1/*
2 * SuperH on-chip serial module support.  (SCI with no FIFO / with FIFO)
3 *
4 *  Copyright (C) 2002 - 2011  Paul Mundt
5 *  Modified to support SH7720 SCIF. Markus Brunner, Mark Jonas (Jul 2007).
6 *
7 * based off of the old drivers/char/sh-sci.c by:
8 *
9 *   Copyright (C) 1999, 2000  Niibe Yutaka
10 *   Copyright (C) 2000  Sugioka Toshinobu
11 *   Modified to support multiple serial ports. Stuart Menefy (May 2000).
12 *   Modified to support SecureEdge. David McCullough (2002)
13 *   Modified to support SH7300 SCIF. Takashi Kusuda (Jun 2003).
14 *   Removed SH7300 support (Jul 2007).
15 *
16 * This file is subject to the terms and conditions of the GNU General Public
17 * License.  See the file "COPYING" in the main directory of this archive
18 * for more details.
19 */
20#if defined(CONFIG_SERIAL_SH_SCI_CONSOLE) && defined(CONFIG_MAGIC_SYSRQ)
21#define SUPPORT_SYSRQ
22#endif
23
24#undef DEBUG
25
26#include <linux/clk.h>
27#include <linux/console.h>
28#include <linux/ctype.h>
29#include <linux/cpufreq.h>
30#include <linux/delay.h>
31#include <linux/dmaengine.h>
32#include <linux/dma-mapping.h>
33#include <linux/err.h>
34#include <linux/errno.h>
35#include <linux/init.h>
36#include <linux/interrupt.h>
37#include <linux/ioport.h>
38#include <linux/major.h>
39#include <linux/module.h>
40#include <linux/mm.h>
41#include <linux/notifier.h>
42#include <linux/of.h>
43#include <linux/platform_device.h>
44#include <linux/pm_runtime.h>
45#include <linux/scatterlist.h>
46#include <linux/serial.h>
47#include <linux/serial_sci.h>
48#include <linux/sh_dma.h>
49#include <linux/slab.h>
50#include <linux/string.h>
51#include <linux/sysrq.h>
52#include <linux/timer.h>
53#include <linux/tty.h>
54#include <linux/tty_flip.h>
55
56#ifdef CONFIG_SUPERH
57#include <asm/sh_bios.h>
58#endif
59
60#include "sh-sci.h"
61
62/* Offsets into the sci_port->irqs array */
63enum {
64	SCIx_ERI_IRQ,
65	SCIx_RXI_IRQ,
66	SCIx_TXI_IRQ,
67	SCIx_BRI_IRQ,
68	SCIx_NR_IRQS,
69
70	SCIx_MUX_IRQ = SCIx_NR_IRQS,	/* special case */
71};
72
73#define SCIx_IRQ_IS_MUXED(port)			\
74	((port)->irqs[SCIx_ERI_IRQ] ==	\
75	 (port)->irqs[SCIx_RXI_IRQ]) ||	\
76	((port)->irqs[SCIx_ERI_IRQ] &&	\
77	 ((port)->irqs[SCIx_RXI_IRQ] < 0))
78
79struct sci_port {
80	struct uart_port	port;
81
82	/* Platform configuration */
83	struct plat_sci_port	*cfg;
84	int			overrun_bit;
85	unsigned int		error_mask;
86	unsigned int		sampling_rate;
87
88
89	/* Break timer */
90	struct timer_list	break_timer;
91	int			break_flag;
92
93	/* Interface clock */
94	struct clk		*iclk;
95	/* Function clock */
96	struct clk		*fclk;
97
98	int			irqs[SCIx_NR_IRQS];
99	char			*irqstr[SCIx_NR_IRQS];
100
101	struct dma_chan			*chan_tx;
102	struct dma_chan			*chan_rx;
103
104#ifdef CONFIG_SERIAL_SH_SCI_DMA
105	struct dma_async_tx_descriptor	*desc_tx;
106	struct dma_async_tx_descriptor	*desc_rx[2];
107	dma_cookie_t			cookie_tx;
108	dma_cookie_t			cookie_rx[2];
109	dma_cookie_t			active_rx;
110	struct scatterlist		sg_tx;
111	unsigned int			sg_len_tx;
112	struct scatterlist		sg_rx[2];
113	size_t				buf_len_rx;
114	struct sh_dmae_slave		param_tx;
115	struct sh_dmae_slave		param_rx;
116	struct work_struct		work_tx;
117	struct work_struct		work_rx;
118	struct timer_list		rx_timer;
119	unsigned int			rx_timeout;
120#endif
121
122	struct notifier_block		freq_transition;
123};
124
125/* Function prototypes */
126static void sci_start_tx(struct uart_port *port);
127static void sci_stop_tx(struct uart_port *port);
128static void sci_start_rx(struct uart_port *port);
129
130#define SCI_NPORTS CONFIG_SERIAL_SH_SCI_NR_UARTS
131
132static struct sci_port sci_ports[SCI_NPORTS];
133static struct uart_driver sci_uart_driver;
134
135static inline struct sci_port *
136to_sci_port(struct uart_port *uart)
137{
138	return container_of(uart, struct sci_port, port);
139}
140
141struct plat_sci_reg {
142	u8 offset, size;
143};
144
145/* Helper for invalidating specific entries of an inherited map. */
146#define sci_reg_invalid	{ .offset = 0, .size = 0 }
147
148static struct plat_sci_reg sci_regmap[SCIx_NR_REGTYPES][SCIx_NR_REGS] = {
149	[SCIx_PROBE_REGTYPE] = {
150		[0 ... SCIx_NR_REGS - 1] = sci_reg_invalid,
151	},
152
153	/*
154	 * Common SCI definitions, dependent on the port's regshift
155	 * value.
156	 */
157	[SCIx_SCI_REGTYPE] = {
158		[SCSMR]		= { 0x00,  8 },
159		[SCBRR]		= { 0x01,  8 },
160		[SCSCR]		= { 0x02,  8 },
161		[SCxTDR]	= { 0x03,  8 },
162		[SCxSR]		= { 0x04,  8 },
163		[SCxRDR]	= { 0x05,  8 },
164		[SCFCR]		= sci_reg_invalid,
165		[SCFDR]		= sci_reg_invalid,
166		[SCTFDR]	= sci_reg_invalid,
167		[SCRFDR]	= sci_reg_invalid,
168		[SCSPTR]	= sci_reg_invalid,
169		[SCLSR]		= sci_reg_invalid,
170		[HSSRR]		= sci_reg_invalid,
171	},
172
173	/*
174	 * Common definitions for legacy IrDA ports, dependent on
175	 * regshift value.
176	 */
177	[SCIx_IRDA_REGTYPE] = {
178		[SCSMR]		= { 0x00,  8 },
179		[SCBRR]		= { 0x01,  8 },
180		[SCSCR]		= { 0x02,  8 },
181		[SCxTDR]	= { 0x03,  8 },
182		[SCxSR]		= { 0x04,  8 },
183		[SCxRDR]	= { 0x05,  8 },
184		[SCFCR]		= { 0x06,  8 },
185		[SCFDR]		= { 0x07, 16 },
186		[SCTFDR]	= sci_reg_invalid,
187		[SCRFDR]	= sci_reg_invalid,
188		[SCSPTR]	= sci_reg_invalid,
189		[SCLSR]		= sci_reg_invalid,
190		[HSSRR]		= sci_reg_invalid,
191	},
192
193	/*
194	 * Common SCIFA definitions.
195	 */
196	[SCIx_SCIFA_REGTYPE] = {
197		[SCSMR]		= { 0x00, 16 },
198		[SCBRR]		= { 0x04,  8 },
199		[SCSCR]		= { 0x08, 16 },
200		[SCxTDR]	= { 0x20,  8 },
201		[SCxSR]		= { 0x14, 16 },
202		[SCxRDR]	= { 0x24,  8 },
203		[SCFCR]		= { 0x18, 16 },
204		[SCFDR]		= { 0x1c, 16 },
205		[SCTFDR]	= sci_reg_invalid,
206		[SCRFDR]	= sci_reg_invalid,
207		[SCSPTR]	= sci_reg_invalid,
208		[SCLSR]		= sci_reg_invalid,
209		[HSSRR]		= sci_reg_invalid,
210	},
211
212	/*
213	 * Common SCIFB definitions.
214	 */
215	[SCIx_SCIFB_REGTYPE] = {
216		[SCSMR]		= { 0x00, 16 },
217		[SCBRR]		= { 0x04,  8 },
218		[SCSCR]		= { 0x08, 16 },
219		[SCxTDR]	= { 0x40,  8 },
220		[SCxSR]		= { 0x14, 16 },
221		[SCxRDR]	= { 0x60,  8 },
222		[SCFCR]		= { 0x18, 16 },
223		[SCFDR]		= sci_reg_invalid,
224		[SCTFDR]	= { 0x38, 16 },
225		[SCRFDR]	= { 0x3c, 16 },
226		[SCSPTR]	= sci_reg_invalid,
227		[SCLSR]		= sci_reg_invalid,
228		[HSSRR]		= sci_reg_invalid,
229	},
230
231	/*
232	 * Common SH-2(A) SCIF definitions for ports with FIFO data
233	 * count registers.
234	 */
235	[SCIx_SH2_SCIF_FIFODATA_REGTYPE] = {
236		[SCSMR]		= { 0x00, 16 },
237		[SCBRR]		= { 0x04,  8 },
238		[SCSCR]		= { 0x08, 16 },
239		[SCxTDR]	= { 0x0c,  8 },
240		[SCxSR]		= { 0x10, 16 },
241		[SCxRDR]	= { 0x14,  8 },
242		[SCFCR]		= { 0x18, 16 },
243		[SCFDR]		= { 0x1c, 16 },
244		[SCTFDR]	= sci_reg_invalid,
245		[SCRFDR]	= sci_reg_invalid,
246		[SCSPTR]	= { 0x20, 16 },
247		[SCLSR]		= { 0x24, 16 },
248		[HSSRR]		= sci_reg_invalid,
249	},
250
251	/*
252	 * Common SH-3 SCIF definitions.
253	 */
254	[SCIx_SH3_SCIF_REGTYPE] = {
255		[SCSMR]		= { 0x00,  8 },
256		[SCBRR]		= { 0x02,  8 },
257		[SCSCR]		= { 0x04,  8 },
258		[SCxTDR]	= { 0x06,  8 },
259		[SCxSR]		= { 0x08, 16 },
260		[SCxRDR]	= { 0x0a,  8 },
261		[SCFCR]		= { 0x0c,  8 },
262		[SCFDR]		= { 0x0e, 16 },
263		[SCTFDR]	= sci_reg_invalid,
264		[SCRFDR]	= sci_reg_invalid,
265		[SCSPTR]	= sci_reg_invalid,
266		[SCLSR]		= sci_reg_invalid,
267		[HSSRR]		= sci_reg_invalid,
268	},
269
270	/*
271	 * Common SH-4(A) SCIF(B) definitions.
272	 */
273	[SCIx_SH4_SCIF_REGTYPE] = {
274		[SCSMR]		= { 0x00, 16 },
275		[SCBRR]		= { 0x04,  8 },
276		[SCSCR]		= { 0x08, 16 },
277		[SCxTDR]	= { 0x0c,  8 },
278		[SCxSR]		= { 0x10, 16 },
279		[SCxRDR]	= { 0x14,  8 },
280		[SCFCR]		= { 0x18, 16 },
281		[SCFDR]		= { 0x1c, 16 },
282		[SCTFDR]	= sci_reg_invalid,
283		[SCRFDR]	= sci_reg_invalid,
284		[SCSPTR]	= { 0x20, 16 },
285		[SCLSR]		= { 0x24, 16 },
286		[HSSRR]		= sci_reg_invalid,
287	},
288
289	/*
290	 * Common HSCIF definitions.
291	 */
292	[SCIx_HSCIF_REGTYPE] = {
293		[SCSMR]		= { 0x00, 16 },
294		[SCBRR]		= { 0x04,  8 },
295		[SCSCR]		= { 0x08, 16 },
296		[SCxTDR]	= { 0x0c,  8 },
297		[SCxSR]		= { 0x10, 16 },
298		[SCxRDR]	= { 0x14,  8 },
299		[SCFCR]		= { 0x18, 16 },
300		[SCFDR]		= { 0x1c, 16 },
301		[SCTFDR]	= sci_reg_invalid,
302		[SCRFDR]	= sci_reg_invalid,
303		[SCSPTR]	= { 0x20, 16 },
304		[SCLSR]		= { 0x24, 16 },
305		[HSSRR]		= { 0x40, 16 },
306	},
307
308	/*
309	 * Common SH-4(A) SCIF(B) definitions for ports without an SCSPTR
310	 * register.
311	 */
312	[SCIx_SH4_SCIF_NO_SCSPTR_REGTYPE] = {
313		[SCSMR]		= { 0x00, 16 },
314		[SCBRR]		= { 0x04,  8 },
315		[SCSCR]		= { 0x08, 16 },
316		[SCxTDR]	= { 0x0c,  8 },
317		[SCxSR]		= { 0x10, 16 },
318		[SCxRDR]	= { 0x14,  8 },
319		[SCFCR]		= { 0x18, 16 },
320		[SCFDR]		= { 0x1c, 16 },
321		[SCTFDR]	= sci_reg_invalid,
322		[SCRFDR]	= sci_reg_invalid,
323		[SCSPTR]	= sci_reg_invalid,
324		[SCLSR]		= { 0x24, 16 },
325		[HSSRR]		= sci_reg_invalid,
326	},
327
328	/*
329	 * Common SH-4(A) SCIF(B) definitions for ports with FIFO data
330	 * count registers.
331	 */
332	[SCIx_SH4_SCIF_FIFODATA_REGTYPE] = {
333		[SCSMR]		= { 0x00, 16 },
334		[SCBRR]		= { 0x04,  8 },
335		[SCSCR]		= { 0x08, 16 },
336		[SCxTDR]	= { 0x0c,  8 },
337		[SCxSR]		= { 0x10, 16 },
338		[SCxRDR]	= { 0x14,  8 },
339		[SCFCR]		= { 0x18, 16 },
340		[SCFDR]		= { 0x1c, 16 },
341		[SCTFDR]	= { 0x1c, 16 },	/* aliased to SCFDR */
342		[SCRFDR]	= { 0x20, 16 },
343		[SCSPTR]	= { 0x24, 16 },
344		[SCLSR]		= { 0x28, 16 },
345		[HSSRR]		= sci_reg_invalid,
346	},
347
348	/*
349	 * SH7705-style SCIF(B) ports, lacking both SCSPTR and SCLSR
350	 * registers.
351	 */
352	[SCIx_SH7705_SCIF_REGTYPE] = {
353		[SCSMR]		= { 0x00, 16 },
354		[SCBRR]		= { 0x04,  8 },
355		[SCSCR]		= { 0x08, 16 },
356		[SCxTDR]	= { 0x20,  8 },
357		[SCxSR]		= { 0x14, 16 },
358		[SCxRDR]	= { 0x24,  8 },
359		[SCFCR]		= { 0x18, 16 },
360		[SCFDR]		= { 0x1c, 16 },
361		[SCTFDR]	= sci_reg_invalid,
362		[SCRFDR]	= sci_reg_invalid,
363		[SCSPTR]	= sci_reg_invalid,
364		[SCLSR]		= sci_reg_invalid,
365		[HSSRR]		= sci_reg_invalid,
366	},
367};
368
369#define sci_getreg(up, offset)		(sci_regmap[to_sci_port(up)->cfg->regtype] + offset)
370
371/*
372 * The "offset" here is rather misleading, in that it refers to an enum
373 * value relative to the port mapping rather than the fixed offset
374 * itself, which needs to be manually retrieved from the platform's
375 * register map for the given port.
376 */
377static unsigned int sci_serial_in(struct uart_port *p, int offset)
378{
379	struct plat_sci_reg *reg = sci_getreg(p, offset);
380
381	if (reg->size == 8)
382		return ioread8(p->membase + (reg->offset << p->regshift));
383	else if (reg->size == 16)
384		return ioread16(p->membase + (reg->offset << p->regshift));
385	else
386		WARN(1, "Invalid register access\n");
387
388	return 0;
389}
390
391static void sci_serial_out(struct uart_port *p, int offset, int value)
392{
393	struct plat_sci_reg *reg = sci_getreg(p, offset);
394
395	if (reg->size == 8)
396		iowrite8(value, p->membase + (reg->offset << p->regshift));
397	else if (reg->size == 16)
398		iowrite16(value, p->membase + (reg->offset << p->regshift));
399	else
400		WARN(1, "Invalid register access\n");
401}
402
403static int sci_probe_regmap(struct plat_sci_port *cfg)
404{
405	switch (cfg->type) {
406	case PORT_SCI:
407		cfg->regtype = SCIx_SCI_REGTYPE;
408		break;
409	case PORT_IRDA:
410		cfg->regtype = SCIx_IRDA_REGTYPE;
411		break;
412	case PORT_SCIFA:
413		cfg->regtype = SCIx_SCIFA_REGTYPE;
414		break;
415	case PORT_SCIFB:
416		cfg->regtype = SCIx_SCIFB_REGTYPE;
417		break;
418	case PORT_SCIF:
419		/*
420		 * The SH-4 is a bit of a misnomer here, although that's
421		 * where this particular port layout originated. This
422		 * configuration (or some slight variation thereof)
423		 * remains the dominant model for all SCIFs.
424		 */
425		cfg->regtype = SCIx_SH4_SCIF_REGTYPE;
426		break;
427	case PORT_HSCIF:
428		cfg->regtype = SCIx_HSCIF_REGTYPE;
429		break;
430	default:
431		pr_err("Can't probe register map for given port\n");
432		return -EINVAL;
433	}
434
435	return 0;
436}
437
438static void sci_port_enable(struct sci_port *sci_port)
439{
440	if (!sci_port->port.dev)
441		return;
442
443	pm_runtime_get_sync(sci_port->port.dev);
444
445	clk_prepare_enable(sci_port->iclk);
446	sci_port->port.uartclk = clk_get_rate(sci_port->iclk);
447	clk_prepare_enable(sci_port->fclk);
448}
449
450static void sci_port_disable(struct sci_port *sci_port)
451{
452	if (!sci_port->port.dev)
453		return;
454
455	/* Cancel the break timer to ensure that the timer handler will not try
456	 * to access the hardware with clocks and power disabled. Reset the
457	 * break flag to make the break debouncing state machine ready for the
458	 * next break.
459	 */
460	del_timer_sync(&sci_port->break_timer);
461	sci_port->break_flag = 0;
462
463	clk_disable_unprepare(sci_port->fclk);
464	clk_disable_unprepare(sci_port->iclk);
465
466	pm_runtime_put_sync(sci_port->port.dev);
467}
468
469#if defined(CONFIG_CONSOLE_POLL) || defined(CONFIG_SERIAL_SH_SCI_CONSOLE)
470
471#ifdef CONFIG_CONSOLE_POLL
472static int sci_poll_get_char(struct uart_port *port)
473{
474	unsigned short status;
475	int c;
476
477	do {
478		status = serial_port_in(port, SCxSR);
479		if (status & SCxSR_ERRORS(port)) {
480			serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
481			continue;
482		}
483		break;
484	} while (1);
485
486	if (!(status & SCxSR_RDxF(port)))
487		return NO_POLL_CHAR;
488
489	c = serial_port_in(port, SCxRDR);
490
491	/* Dummy read */
492	serial_port_in(port, SCxSR);
493	serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
494
495	return c;
496}
497#endif
498
499static void sci_poll_put_char(struct uart_port *port, unsigned char c)
500{
501	unsigned short status;
502
503	do {
504		status = serial_port_in(port, SCxSR);
505	} while (!(status & SCxSR_TDxE(port)));
506
507	serial_port_out(port, SCxTDR, c);
508	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port) & ~SCxSR_TEND(port));
509}
510#endif /* CONFIG_CONSOLE_POLL || CONFIG_SERIAL_SH_SCI_CONSOLE */
511
512static void sci_init_pins(struct uart_port *port, unsigned int cflag)
513{
514	struct sci_port *s = to_sci_port(port);
515	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
516
517	/*
518	 * Use port-specific handler if provided.
519	 */
520	if (s->cfg->ops && s->cfg->ops->init_pins) {
521		s->cfg->ops->init_pins(port, cflag);
522		return;
523	}
524
525	/*
526	 * For the generic path SCSPTR is necessary. Bail out if that's
527	 * unavailable, too.
528	 */
529	if (!reg->size)
530		return;
531
532	if ((s->cfg->capabilities & SCIx_HAVE_RTSCTS) &&
533	    ((!(cflag & CRTSCTS)))) {
534		unsigned short status;
535
536		status = serial_port_in(port, SCSPTR);
537		status &= ~SCSPTR_CTSIO;
538		status |= SCSPTR_RTSIO;
539		serial_port_out(port, SCSPTR, status); /* Set RTS = 1 */
540	}
541}
542
543static int sci_txfill(struct uart_port *port)
544{
545	struct plat_sci_reg *reg;
546
547	reg = sci_getreg(port, SCTFDR);
548	if (reg->size)
549		return serial_port_in(port, SCTFDR) & ((port->fifosize << 1) - 1);
550
551	reg = sci_getreg(port, SCFDR);
552	if (reg->size)
553		return serial_port_in(port, SCFDR) >> 8;
554
555	return !(serial_port_in(port, SCxSR) & SCI_TDRE);
556}
557
558static int sci_txroom(struct uart_port *port)
559{
560	return port->fifosize - sci_txfill(port);
561}
562
563static int sci_rxfill(struct uart_port *port)
564{
565	struct plat_sci_reg *reg;
566
567	reg = sci_getreg(port, SCRFDR);
568	if (reg->size)
569		return serial_port_in(port, SCRFDR) & ((port->fifosize << 1) - 1);
570
571	reg = sci_getreg(port, SCFDR);
572	if (reg->size)
573		return serial_port_in(port, SCFDR) & ((port->fifosize << 1) - 1);
574
575	return (serial_port_in(port, SCxSR) & SCxSR_RDxF(port)) != 0;
576}
577
578/*
579 * SCI helper for checking the state of the muxed port/RXD pins.
580 */
581static inline int sci_rxd_in(struct uart_port *port)
582{
583	struct sci_port *s = to_sci_port(port);
584
585	if (s->cfg->port_reg <= 0)
586		return 1;
587
588	/* Cast for ARM damage */
589	return !!__raw_readb((void __iomem *)(uintptr_t)s->cfg->port_reg);
590}
591
592/* ********************************************************************** *
593 *                   the interrupt related routines                       *
594 * ********************************************************************** */
595
596static void sci_transmit_chars(struct uart_port *port)
597{
598	struct circ_buf *xmit = &port->state->xmit;
599	unsigned int stopped = uart_tx_stopped(port);
600	unsigned short status;
601	unsigned short ctrl;
602	int count;
603
604	status = serial_port_in(port, SCxSR);
605	if (!(status & SCxSR_TDxE(port))) {
606		ctrl = serial_port_in(port, SCSCR);
607		if (uart_circ_empty(xmit))
608			ctrl &= ~SCSCR_TIE;
609		else
610			ctrl |= SCSCR_TIE;
611		serial_port_out(port, SCSCR, ctrl);
612		return;
613	}
614
615	count = sci_txroom(port);
616
617	do {
618		unsigned char c;
619
620		if (port->x_char) {
621			c = port->x_char;
622			port->x_char = 0;
623		} else if (!uart_circ_empty(xmit) && !stopped) {
624			c = xmit->buf[xmit->tail];
625			xmit->tail = (xmit->tail + 1) & (UART_XMIT_SIZE - 1);
626		} else {
627			break;
628		}
629
630		serial_port_out(port, SCxTDR, c);
631
632		port->icount.tx++;
633	} while (--count > 0);
634
635	serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
636
637	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
638		uart_write_wakeup(port);
639	if (uart_circ_empty(xmit)) {
640		sci_stop_tx(port);
641	} else {
642		ctrl = serial_port_in(port, SCSCR);
643
644		if (port->type != PORT_SCI) {
645			serial_port_in(port, SCxSR); /* Dummy read */
646			serial_port_out(port, SCxSR, SCxSR_TDxE_CLEAR(port));
647		}
648
649		ctrl |= SCSCR_TIE;
650		serial_port_out(port, SCSCR, ctrl);
651	}
652}
653
654/* On SH3, SCIF may read end-of-break as a space->mark char */
655#define STEPFN(c)  ({int __c = (c); (((__c-1)|(__c)) == -1); })
656
657static void sci_receive_chars(struct uart_port *port)
658{
659	struct sci_port *sci_port = to_sci_port(port);
660	struct tty_port *tport = &port->state->port;
661	int i, count, copied = 0;
662	unsigned short status;
663	unsigned char flag;
664
665	status = serial_port_in(port, SCxSR);
666	if (!(status & SCxSR_RDxF(port)))
667		return;
668
669	while (1) {
670		/* Don't copy more bytes than there is room for in the buffer */
671		count = tty_buffer_request_room(tport, sci_rxfill(port));
672
673		/* If for any reason we can't copy more data, we're done! */
674		if (count == 0)
675			break;
676
677		if (port->type == PORT_SCI) {
678			char c = serial_port_in(port, SCxRDR);
679			if (uart_handle_sysrq_char(port, c) ||
680			    sci_port->break_flag)
681				count = 0;
682			else
683				tty_insert_flip_char(tport, c, TTY_NORMAL);
684		} else {
685			for (i = 0; i < count; i++) {
686				char c = serial_port_in(port, SCxRDR);
687
688				status = serial_port_in(port, SCxSR);
689#if defined(CONFIG_CPU_SH3)
690				/* Skip "chars" during break */
691				if (sci_port->break_flag) {
692					if ((c == 0) &&
693					    (status & SCxSR_FER(port))) {
694						count--; i--;
695						continue;
696					}
697
698					/* Nonzero => end-of-break */
699					dev_dbg(port->dev, "debounce<%02x>\n", c);
700					sci_port->break_flag = 0;
701
702					if (STEPFN(c)) {
703						count--; i--;
704						continue;
705					}
706				}
707#endif /* CONFIG_CPU_SH3 */
708				if (uart_handle_sysrq_char(port, c)) {
709					count--; i--;
710					continue;
711				}
712
713				/* Store data and status */
714				if (status & SCxSR_FER(port)) {
715					flag = TTY_FRAME;
716					port->icount.frame++;
717					dev_notice(port->dev, "frame error\n");
718				} else if (status & SCxSR_PER(port)) {
719					flag = TTY_PARITY;
720					port->icount.parity++;
721					dev_notice(port->dev, "parity error\n");
722				} else
723					flag = TTY_NORMAL;
724
725				tty_insert_flip_char(tport, c, flag);
726			}
727		}
728
729		serial_port_in(port, SCxSR); /* dummy read */
730		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
731
732		copied += count;
733		port->icount.rx += count;
734	}
735
736	if (copied) {
737		/* Tell the rest of the system the news. New characters! */
738		tty_flip_buffer_push(tport);
739	} else {
740		serial_port_in(port, SCxSR); /* dummy read */
741		serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
742	}
743}
744
745#define SCI_BREAK_JIFFIES (HZ/20)
746
747/*
748 * The sci generates interrupts during the break,
749 * 1 per millisecond or so during the break period, for 9600 baud.
750 * So dont bother disabling interrupts.
751 * But dont want more than 1 break event.
752 * Use a kernel timer to periodically poll the rx line until
753 * the break is finished.
754 */
755static inline void sci_schedule_break_timer(struct sci_port *port)
756{
757	mod_timer(&port->break_timer, jiffies + SCI_BREAK_JIFFIES);
758}
759
760/* Ensure that two consecutive samples find the break over. */
761static void sci_break_timer(unsigned long data)
762{
763	struct sci_port *port = (struct sci_port *)data;
764
765	if (sci_rxd_in(&port->port) == 0) {
766		port->break_flag = 1;
767		sci_schedule_break_timer(port);
768	} else if (port->break_flag == 1) {
769		/* break is over. */
770		port->break_flag = 2;
771		sci_schedule_break_timer(port);
772	} else
773		port->break_flag = 0;
774}
775
776static int sci_handle_errors(struct uart_port *port)
777{
778	int copied = 0;
779	unsigned short status = serial_port_in(port, SCxSR);
780	struct tty_port *tport = &port->state->port;
781	struct sci_port *s = to_sci_port(port);
782
783	/* Handle overruns */
784	if (status & (1 << s->overrun_bit)) {
785		port->icount.overrun++;
786
787		/* overrun error */
788		if (tty_insert_flip_char(tport, 0, TTY_OVERRUN))
789			copied++;
790
791		dev_notice(port->dev, "overrun error\n");
792	}
793
794	if (status & SCxSR_FER(port)) {
795		if (sci_rxd_in(port) == 0) {
796			/* Notify of BREAK */
797			struct sci_port *sci_port = to_sci_port(port);
798
799			if (!sci_port->break_flag) {
800				port->icount.brk++;
801
802				sci_port->break_flag = 1;
803				sci_schedule_break_timer(sci_port);
804
805				/* Do sysrq handling. */
806				if (uart_handle_break(port))
807					return 0;
808
809				dev_dbg(port->dev, "BREAK detected\n");
810
811				if (tty_insert_flip_char(tport, 0, TTY_BREAK))
812					copied++;
813			}
814
815		} else {
816			/* frame error */
817			port->icount.frame++;
818
819			if (tty_insert_flip_char(tport, 0, TTY_FRAME))
820				copied++;
821
822			dev_notice(port->dev, "frame error\n");
823		}
824	}
825
826	if (status & SCxSR_PER(port)) {
827		/* parity error */
828		port->icount.parity++;
829
830		if (tty_insert_flip_char(tport, 0, TTY_PARITY))
831			copied++;
832
833		dev_notice(port->dev, "parity error\n");
834	}
835
836	if (copied)
837		tty_flip_buffer_push(tport);
838
839	return copied;
840}
841
842static int sci_handle_fifo_overrun(struct uart_port *port)
843{
844	struct tty_port *tport = &port->state->port;
845	struct sci_port *s = to_sci_port(port);
846	struct plat_sci_reg *reg;
847	int copied = 0, offset;
848	u16 status, bit;
849
850	switch (port->type) {
851	case PORT_SCIF:
852	case PORT_HSCIF:
853		offset = SCLSR;
854		break;
855	case PORT_SCIFA:
856	case PORT_SCIFB:
857		offset = SCxSR;
858		break;
859	default:
860		return 0;
861	}
862
863	reg = sci_getreg(port, offset);
864	if (!reg->size)
865		return 0;
866
867	status = serial_port_in(port, offset);
868	bit = 1 << s->overrun_bit;
869
870	if (status & bit) {
871		status &= ~bit;
872		serial_port_out(port, offset, status);
873
874		port->icount.overrun++;
875
876		tty_insert_flip_char(tport, 0, TTY_OVERRUN);
877		tty_flip_buffer_push(tport);
878
879		dev_dbg(port->dev, "overrun error\n");
880		copied++;
881	}
882
883	return copied;
884}
885
886static int sci_handle_breaks(struct uart_port *port)
887{
888	int copied = 0;
889	unsigned short status = serial_port_in(port, SCxSR);
890	struct tty_port *tport = &port->state->port;
891	struct sci_port *s = to_sci_port(port);
892
893	if (uart_handle_break(port))
894		return 0;
895
896	if (!s->break_flag && status & SCxSR_BRK(port)) {
897#if defined(CONFIG_CPU_SH3)
898		/* Debounce break */
899		s->break_flag = 1;
900#endif
901
902		port->icount.brk++;
903
904		/* Notify of BREAK */
905		if (tty_insert_flip_char(tport, 0, TTY_BREAK))
906			copied++;
907
908		dev_dbg(port->dev, "BREAK detected\n");
909	}
910
911	if (copied)
912		tty_flip_buffer_push(tport);
913
914	copied += sci_handle_fifo_overrun(port);
915
916	return copied;
917}
918
919static irqreturn_t sci_rx_interrupt(int irq, void *ptr)
920{
921#ifdef CONFIG_SERIAL_SH_SCI_DMA
922	struct uart_port *port = ptr;
923	struct sci_port *s = to_sci_port(port);
924
925	if (s->chan_rx) {
926		u16 scr = serial_port_in(port, SCSCR);
927		u16 ssr = serial_port_in(port, SCxSR);
928
929		/* Disable future Rx interrupts */
930		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
931			disable_irq_nosync(irq);
932			scr |= SCSCR_RDRQE;
933		} else {
934			scr &= ~SCSCR_RIE;
935		}
936		serial_port_out(port, SCSCR, scr);
937		/* Clear current interrupt */
938		serial_port_out(port, SCxSR, ssr & ~(1 | SCxSR_RDxF(port)));
939		dev_dbg(port->dev, "Rx IRQ %lu: setup t-out in %u jiffies\n",
940			jiffies, s->rx_timeout);
941		mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
942
943		return IRQ_HANDLED;
944	}
945#endif
946
947	/* I think sci_receive_chars has to be called irrespective
948	 * of whether the I_IXOFF is set, otherwise, how is the interrupt
949	 * to be disabled?
950	 */
951	sci_receive_chars(ptr);
952
953	return IRQ_HANDLED;
954}
955
956static irqreturn_t sci_tx_interrupt(int irq, void *ptr)
957{
958	struct uart_port *port = ptr;
959	unsigned long flags;
960
961	spin_lock_irqsave(&port->lock, flags);
962	sci_transmit_chars(port);
963	spin_unlock_irqrestore(&port->lock, flags);
964
965	return IRQ_HANDLED;
966}
967
968static irqreturn_t sci_er_interrupt(int irq, void *ptr)
969{
970	struct uart_port *port = ptr;
971
972	/* Handle errors */
973	if (port->type == PORT_SCI) {
974		if (sci_handle_errors(port)) {
975			/* discard character in rx buffer */
976			serial_port_in(port, SCxSR);
977			serial_port_out(port, SCxSR, SCxSR_RDxF_CLEAR(port));
978		}
979	} else {
980		sci_handle_fifo_overrun(port);
981		sci_rx_interrupt(irq, ptr);
982	}
983
984	serial_port_out(port, SCxSR, SCxSR_ERROR_CLEAR(port));
985
986	/* Kick the transmission */
987	sci_tx_interrupt(irq, ptr);
988
989	return IRQ_HANDLED;
990}
991
992static irqreturn_t sci_br_interrupt(int irq, void *ptr)
993{
994	struct uart_port *port = ptr;
995
996	/* Handle BREAKs */
997	sci_handle_breaks(port);
998	serial_port_out(port, SCxSR, SCxSR_BREAK_CLEAR(port));
999
1000	return IRQ_HANDLED;
1001}
1002
1003static inline unsigned long port_rx_irq_mask(struct uart_port *port)
1004{
1005	/*
1006	 * Not all ports (such as SCIFA) will support REIE. Rather than
1007	 * special-casing the port type, we check the port initialization
1008	 * IRQ enable mask to see whether the IRQ is desired at all. If
1009	 * it's unset, it's logically inferred that there's no point in
1010	 * testing for it.
1011	 */
1012	return SCSCR_RIE | (to_sci_port(port)->cfg->scscr & SCSCR_REIE);
1013}
1014
1015static irqreturn_t sci_mpxed_interrupt(int irq, void *ptr)
1016{
1017	unsigned short ssr_status, scr_status, err_enabled, orer_status = 0;
1018	struct uart_port *port = ptr;
1019	struct sci_port *s = to_sci_port(port);
1020	irqreturn_t ret = IRQ_NONE;
1021
1022	ssr_status = serial_port_in(port, SCxSR);
1023	scr_status = serial_port_in(port, SCSCR);
1024	switch (port->type) {
1025	case PORT_SCIF:
1026	case PORT_HSCIF:
1027		orer_status = serial_port_in(port, SCLSR);
1028		break;
1029	case PORT_SCIFA:
1030	case PORT_SCIFB:
1031		orer_status = ssr_status;
1032		break;
1033	}
1034
1035	err_enabled = scr_status & port_rx_irq_mask(port);
1036
1037	/* Tx Interrupt */
1038	if ((ssr_status & SCxSR_TDxE(port)) && (scr_status & SCSCR_TIE) &&
1039	    !s->chan_tx)
1040		ret = sci_tx_interrupt(irq, ptr);
1041
1042	/*
1043	 * Rx Interrupt: if we're using DMA, the DMA controller clears RDF /
1044	 * DR flags
1045	 */
1046	if (((ssr_status & SCxSR_RDxF(port)) || s->chan_rx) &&
1047	    (scr_status & SCSCR_RIE)) {
1048		if (port->type == PORT_SCIF || port->type == PORT_HSCIF)
1049			sci_handle_fifo_overrun(port);
1050		ret = sci_rx_interrupt(irq, ptr);
1051	}
1052
1053	/* Error Interrupt */
1054	if ((ssr_status & SCxSR_ERRORS(port)) && err_enabled)
1055		ret = sci_er_interrupt(irq, ptr);
1056
1057	/* Break Interrupt */
1058	if ((ssr_status & SCxSR_BRK(port)) && err_enabled)
1059		ret = sci_br_interrupt(irq, ptr);
1060
1061	/* Overrun Interrupt */
1062	if (orer_status & (1 << s->overrun_bit))
1063		sci_handle_fifo_overrun(port);
1064
1065	return ret;
1066}
1067
1068/*
1069 * Here we define a transition notifier so that we can update all of our
1070 * ports' baud rate when the peripheral clock changes.
1071 */
1072static int sci_notifier(struct notifier_block *self,
1073			unsigned long phase, void *p)
1074{
1075	struct sci_port *sci_port;
1076	unsigned long flags;
1077
1078	sci_port = container_of(self, struct sci_port, freq_transition);
1079
1080	if (phase == CPUFREQ_POSTCHANGE) {
1081		struct uart_port *port = &sci_port->port;
1082
1083		spin_lock_irqsave(&port->lock, flags);
1084		port->uartclk = clk_get_rate(sci_port->iclk);
1085		spin_unlock_irqrestore(&port->lock, flags);
1086	}
1087
1088	return NOTIFY_OK;
1089}
1090
1091static struct sci_irq_desc {
1092	const char	*desc;
1093	irq_handler_t	handler;
1094} sci_irq_desc[] = {
1095	/*
1096	 * Split out handlers, the default case.
1097	 */
1098	[SCIx_ERI_IRQ] = {
1099		.desc = "rx err",
1100		.handler = sci_er_interrupt,
1101	},
1102
1103	[SCIx_RXI_IRQ] = {
1104		.desc = "rx full",
1105		.handler = sci_rx_interrupt,
1106	},
1107
1108	[SCIx_TXI_IRQ] = {
1109		.desc = "tx empty",
1110		.handler = sci_tx_interrupt,
1111	},
1112
1113	[SCIx_BRI_IRQ] = {
1114		.desc = "break",
1115		.handler = sci_br_interrupt,
1116	},
1117
1118	/*
1119	 * Special muxed handler.
1120	 */
1121	[SCIx_MUX_IRQ] = {
1122		.desc = "mux",
1123		.handler = sci_mpxed_interrupt,
1124	},
1125};
1126
1127static int sci_request_irq(struct sci_port *port)
1128{
1129	struct uart_port *up = &port->port;
1130	int i, j, ret = 0;
1131
1132	for (i = j = 0; i < SCIx_NR_IRQS; i++, j++) {
1133		struct sci_irq_desc *desc;
1134		int irq;
1135
1136		if (SCIx_IRQ_IS_MUXED(port)) {
1137			i = SCIx_MUX_IRQ;
1138			irq = up->irq;
1139		} else {
1140			irq = port->irqs[i];
1141
1142			/*
1143			 * Certain port types won't support all of the
1144			 * available interrupt sources.
1145			 */
1146			if (unlikely(irq < 0))
1147				continue;
1148		}
1149
1150		desc = sci_irq_desc + i;
1151		port->irqstr[j] = kasprintf(GFP_KERNEL, "%s:%s",
1152					    dev_name(up->dev), desc->desc);
1153		if (!port->irqstr[j]) {
1154			dev_err(up->dev, "Failed to allocate %s IRQ string\n",
1155				desc->desc);
1156			goto out_nomem;
1157		}
1158
1159		ret = request_irq(irq, desc->handler, up->irqflags,
1160				  port->irqstr[j], port);
1161		if (unlikely(ret)) {
1162			dev_err(up->dev, "Can't allocate %s IRQ\n", desc->desc);
1163			goto out_noirq;
1164		}
1165	}
1166
1167	return 0;
1168
1169out_noirq:
1170	while (--i >= 0)
1171		free_irq(port->irqs[i], port);
1172
1173out_nomem:
1174	while (--j >= 0)
1175		kfree(port->irqstr[j]);
1176
1177	return ret;
1178}
1179
1180static void sci_free_irq(struct sci_port *port)
1181{
1182	int i;
1183
1184	/*
1185	 * Intentionally in reverse order so we iterate over the muxed
1186	 * IRQ first.
1187	 */
1188	for (i = 0; i < SCIx_NR_IRQS; i++) {
1189		int irq = port->irqs[i];
1190
1191		/*
1192		 * Certain port types won't support all of the available
1193		 * interrupt sources.
1194		 */
1195		if (unlikely(irq < 0))
1196			continue;
1197
1198		free_irq(port->irqs[i], port);
1199		kfree(port->irqstr[i]);
1200
1201		if (SCIx_IRQ_IS_MUXED(port)) {
1202			/* If there's only one IRQ, we're done. */
1203			return;
1204		}
1205	}
1206}
1207
1208static unsigned int sci_tx_empty(struct uart_port *port)
1209{
1210	unsigned short status = serial_port_in(port, SCxSR);
1211	unsigned short in_tx_fifo = sci_txfill(port);
1212
1213	return (status & SCxSR_TEND(port)) && !in_tx_fifo ? TIOCSER_TEMT : 0;
1214}
1215
1216/*
1217 * Modem control is a bit of a mixed bag for SCI(F) ports. Generally
1218 * CTS/RTS is supported in hardware by at least one port and controlled
1219 * via SCSPTR (SCxPCR for SCIFA/B parts), or external pins (presently
1220 * handled via the ->init_pins() op, which is a bit of a one-way street,
1221 * lacking any ability to defer pin control -- this will later be
1222 * converted over to the GPIO framework).
1223 *
1224 * Other modes (such as loopback) are supported generically on certain
1225 * port types, but not others. For these it's sufficient to test for the
1226 * existence of the support register and simply ignore the port type.
1227 */
1228static void sci_set_mctrl(struct uart_port *port, unsigned int mctrl)
1229{
1230	if (mctrl & TIOCM_LOOP) {
1231		struct plat_sci_reg *reg;
1232
1233		/*
1234		 * Standard loopback mode for SCFCR ports.
1235		 */
1236		reg = sci_getreg(port, SCFCR);
1237		if (reg->size)
1238			serial_port_out(port, SCFCR,
1239					serial_port_in(port, SCFCR) |
1240					SCFCR_LOOP);
1241	}
1242}
1243
1244static unsigned int sci_get_mctrl(struct uart_port *port)
1245{
1246	/*
1247	 * CTS/RTS is handled in hardware when supported, while nothing
1248	 * else is wired up. Keep it simple and simply assert DSR/CAR.
1249	 */
1250	return TIOCM_DSR | TIOCM_CAR;
1251}
1252
1253#ifdef CONFIG_SERIAL_SH_SCI_DMA
1254static void sci_dma_tx_complete(void *arg)
1255{
1256	struct sci_port *s = arg;
1257	struct uart_port *port = &s->port;
1258	struct circ_buf *xmit = &port->state->xmit;
1259	unsigned long flags;
1260
1261	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1262
1263	spin_lock_irqsave(&port->lock, flags);
1264
1265	xmit->tail += sg_dma_len(&s->sg_tx);
1266	xmit->tail &= UART_XMIT_SIZE - 1;
1267
1268	port->icount.tx += sg_dma_len(&s->sg_tx);
1269
1270	async_tx_ack(s->desc_tx);
1271	s->desc_tx = NULL;
1272
1273	if (uart_circ_chars_pending(xmit) < WAKEUP_CHARS)
1274		uart_write_wakeup(port);
1275
1276	if (!uart_circ_empty(xmit)) {
1277		s->cookie_tx = 0;
1278		schedule_work(&s->work_tx);
1279	} else {
1280		s->cookie_tx = -EINVAL;
1281		if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1282			u16 ctrl = serial_port_in(port, SCSCR);
1283			serial_port_out(port, SCSCR, ctrl & ~SCSCR_TIE);
1284		}
1285	}
1286
1287	spin_unlock_irqrestore(&port->lock, flags);
1288}
1289
1290/* Locking: called with port lock held */
1291static int sci_dma_rx_push(struct sci_port *s, size_t count)
1292{
1293	struct uart_port *port = &s->port;
1294	struct tty_port *tport = &port->state->port;
1295	int i, active, room;
1296
1297	room = tty_buffer_request_room(tport, count);
1298
1299	if (s->active_rx == s->cookie_rx[0]) {
1300		active = 0;
1301	} else if (s->active_rx == s->cookie_rx[1]) {
1302		active = 1;
1303	} else {
1304		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1305		return 0;
1306	}
1307
1308	if (room < count)
1309		dev_warn(port->dev, "Rx overrun: dropping %zu bytes\n",
1310			 count - room);
1311	if (!room)
1312		return room;
1313
1314	for (i = 0; i < room; i++)
1315		tty_insert_flip_char(tport, ((u8 *)sg_virt(&s->sg_rx[active]))[i],
1316				     TTY_NORMAL);
1317
1318	port->icount.rx += room;
1319
1320	return room;
1321}
1322
1323static void sci_dma_rx_complete(void *arg)
1324{
1325	struct sci_port *s = arg;
1326	struct uart_port *port = &s->port;
1327	unsigned long flags;
1328	int count;
1329
1330	dev_dbg(port->dev, "%s(%d) active #%d\n",
1331		__func__, port->line, s->active_rx);
1332
1333	spin_lock_irqsave(&port->lock, flags);
1334
1335	count = sci_dma_rx_push(s, s->buf_len_rx);
1336
1337	mod_timer(&s->rx_timer, jiffies + s->rx_timeout);
1338
1339	spin_unlock_irqrestore(&port->lock, flags);
1340
1341	if (count)
1342		tty_flip_buffer_push(&port->state->port);
1343
1344	schedule_work(&s->work_rx);
1345}
1346
1347static void sci_rx_dma_release(struct sci_port *s, bool enable_pio)
1348{
1349	struct dma_chan *chan = s->chan_rx;
1350	struct uart_port *port = &s->port;
1351
1352	s->chan_rx = NULL;
1353	s->cookie_rx[0] = s->cookie_rx[1] = -EINVAL;
1354	dma_release_channel(chan);
1355	if (sg_dma_address(&s->sg_rx[0]))
1356		dma_free_coherent(port->dev, s->buf_len_rx * 2,
1357				  sg_virt(&s->sg_rx[0]), sg_dma_address(&s->sg_rx[0]));
1358	if (enable_pio)
1359		sci_start_rx(port);
1360}
1361
1362static void sci_tx_dma_release(struct sci_port *s, bool enable_pio)
1363{
1364	struct dma_chan *chan = s->chan_tx;
1365	struct uart_port *port = &s->port;
1366
1367	s->chan_tx = NULL;
1368	s->cookie_tx = -EINVAL;
1369	dma_release_channel(chan);
1370	if (enable_pio)
1371		sci_start_tx(port);
1372}
1373
1374static void sci_submit_rx(struct sci_port *s)
1375{
1376	struct dma_chan *chan = s->chan_rx;
1377	int i;
1378
1379	for (i = 0; i < 2; i++) {
1380		struct scatterlist *sg = &s->sg_rx[i];
1381		struct dma_async_tx_descriptor *desc;
1382
1383		desc = dmaengine_prep_slave_sg(chan,
1384			sg, 1, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);
1385
1386		if (desc) {
1387			s->desc_rx[i] = desc;
1388			desc->callback = sci_dma_rx_complete;
1389			desc->callback_param = s;
1390			s->cookie_rx[i] = desc->tx_submit(desc);
1391		}
1392
1393		if (!desc || s->cookie_rx[i] < 0) {
1394			if (i) {
1395				async_tx_ack(s->desc_rx[0]);
1396				s->cookie_rx[0] = -EINVAL;
1397			}
1398			if (desc) {
1399				async_tx_ack(desc);
1400				s->cookie_rx[i] = -EINVAL;
1401			}
1402			dev_warn(s->port.dev,
1403				 "failed to re-start DMA, using PIO\n");
1404			sci_rx_dma_release(s, true);
1405			return;
1406		}
1407		dev_dbg(s->port.dev, "%s(): cookie %d to #%d\n",
1408			__func__, s->cookie_rx[i], i);
1409	}
1410
1411	s->active_rx = s->cookie_rx[0];
1412
1413	dma_async_issue_pending(chan);
1414}
1415
1416static void work_fn_rx(struct work_struct *work)
1417{
1418	struct sci_port *s = container_of(work, struct sci_port, work_rx);
1419	struct uart_port *port = &s->port;
1420	struct dma_async_tx_descriptor *desc;
1421	int new;
1422
1423	if (s->active_rx == s->cookie_rx[0]) {
1424		new = 0;
1425	} else if (s->active_rx == s->cookie_rx[1]) {
1426		new = 1;
1427	} else {
1428		dev_err(port->dev, "cookie %d not found!\n", s->active_rx);
1429		return;
1430	}
1431	desc = s->desc_rx[new];
1432
1433	if (dma_async_is_tx_complete(s->chan_rx, s->active_rx, NULL, NULL) !=
1434	    DMA_COMPLETE) {
1435		/* Handle incomplete DMA receive */
1436		struct dma_chan *chan = s->chan_rx;
1437		struct shdma_desc *sh_desc = container_of(desc,
1438					struct shdma_desc, async_tx);
1439		unsigned long flags;
1440		int count;
1441
1442		dmaengine_terminate_all(chan);
1443		dev_dbg(port->dev, "Read %zu bytes with cookie %d\n",
1444			sh_desc->partial, sh_desc->cookie);
1445
1446		spin_lock_irqsave(&port->lock, flags);
1447		count = sci_dma_rx_push(s, sh_desc->partial);
1448		spin_unlock_irqrestore(&port->lock, flags);
1449
1450		if (count)
1451			tty_flip_buffer_push(&port->state->port);
1452
1453		sci_submit_rx(s);
1454
1455		return;
1456	}
1457
1458	s->cookie_rx[new] = desc->tx_submit(desc);
1459	if (s->cookie_rx[new] < 0) {
1460		dev_warn(port->dev, "Failed submitting Rx DMA descriptor\n");
1461		sci_rx_dma_release(s, true);
1462		return;
1463	}
1464
1465	s->active_rx = s->cookie_rx[!new];
1466
1467	dev_dbg(port->dev, "%s: cookie %d #%d, new active #%d\n",
1468		__func__, s->cookie_rx[new], new, s->active_rx);
1469}
1470
1471static void work_fn_tx(struct work_struct *work)
1472{
1473	struct sci_port *s = container_of(work, struct sci_port, work_tx);
1474	struct dma_async_tx_descriptor *desc;
1475	struct dma_chan *chan = s->chan_tx;
1476	struct uart_port *port = &s->port;
1477	struct circ_buf *xmit = &port->state->xmit;
1478	struct scatterlist *sg = &s->sg_tx;
1479
1480	/*
1481	 * DMA is idle now.
1482	 * Port xmit buffer is already mapped, and it is one page... Just adjust
1483	 * offsets and lengths. Since it is a circular buffer, we have to
1484	 * transmit till the end, and then the rest. Take the port lock to get a
1485	 * consistent xmit buffer state.
1486	 */
1487	spin_lock_irq(&port->lock);
1488	sg->offset = xmit->tail & (UART_XMIT_SIZE - 1);
1489	sg_dma_address(sg) = (sg_dma_address(sg) & ~(UART_XMIT_SIZE - 1)) +
1490		sg->offset;
1491	sg_dma_len(sg) = min((int)CIRC_CNT(xmit->head, xmit->tail, UART_XMIT_SIZE),
1492		CIRC_CNT_TO_END(xmit->head, xmit->tail, UART_XMIT_SIZE));
1493	spin_unlock_irq(&port->lock);
1494
1495	BUG_ON(!sg_dma_len(sg));
1496
1497	desc = dmaengine_prep_slave_sg(chan,
1498			sg, s->sg_len_tx, DMA_MEM_TO_DEV,
1499			DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1500	if (!desc) {
1501		/* switch to PIO */
1502		sci_tx_dma_release(s, true);
1503		return;
1504	}
1505
1506	dma_sync_sg_for_device(port->dev, sg, 1, DMA_TO_DEVICE);
1507
1508	spin_lock_irq(&port->lock);
1509	s->desc_tx = desc;
1510	desc->callback = sci_dma_tx_complete;
1511	desc->callback_param = s;
1512	spin_unlock_irq(&port->lock);
1513	s->cookie_tx = desc->tx_submit(desc);
1514	if (s->cookie_tx < 0) {
1515		dev_warn(port->dev, "Failed submitting Tx DMA descriptor\n");
1516		/* switch to PIO */
1517		sci_tx_dma_release(s, true);
1518		return;
1519	}
1520
1521	dev_dbg(port->dev, "%s: %p: %d...%d, cookie %d\n",
1522		__func__, xmit->buf, xmit->tail, xmit->head, s->cookie_tx);
1523
1524	dma_async_issue_pending(chan);
1525}
1526#endif
1527
1528static void sci_start_tx(struct uart_port *port)
1529{
1530	struct sci_port *s = to_sci_port(port);
1531	unsigned short ctrl;
1532
1533#ifdef CONFIG_SERIAL_SH_SCI_DMA
1534	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1535		u16 new, scr = serial_port_in(port, SCSCR);
1536		if (s->chan_tx)
1537			new = scr | SCSCR_TDRQE;
1538		else
1539			new = scr & ~SCSCR_TDRQE;
1540		if (new != scr)
1541			serial_port_out(port, SCSCR, new);
1542	}
1543
1544	if (s->chan_tx && !uart_circ_empty(&s->port.state->xmit) &&
1545	    s->cookie_tx < 0) {
1546		s->cookie_tx = 0;
1547		schedule_work(&s->work_tx);
1548	}
1549#endif
1550
1551	if (!s->chan_tx || port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1552		/* Set TIE (Transmit Interrupt Enable) bit in SCSCR */
1553		ctrl = serial_port_in(port, SCSCR);
1554		serial_port_out(port, SCSCR, ctrl | SCSCR_TIE);
1555	}
1556}
1557
1558static void sci_stop_tx(struct uart_port *port)
1559{
1560	unsigned short ctrl;
1561
1562	/* Clear TIE (Transmit Interrupt Enable) bit in SCSCR */
1563	ctrl = serial_port_in(port, SCSCR);
1564
1565	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1566		ctrl &= ~SCSCR_TDRQE;
1567
1568	ctrl &= ~SCSCR_TIE;
1569
1570	serial_port_out(port, SCSCR, ctrl);
1571}
1572
1573static void sci_start_rx(struct uart_port *port)
1574{
1575	unsigned short ctrl;
1576
1577	ctrl = serial_port_in(port, SCSCR) | port_rx_irq_mask(port);
1578
1579	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1580		ctrl &= ~SCSCR_RDRQE;
1581
1582	serial_port_out(port, SCSCR, ctrl);
1583}
1584
1585static void sci_stop_rx(struct uart_port *port)
1586{
1587	unsigned short ctrl;
1588
1589	ctrl = serial_port_in(port, SCSCR);
1590
1591	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB)
1592		ctrl &= ~SCSCR_RDRQE;
1593
1594	ctrl &= ~port_rx_irq_mask(port);
1595
1596	serial_port_out(port, SCSCR, ctrl);
1597}
1598
1599static void sci_break_ctl(struct uart_port *port, int break_state)
1600{
1601	struct sci_port *s = to_sci_port(port);
1602	struct plat_sci_reg *reg = sci_regmap[s->cfg->regtype] + SCSPTR;
1603	unsigned short scscr, scsptr;
1604
1605	/* check wheter the port has SCSPTR */
1606	if (!reg->size) {
1607		/*
1608		 * Not supported by hardware. Most parts couple break and rx
1609		 * interrupts together, with break detection always enabled.
1610		 */
1611		return;
1612	}
1613
1614	scsptr = serial_port_in(port, SCSPTR);
1615	scscr = serial_port_in(port, SCSCR);
1616
1617	if (break_state == -1) {
1618		scsptr = (scsptr | SCSPTR_SPB2IO) & ~SCSPTR_SPB2DT;
1619		scscr &= ~SCSCR_TE;
1620	} else {
1621		scsptr = (scsptr | SCSPTR_SPB2DT) & ~SCSPTR_SPB2IO;
1622		scscr |= SCSCR_TE;
1623	}
1624
1625	serial_port_out(port, SCSPTR, scsptr);
1626	serial_port_out(port, SCSCR, scscr);
1627}
1628
1629#ifdef CONFIG_SERIAL_SH_SCI_DMA
1630static bool filter(struct dma_chan *chan, void *slave)
1631{
1632	struct sh_dmae_slave *param = slave;
1633
1634	dev_dbg(chan->device->dev, "%s: slave ID %d\n",
1635		__func__, param->shdma_slave.slave_id);
1636
1637	chan->private = &param->shdma_slave;
1638	return true;
1639}
1640
1641static void rx_timer_fn(unsigned long arg)
1642{
1643	struct sci_port *s = (struct sci_port *)arg;
1644	struct uart_port *port = &s->port;
1645	u16 scr = serial_port_in(port, SCSCR);
1646
1647	if (port->type == PORT_SCIFA || port->type == PORT_SCIFB) {
1648		scr &= ~SCSCR_RDRQE;
1649		enable_irq(s->irqs[SCIx_RXI_IRQ]);
1650	}
1651	serial_port_out(port, SCSCR, scr | SCSCR_RIE);
1652	dev_dbg(port->dev, "DMA Rx timed out\n");
1653	schedule_work(&s->work_rx);
1654}
1655
1656static void sci_request_dma(struct uart_port *port)
1657{
1658	struct sci_port *s = to_sci_port(port);
1659	struct sh_dmae_slave *param;
1660	struct dma_chan *chan;
1661	dma_cap_mask_t mask;
1662	int nent;
1663
1664	dev_dbg(port->dev, "%s: port %d\n", __func__, port->line);
1665
1666	if (s->cfg->dma_slave_tx <= 0 || s->cfg->dma_slave_rx <= 0)
1667		return;
1668
1669	dma_cap_zero(mask);
1670	dma_cap_set(DMA_SLAVE, mask);
1671
1672	param = &s->param_tx;
1673
1674	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_TX */
1675	param->shdma_slave.slave_id = s->cfg->dma_slave_tx;
1676
1677	s->cookie_tx = -EINVAL;
1678	chan = dma_request_channel(mask, filter, param);
1679	dev_dbg(port->dev, "%s: TX: got channel %p\n", __func__, chan);
1680	if (chan) {
1681		s->chan_tx = chan;
1682		sg_init_table(&s->sg_tx, 1);
1683		/* UART circular tx buffer is an aligned page. */
1684		BUG_ON((uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1685		sg_set_page(&s->sg_tx, virt_to_page(port->state->xmit.buf),
1686			    UART_XMIT_SIZE,
1687			    (uintptr_t)port->state->xmit.buf & ~PAGE_MASK);
1688		nent = dma_map_sg(port->dev, &s->sg_tx, 1, DMA_TO_DEVICE);
1689		if (!nent)
1690			sci_tx_dma_release(s, false);
1691		else
1692			dev_dbg(port->dev, "%s: mapped %d@%p to %pad\n",
1693				__func__,
1694				sg_dma_len(&s->sg_tx), port->state->xmit.buf,
1695				&sg_dma_address(&s->sg_tx));
1696
1697		s->sg_len_tx = nent;
1698
1699		INIT_WORK(&s->work_tx, work_fn_tx);
1700	}
1701
1702	param = &s->param_rx;
1703
1704	/* Slave ID, e.g., SHDMA_SLAVE_SCIF0_RX */
1705	param->shdma_slave.slave_id = s->cfg->dma_slave_rx;
1706
1707	chan = dma_request_channel(mask, filter, param);
1708	dev_dbg(port->dev, "%s: RX: got channel %p\n", __func__, chan);
1709	if (chan) {
1710		dma_addr_t dma[2];
1711		void *buf[2];
1712		int i;
1713
1714		s->chan_rx = chan;
1715
1716		s->buf_len_rx = 2 * max(16, (int)port->fifosize);
1717		buf[0] = dma_alloc_coherent(port->dev, s->buf_len_rx * 2,
1718					    &dma[0], GFP_KERNEL);
1719
1720		if (!buf[0]) {
1721			dev_warn(port->dev,
1722				 "failed to allocate dma buffer, using PIO\n");
1723			sci_rx_dma_release(s, true);
1724			return;
1725		}
1726
1727		buf[1] = buf[0] + s->buf_len_rx;
1728		dma[1] = dma[0] + s->buf_len_rx;
1729
1730		for (i = 0; i < 2; i++) {
1731			struct scatterlist *sg = &s->sg_rx[i];
1732
1733			sg_init_table(sg, 1);
1734			sg_set_page(sg, virt_to_page(buf[i]), s->buf_len_rx,
1735				    (uintptr_t)buf[i] & ~PAGE_MASK);
1736			sg_dma_address(sg) = dma[i];
1737		}
1738
1739		INIT_WORK(&s->work_rx, work_fn_rx);
1740		setup_timer(&s->rx_timer, rx_timer_fn, (unsigned long)s);
1741
1742		sci_submit_rx(s);
1743	}
1744}
1745
1746static void sci_free_dma(struct uart_port *port)
1747{
1748	struct sci_port *s = to_sci_port(port);
1749
1750	if (s->chan_tx)
1751		sci_tx_dma_release(s, false);
1752	if (s->chan_rx)
1753		sci_rx_dma_release(s, false);
1754}
1755#else
1756static inline void sci_request_dma(struct uart_port *port)
1757{
1758}
1759
1760static inline void sci_free_dma(struct uart_port *port)
1761{
1762}
1763#endif
1764
1765static int sci_startup(struct uart_port *port)
1766{
1767	struct sci_port *s = to_sci_port(port);
1768	unsigned long flags;
1769	int ret;
1770
1771	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1772
1773	ret = sci_request_irq(s);
1774	if (unlikely(ret < 0))
1775		return ret;
1776
1777	sci_request_dma(port);
1778
1779	spin_lock_irqsave(&port->lock, flags);
1780	sci_start_tx(port);
1781	sci_start_rx(port);
1782	spin_unlock_irqrestore(&port->lock, flags);
1783
1784	return 0;
1785}
1786
1787static void sci_shutdown(struct uart_port *port)
1788{
1789	struct sci_port *s = to_sci_port(port);
1790	unsigned long flags;
1791
1792	dev_dbg(port->dev, "%s(%d)\n", __func__, port->line);
1793
1794	spin_lock_irqsave(&port->lock, flags);
1795	sci_stop_rx(port);
1796	sci_stop_tx(port);
1797	spin_unlock_irqrestore(&port->lock, flags);
1798
1799	sci_free_dma(port);
1800	sci_free_irq(s);
1801}
1802
1803static unsigned int sci_scbrr_calc(struct sci_port *s, unsigned int bps,
1804				   unsigned long freq)
1805{
1806	if (s->sampling_rate)
1807		return DIV_ROUND_CLOSEST(freq, s->sampling_rate * bps) - 1;
1808
1809	/* Warn, but use a safe default */
1810	WARN_ON(1);
1811
1812	return ((freq + 16 * bps) / (32 * bps) - 1);
1813}
1814
1815/* calculate frame length from SMR */
1816static int sci_baud_calc_frame_len(unsigned int smr_val)
1817{
1818	int len = 10;
1819
1820	if (smr_val & SCSMR_CHR)
1821		len--;
1822	if (smr_val & SCSMR_PE)
1823		len++;
1824	if (smr_val & SCSMR_STOP)
1825		len++;
1826
1827	return len;
1828}
1829
1830
1831/* calculate sample rate, BRR, and clock select for HSCIF */
1832static void sci_baud_calc_hscif(unsigned int bps, unsigned long freq,
1833				int *brr, unsigned int *srr,
1834				unsigned int *cks, int frame_len)
1835{
1836	int sr, c, br, err, recv_margin;
1837	int min_err = 1000; /* 100% */
1838	int recv_max_margin = 0;
1839
1840	/* Find the combination of sample rate and clock select with the
1841	   smallest deviation from the desired baud rate. */
1842	for (sr = 8; sr <= 32; sr++) {
1843		for (c = 0; c <= 3; c++) {
1844			/* integerized formulas from HSCIF documentation */
1845			br = DIV_ROUND_CLOSEST(freq, (sr *
1846					      (1 << (2 * c + 1)) * bps)) - 1;
1847			br = clamp(br, 0, 255);
1848			err = DIV_ROUND_CLOSEST(freq, ((br + 1) * bps * sr *
1849					       (1 << (2 * c + 1)) / 1000)) -
1850					       1000;
1851			/* Calc recv margin
1852			 * M: Receive margin (%)
1853			 * N: Ratio of bit rate to clock (N = sampling rate)
1854			 * D: Clock duty (D = 0 to 1.0)
1855			 * L: Frame length (L = 9 to 12)
1856			 * F: Absolute value of clock frequency deviation
1857			 *
1858			 *  M = |(0.5 - 1 / 2 * N) - ((L - 0.5) * F) -
1859			 *      (|D - 0.5| / N * (1 + F))|
1860			 *  NOTE: Usually, treat D for 0.5, F is 0 by this
1861			 *        calculation.
1862			 */
1863			recv_margin = abs((500 -
1864					DIV_ROUND_CLOSEST(1000, sr << 1)) / 10);
1865			if (abs(min_err) > abs(err)) {
1866				min_err = err;
1867				recv_max_margin = recv_margin;
1868			} else if ((min_err == err) &&
1869				   (recv_margin > recv_max_margin))
1870				recv_max_margin = recv_margin;
1871			else
1872				continue;
1873
1874			*brr = br;
1875			*srr = sr - 1;
1876			*cks = c;
1877		}
1878	}
1879
1880	if (min_err == 1000) {
1881		WARN_ON(1);
1882		/* use defaults */
1883		*brr = 255;
1884		*srr = 15;
1885		*cks = 0;
1886	}
1887}
1888
1889static void sci_reset(struct uart_port *port)
1890{
1891	struct plat_sci_reg *reg;
1892	unsigned int status;
1893
1894	do {
1895		status = serial_port_in(port, SCxSR);
1896	} while (!(status & SCxSR_TEND(port)));
1897
1898	serial_port_out(port, SCSCR, 0x00);	/* TE=0, RE=0, CKE1=0 */
1899
1900	reg = sci_getreg(port, SCFCR);
1901	if (reg->size)
1902		serial_port_out(port, SCFCR, SCFCR_RFRST | SCFCR_TFRST);
1903}
1904
1905static void sci_set_termios(struct uart_port *port, struct ktermios *termios,
1906			    struct ktermios *old)
1907{
1908	struct sci_port *s = to_sci_port(port);
1909	struct plat_sci_reg *reg;
1910	unsigned int baud, smr_val = 0, max_baud, cks = 0;
1911	int t = -1;
1912	unsigned int srr = 15;
1913
1914	if ((termios->c_cflag & CSIZE) == CS7)
1915		smr_val |= SCSMR_CHR;
1916	if (termios->c_cflag & PARENB)
1917		smr_val |= SCSMR_PE;
1918	if (termios->c_cflag & PARODD)
1919		smr_val |= SCSMR_PE | SCSMR_ODD;
1920	if (termios->c_cflag & CSTOPB)
1921		smr_val |= SCSMR_STOP;
1922
1923	/*
1924	 * earlyprintk comes here early on with port->uartclk set to zero.
1925	 * the clock framework is not up and running at this point so here
1926	 * we assume that 115200 is the maximum baud rate. please note that
1927	 * the baud rate is not programmed during earlyprintk - it is assumed
1928	 * that the previous boot loader has enabled required clocks and
1929	 * setup the baud rate generator hardware for us already.
1930	 */
1931	max_baud = port->uartclk ? port->uartclk / 16 : 115200;
1932
1933	baud = uart_get_baud_rate(port, termios, old, 0, max_baud);
1934	if (likely(baud && port->uartclk)) {
1935		if (s->cfg->type == PORT_HSCIF) {
1936			int frame_len = sci_baud_calc_frame_len(smr_val);
1937			sci_baud_calc_hscif(baud, port->uartclk, &t, &srr,
1938					    &cks, frame_len);
1939		} else {
1940			t = sci_scbrr_calc(s, baud, port->uartclk);
1941			for (cks = 0; t >= 256 && cks <= 3; cks++)
1942				t >>= 2;
1943		}
1944	}
1945
1946	sci_port_enable(s);
1947
1948	sci_reset(port);
1949
1950	smr_val |= serial_port_in(port, SCSMR) & 3;
1951
1952	uart_update_timeout(port, termios->c_cflag, baud);
1953
1954	dev_dbg(port->dev, "%s: SMR %x, cks %x, t %x, SCSCR %x\n",
1955		__func__, smr_val, cks, t, s->cfg->scscr);
1956
1957	if (t >= 0) {
1958		serial_port_out(port, SCSMR, (smr_val & ~SCSMR_CKS) | cks);
1959		serial_port_out(port, SCBRR, t);
1960		reg = sci_getreg(port, HSSRR);
1961		if (reg->size)
1962			serial_port_out(port, HSSRR, srr | HSCIF_SRE);
1963		udelay((1000000+(baud-1)) / baud); /* Wait one bit interval */
1964	} else
1965		serial_port_out(port, SCSMR, smr_val);
1966
1967	sci_init_pins(port, termios->c_cflag);
1968
1969	reg = sci_getreg(port, SCFCR);
1970	if (reg->size) {
1971		unsigned short ctrl = serial_port_in(port, SCFCR);
1972
1973		if (s->cfg->capabilities & SCIx_HAVE_RTSCTS) {
1974			if (termios->c_cflag & CRTSCTS)
1975				ctrl |= SCFCR_MCE;
1976			else
1977				ctrl &= ~SCFCR_MCE;
1978		}
1979
1980		/*
1981		 * As we've done a sci_reset() above, ensure we don't
1982		 * interfere with the FIFOs while toggling MCE. As the
1983		 * reset values could still be set, simply mask them out.
1984		 */
1985		ctrl &= ~(SCFCR_RFRST | SCFCR_TFRST);
1986
1987		serial_port_out(port, SCFCR, ctrl);
1988	}
1989
1990	serial_port_out(port, SCSCR, s->cfg->scscr);
1991
1992#ifdef CONFIG_SERIAL_SH_SCI_DMA
1993	/*
1994	 * Calculate delay for 2 DMA buffers (4 FIFO).
1995	 * See drivers/serial/serial_core.c::uart_update_timeout(). With 10
1996	 * bits (CS8), 250Hz, 115200 baud and 64 bytes FIFO, the above function
1997	 * calculates 1 jiffie for the data plus 5 jiffies for the "slop(e)."
1998	 * Then below we calculate 5 jiffies (20ms) for 2 DMA buffers (4 FIFO
1999	 * sizes), but when performing a faster transfer, value obtained by
2000	 * this formula is may not enough. Therefore, if value is smaller than
2001	 * 20msec, this sets 20msec as timeout of DMA.
2002	 */
2003	if (s->chan_rx) {
2004		unsigned int bits;
2005
2006		/* byte size and parity */
2007		switch (termios->c_cflag & CSIZE) {
2008		case CS5:
2009			bits = 7;
2010			break;
2011		case CS6:
2012			bits = 8;
2013			break;
2014		case CS7:
2015			bits = 9;
2016			break;
2017		default:
2018			bits = 10;
2019			break;
2020		}
2021
2022		if (termios->c_cflag & CSTOPB)
2023			bits++;
2024		if (termios->c_cflag & PARENB)
2025			bits++;
2026		s->rx_timeout = DIV_ROUND_UP((s->buf_len_rx * 2 * bits * HZ) /
2027					     (baud / 10), 10);
2028		dev_dbg(port->dev, "DMA Rx t-out %ums, tty t-out %u jiffies\n",
2029			s->rx_timeout * 1000 / HZ, port->timeout);
2030		if (s->rx_timeout < msecs_to_jiffies(20))
2031			s->rx_timeout = msecs_to_jiffies(20);
2032	}
2033#endif
2034
2035	if ((termios->c_cflag & CREAD) != 0)
2036		sci_start_rx(port);
2037
2038	sci_port_disable(s);
2039}
2040
2041static void sci_pm(struct uart_port *port, unsigned int state,
2042		   unsigned int oldstate)
2043{
2044	struct sci_port *sci_port = to_sci_port(port);
2045
2046	switch (state) {
2047	case UART_PM_STATE_OFF:
2048		sci_port_disable(sci_port);
2049		break;
2050	default:
2051		sci_port_enable(sci_port);
2052		break;
2053	}
2054}
2055
2056static const char *sci_type(struct uart_port *port)
2057{
2058	switch (port->type) {
2059	case PORT_IRDA:
2060		return "irda";
2061	case PORT_SCI:
2062		return "sci";
2063	case PORT_SCIF:
2064		return "scif";
2065	case PORT_SCIFA:
2066		return "scifa";
2067	case PORT_SCIFB:
2068		return "scifb";
2069	case PORT_HSCIF:
2070		return "hscif";
2071	}
2072
2073	return NULL;
2074}
2075
2076static inline unsigned long sci_port_size(struct uart_port *port)
2077{
2078	/*
2079	 * Pick an arbitrary size that encapsulates all of the base
2080	 * registers by default. This can be optimized later, or derived
2081	 * from platform resource data at such a time that ports begin to
2082	 * behave more erratically.
2083	 */
2084	if (port->type == PORT_HSCIF)
2085		return 96;
2086	else
2087		return 64;
2088}
2089
2090static int sci_remap_port(struct uart_port *port)
2091{
2092	unsigned long size = sci_port_size(port);
2093
2094	/*
2095	 * Nothing to do if there's already an established membase.
2096	 */
2097	if (port->membase)
2098		return 0;
2099
2100	if (port->flags & UPF_IOREMAP) {
2101		port->membase = ioremap_nocache(port->mapbase, size);
2102		if (unlikely(!port->membase)) {
2103			dev_err(port->dev, "can't remap port#%d\n", port->line);
2104			return -ENXIO;
2105		}
2106	} else {
2107		/*
2108		 * For the simple (and majority of) cases where we don't
2109		 * need to do any remapping, just cast the cookie
2110		 * directly.
2111		 */
2112		port->membase = (void __iomem *)(uintptr_t)port->mapbase;
2113	}
2114
2115	return 0;
2116}
2117
2118static void sci_release_port(struct uart_port *port)
2119{
2120	if (port->flags & UPF_IOREMAP) {
2121		iounmap(port->membase);
2122		port->membase = NULL;
2123	}
2124
2125	release_mem_region(port->mapbase, sci_port_size(port));
2126}
2127
2128static int sci_request_port(struct uart_port *port)
2129{
2130	unsigned long size = sci_port_size(port);
2131	struct resource *res;
2132	int ret;
2133
2134	res = request_mem_region(port->mapbase, size, dev_name(port->dev));
2135	if (unlikely(res == NULL))
2136		return -EBUSY;
2137
2138	ret = sci_remap_port(port);
2139	if (unlikely(ret != 0)) {
2140		release_resource(res);
2141		return ret;
2142	}
2143
2144	return 0;
2145}
2146
2147static void sci_config_port(struct uart_port *port, int flags)
2148{
2149	if (flags & UART_CONFIG_TYPE) {
2150		struct sci_port *sport = to_sci_port(port);
2151
2152		port->type = sport->cfg->type;
2153		sci_request_port(port);
2154	}
2155}
2156
2157static int sci_verify_port(struct uart_port *port, struct serial_struct *ser)
2158{
2159	if (ser->baud_base < 2400)
2160		/* No paper tape reader for Mitch.. */
2161		return -EINVAL;
2162
2163	return 0;
2164}
2165
2166static struct uart_ops sci_uart_ops = {
2167	.tx_empty	= sci_tx_empty,
2168	.set_mctrl	= sci_set_mctrl,
2169	.get_mctrl	= sci_get_mctrl,
2170	.start_tx	= sci_start_tx,
2171	.stop_tx	= sci_stop_tx,
2172	.stop_rx	= sci_stop_rx,
2173	.break_ctl	= sci_break_ctl,
2174	.startup	= sci_startup,
2175	.shutdown	= sci_shutdown,
2176	.set_termios	= sci_set_termios,
2177	.pm		= sci_pm,
2178	.type		= sci_type,
2179	.release_port	= sci_release_port,
2180	.request_port	= sci_request_port,
2181	.config_port	= sci_config_port,
2182	.verify_port	= sci_verify_port,
2183#ifdef CONFIG_CONSOLE_POLL
2184	.poll_get_char	= sci_poll_get_char,
2185	.poll_put_char	= sci_poll_put_char,
2186#endif
2187};
2188
2189static int sci_init_single(struct platform_device *dev,
2190			   struct sci_port *sci_port, unsigned int index,
2191			   struct plat_sci_port *p, bool early)
2192{
2193	struct uart_port *port = &sci_port->port;
2194	const struct resource *res;
2195	unsigned int sampling_rate;
2196	unsigned int i;
2197	int ret;
2198
2199	sci_port->cfg	= p;
2200
2201	port->ops	= &sci_uart_ops;
2202	port->iotype	= UPIO_MEM;
2203	port->line	= index;
2204
2205	res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2206	if (res == NULL)
2207		return -ENOMEM;
2208
2209	port->mapbase = res->start;
2210
2211	for (i = 0; i < ARRAY_SIZE(sci_port->irqs); ++i)
2212		sci_port->irqs[i] = platform_get_irq(dev, i);
2213
2214	/* The SCI generates several interrupts. They can be muxed together or
2215	 * connected to different interrupt lines. In the muxed case only one
2216	 * interrupt resource is specified. In the non-muxed case three or four
2217	 * interrupt resources are specified, as the BRI interrupt is optional.
2218	 */
2219	if (sci_port->irqs[0] < 0)
2220		return -ENXIO;
2221
2222	if (sci_port->irqs[1] < 0) {
2223		sci_port->irqs[1] = sci_port->irqs[0];
2224		sci_port->irqs[2] = sci_port->irqs[0];
2225		sci_port->irqs[3] = sci_port->irqs[0];
2226	}
2227
2228	if (p->regtype == SCIx_PROBE_REGTYPE) {
2229		ret = sci_probe_regmap(p);
2230		if (unlikely(ret))
2231			return ret;
2232	}
2233
2234	switch (p->type) {
2235	case PORT_SCIFB:
2236		port->fifosize = 256;
2237		sci_port->overrun_bit = 9;
2238		sampling_rate = 16;
2239		break;
2240	case PORT_HSCIF:
2241		port->fifosize = 128;
2242		sampling_rate = 0;
2243		sci_port->overrun_bit = 0;
2244		break;
2245	case PORT_SCIFA:
2246		port->fifosize = 64;
2247		sci_port->overrun_bit = 9;
2248		sampling_rate = 16;
2249		break;
2250	case PORT_SCIF:
2251		port->fifosize = 16;
2252		if (p->regtype == SCIx_SH7705_SCIF_REGTYPE) {
2253			sci_port->overrun_bit = 9;
2254			sampling_rate = 16;
2255		} else {
2256			sci_port->overrun_bit = 0;
2257			sampling_rate = 32;
2258		}
2259		break;
2260	default:
2261		port->fifosize = 1;
2262		sci_port->overrun_bit = 5;
2263		sampling_rate = 32;
2264		break;
2265	}
2266
2267	/* SCIFA on sh7723 and sh7724 need a custom sampling rate that doesn't
2268	 * match the SoC datasheet, this should be investigated. Let platform
2269	 * data override the sampling rate for now.
2270	 */
2271	sci_port->sampling_rate = p->sampling_rate ? p->sampling_rate
2272				: sampling_rate;
2273
2274	if (!early) {
2275		sci_port->iclk = clk_get(&dev->dev, "sci_ick");
2276		if (IS_ERR(sci_port->iclk)) {
2277			sci_port->iclk = clk_get(&dev->dev, "peripheral_clk");
2278			if (IS_ERR(sci_port->iclk)) {
2279				dev_err(&dev->dev, "can't get iclk\n");
2280				return PTR_ERR(sci_port->iclk);
2281			}
2282		}
2283
2284		/*
2285		 * The function clock is optional, ignore it if we can't
2286		 * find it.
2287		 */
2288		sci_port->fclk = clk_get(&dev->dev, "sci_fck");
2289		if (IS_ERR(sci_port->fclk))
2290			sci_port->fclk = NULL;
2291
2292		port->dev = &dev->dev;
2293
2294		pm_runtime_enable(&dev->dev);
2295	}
2296
2297	sci_port->break_timer.data = (unsigned long)sci_port;
2298	sci_port->break_timer.function = sci_break_timer;
2299	init_timer(&sci_port->break_timer);
2300
2301	/*
2302	 * Establish some sensible defaults for the error detection.
2303	 */
2304	sci_port->error_mask = (p->type == PORT_SCI) ?
2305			SCI_DEFAULT_ERROR_MASK : SCIF_DEFAULT_ERROR_MASK;
2306
2307	/*
2308	 * Establish sensible defaults for the overrun detection, unless
2309	 * the part has explicitly disabled support for it.
2310	 */
2311
2312	/*
2313	 * Make the error mask inclusive of overrun detection, if
2314	 * supported.
2315	 */
2316	sci_port->error_mask |= 1 << sci_port->overrun_bit;
2317
2318	port->type		= p->type;
2319	port->flags		= UPF_FIXED_PORT | p->flags;
2320	port->regshift		= p->regshift;
2321
2322	/*
2323	 * The UART port needs an IRQ value, so we peg this to the RX IRQ
2324	 * for the multi-IRQ ports, which is where we are primarily
2325	 * concerned with the shutdown path synchronization.
2326	 *
2327	 * For the muxed case there's nothing more to do.
2328	 */
2329	port->irq		= sci_port->irqs[SCIx_RXI_IRQ];
2330	port->irqflags		= 0;
2331
2332	port->serial_in		= sci_serial_in;
2333	port->serial_out	= sci_serial_out;
2334
2335	if (p->dma_slave_tx > 0 && p->dma_slave_rx > 0)
2336		dev_dbg(port->dev, "DMA tx %d, rx %d\n",
2337			p->dma_slave_tx, p->dma_slave_rx);
2338
2339	return 0;
2340}
2341
2342static void sci_cleanup_single(struct sci_port *port)
2343{
2344	clk_put(port->iclk);
2345	clk_put(port->fclk);
2346
2347	pm_runtime_disable(port->port.dev);
2348}
2349
2350#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2351static void serial_console_putchar(struct uart_port *port, int ch)
2352{
2353	sci_poll_put_char(port, ch);
2354}
2355
2356/*
2357 *	Print a string to the serial port trying not to disturb
2358 *	any possible real use of the port...
2359 */
2360static void serial_console_write(struct console *co, const char *s,
2361				 unsigned count)
2362{
2363	struct sci_port *sci_port = &sci_ports[co->index];
2364	struct uart_port *port = &sci_port->port;
2365	unsigned short bits, ctrl;
2366	unsigned long flags;
2367	int locked = 1;
2368
2369	local_irq_save(flags);
2370	if (port->sysrq)
2371		locked = 0;
2372	else if (oops_in_progress)
2373		locked = spin_trylock(&port->lock);
2374	else
2375		spin_lock(&port->lock);
2376
2377	/* first save the SCSCR then disable the interrupts */
2378	ctrl = serial_port_in(port, SCSCR);
2379	serial_port_out(port, SCSCR, sci_port->cfg->scscr);
2380
2381	uart_console_write(port, s, count, serial_console_putchar);
2382
2383	/* wait until fifo is empty and last bit has been transmitted */
2384	bits = SCxSR_TDxE(port) | SCxSR_TEND(port);
2385	while ((serial_port_in(port, SCxSR) & bits) != bits)
2386		cpu_relax();
2387
2388	/* restore the SCSCR */
2389	serial_port_out(port, SCSCR, ctrl);
2390
2391	if (locked)
2392		spin_unlock(&port->lock);
2393	local_irq_restore(flags);
2394}
2395
2396static int serial_console_setup(struct console *co, char *options)
2397{
2398	struct sci_port *sci_port;
2399	struct uart_port *port;
2400	int baud = 115200;
2401	int bits = 8;
2402	int parity = 'n';
2403	int flow = 'n';
2404	int ret;
2405
2406	/*
2407	 * Refuse to handle any bogus ports.
2408	 */
2409	if (co->index < 0 || co->index >= SCI_NPORTS)
2410		return -ENODEV;
2411
2412	sci_port = &sci_ports[co->index];
2413	port = &sci_port->port;
2414
2415	/*
2416	 * Refuse to handle uninitialized ports.
2417	 */
2418	if (!port->ops)
2419		return -ENODEV;
2420
2421	ret = sci_remap_port(port);
2422	if (unlikely(ret != 0))
2423		return ret;
2424
2425	if (options)
2426		uart_parse_options(options, &baud, &parity, &bits, &flow);
2427
2428	return uart_set_options(port, co, baud, parity, bits, flow);
2429}
2430
2431static struct console serial_console = {
2432	.name		= "ttySC",
2433	.device		= uart_console_device,
2434	.write		= serial_console_write,
2435	.setup		= serial_console_setup,
2436	.flags		= CON_PRINTBUFFER,
2437	.index		= -1,
2438	.data		= &sci_uart_driver,
2439};
2440
2441static struct console early_serial_console = {
2442	.name           = "early_ttySC",
2443	.write          = serial_console_write,
2444	.flags          = CON_PRINTBUFFER,
2445	.index		= -1,
2446};
2447
2448static char early_serial_buf[32];
2449
2450static int sci_probe_earlyprintk(struct platform_device *pdev)
2451{
2452	struct plat_sci_port *cfg = dev_get_platdata(&pdev->dev);
2453
2454	if (early_serial_console.data)
2455		return -EEXIST;
2456
2457	early_serial_console.index = pdev->id;
2458
2459	sci_init_single(pdev, &sci_ports[pdev->id], pdev->id, cfg, true);
2460
2461	serial_console_setup(&early_serial_console, early_serial_buf);
2462
2463	if (!strstr(early_serial_buf, "keep"))
2464		early_serial_console.flags |= CON_BOOT;
2465
2466	register_console(&early_serial_console);
2467	return 0;
2468}
2469
2470#define SCI_CONSOLE	(&serial_console)
2471
2472#else
2473static inline int sci_probe_earlyprintk(struct platform_device *pdev)
2474{
2475	return -EINVAL;
2476}
2477
2478#define SCI_CONSOLE	NULL
2479
2480#endif /* CONFIG_SERIAL_SH_SCI_CONSOLE */
2481
2482static const char banner[] __initconst = "SuperH (H)SCI(F) driver initialized";
2483
2484static struct uart_driver sci_uart_driver = {
2485	.owner		= THIS_MODULE,
2486	.driver_name	= "sci",
2487	.dev_name	= "ttySC",
2488	.major		= SCI_MAJOR,
2489	.minor		= SCI_MINOR_START,
2490	.nr		= SCI_NPORTS,
2491	.cons		= SCI_CONSOLE,
2492};
2493
2494static int sci_remove(struct platform_device *dev)
2495{
2496	struct sci_port *port = platform_get_drvdata(dev);
2497
2498	cpufreq_unregister_notifier(&port->freq_transition,
2499				    CPUFREQ_TRANSITION_NOTIFIER);
2500
2501	uart_remove_one_port(&sci_uart_driver, &port->port);
2502
2503	sci_cleanup_single(port);
2504
2505	return 0;
2506}
2507
2508struct sci_port_info {
2509	unsigned int type;
2510	unsigned int regtype;
2511};
2512
2513static const struct of_device_id of_sci_match[] = {
2514	{
2515		.compatible = "renesas,scif",
2516		.data = &(const struct sci_port_info) {
2517			.type = PORT_SCIF,
2518			.regtype = SCIx_SH4_SCIF_REGTYPE,
2519		},
2520	}, {
2521		.compatible = "renesas,scifa",
2522		.data = &(const struct sci_port_info) {
2523			.type = PORT_SCIFA,
2524			.regtype = SCIx_SCIFA_REGTYPE,
2525		},
2526	}, {
2527		.compatible = "renesas,scifb",
2528		.data = &(const struct sci_port_info) {
2529			.type = PORT_SCIFB,
2530			.regtype = SCIx_SCIFB_REGTYPE,
2531		},
2532	}, {
2533		.compatible = "renesas,hscif",
2534		.data = &(const struct sci_port_info) {
2535			.type = PORT_HSCIF,
2536			.regtype = SCIx_HSCIF_REGTYPE,
2537		},
2538	}, {
2539		/* Terminator */
2540	},
2541};
2542MODULE_DEVICE_TABLE(of, of_sci_match);
2543
2544static struct plat_sci_port *
2545sci_parse_dt(struct platform_device *pdev, unsigned int *dev_id)
2546{
2547	struct device_node *np = pdev->dev.of_node;
2548	const struct of_device_id *match;
2549	const struct sci_port_info *info;
2550	struct plat_sci_port *p;
2551	int id;
2552
2553	if (!IS_ENABLED(CONFIG_OF) || !np)
2554		return NULL;
2555
2556	match = of_match_node(of_sci_match, pdev->dev.of_node);
2557	if (!match)
2558		return NULL;
2559
2560	info = match->data;
2561
2562	p = devm_kzalloc(&pdev->dev, sizeof(struct plat_sci_port), GFP_KERNEL);
2563	if (!p) {
2564		dev_err(&pdev->dev, "failed to allocate DT config data\n");
2565		return NULL;
2566	}
2567
2568	/* Get the line number for the aliases node. */
2569	id = of_alias_get_id(np, "serial");
2570	if (id < 0) {
2571		dev_err(&pdev->dev, "failed to get alias id (%d)\n", id);
2572		return NULL;
2573	}
2574
2575	*dev_id = id;
2576
2577	p->flags = UPF_IOREMAP | UPF_BOOT_AUTOCONF;
2578	p->type = info->type;
2579	p->regtype = info->regtype;
2580	p->scscr = SCSCR_RE | SCSCR_TE;
2581
2582	return p;
2583}
2584
2585static int sci_probe_single(struct platform_device *dev,
2586				      unsigned int index,
2587				      struct plat_sci_port *p,
2588				      struct sci_port *sciport)
2589{
2590	int ret;
2591
2592	/* Sanity check */
2593	if (unlikely(index >= SCI_NPORTS)) {
2594		dev_notice(&dev->dev, "Attempting to register port %d when only %d are available\n",
2595			   index+1, SCI_NPORTS);
2596		dev_notice(&dev->dev, "Consider bumping CONFIG_SERIAL_SH_SCI_NR_UARTS!\n");
2597		return -EINVAL;
2598	}
2599
2600	ret = sci_init_single(dev, sciport, index, p, false);
2601	if (ret)
2602		return ret;
2603
2604	ret = uart_add_one_port(&sci_uart_driver, &sciport->port);
2605	if (ret) {
2606		sci_cleanup_single(sciport);
2607		return ret;
2608	}
2609
2610	return 0;
2611}
2612
2613static int sci_probe(struct platform_device *dev)
2614{
2615	struct plat_sci_port *p;
2616	struct sci_port *sp;
2617	unsigned int dev_id;
2618	int ret;
2619
2620	/*
2621	 * If we've come here via earlyprintk initialization, head off to
2622	 * the special early probe. We don't have sufficient device state
2623	 * to make it beyond this yet.
2624	 */
2625	if (is_early_platform_device(dev))
2626		return sci_probe_earlyprintk(dev);
2627
2628	if (dev->dev.of_node) {
2629		p = sci_parse_dt(dev, &dev_id);
2630		if (p == NULL)
2631			return -EINVAL;
2632	} else {
2633		p = dev->dev.platform_data;
2634		if (p == NULL) {
2635			dev_err(&dev->dev, "no platform data supplied\n");
2636			return -EINVAL;
2637		}
2638
2639		dev_id = dev->id;
2640	}
2641
2642	sp = &sci_ports[dev_id];
2643	platform_set_drvdata(dev, sp);
2644
2645	ret = sci_probe_single(dev, dev_id, p, sp);
2646	if (ret)
2647		return ret;
2648
2649	sp->freq_transition.notifier_call = sci_notifier;
2650
2651	ret = cpufreq_register_notifier(&sp->freq_transition,
2652					CPUFREQ_TRANSITION_NOTIFIER);
2653	if (unlikely(ret < 0)) {
2654		uart_remove_one_port(&sci_uart_driver, &sp->port);
2655		sci_cleanup_single(sp);
2656		return ret;
2657	}
2658
2659#ifdef CONFIG_SH_STANDARD_BIOS
2660	sh_bios_gdb_detach();
2661#endif
2662
2663	return 0;
2664}
2665
2666static __maybe_unused int sci_suspend(struct device *dev)
2667{
2668	struct sci_port *sport = dev_get_drvdata(dev);
2669
2670	if (sport)
2671		uart_suspend_port(&sci_uart_driver, &sport->port);
2672
2673	return 0;
2674}
2675
2676static __maybe_unused int sci_resume(struct device *dev)
2677{
2678	struct sci_port *sport = dev_get_drvdata(dev);
2679
2680	if (sport)
2681		uart_resume_port(&sci_uart_driver, &sport->port);
2682
2683	return 0;
2684}
2685
2686static SIMPLE_DEV_PM_OPS(sci_dev_pm_ops, sci_suspend, sci_resume);
2687
2688static struct platform_driver sci_driver = {
2689	.probe		= sci_probe,
2690	.remove		= sci_remove,
2691	.driver		= {
2692		.name	= "sh-sci",
2693		.pm	= &sci_dev_pm_ops,
2694		.of_match_table = of_match_ptr(of_sci_match),
2695	},
2696};
2697
2698static int __init sci_init(void)
2699{
2700	int ret;
2701
2702	pr_info("%s\n", banner);
2703
2704	ret = uart_register_driver(&sci_uart_driver);
2705	if (likely(ret == 0)) {
2706		ret = platform_driver_register(&sci_driver);
2707		if (unlikely(ret))
2708			uart_unregister_driver(&sci_uart_driver);
2709	}
2710
2711	return ret;
2712}
2713
2714static void __exit sci_exit(void)
2715{
2716	platform_driver_unregister(&sci_driver);
2717	uart_unregister_driver(&sci_uart_driver);
2718}
2719
2720#ifdef CONFIG_SERIAL_SH_SCI_CONSOLE
2721early_platform_init_buffer("earlyprintk", &sci_driver,
2722			   early_serial_buf, ARRAY_SIZE(early_serial_buf));
2723#endif
2724module_init(sci_init);
2725module_exit(sci_exit);
2726
2727MODULE_LICENSE("GPL");
2728MODULE_ALIAS("platform:sh-sci");
2729MODULE_AUTHOR("Paul Mundt");
2730MODULE_DESCRIPTION("SuperH (H)SCI(F) serial driver");
2731