dev = tty->driver_data;
369	tty_port_close(&ifx_dev->tty_port, tty, filp);
370	/* FIXME: should we do an ifx_spi_reset here ? */
371}
372
373/**
374 *	ifx_decode_spi_header	-	decode received header
375 *	@buffer: the received data
376 *	@length: decoded length
377 *	@more: decoded more flag
378 *	@received_cts: status of cts we received
379 *
380 *	Note how received_cts is handled -- if header is all F it is left
381 *	the same as it was, if header is all 0 it is set to 0 otherwise it is
382 *	taken from the incoming header.
383 *
384 *	FIXME: endianness
385 */
386static int ifx_spi_decode_spi_header(unsigned char *buffer, int *length,
387			unsigned char *more, unsigned char *received_cts)
388{
389	u16 h1;
390	u16 h2;
391	u16 *in_buffer = (u16 *)buffer;
392
393	h1 = *in_buffer;
394	h2 = *(in_buffer+1);
395
396	if (h1 == 0 && h2 == 0) {
397		*received_cts = 0;
398		return IFX_SPI_HEADER_0;
399	} else if (h1 == 0xffff && h2 == 0xffff) {
400		/* spi_slave_cts remains as it was */
401		return IFX_SPI_HEADER_F;
402	}
403
404	*length = h1 & 0xfff;	/* upper bits of byte are flags */
405	*more = (buffer[1] >> IFX_SPI_MORE_BIT) & 1;
406	*received_cts = (buffer[3] >> IFX_SPI_CTS_BIT) & 1;
407	return 0;
408}
409
410/**
411 *	ifx_setup_spi_header	-	set header fields
412 *	@txbuffer: pointer to start of SPI buffer
413 *	@tx_count: bytes
414 *	@more: indicate if more to follow
415 *
416 *	Format up an SPI header for a transfer
417 *
418 *	FIXME: endianness?
419 */
420static void ifx_spi_setup_spi_header(unsigned char *txbuffer, int tx_count,
421					unsigned char more)
422{
423	*(u16 *)(txbuffer) = tx_count;
424	*(u16 *)(txbuffer+2) = IFX_SPI_PAYLOAD_SIZE;
425	txbuffer[1] |= (more << IFX_SPI_MORE_BIT) & IFX_SPI_MORE_MASK;
426}
427
428/**
429 *	ifx_spi_prepare_tx_buffer	-	prepare transmit frame
430 *	@ifx_dev: our SPI device
431 *
432 *	The transmit buffr needs a header and various other bits of
433 *	information followed by as much data as we can pull from the FIFO
434 *	and transfer. This function formats up a suitable buffer in the
435 *	ifx_dev->tx_buffer
436 *
437 *	FIXME: performance - should we wake the tty when the queue is half
438 *			     empty ?
439 */
440static int ifx_spi_prepare_tx_buffer(struct ifx_spi_device *ifx_dev)
441{
442	int temp_count;
443	int queue_length;
444	int tx_count;
445	unsigned char *tx_buffer;
446
447	tx_buffer = ifx_dev->tx_buffer;
448
449	/* make room for required SPI header */
450	tx_buffer += IFX_SPI_HEADER_OVERHEAD;
451	tx_count = IFX_SPI_HEADER_OVERHEAD;
452
453	/* clear to signal no more data if this turns out to be the
454	 * last buffer sent in a sequence */
455	ifx_dev->spi_more = 0;
456
457	/* if modem cts is set, just send empty buffer */
458	if (!ifx_dev->spi_slave_cts) {
459		/* see if there's tx data */
460		queue_length = kfifo_len(&ifx_dev->tx_fifo);
461		if (queue_length != 0) {
462			/* data to mux -- see if there's room for it */
463			temp_count = min(queue_length, IFX_SPI_PAYLOAD_SIZE);
464			temp_count = kfifo_out_locked(&ifx_dev->tx_fifo,
465					tx_buffer, temp_count,
466					&ifx_dev->fifo_lock);
467
468			/* update buffer pointer and data count in message */
469			tx_buffer += temp_count;
470			tx_count += temp_count;
471			if (temp_count == queue_length)
472				/* poke port to get more data */
473				tty_port_tty_wakeup(&ifx_dev->tty_port);
474			else /* more data in port, use next SPI message */
475				ifx_dev->spi_more = 1;
476		}
477	}
478	/* have data and info for header -- set up SPI header in buffer */
479	/* spi header needs payload size, not entire buffer size */
480	ifx_spi_setup_spi_header(ifx_dev->tx_buffer,
481					tx_count-IFX_SPI_HEADER_OVERHEAD,
482					ifx_dev->spi_more);
483	/* swap actual data in the buffer */
484	ifx_dev->swap_buf((ifx_dev->tx_buffer), tx_count,
485		&ifx_dev->tx_buffer[IFX_SPI_TRANSFER_SIZE]);
486	return tx_count;
487}
488
489/**
490 *	ifx_spi_write		-	line discipline write
491 *	@tty: our tty device
492 *	@buf: pointer to buffer to write (kernel space)
493 *	@count: size of buffer
494 *
495 *	Write the characters we have been given into the FIFO. If the device
496 *	is not active then activate it, when the SRDY line is asserted back
497 *	this will commence I/O
498 */
499static int ifx_spi_write(struct tty_struct *tty, const unsigned char *buf,
500			 int count)
501{
502	struct ifx_spi_device *ifx_dev = tty->driver_data;
503	unsigned char *tmp_buf = (unsigned char *)buf;
504	unsigned long flags;
505	bool is_fifo_empty;
506	int tx_count;
507
508	spin_lock_irqsave(&ifx_dev->fifo_lock, flags);
509	is_fifo_empty = kfifo_is_empty(&ifx_dev->tx_fifo);
510	tx_count = kfifo_in(&ifx_dev->tx_fifo, tmp_buf, count);
511	spin_unlock_irqrestore(&ifx_dev->fifo_lock, flags);
512	if (is_fifo_empty)
513		mrdy_assert(ifx_dev);
514
515	return tx_count;
516}
517
518/**
519 *	ifx_spi_chars_in_buffer	-	line discipline helper
520 *	@tty: our tty device
521 *
522 *	Report how much data we can accept before we drop bytes. As we use
523 *	a simple FIFO this is nice and easy.
524 */
525static int ifx_spi_write_room(struct tty_struct *tty)
526{
527	struct ifx_spi_device *ifx_dev = tty->driver_data;
528	return IFX_SPI_FIFO_SIZE - kfifo_len(&ifx_dev->tx_fifo);
529}
530
531/**
532 *	ifx_spi_chars_in_buffer	-	line discipline helper
533 *	@tty: our tty device
534 *
535 *	Report how many characters we have buffered. In our case this is the
536 *	number of bytes sitting in our transmit FIFO.
537 */
538static int ifx_spi_chars_in_buffer(struct tty_struct *tty)
539{
540	struct ifx_spi_device *ifx_dev = tty->driver_data;
541	return kfifo_len(&ifx_dev->tx_fifo);
542}
543
544/**
545 *	ifx_port_hangup
546 *	@port: our tty port
547 *
548 *	tty port hang up. Called when tty_hangup processing is invoked either
549 *	by loss of carrier, or by software (eg vhangup). Serialized against
550 *	activate/shutdown by the tty layer.
551 */
552static void ifx_spi_hangup(struct tty_struct *tty)
553{
554	struct ifx_spi_device *ifx_dev = tty->driver_data;
555	tty_port_hangup(&ifx_dev->tty_port);
556}
557
558/**
559 *	ifx_port_activate
560 *	@port: our tty port
561 *
562 *	tty port activate method - called for first open. Serialized
563 *	with hangup and shutdown by the tty layer.
564 */
565static int ifx_port_activate(struct tty_port *port, struct tty_struct *tty)
566{
567	struct ifx_spi_device *ifx_dev =
568		container_of(port, struct ifx_spi_device, tty_port);
569
570	/* clear any old data; can't do this in 'close' */
571	kfifo_reset(&ifx_dev->tx_fifo);
572
573	/* clear any flag which may be set in port shutdown procedure */
574	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
575	clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
576
577	/* put port data into this tty */
578	tty->driver_data = ifx_dev;
579
580	/* allows flip string push from int context */
581	port->low_latency = 1;
582
583	/* set flag to allows data transfer */
584	set_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
585
586	return 0;
587}
588
589/**
590 *	ifx_port_shutdown
591 *	@port: our tty port
592 *
593 *	tty port shutdown method - called for last port close. Serialized
594 *	with hangup and activate by the tty layer.
595 */
596static void ifx_port_shutdown(struct tty_port *port)
597{
598	struct ifx_spi_device *ifx_dev =
599		container_of(port, struct ifx_spi_device, tty_port);
600
601	clear_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags);
602	mrdy_set_low(ifx_dev);
603	del_timer(&ifx_dev->spi_timer);
604	clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
605	tasklet_kill(&ifx_dev->io_work_tasklet);
606}
607
608static const struct tty_port_operations ifx_tty_port_ops = {
609	.activate = ifx_port_activate,
610	.shutdown = ifx_port_shutdown,
611};
612
613static const struct tty_operations ifx_spi_serial_ops = {
614	.open = ifx_spi_open,
615	.close = ifx_spi_close,
616	.write = ifx_spi_write,
617	.hangup = ifx_spi_hangup,
618	.write_room = ifx_spi_write_room,
619	.chars_in_buffer = ifx_spi_chars_in_buffer,
620	.tiocmget = ifx_spi_tiocmget,
621	.tiocmset = ifx_spi_tiocmset,
622};
623
624/**
625 *	ifx_spi_insert_fip_string	-	queue received data
626 *	@ifx_ser: our SPI device
627 *	@chars: buffer we have received
628 *	@size: number of chars reeived
629 *
630 *	Queue bytes to the tty assuming the tty side is currently open. If
631 *	not the discard the data.
632 */
633static void ifx_spi_insert_flip_string(struct ifx_spi_device *ifx_dev,
634				    unsigned char *chars, size_t size)
635{
636	tty_insert_flip_string(&ifx_dev->tty_port, chars, size);
637	tty_flip_buffer_push(&ifx_dev->tty_port);
638}
639
640/**
641 *	ifx_spi_complete	-	SPI transfer completed
642 *	@ctx: our SPI device
643 *
644 *	An SPI transfer has completed. Process any received data and kick off
645 *	any further transmits we can commence.
646 */
647static void ifx_spi_complete(void *ctx)
648{
649	struct ifx_spi_device *ifx_dev = ctx;
650	int length;
651	int actual_length;
652	unsigned char more;
653	unsigned char cts;
654	int local_write_pending = 0;
655	int queue_length;
656	int srdy;
657	int decode_result;
658
659	mrdy_set_low(ifx_dev);
660
661	if (!ifx_dev->spi_msg.status) {
662		/* check header validity, get comm flags */
663		ifx_dev->swap_buf(ifx_dev->rx_buffer, IFX_SPI_HEADER_OVERHEAD,
664			&ifx_dev->rx_buffer[IFX_SPI_HEADER_OVERHEAD]);
665		decode_result = ifx_spi_decode_spi_header(ifx_dev->rx_buffer,
666				&length, &more, &cts);
667		if (decode_result == IFX_SPI_HEADER_0) {
668			dev_dbg(&ifx_dev->spi_dev->dev,
669				"ignore input: invalid header 0");
670			ifx_dev->spi_slave_cts = 0;
671			goto complete_exit;
672		} else if (decode_result == IFX_SPI_HEADER_F) {
673			dev_dbg(&ifx_dev->spi_dev->dev,
674				"ignore input: invalid header F");
675			goto complete_exit;
676		}
677
678		ifx_dev->spi_slave_cts = cts;
679
680		actual_length = min((unsigned int)length,
681					ifx_dev->spi_msg.actual_length);
682		ifx_dev->swap_buf(
683			(ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD),
684			 actual_length,
685			 &ifx_dev->rx_buffer[IFX_SPI_TRANSFER_SIZE]);
686		ifx_spi_insert_flip_string(
687			ifx_dev,
688			ifx_dev->rx_buffer + IFX_SPI_HEADER_OVERHEAD,
689			(size_t)actual_length);
690	} else {
691		dev_dbg(&ifx_dev->spi_dev->dev, "SPI transfer error %d",
692		       ifx_dev->spi_msg.status);
693	}
694
695complete_exit:
696	if (ifx_dev->write_pending) {
697		ifx_dev->write_pending = 0;
698		local_write_pending = 1;
699	}
700
701	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &(ifx_dev->flags));
702
703	queue_length = kfifo_len(&ifx_dev->tx_fifo);
704	srdy = gpio_get_value(ifx_dev->gpio.srdy);
705	if (!srdy)
706		ifx_spi_power_state_clear(ifx_dev, IFX_SPI_POWER_SRDY);
707
708	/* schedule output if there is more to do */
709	if (test_and_clear_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags))
710		tasklet_schedule(&ifx_dev->io_work_tasklet);
711	else {
712		if (more || ifx_dev->spi_more || queue_length > 0 ||
713			local_write_pending) {
714			if (ifx_dev->spi_slave_cts) {
715				if (more)
716					mrdy_assert(ifx_dev);
717			} else
718				mrdy_assert(ifx_dev);
719		} else {
720			/*
721			 * poke line discipline driver if any for more data
722			 * may or may not get more data to write
723			 * for now, say not busy
724			 */
725			ifx_spi_power_state_clear(ifx_dev,
726						  IFX_SPI_POWER_DATA_PENDING);
727			tty_port_tty_wakeup(&ifx_dev->tty_port);
728		}
729	}
730}
731
732/**
733 *	ifx_spio_io		-	I/O tasklet
734 *	@data: our SPI device
735 *
736 *	Queue data for transmission if possible and then kick off the
737 *	transfer.
738 */
739static void ifx_spi_io(unsigned long data)
740{
741	int retval;
742	struct ifx_spi_device *ifx_dev = (struct ifx_spi_device *) data;
743
744	if (!test_and_set_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags) &&
745		test_bit(IFX_SPI_STATE_IO_AVAILABLE, &ifx_dev->flags)) {
746		if (ifx_dev->gpio.unack_srdy_int_nb > 0)
747			ifx_dev->gpio.unack_srdy_int_nb--;
748
749		ifx_spi_prepare_tx_buffer(ifx_dev);
750
751		spi_message_init(&ifx_dev->spi_msg);
752		INIT_LIST_HEAD(&ifx_dev->spi_msg.queue);
753
754		ifx_dev->spi_msg.context = ifx_dev;
755		ifx_dev->spi_msg.complete = ifx_spi_complete;
756
757		/* set up our spi transfer */
758		/* note len is BYTES, not transfers */
759		ifx_dev->spi_xfer.len = IFX_SPI_TRANSFER_SIZE;
760		ifx_dev->spi_xfer.cs_change = 0;
761		ifx_dev->spi_xfer.speed_hz = ifx_dev->spi_dev->max_speed_hz;
762		/* ifx_dev->spi_xfer.speed_hz = 390625; */
763		ifx_dev->spi_xfer.bits_per_word =
764			ifx_dev->spi_dev->bits_per_word;
765
766		ifx_dev->spi_xfer.tx_buf = ifx_dev->tx_buffer;
767		ifx_dev->spi_xfer.rx_buf = ifx_dev->rx_buffer;
768
769		/*
770		 * setup dma pointers
771		 */
772		if (ifx_dev->use_dma) {
773			ifx_dev->spi_msg.is_dma_mapped = 1;
774			ifx_dev->tx_dma = ifx_dev->tx_bus;
775			ifx_dev->rx_dma = ifx_dev->rx_bus;
776			ifx_dev->spi_xfer.tx_dma = ifx_dev->tx_dma;
777			ifx_dev->spi_xfer.rx_dma = ifx_dev->rx_dma;
778		} else {
779			ifx_dev->spi_msg.is_dma_mapped = 0;
780			ifx_dev->tx_dma = (dma_addr_t)0;
781			ifx_dev->rx_dma = (dma_addr_t)0;
782			ifx_dev->spi_xfer.tx_dma = (dma_addr_t)0;
783			ifx_dev->spi_xfer.rx_dma = (dma_addr_t)0;
784		}
785
786		spi_message_add_tail(&ifx_dev->spi_xfer, &ifx_dev->spi_msg);
787
788		/* Assert MRDY. This may have already been done by the write
789		 * routine.
790		 */
791		mrdy_assert(ifx_dev);
792
793		retval = spi_async(ifx_dev->spi_dev, &ifx_dev->spi_msg);
794		if (retval) {
795			clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS,
796				  &ifx_dev->flags);
797			tasklet_schedule(&ifx_dev->io_work_tasklet);
798			return;
799		}
800	} else
801		ifx_dev->write_pending = 1;
802}
803
804/**
805 *	ifx_spi_free_port	-	free up the tty side
806 *	@ifx_dev: IFX device going away
807 *
808 *	Unregister and free up a port when the device goes away
809 */
810static void ifx_spi_free_port(struct ifx_spi_device *ifx_dev)
811{
812	if (ifx_dev->tty_dev)
813		tty_unregister_device(tty_drv, ifx_dev->minor);
814	tty_port_destroy(&ifx_dev->tty_port);
815	kfifo_free(&ifx_dev->tx_fifo);
816}
817
818/**
819 *	ifx_spi_create_port	-	create a new port
820 *	@ifx_dev: our spi device
821 *
822 *	Allocate and initialise the tty port that goes with this interface
823 *	and add it to the tty layer so that it can be opened.
824 */
825static int ifx_spi_create_port(struct ifx_spi_device *ifx_dev)
826{
827	int ret = 0;
828	struct tty_port *pport = &ifx_dev->tty_port;
829
830	spin_lock_init(&ifx_dev->fifo_lock);
831	lockdep_set_class_and_subclass(&ifx_dev->fifo_lock,
832		&ifx_spi_key, 0);
833
834	if (kfifo_alloc(&ifx_dev->tx_fifo, IFX_SPI_FIFO_SIZE, GFP_KERNEL)) {
835		ret = -ENOMEM;
836		goto error_ret;
837	}
838
839	tty_port_init(pport);
840	pport->ops = &ifx_tty_port_ops;
841	ifx_dev->minor = IFX_SPI_TTY_ID;
842	ifx_dev->tty_dev = tty_port_register_device(pport, tty_drv,
843			ifx_dev->minor, &ifx_dev->spi_dev->dev);
844	if (IS_ERR(ifx_dev->tty_dev)) {
845		dev_dbg(&ifx_dev->spi_dev->dev,
846			"%s: registering tty device failed", __func__);
847		ret = PTR_ERR(ifx_dev->tty_dev);
848		goto error_port;
849	}
850	return 0;
851
852error_port:
853	tty_port_destroy(pport);
854error_ret:
855	ifx_spi_free_port(ifx_dev);
856	return ret;
857}
858
859/**
860 *	ifx_spi_handle_srdy		-	handle SRDY
861 *	@ifx_dev: device asserting SRDY
862 *
863 *	Check our device state and see what we need to kick off when SRDY
864 *	is asserted. This usually means killing the timer and firing off the
865 *	I/O processing.
866 */
867static void ifx_spi_handle_srdy(struct ifx_spi_device *ifx_dev)
868{
869	if (test_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags)) {
870		del_timer(&ifx_dev->spi_timer);
871		clear_bit(IFX_SPI_STATE_TIMER_PENDING, &ifx_dev->flags);
872	}
873
874	ifx_spi_power_state_set(ifx_dev, IFX_SPI_POWER_SRDY);
875
876	if (!test_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags))
877		tasklet_schedule(&ifx_dev->io_work_tasklet);
878	else
879		set_bit(IFX_SPI_STATE_IO_READY, &ifx_dev->flags);
880}
881
882/**
883 *	ifx_spi_srdy_interrupt	-	SRDY asserted
884 *	@irq: our IRQ number
885 *	@dev: our ifx device
886 *
887 *	The modem asserted SRDY. Handle the srdy event
888 */
889static irqreturn_t ifx_spi_srdy_interrupt(int irq, void *dev)
890{
891	struct ifx_spi_device *ifx_dev = dev;
892	ifx_dev->gpio.unack_srdy_int_nb++;
893	ifx_spi_handle_srdy(ifx_dev);
894	return IRQ_HANDLED;
895}
896
897/**
898 *	ifx_spi_reset_interrupt	-	Modem has changed reset state
899 *	@irq: interrupt number
900 *	@dev: our device pointer
901 *
902 *	The modem has either entered or left reset state. Check the GPIO
903 *	line to see which.
904 *
905 *	FIXME: review locking on MR_INPROGRESS versus
906 *	parallel unsolicited reset/solicited reset
907 */
908static irqreturn_t ifx_spi_reset_interrupt(int irq, void *dev)
909{
910	struct ifx_spi_device *ifx_dev = dev;
911	int val = gpio_get_value(ifx_dev->gpio.reset_out);
912	int solreset = test_bit(MR_START, &ifx_dev->mdm_reset_state);
913
914	if (val == 0) {
915		/* entered reset */
916		set_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
917		if (!solreset) {
918			/* unsolicited reset  */
919			tty_port_tty_hangup(&ifx_dev->tty_port, false);
920		}
921	} else {
922		/* exited reset */
923		clear_bit(MR_INPROGRESS, &ifx_dev->mdm_reset_state);
924		if (solreset) {
925			set_bit(MR_COMPLETE, &ifx_dev->mdm_reset_state);
926			wake_up(&ifx_dev->mdm_reset_wait);
927		}
928	}
929	return IRQ_HANDLED;
930}
931
932/**
933 *	ifx_spi_free_device - free device
934 *	@ifx_dev: device to free
935 *
936 *	Free the IFX device
937 */
938static void ifx_spi_free_device(struct ifx_spi_device *ifx_dev)
939{
940	ifx_spi_free_port(ifx_dev);
941	dma_free_coherent(&ifx_dev->spi_dev->dev,
942				IFX_SPI_TRANSFER_SIZE,
943				ifx_dev->tx_buffer,
944				ifx_dev->tx_bus);
945	dma_free_coherent(&ifx_dev->spi_dev->dev,
946				IFX_SPI_TRANSFER_SIZE,
947				ifx_dev->rx_buffer,
948				ifx_dev->rx_bus);
949}
950
951/**
952 *	ifx_spi_reset	-	reset modem
953 *	@ifx_dev: modem to reset
954 *
955 *	Perform a reset on the modem
956 */
957static int ifx_spi_reset(struct ifx_spi_device *ifx_dev)
958{
959	int ret;
960	/*
961	 * set up modem power, reset
962	 *
963	 * delays are required on some platforms for the modem
964	 * to reset properly
965	 */
966	set_bit(MR_START, &ifx_dev->mdm_reset_state);
967	gpio_set_value(ifx_dev->gpio.po, 0);
968	gpio_set_value(ifx_dev->gpio.reset, 0);
969	msleep(25);
970	gpio_set_value(ifx_dev->gpio.reset, 1);
971	msleep(1);
972	gpio_set_value(ifx_dev->gpio.po, 1);
973	msleep(1);
974	gpio_set_value(ifx_dev->gpio.po, 0);
975	ret = wait_event_timeout(ifx_dev->mdm_reset_wait,
976				 test_bit(MR_COMPLETE,
977					  &ifx_dev->mdm_reset_state),
978				 IFX_RESET_TIMEOUT);
979	if (!ret)
980		dev_warn(&ifx_dev->spi_dev->dev, "Modem reset timeout: (state:%lx)",
981			 ifx_dev->mdm_reset_state);
982
983	ifx_dev->mdm_reset_state = 0;
984	return ret;
985}
986
987/**
988 *	ifx_spi_spi_probe	-	probe callback
989 *	@spi: our possible matching SPI device
990 *
991 *	Probe for a 6x60 modem on SPI bus. Perform any needed device and
992 *	GPIO setup.
993 *
994 *	FIXME:
995 *	-	Support for multiple devices
996 *	-	Split out MID specific GPIO handling eventually
997 */
998
999static int ifx_spi_spi_probe(struct spi_device *spi)
1000{
1001	int ret;
1002	int srdy;
1003	struct ifx_modem_platform_data *pl_data;
1004	struct ifx_spi_device *ifx_dev;
1005
1006	if (saved_ifx_dev) {
1007		dev_dbg(&spi->dev, "ignoring subsequent detection");
1008		return -ENODEV;
1009	}
1010
1011	pl_data = dev_get_platdata(&spi->dev);
1012	if (!pl_data) {
1013		dev_err(&spi->dev, "missing platform data!");
1014		return -ENODEV;
1015	}
1016
1017	/* initialize structure to hold our device variables */
1018	ifx_dev = kzalloc(sizeof(struct ifx_spi_device), GFP_KERNEL);
1019	if (!ifx_dev) {
1020		dev_err(&spi->dev, "spi device allocation failed");
1021		return -ENOMEM;
1022	}
1023	saved_ifx_dev = ifx_dev;
1024	ifx_dev->spi_dev = spi;
1025	clear_bit(IFX_SPI_STATE_IO_IN_PROGRESS, &ifx_dev->flags);
1026	spin_lock_init(&ifx_dev->write_lock);
1027	spin_lock_init(&ifx_dev->power_lock);
1028	ifx_dev->power_status = 0;
1029	init_timer(&ifx_dev->spi_timer);
1030	ifx_dev->spi_timer.function = ifx_spi_timeout;
1031	ifx_dev->spi_timer.data = (unsigned long)ifx_dev;
1032	ifx_dev->modem = pl_data->modem_type;
1033	ifx_dev->use_dma = pl_data->use_dma;
1034	ifx_dev->max_hz = pl_data->max_hz;
1035	/* initialize spi mode, etc */
1036	spi->max_speed_hz = ifx_dev->max_hz;
1037	spi->mode = IFX_SPI_MODE | (SPI_LOOP & spi->mode);
1038	spi->bits_per_word = spi_bpw;
1039	ret = spi_setup(spi);
1040	if (ret) {
1041		dev_err(&spi->dev, "SPI setup wasn't successful %d", ret);
1042		return -ENODEV;
1043	}
1044
1045	/* init swap_buf function according to word width configuration */
1046	if (spi->bits_per_word == 32)
1047		ifx_dev->swap_buf = swap_buf_32;
1048	else if (spi->bits_per_word == 16)
1049		ifx_dev->swap_buf = swap_buf_16;
1050	else
1051		ifx_dev->swap_buf = swap_buf_8;
1052
1053	/* ensure SPI protocol flags are initialized to enable transfer */
1054	ifx_dev->spi_more = 0;
1055	ifx_dev->spi_slave_cts = 0;
1056
1057	/*initialize transfer and dma buffers */
1058	ifx_dev->tx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1059				IFX_SPI_TRANSFER_SIZE,
1060				&ifx_dev->tx_bus,
1061				GFP_KERNEL);
1062	if (!ifx_dev->tx_buffer) {
1063		dev_err(&spi->dev, "DMA-TX buffer allocation failed");
1064		ret = -ENOMEM;
1065		goto error_ret;
1066	}
1067	ifx_dev->rx_buffer = dma_alloc_coherent(ifx_dev->spi_dev->dev.parent,
1068				IFX_SPI_TRANSFER_SIZE,
1069				&ifx_dev->rx_bus,
1070				GFP_KERNEL);
1071	if (!ifx_dev->rx_buffer) {
1072		dev_err(&spi->dev, "DMA-RX buffer allocation failed");
1073		ret = -ENOMEM;
1074		goto error_ret;
1075	}
1076
1077	/* initialize waitq for modem reset */
1078	init_waitqueue_head(&ifx_dev->mdm_reset_wait);
1079
1080	spi_set_drvdata(spi, ifx_dev);
1081	tasklet_init(&ifx_dev->io_work_tasklet, ifx_spi_io,
1082						(unsigned long)ifx_dev);
1083
1084	set_bit(IFX_SPI_STATE_PRESENT, &ifx_dev->flags);
1085
1086	/* create our tty port */
1087	ret = ifx_spi_create_port(ifx_dev);
1088	if (ret != 0) {
1089		dev_err(&spi->dev, "create default tty port failed");
1090		goto error_ret;
1091	}
1092
1093	ifx_dev->gpio.reset = pl_data->rst_pmu;
1094	ifx_dev->gpio.po = pl_data->pwr_on;
1095	ifx_dev->gpio.mrdy = pl_data->mrdy;
1096	ifx_dev->gpio.srdy = pl_data->srdy;
1097	ifx_dev->gpio.reset_out = pl_data->rst_out;
1098
1099	dev_info(&spi->dev, "gpios %d, %d, %d, %d, %d",
1100		 ifx_dev->gpio.reset, ifx_dev->gpio.po, ifx_dev->gpio.mrdy,
1101		 ifx_dev->gpio.srdy, ifx_dev->gpio.reset_out);
1102
1103	/* Configure gpios */
1104	ret = gpio_request(ifx_dev->gpio.reset, "ifxModem");
1105	if (ret < 0) {
1106		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET)",
1107			ifx_dev->gpio.reset);
1108		goto error_ret;
1109	}
1110	ret += gpio_direction_output(ifx_dev->gpio.reset, 0);
1111	ret += gpio_export(ifx_dev->gpio.reset, 1);
1112	if (ret) {
1113		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET)",
1114			ifx_dev->gpio.reset);
1115		ret = -EBUSY;
1116		goto error_ret2;
1117	}
1118
1119	ret = gpio_request(ifx_dev->gpio.po, "ifxModem");
1120	ret += gpio_direction_output(ifx_dev->gpio.po, 0);
1121	ret += gpio_export(ifx_dev->gpio.po, 1);
1122	if (ret) {
1123		dev_err(&spi->dev, "Unable to configure GPIO%d (ON)",
1124			ifx_dev->gpio.po);
1125		ret = -EBUSY;
1126		goto error_ret3;
1127	}
1128
1129	ret = gpio_request(ifx_dev->gpio.mrdy, "ifxModem");
1130	if (ret < 0) {
1131		dev_err(&spi->dev, "Unable to allocate GPIO%d (MRDY)",
1132			ifx_dev->gpio.mrdy);
1133		goto error_ret3;
1134	}
1135	ret += gpio_export(ifx_dev->gpio.mrdy, 1);
1136	ret += gpio_direction_output(ifx_dev->gpio.mrdy, 0);
1137	if (ret) {
1138		dev_err(&spi->dev, "Unable to configure GPIO%d (MRDY)",
1139			ifx_dev->gpio.mrdy);
1140		ret = -EBUSY;
1141		goto error_ret4;
1142	}
1143
1144	ret = gpio_request(ifx_dev->gpio.srdy, "ifxModem");
1145	if (ret < 0) {
1146		dev_err(&spi->dev, "Unable to allocate GPIO%d (SRDY)",
1147			ifx_dev->gpio.srdy);
1148		ret = -EBUSY;
1149		goto error_ret4;
1150	}
1151	ret += gpio_export(ifx_dev->gpio.srdy, 1);
1152	ret += gpio_direction_input(ifx_dev->gpio.srdy);
1153	if (ret) {
1154		dev_err(&spi->dev, "Unable to configure GPIO%d (SRDY)",
1155			ifx_dev->gpio.srdy);
1156		ret = -EBUSY;
1157		goto error_ret5;
1158	}
1159
1160	ret = gpio_request(ifx_dev->gpio.reset_out, "ifxModem");
1161	if (ret < 0) {
1162		dev_err(&spi->dev, "Unable to allocate GPIO%d (RESET_OUT)",
1163			ifx_dev->gpio.reset_out);
1164		goto error_ret5;
1165	}
1166	ret += gpio_export(ifx_dev->gpio.reset_out, 1);
1167	ret += gpio_direction_input(ifx_dev->gpio.reset_out);
1168	if (ret) {
1169		dev_err(&spi->dev, "Unable to configure GPIO%d (RESET_OUT)",
1170			ifx_dev->gpio.reset_out);
1171		ret = -EBUSY;
1172		goto error_ret6;
1173	}
1174
1175	ret = request_irq(gpio_to_irq(ifx_dev->gpio.reset_out),
1176			  ifx_spi_reset_interrupt,
1177			  IRQF_TRIGGER_RISING|IRQF_TRIGGER_FALLING, DRVNAME,
1178		(void *)ifx_dev);
1179	if (ret) {
1180		dev_err(&spi->dev, "Unable to get irq %x\n",
1181			gpio_to_irq(ifx_dev->gpio.reset_out));
1182		goto error_ret6;
1183	}
1184
1185	ret = ifx_spi_reset(ifx_dev);
1186
1187	ret = request_irq(gpio_to_irq(ifx_dev->gpio.srdy),
1188			  ifx_spi_srdy_interrupt,
1189			  IRQF_TRIGGER_RISING, DRVNAME,
1190			  (void *)ifx_dev);
1191	if (ret) {
1192		dev_err(&spi->dev, "Unable to get irq %x",
1193			gpio_to_irq(ifx_dev->gpio.srdy));
1194		goto error_ret7;
1195	}
1196
1197	/* set pm runtime power state and register with power system */
1198	pm_runtime_set_active(&spi->dev);
1199	pm_runtime_enable(&spi->dev);
1200
1201	/* handle case that modem is already signaling SRDY */
1202	/* no outgoing tty open at this point, this just satisfies the
1203	 * modem's read and should reset communication properly
1204	 */
1205	srdy = gpio_get_value(ifx_dev->gpio.srdy);
1206
1207	if (srdy) {
1208		mrdy_assert(ifx_dev);
1209		ifx_spi_handle_srdy(ifx_dev);
1210	} else
1211		mrdy_set_low(ifx_dev);
1212	return 0;
1213
1214error_ret7:
1215	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1216error_ret6:
1217	gpio_free(ifx_dev->gpio.srdy);
1218error_ret5:
1219	gpio_free(ifx_dev->gpio.mrdy);
1220error_ret4:
1221	gpio_free(ifx_dev->gpio.reset);
1222error_ret3:
1223	gpio_free(ifx_dev->gpio.po);
1224error_ret2:
1225	gpio_free(ifx_dev->gpio.reset_out);
1226error_ret:
1227	ifx_spi_free_device(ifx_dev);
1228	saved_ifx_dev = NULL;
1229	return ret;
1230}
1231
1232/**
1233 *	ifx_spi_spi_remove	-	SPI device was removed
1234 *	@spi: SPI device
1235 *
1236 *	FIXME: We should be shutting the device down here not in
1237 *	the module unload path.
1238 */
1239
1240static int ifx_spi_spi_remove(struct spi_device *spi)
1241{
1242	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1243	/* stop activity */
1244	tasklet_kill(&ifx_dev->io_work_tasklet);
1245	/* free irq */
1246	free_irq(gpio_to_irq(ifx_dev->gpio.reset_out), (void *)ifx_dev);
1247	free_irq(gpio_to_irq(ifx_dev->gpio.srdy), (void *)ifx_dev);
1248
1249	gpio_free(ifx_dev->gpio.srdy);
1250	gpio_free(ifx_dev->gpio.mrdy);
1251	gpio_free(ifx_dev->gpio.reset);
1252	gpio_free(ifx_dev->gpio.po);
1253	gpio_free(ifx_dev->gpio.reset_out);
1254
1255	/* free allocations */
1256	ifx_spi_free_device(ifx_dev);
1257
1258	saved_ifx_dev = NULL;
1259	return 0;
1260}
1261
1262/**
1263 *	ifx_spi_spi_shutdown	-	called on SPI shutdown
1264 *	@spi: SPI device
1265 *
1266 *	No action needs to be taken here
1267 */
1268
1269static void ifx_spi_spi_shutdown(struct spi_device *spi)
1270{
1271	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1272
1273	ifx_modem_power_off(ifx_dev);
1274}
1275
1276/*
1277 * various suspends and resumes have nothing to do
1278 * no hardware to save state for
1279 */
1280
1281/**
1282 *	ifx_spi_pm_suspend	-	suspend modem on system suspend
1283 *	@dev: device being suspended
1284 *
1285 *	Suspend the modem. No action needed on Intel MID platforms, may
1286 *	need extending for other systems.
1287 */
1288static int ifx_spi_pm_suspend(struct device *dev)
1289{
1290	return 0;
1291}
1292
1293/**
1294 *	ifx_spi_pm_resume	-	resume modem on system resume
1295 *	@dev: device being suspended
1296 *
1297 *	Allow the modem to resume. No action needed.
1298 *
1299 *	FIXME: do we need to reset anything here ?
1300 */
1301static int ifx_spi_pm_resume(struct device *dev)
1302{
1303	return 0;
1304}
1305
1306/**
1307 *	ifx_spi_pm_runtime_resume	-	suspend modem
1308 *	@dev: device being suspended
1309 *
1310 *	Allow the modem to resume. No action needed.
1311 */
1312static int ifx_spi_pm_runtime_resume(struct device *dev)
1313{
1314	return 0;
1315}
1316
1317/**
1318 *	ifx_spi_pm_runtime_suspend	-	suspend modem
1319 *	@dev: device being suspended
1320 *
1321 *	Allow the modem to suspend and thus suspend to continue up the
1322 *	device tree.
1323 */
1324static int ifx_spi_pm_runtime_suspend(struct device *dev)
1325{
1326	return 0;
1327}
1328
1329/**
1330 *	ifx_spi_pm_runtime_idle		-	check if modem idle
1331 *	@dev: our device
1332 *
1333 *	Check conditions and queue runtime suspend if idle.
1334 */
1335static int ifx_spi_pm_runtime_idle(struct device *dev)
1336{
1337	struct spi_device *spi = to_spi_device(dev);
1338	struct ifx_spi_device *ifx_dev = spi_get_drvdata(spi);
1339
1340	if (!ifx_dev->power_status)
1341		pm_runtime_suspend(dev);
1342
1343	return 0;
1344}
1345
1346static const struct dev_pm_ops ifx_spi_pm = {
1347	.resume = ifx_spi_pm_resume,
1348	.suspend = ifx_spi_pm_suspend,
1349	.runtime_resume = ifx_spi_pm_runtime_resume,
1350	.runtime_suspend = ifx_spi_pm_runtime_suspend,
1351	.runtime_idle = ifx_spi_pm_runtime_idle
1352};
1353
1354static const struct spi_device_id ifx_id_table[] = {
1355	{"ifx6160", 0},
1356	{"ifx6260", 0},
1357	{ }
1358};
1359MODULE_DEVICE_TABLE(spi, ifx_id_table);
1360
1361/* spi operations */
1362static struct spi_driver ifx_spi_driver = {
1363	.driver = {
1364		.name = DRVNAME,
1365		.pm = &ifx_spi_pm,
1366		.owner = THIS_MODULE},
1367	.probe = ifx_spi_spi_probe,
1368	.shutdown = ifx_spi_spi_shutdown,
1369	.remove = ifx_spi_spi_remove,
1370	.id_table = ifx_id_table
1371};
1372
1373/**
1374 *	ifx_spi_exit	-	module exit
1375 *
1376 *	Unload the module.
1377 */
1378
1379static void __exit ifx_spi_exit(void)
1380{
1381	/* unregister */
1382	tty_unregister_driver(tty_drv);
1383	put_tty_driver(tty_drv);
1384	spi_unregister_driver((void *)&ifx_spi_driver);
1385	unregister_reboot_notifier(&ifx_modem_reboot_notifier_block);
1386}
1387
1388/**
1389 *	ifx_spi_init		-	module entry point
1390 *
1391 *	Initialise the SPI and tty interfaces for the IFX SPI driver
1392 *	We need to initialize upper-edge spi driver after the tty
1393 *	driver because otherwise the spi probe will race
1394 */
1395
1396static int __init ifx_spi_init(void)
1397{
1398	int result;
1399
1400	tty_drv = alloc_tty_driver(1);
1401	if (!tty_drv) {
1402		pr_err("%s: alloc_tty_driver failed", DRVNAME);
1403		return -ENOMEM;
1404	}
1405
1406	tty_drv->driver_name = DRVNAME;
1407	tty_drv->name = TTYNAME;
1408	tty_drv->minor_start = IFX_SPI_TTY_ID;
1409	tty_drv->type = TTY_DRIVER_TYPE_SERIAL;
1410	tty_drv->subtype = SERIAL_TYPE_NORMAL;
1411	tty_drv->flags = TTY_DRIVER_REAL_RAW | TTY_DRIVER_DYNAMIC_DEV;
1412	tty_drv->init_termios = tty_std_termios;
1413
1414	tty_set_operations(tty_drv, &ifx_spi_serial_ops);
1415
1416	result = tty_register_driver(tty_drv);
1417	if (result) {
1418		pr_err("%s: tty_register_driver failed(%d)",
1419			DRVNAME, result);
1420		goto err_free_tty;
1421	}
1422
1423	result = spi_register_driver((void *)&ifx_spi_driver);
1424	if (result) {
1425		pr_err("%s: spi_register_driver failed(%d)",
1426			DRVNAME, result);
1427		goto err_unreg_tty;
1428	}
1429
1430	result = register_reboot_notifier(&ifx_modem_reboot_notifier_block);
1431	if (result) {
1432		pr_err("%s: register ifx modem reboot notifier failed(%d)",
1433			DRVNAME, result);
1434		goto err_unreg_spi;
1435	}
1436
1437	return 0;
1438err_unreg_spi:
1439	spi_unregister_driver((void *)&ifx_spi_driver);
1440err_unreg_tty:
1441	tty_unregister_driver(tty_drv);
1442err_free_tty:
1443	put_tty_driver(tty_drv);
1444
1445	return result;
1446}
1447
1448module_init(ifx_spi_init);
1449module_exit(ifx_spi_exit);
1450
1451MODULE_AUTHOR("Intel");
1452MODULE_DESCRIPTION("IFX6x60 spi driver");
1453MODULE_LICENSE("GPL");
1454MODULE_INFO(Version, "0.1-IFX6x60");
1455