1/*
2 * Tty buffer allocation management
3 */
4
5#include <linux/types.h>
6#include <linux/errno.h>
7#include <linux/tty.h>
8#include <linux/tty_driver.h>
9#include <linux/tty_flip.h>
10#include <linux/timer.h>
11#include <linux/string.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
14#include <linux/wait.h>
15#include <linux/bitops.h>
16#include <linux/delay.h>
17#include <linux/module.h>
18#include <linux/ratelimit.h>
19
20
21#define MIN_TTYB_SIZE	256
22#define TTYB_ALIGN_MASK	255
23
24/*
25 * Byte threshold to limit memory consumption for flip buffers.
26 * The actual memory limit is > 2x this amount.
27 */
28#define TTYB_DEFAULT_MEM_LIMIT	65536
29
30/*
31 * We default to dicing tty buffer allocations to this many characters
32 * in order to avoid multiple page allocations. We know the size of
33 * tty_buffer itself but it must also be taken into account that the
34 * the buffer is 256 byte aligned. See tty_buffer_find for the allocation
35 * logic this must match
36 */
37
38#define TTY_BUFFER_PAGE	(((PAGE_SIZE - sizeof(struct tty_buffer)) / 2) & ~0xFF)
39
40/**
41 *	tty_buffer_lock_exclusive	-	gain exclusive access to buffer
42 *	tty_buffer_unlock_exclusive	-	release exclusive access
43 *
44 *	@port - tty_port owning the flip buffer
45 *
46 *	Guarantees safe use of the line discipline's receive_buf() method by
47 *	excluding the buffer work and any pending flush from using the flip
48 *	buffer. Data can continue to be added concurrently to the flip buffer
49 *	from the driver side.
50 *
51 *	On release, the buffer work is restarted if there is data in the
52 *	flip buffer
53 */
54
55void tty_buffer_lock_exclusive(struct tty_port *port)
56{
57	struct tty_bufhead *buf = &port->buf;
58
59	atomic_inc(&buf->priority);
60	mutex_lock(&buf->lock);
61}
62EXPORT_SYMBOL_GPL(tty_buffer_lock_exclusive);
63
64void tty_buffer_unlock_exclusive(struct tty_port *port)
65{
66	struct tty_bufhead *buf = &port->buf;
67	int restart;
68
69	restart = buf->head->commit != buf->head->read;
70
71	atomic_dec(&buf->priority);
72	mutex_unlock(&buf->lock);
73	if (restart)
74		queue_work(system_unbound_wq, &buf->work);
75}
76EXPORT_SYMBOL_GPL(tty_buffer_unlock_exclusive);
77
78/**
79 *	tty_buffer_space_avail	-	return unused buffer space
80 *	@port - tty_port owning the flip buffer
81 *
82 *	Returns the # of bytes which can be written by the driver without
83 *	reaching the buffer limit.
84 *
85 *	Note: this does not guarantee that memory is available to write
86 *	the returned # of bytes (use tty_prepare_flip_string_xxx() to
87 *	pre-allocate if memory guarantee is required).
88 */
89
90int tty_buffer_space_avail(struct tty_port *port)
91{
92	int space = port->buf.mem_limit - atomic_read(&port->buf.mem_used);
93	return max(space, 0);
94}
95EXPORT_SYMBOL_GPL(tty_buffer_space_avail);
96
97static void tty_buffer_reset(struct tty_buffer *p, size_t size)
98{
99	p->used = 0;
100	p->size = size;
101	p->next = NULL;
102	p->commit = 0;
103	p->read = 0;
104	p->flags = 0;
105}
106
107/**
108 *	tty_buffer_free_all		-	free buffers used by a tty
109 *	@tty: tty to free from
110 *
111 *	Remove all the buffers pending on a tty whether queued with data
112 *	or in the free ring. Must be called when the tty is no longer in use
113 */
114
115void tty_buffer_free_all(struct tty_port *port)
116{
117	struct tty_bufhead *buf = &port->buf;
118	struct tty_buffer *p, *next;
119	struct llist_node *llist;
120
121	while ((p = buf->head) != NULL) {
122		buf->head = p->next;
123		if (p->size > 0)
124			kfree(p);
125	}
126	llist = llist_del_all(&buf->free);
127	llist_for_each_entry_safe(p, next, llist, free)
128		kfree(p);
129
130	tty_buffer_reset(&buf->sentinel, 0);
131	buf->head = &buf->sentinel;
132	buf->tail = &buf->sentinel;
133
134	atomic_set(&buf->mem_used, 0);
135}
136
137/**
138 *	tty_buffer_alloc	-	allocate a tty buffer
139 *	@tty: tty device
140 *	@size: desired size (characters)
141 *
142 *	Allocate a new tty buffer to hold the desired number of characters.
143 *	We round our buffers off in 256 character chunks to get better
144 *	allocation behaviour.
145 *	Return NULL if out of memory or the allocation would exceed the
146 *	per device queue
147 */
148
149static struct tty_buffer *tty_buffer_alloc(struct tty_port *port, size_t size)
150{
151	struct llist_node *free;
152	struct tty_buffer *p;
153
154	/* Round the buffer size out */
155	size = __ALIGN_MASK(size, TTYB_ALIGN_MASK);
156
157	if (size <= MIN_TTYB_SIZE) {
158		free = llist_del_first(&port->buf.free);
159		if (free) {
160			p = llist_entry(free, struct tty_buffer, free);
161			goto found;
162		}
163	}
164
165	/* Should possibly check if this fails for the largest buffer we
166	   have queued and recycle that ? */
167	if (atomic_read(&port->buf.mem_used) > port->buf.mem_limit)
168		return NULL;
169	p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
170	if (p == NULL)
171		return NULL;
172
173found:
174	tty_buffer_reset(p, size);
175	atomic_add(size, &port->buf.mem_used);
176	return p;
177}
178
179/**
180 *	tty_buffer_free		-	free a tty buffer
181 *	@tty: tty owning the buffer
182 *	@b: the buffer to free
183 *
184 *	Free a tty buffer, or add it to the free list according to our
185 *	internal strategy
186 */
187
188static void tty_buffer_free(struct tty_port *port, struct tty_buffer *b)
189{
190	struct tty_bufhead *buf = &port->buf;
191
192	/* Dumb strategy for now - should keep some stats */
193	WARN_ON(atomic_sub_return(b->size, &buf->mem_used) < 0);
194
195	if (b->size > MIN_TTYB_SIZE)
196		kfree(b);
197	else if (b->size > 0)
198		llist_add(&b->free, &buf->free);
199}
200
201/**
202 *	tty_buffer_flush		-	flush full tty buffers
203 *	@tty: tty to flush
204 *	@ld:  optional ldisc ptr (must be referenced)
205 *
206 *	flush all the buffers containing receive data. If ld != NULL,
207 *	flush the ldisc input buffer.
208 *
209 *	Locking: takes buffer lock to ensure single-threaded flip buffer
210 *		 'consumer'
211 */
212
213void tty_buffer_flush(struct tty_struct *tty, struct tty_ldisc *ld)
214{
215	struct tty_port *port = tty->port;
216	struct tty_bufhead *buf = &port->buf;
217	struct tty_buffer *next;
218
219	atomic_inc(&buf->priority);
220
221	mutex_lock(&buf->lock);
222	while ((next = buf->head->next) != NULL) {
223		tty_buffer_free(port, buf->head);
224		buf->head = next;
225	}
226	buf->head->read = buf->head->commit;
227
228	if (ld && ld->ops->flush_buffer)
229		ld->ops->flush_buffer(tty);
230
231	atomic_dec(&buf->priority);
232	mutex_unlock(&buf->lock);
233}
234
235/**
236 *	tty_buffer_request_room		-	grow tty buffer if needed
237 *	@tty: tty structure
238 *	@size: size desired
239 *	@flags: buffer flags if new buffer allocated (default = 0)
240 *
241 *	Make at least size bytes of linear space available for the tty
242 *	buffer. If we fail return the size we managed to find.
243 *
244 *	Will change over to a new buffer if the current buffer is encoded as
245 *	TTY_NORMAL (so has no flags buffer) and the new buffer requires
246 *	a flags buffer.
247 */
248static int __tty_buffer_request_room(struct tty_port *port, size_t size,
249				     int flags)
250{
251	struct tty_bufhead *buf = &port->buf;
252	struct tty_buffer *b, *n;
253	int left, change;
254
255	b = buf->tail;
256	if (b->flags & TTYB_NORMAL)
257		left = 2 * b->size - b->used;
258	else
259		left = b->size - b->used;
260
261	change = (b->flags & TTYB_NORMAL) && (~flags & TTYB_NORMAL);
262	if (change || left < size) {
263		/* This is the slow path - looking for new buffers to use */
264		if ((n = tty_buffer_alloc(port, size)) != NULL) {
265			n->flags = flags;
266			buf->tail = n;
267			b->commit = b->used;
268			/* paired w/ barrier in flush_to_ldisc(); ensures the
269			 * latest commit value can be read before the head is
270			 * advanced to the next buffer
271			 */
272			smp_wmb();
273			b->next = n;
274		} else if (change)
275			size = 0;
276		else
277			size = left;
278	}
279	return size;
280}
281
282int tty_buffer_request_room(struct tty_port *port, size_t size)
283{
284	return __tty_buffer_request_room(port, size, 0);
285}
286EXPORT_SYMBOL_GPL(tty_buffer_request_room);
287
288/**
289 *	tty_insert_flip_string_fixed_flag - Add characters to the tty buffer
290 *	@port: tty port
291 *	@chars: characters
292 *	@flag: flag value for each character
293 *	@size: size
294 *
295 *	Queue a series of bytes to the tty buffering. All the characters
296 *	passed are marked with the supplied flag. Returns the number added.
297 */
298
299int tty_insert_flip_string_fixed_flag(struct tty_port *port,
300		const unsigned char *chars, char flag, size_t size)
301{
302	int copied = 0;
303	do {
304		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
305		int flags = (flag == TTY_NORMAL) ? TTYB_NORMAL : 0;
306		int space = __tty_buffer_request_room(port, goal, flags);
307		struct tty_buffer *tb = port->buf.tail;
308		if (unlikely(space == 0))
309			break;
310		memcpy(char_buf_ptr(tb, tb->used), chars, space);
311		if (~tb->flags & TTYB_NORMAL)
312			memset(flag_buf_ptr(tb, tb->used), flag, space);
313		tb->used += space;
314		copied += space;
315		chars += space;
316		/* There is a small chance that we need to split the data over
317		   several buffers. If this is the case we must loop */
318	} while (unlikely(size > copied));
319	return copied;
320}
321EXPORT_SYMBOL(tty_insert_flip_string_fixed_flag);
322
323/**
324 *	tty_insert_flip_string_flags	-	Add characters to the tty buffer
325 *	@port: tty port
326 *	@chars: characters
327 *	@flags: flag bytes
328 *	@size: size
329 *
330 *	Queue a series of bytes to the tty buffering. For each character
331 *	the flags array indicates the status of the character. Returns the
332 *	number added.
333 */
334
335int tty_insert_flip_string_flags(struct tty_port *port,
336		const unsigned char *chars, const char *flags, size_t size)
337{
338	int copied = 0;
339	do {
340		int goal = min_t(size_t, size - copied, TTY_BUFFER_PAGE);
341		int space = tty_buffer_request_room(port, goal);
342		struct tty_buffer *tb = port->buf.tail;
343		if (unlikely(space == 0))
344			break;
345		memcpy(char_buf_ptr(tb, tb->used), chars, space);
346		memcpy(flag_buf_ptr(tb, tb->used), flags, space);
347		tb->used += space;
348		copied += space;
349		chars += space;
350		flags += space;
351		/* There is a small chance that we need to split the data over
352		   several buffers. If this is the case we must loop */
353	} while (unlikely(size > copied));
354	return copied;
355}
356EXPORT_SYMBOL(tty_insert_flip_string_flags);
357
358/**
359 *	tty_schedule_flip	-	push characters to ldisc
360 *	@port: tty port to push from
361 *
362 *	Takes any pending buffers and transfers their ownership to the
363 *	ldisc side of the queue. It then schedules those characters for
364 *	processing by the line discipline.
365 */
366
367void tty_schedule_flip(struct tty_port *port)
368{
369	struct tty_bufhead *buf = &port->buf;
370
371	buf->tail->commit = buf->tail->used;
372	schedule_work(&buf->work);
373}
374EXPORT_SYMBOL(tty_schedule_flip);
375
376/**
377 *	tty_prepare_flip_string		-	make room for characters
378 *	@port: tty port
379 *	@chars: return pointer for character write area
380 *	@size: desired size
381 *
382 *	Prepare a block of space in the buffer for data. Returns the length
383 *	available and buffer pointer to the space which is now allocated and
384 *	accounted for as ready for normal characters. This is used for drivers
385 *	that need their own block copy routines into the buffer. There is no
386 *	guarantee the buffer is a DMA target!
387 */
388
389int tty_prepare_flip_string(struct tty_port *port, unsigned char **chars,
390		size_t size)
391{
392	int space = __tty_buffer_request_room(port, size, TTYB_NORMAL);
393	if (likely(space)) {
394		struct tty_buffer *tb = port->buf.tail;
395		*chars = char_buf_ptr(tb, tb->used);
396		if (~tb->flags & TTYB_NORMAL)
397			memset(flag_buf_ptr(tb, tb->used), TTY_NORMAL, space);
398		tb->used += space;
399	}
400	return space;
401}
402EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
403
404
405static int
406receive_buf(struct tty_struct *tty, struct tty_buffer *head, int count)
407{
408	struct tty_ldisc *disc = tty->ldisc;
409	unsigned char *p = char_buf_ptr(head, head->read);
410	char	      *f = NULL;
411
412	if (~head->flags & TTYB_NORMAL)
413		f = flag_buf_ptr(head, head->read);
414
415	if (disc->ops->receive_buf2)
416		count = disc->ops->receive_buf2(tty, p, f, count);
417	else {
418		count = min_t(int, count, tty->receive_room);
419		if (count)
420			disc->ops->receive_buf(tty, p, f, count);
421	}
422	head->read += count;
423	return count;
424}
425
426/**
427 *	flush_to_ldisc
428 *	@work: tty structure passed from work queue.
429 *
430 *	This routine is called out of the software interrupt to flush data
431 *	from the buffer chain to the line discipline.
432 *
433 *	The receive_buf method is single threaded for each tty instance.
434 *
435 *	Locking: takes buffer lock to ensure single-threaded flip buffer
436 *		 'consumer'
437 */
438
439static void flush_to_ldisc(struct work_struct *work)
440{
441	struct tty_port *port = container_of(work, struct tty_port, buf.work);
442	struct tty_bufhead *buf = &port->buf;
443	struct tty_struct *tty;
444	struct tty_ldisc *disc;
445
446	tty = port->itty;
447	if (tty == NULL)
448		return;
449
450	disc = tty_ldisc_ref(tty);
451	if (disc == NULL)
452		return;
453
454	mutex_lock(&buf->lock);
455
456	while (1) {
457		struct tty_buffer *head = buf->head;
458		struct tty_buffer *next;
459		int count;
460
461		/* Ldisc or user is trying to gain exclusive access */
462		if (atomic_read(&buf->priority))
463			break;
464
465		next = head->next;
466		/* paired w/ barrier in __tty_buffer_request_room();
467		 * ensures commit value read is not stale if the head
468		 * is advancing to the next buffer
469		 */
470		smp_rmb();
471		count = head->commit - head->read;
472		if (!count) {
473			if (next == NULL)
474				break;
475			buf->head = next;
476			tty_buffer_free(port, head);
477			continue;
478		}
479
480		count = receive_buf(tty, head, count);
481		if (!count)
482			break;
483	}
484
485	mutex_unlock(&buf->lock);
486
487	tty_ldisc_deref(disc);
488}
489
490/**
491 *	tty_flip_buffer_push	-	terminal
492 *	@port: tty port to push
493 *
494 *	Queue a push of the terminal flip buffers to the line discipline.
495 *	Can be called from IRQ/atomic context.
496 *
497 *	In the event of the queue being busy for flipping the work will be
498 *	held off and retried later.
499 */
500
501void tty_flip_buffer_push(struct tty_port *port)
502{
503	tty_schedule_flip(port);
504}
505EXPORT_SYMBOL(tty_flip_buffer_push);
506
507/**
508 *	tty_buffer_init		-	prepare a tty buffer structure
509 *	@tty: tty to initialise
510 *
511 *	Set up the initial state of the buffer management for a tty device.
512 *	Must be called before the other tty buffer functions are used.
513 */
514
515void tty_buffer_init(struct tty_port *port)
516{
517	struct tty_bufhead *buf = &port->buf;
518
519	mutex_init(&buf->lock);
520	tty_buffer_reset(&buf->sentinel, 0);
521	buf->head = &buf->sentinel;
522	buf->tail = &buf->sentinel;
523	init_llist_head(&buf->free);
524	atomic_set(&buf->mem_used, 0);
525	atomic_set(&buf->priority, 0);
526	INIT_WORK(&buf->work, flush_to_ldisc);
527	buf->mem_limit = TTYB_DEFAULT_MEM_LIMIT;
528}
529
530/**
531 *	tty_buffer_set_limit	-	change the tty buffer memory limit
532 *	@port: tty port to change
533 *
534 *	Change the tty buffer memory limit.
535 *	Must be called before the other tty buffer functions are used.
536 */
537
538int tty_buffer_set_limit(struct tty_port *port, int limit)
539{
540	if (limit < MIN_TTYB_SIZE)
541		return -EINVAL;
542	port->buf.mem_limit = limit;
543	return 0;
544}
545EXPORT_SYMBOL_GPL(tty_buffer_set_limit);
546
547/* slave ptys can claim nested buffer lock when handling BRK and INTR */
548void tty_buffer_set_lock_subclass(struct tty_port *port)
549{
550	lockdep_set_subclass(&port->buf.lock, TTY_LOCK_SLAVE);
551}
552
553void tty_buffer_flush_work(struct tty_port *port)
554{
555	flush_work(&port->buf.work);
556}
557