1/*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
3 *
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 */
12
13/*
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
17 *
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
21 *
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
25 */
26
27/* debug control */
28/* #define UDC_VERBOSE */
29
30/* Driver strings */
31#define UDC_MOD_DESCRIPTION		"AMD 5536 UDC - USB Device Controller"
32#define UDC_DRIVER_VERSION_STRING	"01.00.0206"
33
34/* system */
35#include <linux/module.h>
36#include <linux/pci.h>
37#include <linux/kernel.h>
38#include <linux/delay.h>
39#include <linux/ioport.h>
40#include <linux/sched.h>
41#include <linux/slab.h>
42#include <linux/errno.h>
43#include <linux/timer.h>
44#include <linux/list.h>
45#include <linux/interrupt.h>
46#include <linux/ioctl.h>
47#include <linux/fs.h>
48#include <linux/dmapool.h>
49#include <linux/moduleparam.h>
50#include <linux/device.h>
51#include <linux/io.h>
52#include <linux/irq.h>
53#include <linux/prefetch.h>
54
55#include <asm/byteorder.h>
56#include <asm/unaligned.h>
57
58/* gadget stack */
59#include <linux/usb/ch9.h>
60#include <linux/usb/gadget.h>
61
62/* udc specific */
63#include "amd5536udc.h"
64
65
66static void udc_tasklet_disconnect(unsigned long);
67static void empty_req_queue(struct udc_ep *);
68static int udc_probe(struct udc *dev);
69static void udc_basic_init(struct udc *dev);
70static void udc_setup_endpoints(struct udc *dev);
71static void udc_soft_reset(struct udc *dev);
72static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
73static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
74static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
75static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
76				unsigned long buf_len, gfp_t gfp_flags);
77static int udc_remote_wakeup(struct udc *dev);
78static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
79static void udc_pci_remove(struct pci_dev *pdev);
80
81/* description */
82static const char mod_desc[] = UDC_MOD_DESCRIPTION;
83static const char name[] = "amd5536udc";
84
85/* structure to hold endpoint function pointers */
86static const struct usb_ep_ops udc_ep_ops;
87
88/* received setup data */
89static union udc_setup_data setup_data;
90
91/* pointer to device object */
92static struct udc *udc;
93
94/* irq spin lock for soft reset */
95static DEFINE_SPINLOCK(udc_irq_spinlock);
96/* stall spin lock */
97static DEFINE_SPINLOCK(udc_stall_spinlock);
98
99/*
100* slave mode: pending bytes in rx fifo after nyet,
101* used if EPIN irq came but no req was available
102*/
103static unsigned int udc_rxfifo_pending;
104
105/* count soft resets after suspend to avoid loop */
106static int soft_reset_occured;
107static int soft_reset_after_usbreset_occured;
108
109/* timer */
110static struct timer_list udc_timer;
111static int stop_timer;
112
113/* set_rde -- Is used to control enabling of RX DMA. Problem is
114 * that UDC has only one bit (RDE) to enable/disable RX DMA for
115 * all OUT endpoints. So we have to handle race conditions like
116 * when OUT data reaches the fifo but no request was queued yet.
117 * This cannot be solved by letting the RX DMA disabled until a
118 * request gets queued because there may be other OUT packets
119 * in the FIFO (important for not blocking control traffic).
120 * The value of set_rde controls the correspondig timer.
121 *
122 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
123 * set_rde  0 == do not touch RDE, do no start the RDE timer
124 * set_rde  1 == timer function will look whether FIFO has data
125 * set_rde  2 == set by timer function to enable RX DMA on next call
126 */
127static int set_rde = -1;
128
129static DECLARE_COMPLETION(on_exit);
130static struct timer_list udc_pollstall_timer;
131static int stop_pollstall_timer;
132static DECLARE_COMPLETION(on_pollstall_exit);
133
134/* tasklet for usb disconnect */
135static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
136		(unsigned long) &udc);
137
138
139/* endpoint names used for print */
140static const char ep0_string[] = "ep0in";
141static const char *const ep_string[] = {
142	ep0_string,
143	"ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
144	"ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
145	"ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
146	"ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
147	"ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
148	"ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
149	"ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
150};
151
152/* DMA usage flag */
153static bool use_dma = 1;
154/* packet per buffer dma */
155static bool use_dma_ppb = 1;
156/* with per descr. update */
157static bool use_dma_ppb_du;
158/* buffer fill mode */
159static int use_dma_bufferfill_mode;
160/* full speed only mode */
161static bool use_fullspeed;
162/* tx buffer size for high speed */
163static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
164
165/* module parameters */
166module_param(use_dma, bool, S_IRUGO);
167MODULE_PARM_DESC(use_dma, "true for DMA");
168module_param(use_dma_ppb, bool, S_IRUGO);
169MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
170module_param(use_dma_ppb_du, bool, S_IRUGO);
171MODULE_PARM_DESC(use_dma_ppb_du,
172	"true for DMA in packet per buffer mode with descriptor update");
173module_param(use_fullspeed, bool, S_IRUGO);
174MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
175
176/*---------------------------------------------------------------------------*/
177/* Prints UDC device registers and endpoint irq registers */
178static void print_regs(struct udc *dev)
179{
180	DBG(dev, "------- Device registers -------\n");
181	DBG(dev, "dev config     = %08x\n", readl(&dev->regs->cfg));
182	DBG(dev, "dev control    = %08x\n", readl(&dev->regs->ctl));
183	DBG(dev, "dev status     = %08x\n", readl(&dev->regs->sts));
184	DBG(dev, "\n");
185	DBG(dev, "dev int's      = %08x\n", readl(&dev->regs->irqsts));
186	DBG(dev, "dev intmask    = %08x\n", readl(&dev->regs->irqmsk));
187	DBG(dev, "\n");
188	DBG(dev, "dev ep int's   = %08x\n", readl(&dev->regs->ep_irqsts));
189	DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
190	DBG(dev, "\n");
191	DBG(dev, "USE DMA        = %d\n", use_dma);
192	if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
193		DBG(dev, "DMA mode       = PPBNDU (packet per buffer "
194			"WITHOUT desc. update)\n");
195		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
196	} else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
197		DBG(dev, "DMA mode       = PPBDU (packet per buffer "
198			"WITH desc. update)\n");
199		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
200	}
201	if (use_dma && use_dma_bufferfill_mode) {
202		DBG(dev, "DMA mode       = BF (buffer fill mode)\n");
203		dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
204	}
205	if (!use_dma)
206		dev_info(&dev->pdev->dev, "FIFO mode\n");
207	DBG(dev, "-------------------------------------------------------\n");
208}
209
210/* Masks unused interrupts */
211static int udc_mask_unused_interrupts(struct udc *dev)
212{
213	u32 tmp;
214
215	/* mask all dev interrupts */
216	tmp =	AMD_BIT(UDC_DEVINT_SVC) |
217		AMD_BIT(UDC_DEVINT_ENUM) |
218		AMD_BIT(UDC_DEVINT_US) |
219		AMD_BIT(UDC_DEVINT_UR) |
220		AMD_BIT(UDC_DEVINT_ES) |
221		AMD_BIT(UDC_DEVINT_SI) |
222		AMD_BIT(UDC_DEVINT_SOF)|
223		AMD_BIT(UDC_DEVINT_SC);
224	writel(tmp, &dev->regs->irqmsk);
225
226	/* mask all ep interrupts */
227	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
228
229	return 0;
230}
231
232/* Enables endpoint 0 interrupts */
233static int udc_enable_ep0_interrupts(struct udc *dev)
234{
235	u32 tmp;
236
237	DBG(dev, "udc_enable_ep0_interrupts()\n");
238
239	/* read irq mask */
240	tmp = readl(&dev->regs->ep_irqmsk);
241	/* enable ep0 irq's */
242	tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
243		& AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
244	writel(tmp, &dev->regs->ep_irqmsk);
245
246	return 0;
247}
248
249/* Enables device interrupts for SET_INTF and SET_CONFIG */
250static int udc_enable_dev_setup_interrupts(struct udc *dev)
251{
252	u32 tmp;
253
254	DBG(dev, "enable device interrupts for setup data\n");
255
256	/* read irq mask */
257	tmp = readl(&dev->regs->irqmsk);
258
259	/* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
260	tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
261		& AMD_UNMASK_BIT(UDC_DEVINT_SC)
262		& AMD_UNMASK_BIT(UDC_DEVINT_UR)
263		& AMD_UNMASK_BIT(UDC_DEVINT_SVC)
264		& AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
265	writel(tmp, &dev->regs->irqmsk);
266
267	return 0;
268}
269
270/* Calculates fifo start of endpoint based on preceding endpoints */
271static int udc_set_txfifo_addr(struct udc_ep *ep)
272{
273	struct udc	*dev;
274	u32 tmp;
275	int i;
276
277	if (!ep || !(ep->in))
278		return -EINVAL;
279
280	dev = ep->dev;
281	ep->txfifo = dev->txfifo;
282
283	/* traverse ep's */
284	for (i = 0; i < ep->num; i++) {
285		if (dev->ep[i].regs) {
286			/* read fifo size */
287			tmp = readl(&dev->ep[i].regs->bufin_framenum);
288			tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
289			ep->txfifo += tmp;
290		}
291	}
292	return 0;
293}
294
295/* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
296static u32 cnak_pending;
297
298static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
299{
300	if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
301		DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
302		cnak_pending |= 1 << (num);
303		ep->naking = 1;
304	} else
305		cnak_pending = cnak_pending & (~(1 << (num)));
306}
307
308
309/* Enables endpoint, is called by gadget driver */
310static int
311udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
312{
313	struct udc_ep		*ep;
314	struct udc		*dev;
315	u32			tmp;
316	unsigned long		iflags;
317	u8 udc_csr_epix;
318	unsigned		maxpacket;
319
320	if (!usbep
321			|| usbep->name == ep0_string
322			|| !desc
323			|| desc->bDescriptorType != USB_DT_ENDPOINT)
324		return -EINVAL;
325
326	ep = container_of(usbep, struct udc_ep, ep);
327	dev = ep->dev;
328
329	DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
330
331	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
332		return -ESHUTDOWN;
333
334	spin_lock_irqsave(&dev->lock, iflags);
335	ep->ep.desc = desc;
336
337	ep->halted = 0;
338
339	/* set traffic type */
340	tmp = readl(&dev->ep[ep->num].regs->ctl);
341	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
342	writel(tmp, &dev->ep[ep->num].regs->ctl);
343
344	/* set max packet size */
345	maxpacket = usb_endpoint_maxp(desc);
346	tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
347	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
348	ep->ep.maxpacket = maxpacket;
349	writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
350
351	/* IN ep */
352	if (ep->in) {
353
354		/* ep ix in UDC CSR register space */
355		udc_csr_epix = ep->num;
356
357		/* set buffer size (tx fifo entries) */
358		tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
359		/* double buffering: fifo size = 2 x max packet size */
360		tmp = AMD_ADDBITS(
361				tmp,
362				maxpacket * UDC_EPIN_BUFF_SIZE_MULT
363					  / UDC_DWORD_BYTES,
364				UDC_EPIN_BUFF_SIZE);
365		writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
366
367		/* calc. tx fifo base addr */
368		udc_set_txfifo_addr(ep);
369
370		/* flush fifo */
371		tmp = readl(&ep->regs->ctl);
372		tmp |= AMD_BIT(UDC_EPCTL_F);
373		writel(tmp, &ep->regs->ctl);
374
375	/* OUT ep */
376	} else {
377		/* ep ix in UDC CSR register space */
378		udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
379
380		/* set max packet size UDC CSR	*/
381		tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
382		tmp = AMD_ADDBITS(tmp, maxpacket,
383					UDC_CSR_NE_MAX_PKT);
384		writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
385
386		if (use_dma && !ep->in) {
387			/* alloc and init BNA dummy request */
388			ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
389			ep->bna_occurred = 0;
390		}
391
392		if (ep->num != UDC_EP0OUT_IX)
393			dev->data_ep_enabled = 1;
394	}
395
396	/* set ep values */
397	tmp = readl(&dev->csr->ne[udc_csr_epix]);
398	/* max packet */
399	tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
400	/* ep number */
401	tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
402	/* ep direction */
403	tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
404	/* ep type */
405	tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
406	/* ep config */
407	tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
408	/* ep interface */
409	tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
410	/* ep alt */
411	tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
412	/* write reg */
413	writel(tmp, &dev->csr->ne[udc_csr_epix]);
414
415	/* enable ep irq */
416	tmp = readl(&dev->regs->ep_irqmsk);
417	tmp &= AMD_UNMASK_BIT(ep->num);
418	writel(tmp, &dev->regs->ep_irqmsk);
419
420	/*
421	 * clear NAK by writing CNAK
422	 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
423	 */
424	if (!use_dma || ep->in) {
425		tmp = readl(&ep->regs->ctl);
426		tmp |= AMD_BIT(UDC_EPCTL_CNAK);
427		writel(tmp, &ep->regs->ctl);
428		ep->naking = 0;
429		UDC_QUEUE_CNAK(ep, ep->num);
430	}
431	tmp = desc->bEndpointAddress;
432	DBG(dev, "%s enabled\n", usbep->name);
433
434	spin_unlock_irqrestore(&dev->lock, iflags);
435	return 0;
436}
437
438/* Resets endpoint */
439static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
440{
441	u32		tmp;
442
443	VDBG(ep->dev, "ep-%d reset\n", ep->num);
444	ep->ep.desc = NULL;
445	ep->ep.ops = &udc_ep_ops;
446	INIT_LIST_HEAD(&ep->queue);
447
448	usb_ep_set_maxpacket_limit(&ep->ep,(u16) ~0);
449	/* set NAK */
450	tmp = readl(&ep->regs->ctl);
451	tmp |= AMD_BIT(UDC_EPCTL_SNAK);
452	writel(tmp, &ep->regs->ctl);
453	ep->naking = 1;
454
455	/* disable interrupt */
456	tmp = readl(&regs->ep_irqmsk);
457	tmp |= AMD_BIT(ep->num);
458	writel(tmp, &regs->ep_irqmsk);
459
460	if (ep->in) {
461		/* unset P and IN bit of potential former DMA */
462		tmp = readl(&ep->regs->ctl);
463		tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
464		writel(tmp, &ep->regs->ctl);
465
466		tmp = readl(&ep->regs->sts);
467		tmp |= AMD_BIT(UDC_EPSTS_IN);
468		writel(tmp, &ep->regs->sts);
469
470		/* flush the fifo */
471		tmp = readl(&ep->regs->ctl);
472		tmp |= AMD_BIT(UDC_EPCTL_F);
473		writel(tmp, &ep->regs->ctl);
474
475	}
476	/* reset desc pointer */
477	writel(0, &ep->regs->desptr);
478}
479
480/* Disables endpoint, is called by gadget driver */
481static int udc_ep_disable(struct usb_ep *usbep)
482{
483	struct udc_ep	*ep = NULL;
484	unsigned long	iflags;
485
486	if (!usbep)
487		return -EINVAL;
488
489	ep = container_of(usbep, struct udc_ep, ep);
490	if (usbep->name == ep0_string || !ep->ep.desc)
491		return -EINVAL;
492
493	DBG(ep->dev, "Disable ep-%d\n", ep->num);
494
495	spin_lock_irqsave(&ep->dev->lock, iflags);
496	udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
497	empty_req_queue(ep);
498	ep_init(ep->dev->regs, ep);
499	spin_unlock_irqrestore(&ep->dev->lock, iflags);
500
501	return 0;
502}
503
504/* Allocates request packet, called by gadget driver */
505static struct usb_request *
506udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
507{
508	struct udc_request	*req;
509	struct udc_data_dma	*dma_desc;
510	struct udc_ep	*ep;
511
512	if (!usbep)
513		return NULL;
514
515	ep = container_of(usbep, struct udc_ep, ep);
516
517	VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
518	req = kzalloc(sizeof(struct udc_request), gfp);
519	if (!req)
520		return NULL;
521
522	req->req.dma = DMA_DONT_USE;
523	INIT_LIST_HEAD(&req->queue);
524
525	if (ep->dma) {
526		/* ep0 in requests are allocated from data pool here */
527		dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
528						&req->td_phys);
529		if (!dma_desc) {
530			kfree(req);
531			return NULL;
532		}
533
534		VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
535				"td_phys = %lx\n",
536				req, dma_desc,
537				(unsigned long)req->td_phys);
538		/* prevent from using desc. - set HOST BUSY */
539		dma_desc->status = AMD_ADDBITS(dma_desc->status,
540						UDC_DMA_STP_STS_BS_HOST_BUSY,
541						UDC_DMA_STP_STS_BS);
542		dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
543		req->td_data = dma_desc;
544		req->td_data_last = NULL;
545		req->chain_len = 1;
546	}
547
548	return &req->req;
549}
550
551/* Frees request packet, called by gadget driver */
552static void
553udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
554{
555	struct udc_ep	*ep;
556	struct udc_request	*req;
557
558	if (!usbep || !usbreq)
559		return;
560
561	ep = container_of(usbep, struct udc_ep, ep);
562	req = container_of(usbreq, struct udc_request, req);
563	VDBG(ep->dev, "free_req req=%p\n", req);
564	BUG_ON(!list_empty(&req->queue));
565	if (req->td_data) {
566		VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
567
568		/* free dma chain if created */
569		if (req->chain_len > 1)
570			udc_free_dma_chain(ep->dev, req);
571
572		pci_pool_free(ep->dev->data_requests, req->td_data,
573							req->td_phys);
574	}
575	kfree(req);
576}
577
578/* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
579static void udc_init_bna_dummy(struct udc_request *req)
580{
581	if (req) {
582		/* set last bit */
583		req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
584		/* set next pointer to itself */
585		req->td_data->next = req->td_phys;
586		/* set HOST BUSY */
587		req->td_data->status
588			= AMD_ADDBITS(req->td_data->status,
589					UDC_DMA_STP_STS_BS_DMA_DONE,
590					UDC_DMA_STP_STS_BS);
591#ifdef UDC_VERBOSE
592		pr_debug("bna desc = %p, sts = %08x\n",
593			req->td_data, req->td_data->status);
594#endif
595	}
596}
597
598/* Allocate BNA dummy descriptor */
599static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
600{
601	struct udc_request *req = NULL;
602	struct usb_request *_req = NULL;
603
604	/* alloc the dummy request */
605	_req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
606	if (_req) {
607		req = container_of(_req, struct udc_request, req);
608		ep->bna_dummy_req = req;
609		udc_init_bna_dummy(req);
610	}
611	return req;
612}
613
614/* Write data to TX fifo for IN packets */
615static void
616udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
617{
618	u8			*req_buf;
619	u32			*buf;
620	int			i, j;
621	unsigned		bytes = 0;
622	unsigned		remaining = 0;
623
624	if (!req || !ep)
625		return;
626
627	req_buf = req->buf + req->actual;
628	prefetch(req_buf);
629	remaining = req->length - req->actual;
630
631	buf = (u32 *) req_buf;
632
633	bytes = ep->ep.maxpacket;
634	if (bytes > remaining)
635		bytes = remaining;
636
637	/* dwords first */
638	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
639		writel(*(buf + i), ep->txfifo);
640
641	/* remaining bytes must be written by byte access */
642	for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
643		writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
644							ep->txfifo);
645	}
646
647	/* dummy write confirm */
648	writel(0, &ep->regs->confirm);
649}
650
651/* Read dwords from RX fifo for OUT transfers */
652static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
653{
654	int i;
655
656	VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
657
658	for (i = 0; i < dwords; i++)
659		*(buf + i) = readl(dev->rxfifo);
660	return 0;
661}
662
663/* Read bytes from RX fifo for OUT transfers */
664static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
665{
666	int i, j;
667	u32 tmp;
668
669	VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
670
671	/* dwords first */
672	for (i = 0; i < bytes / UDC_DWORD_BYTES; i++)
673		*((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
674
675	/* remaining bytes must be read by byte access */
676	if (bytes % UDC_DWORD_BYTES) {
677		tmp = readl(dev->rxfifo);
678		for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
679			*(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
680			tmp = tmp >> UDC_BITS_PER_BYTE;
681		}
682	}
683
684	return 0;
685}
686
687/* Read data from RX fifo for OUT transfers */
688static int
689udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
690{
691	u8 *buf;
692	unsigned buf_space;
693	unsigned bytes = 0;
694	unsigned finished = 0;
695
696	/* received number bytes */
697	bytes = readl(&ep->regs->sts);
698	bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
699
700	buf_space = req->req.length - req->req.actual;
701	buf = req->req.buf + req->req.actual;
702	if (bytes > buf_space) {
703		if ((buf_space % ep->ep.maxpacket) != 0) {
704			DBG(ep->dev,
705				"%s: rx %d bytes, rx-buf space = %d bytesn\n",
706				ep->ep.name, bytes, buf_space);
707			req->req.status = -EOVERFLOW;
708		}
709		bytes = buf_space;
710	}
711	req->req.actual += bytes;
712
713	/* last packet ? */
714	if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
715		|| ((req->req.actual == req->req.length) && !req->req.zero))
716		finished = 1;
717
718	/* read rx fifo bytes */
719	VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
720	udc_rxfifo_read_bytes(ep->dev, buf, bytes);
721
722	return finished;
723}
724
725/* create/re-init a DMA descriptor or a DMA descriptor chain */
726static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
727{
728	int	retval = 0;
729	u32	tmp;
730
731	VDBG(ep->dev, "prep_dma\n");
732	VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
733			ep->num, req->td_data);
734
735	/* set buffer pointer */
736	req->td_data->bufptr = req->req.dma;
737
738	/* set last bit */
739	req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
740
741	/* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
742	if (use_dma_ppb) {
743
744		retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
745		if (retval != 0) {
746			if (retval == -ENOMEM)
747				DBG(ep->dev, "Out of DMA memory\n");
748			return retval;
749		}
750		if (ep->in) {
751			if (req->req.length == ep->ep.maxpacket) {
752				/* write tx bytes */
753				req->td_data->status =
754					AMD_ADDBITS(req->td_data->status,
755						ep->ep.maxpacket,
756						UDC_DMA_IN_STS_TXBYTES);
757
758			}
759		}
760
761	}
762
763	if (ep->in) {
764		VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
765				"maxpacket=%d ep%d\n",
766				use_dma_ppb, req->req.length,
767				ep->ep.maxpacket, ep->num);
768		/*
769		 * if bytes < max packet then tx bytes must
770		 * be written in packet per buffer mode
771		 */
772		if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
773				|| ep->num == UDC_EP0OUT_IX
774				|| ep->num == UDC_EP0IN_IX) {
775			/* write tx bytes */
776			req->td_data->status =
777				AMD_ADDBITS(req->td_data->status,
778						req->req.length,
779						UDC_DMA_IN_STS_TXBYTES);
780			/* reset frame num */
781			req->td_data->status =
782				AMD_ADDBITS(req->td_data->status,
783						0,
784						UDC_DMA_IN_STS_FRAMENUM);
785		}
786		/* set HOST BUSY */
787		req->td_data->status =
788			AMD_ADDBITS(req->td_data->status,
789				UDC_DMA_STP_STS_BS_HOST_BUSY,
790				UDC_DMA_STP_STS_BS);
791	} else {
792		VDBG(ep->dev, "OUT set host ready\n");
793		/* set HOST READY */
794		req->td_data->status =
795			AMD_ADDBITS(req->td_data->status,
796				UDC_DMA_STP_STS_BS_HOST_READY,
797				UDC_DMA_STP_STS_BS);
798
799
800			/* clear NAK by writing CNAK */
801			if (ep->naking) {
802				tmp = readl(&ep->regs->ctl);
803				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
804				writel(tmp, &ep->regs->ctl);
805				ep->naking = 0;
806				UDC_QUEUE_CNAK(ep, ep->num);
807			}
808
809	}
810
811	return retval;
812}
813
814/* Completes request packet ... caller MUST hold lock */
815static void
816complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
817__releases(ep->dev->lock)
818__acquires(ep->dev->lock)
819{
820	struct udc		*dev;
821	unsigned		halted;
822
823	VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
824
825	dev = ep->dev;
826	/* unmap DMA */
827	if (ep->dma)
828		usb_gadget_unmap_request(&dev->gadget, &req->req, ep->in);
829
830	halted = ep->halted;
831	ep->halted = 1;
832
833	/* set new status if pending */
834	if (req->req.status == -EINPROGRESS)
835		req->req.status = sts;
836
837	/* remove from ep queue */
838	list_del_init(&req->queue);
839
840	VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
841		&req->req, req->req.length, ep->ep.name, sts);
842
843	spin_unlock(&dev->lock);
844	usb_gadget_giveback_request(&ep->ep, &req->req);
845	spin_lock(&dev->lock);
846	ep->halted = halted;
847}
848
849/* frees pci pool descriptors of a DMA chain */
850static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
851{
852
853	int ret_val = 0;
854	struct udc_data_dma	*td;
855	struct udc_data_dma	*td_last = NULL;
856	unsigned int i;
857
858	DBG(dev, "free chain req = %p\n", req);
859
860	/* do not free first desc., will be done by free for request */
861	td_last = req->td_data;
862	td = phys_to_virt(td_last->next);
863
864	for (i = 1; i < req->chain_len; i++) {
865
866		pci_pool_free(dev->data_requests, td,
867				(dma_addr_t) td_last->next);
868		td_last = td;
869		td = phys_to_virt(td_last->next);
870	}
871
872	return ret_val;
873}
874
875/* Iterates to the end of a DMA chain and returns last descriptor */
876static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
877{
878	struct udc_data_dma	*td;
879
880	td = req->td_data;
881	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L)))
882		td = phys_to_virt(td->next);
883
884	return td;
885
886}
887
888/* Iterates to the end of a DMA chain and counts bytes received */
889static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
890{
891	struct udc_data_dma	*td;
892	u32 count;
893
894	td = req->td_data;
895	/* received number bytes */
896	count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
897
898	while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
899		td = phys_to_virt(td->next);
900		/* received number bytes */
901		if (td) {
902			count += AMD_GETBITS(td->status,
903				UDC_DMA_OUT_STS_RXBYTES);
904		}
905	}
906
907	return count;
908
909}
910
911/* Creates or re-inits a DMA chain */
912static int udc_create_dma_chain(
913	struct udc_ep *ep,
914	struct udc_request *req,
915	unsigned long buf_len, gfp_t gfp_flags
916)
917{
918	unsigned long bytes = req->req.length;
919	unsigned int i;
920	dma_addr_t dma_addr;
921	struct udc_data_dma	*td = NULL;
922	struct udc_data_dma	*last = NULL;
923	unsigned long txbytes;
924	unsigned create_new_chain = 0;
925	unsigned len;
926
927	VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
928			bytes, buf_len);
929	dma_addr = DMA_DONT_USE;
930
931	/* unset L bit in first desc for OUT */
932	if (!ep->in)
933		req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
934
935	/* alloc only new desc's if not already available */
936	len = req->req.length / ep->ep.maxpacket;
937	if (req->req.length % ep->ep.maxpacket)
938		len++;
939
940	if (len > req->chain_len) {
941		/* shorter chain already allocated before */
942		if (req->chain_len > 1)
943			udc_free_dma_chain(ep->dev, req);
944		req->chain_len = len;
945		create_new_chain = 1;
946	}
947
948	td = req->td_data;
949	/* gen. required number of descriptors and buffers */
950	for (i = buf_len; i < bytes; i += buf_len) {
951		/* create or determine next desc. */
952		if (create_new_chain) {
953
954			td = pci_pool_alloc(ep->dev->data_requests,
955					gfp_flags, &dma_addr);
956			if (!td)
957				return -ENOMEM;
958
959			td->status = 0;
960		} else if (i == buf_len) {
961			/* first td */
962			td = (struct udc_data_dma *) phys_to_virt(
963						req->td_data->next);
964			td->status = 0;
965		} else {
966			td = (struct udc_data_dma *) phys_to_virt(last->next);
967			td->status = 0;
968		}
969
970
971		if (td)
972			td->bufptr = req->req.dma + i; /* assign buffer */
973		else
974			break;
975
976		/* short packet ? */
977		if ((bytes - i) >= buf_len) {
978			txbytes = buf_len;
979		} else {
980			/* short packet */
981			txbytes = bytes - i;
982		}
983
984		/* link td and assign tx bytes */
985		if (i == buf_len) {
986			if (create_new_chain)
987				req->td_data->next = dma_addr;
988			/*
989			else
990				req->td_data->next = virt_to_phys(td);
991			*/
992			/* write tx bytes */
993			if (ep->in) {
994				/* first desc */
995				req->td_data->status =
996					AMD_ADDBITS(req->td_data->status,
997							ep->ep.maxpacket,
998							UDC_DMA_IN_STS_TXBYTES);
999				/* second desc */
1000				td->status = AMD_ADDBITS(td->status,
1001							txbytes,
1002							UDC_DMA_IN_STS_TXBYTES);
1003			}
1004		} else {
1005			if (create_new_chain)
1006				last->next = dma_addr;
1007			/*
1008			else
1009				last->next = virt_to_phys(td);
1010			*/
1011			if (ep->in) {
1012				/* write tx bytes */
1013				td->status = AMD_ADDBITS(td->status,
1014							txbytes,
1015							UDC_DMA_IN_STS_TXBYTES);
1016			}
1017		}
1018		last = td;
1019	}
1020	/* set last bit */
1021	if (td) {
1022		td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1023		/* last desc. points to itself */
1024		req->td_data_last = td;
1025	}
1026
1027	return 0;
1028}
1029
1030/* Enabling RX DMA */
1031static void udc_set_rde(struct udc *dev)
1032{
1033	u32 tmp;
1034
1035	VDBG(dev, "udc_set_rde()\n");
1036	/* stop RDE timer */
1037	if (timer_pending(&udc_timer)) {
1038		set_rde = 0;
1039		mod_timer(&udc_timer, jiffies - 1);
1040	}
1041	/* set RDE */
1042	tmp = readl(&dev->regs->ctl);
1043	tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1044	writel(tmp, &dev->regs->ctl);
1045}
1046
1047/* Queues a request packet, called by gadget driver */
1048static int
1049udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1050{
1051	int			retval = 0;
1052	u8			open_rxfifo = 0;
1053	unsigned long		iflags;
1054	struct udc_ep		*ep;
1055	struct udc_request	*req;
1056	struct udc		*dev;
1057	u32			tmp;
1058
1059	/* check the inputs */
1060	req = container_of(usbreq, struct udc_request, req);
1061
1062	if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1063			|| !list_empty(&req->queue))
1064		return -EINVAL;
1065
1066	ep = container_of(usbep, struct udc_ep, ep);
1067	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1068		return -EINVAL;
1069
1070	VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1071	dev = ep->dev;
1072
1073	if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1074		return -ESHUTDOWN;
1075
1076	/* map dma (usually done before) */
1077	if (ep->dma) {
1078		VDBG(dev, "DMA map req %p\n", req);
1079		retval = usb_gadget_map_request(&udc->gadget, usbreq, ep->in);
1080		if (retval)
1081			return retval;
1082	}
1083
1084	VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1085			usbep->name, usbreq, usbreq->length,
1086			req->td_data, usbreq->buf);
1087
1088	spin_lock_irqsave(&dev->lock, iflags);
1089	usbreq->actual = 0;
1090	usbreq->status = -EINPROGRESS;
1091	req->dma_done = 0;
1092
1093	/* on empty queue just do first transfer */
1094	if (list_empty(&ep->queue)) {
1095		/* zlp */
1096		if (usbreq->length == 0) {
1097			/* IN zlp's are handled by hardware */
1098			complete_req(ep, req, 0);
1099			VDBG(dev, "%s: zlp\n", ep->ep.name);
1100			/*
1101			 * if set_config or set_intf is waiting for ack by zlp
1102			 * then set CSR_DONE
1103			 */
1104			if (dev->set_cfg_not_acked) {
1105				tmp = readl(&dev->regs->ctl);
1106				tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1107				writel(tmp, &dev->regs->ctl);
1108				dev->set_cfg_not_acked = 0;
1109			}
1110			/* setup command is ACK'ed now by zlp */
1111			if (dev->waiting_zlp_ack_ep0in) {
1112				/* clear NAK by writing CNAK in EP0_IN */
1113				tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1114				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1115				writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1116				dev->ep[UDC_EP0IN_IX].naking = 0;
1117				UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1118							UDC_EP0IN_IX);
1119				dev->waiting_zlp_ack_ep0in = 0;
1120			}
1121			goto finished;
1122		}
1123		if (ep->dma) {
1124			retval = prep_dma(ep, req, GFP_ATOMIC);
1125			if (retval != 0)
1126				goto finished;
1127			/* write desc pointer to enable DMA */
1128			if (ep->in) {
1129				/* set HOST READY */
1130				req->td_data->status =
1131					AMD_ADDBITS(req->td_data->status,
1132						UDC_DMA_IN_STS_BS_HOST_READY,
1133						UDC_DMA_IN_STS_BS);
1134			}
1135
1136			/* disabled rx dma while descriptor update */
1137			if (!ep->in) {
1138				/* stop RDE timer */
1139				if (timer_pending(&udc_timer)) {
1140					set_rde = 0;
1141					mod_timer(&udc_timer, jiffies - 1);
1142				}
1143				/* clear RDE */
1144				tmp = readl(&dev->regs->ctl);
1145				tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1146				writel(tmp, &dev->regs->ctl);
1147				open_rxfifo = 1;
1148
1149				/*
1150				 * if BNA occurred then let BNA dummy desc.
1151				 * point to current desc.
1152				 */
1153				if (ep->bna_occurred) {
1154					VDBG(dev, "copy to BNA dummy desc.\n");
1155					memcpy(ep->bna_dummy_req->td_data,
1156						req->td_data,
1157						sizeof(struct udc_data_dma));
1158				}
1159			}
1160			/* write desc pointer */
1161			writel(req->td_phys, &ep->regs->desptr);
1162
1163			/* clear NAK by writing CNAK */
1164			if (ep->naking) {
1165				tmp = readl(&ep->regs->ctl);
1166				tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1167				writel(tmp, &ep->regs->ctl);
1168				ep->naking = 0;
1169				UDC_QUEUE_CNAK(ep, ep->num);
1170			}
1171
1172			if (ep->in) {
1173				/* enable ep irq */
1174				tmp = readl(&dev->regs->ep_irqmsk);
1175				tmp &= AMD_UNMASK_BIT(ep->num);
1176				writel(tmp, &dev->regs->ep_irqmsk);
1177			}
1178		} else if (ep->in) {
1179				/* enable ep irq */
1180				tmp = readl(&dev->regs->ep_irqmsk);
1181				tmp &= AMD_UNMASK_BIT(ep->num);
1182				writel(tmp, &dev->regs->ep_irqmsk);
1183			}
1184
1185	} else if (ep->dma) {
1186
1187		/*
1188		 * prep_dma not used for OUT ep's, this is not possible
1189		 * for PPB modes, because of chain creation reasons
1190		 */
1191		if (ep->in) {
1192			retval = prep_dma(ep, req, GFP_ATOMIC);
1193			if (retval != 0)
1194				goto finished;
1195		}
1196	}
1197	VDBG(dev, "list_add\n");
1198	/* add request to ep queue */
1199	if (req) {
1200
1201		list_add_tail(&req->queue, &ep->queue);
1202
1203		/* open rxfifo if out data queued */
1204		if (open_rxfifo) {
1205			/* enable DMA */
1206			req->dma_going = 1;
1207			udc_set_rde(dev);
1208			if (ep->num != UDC_EP0OUT_IX)
1209				dev->data_ep_queued = 1;
1210		}
1211		/* stop OUT naking */
1212		if (!ep->in) {
1213			if (!use_dma && udc_rxfifo_pending) {
1214				DBG(dev, "udc_queue(): pending bytes in "
1215					"rxfifo after nyet\n");
1216				/*
1217				 * read pending bytes afer nyet:
1218				 * referring to isr
1219				 */
1220				if (udc_rxfifo_read(ep, req)) {
1221					/* finish */
1222					complete_req(ep, req, 0);
1223				}
1224				udc_rxfifo_pending = 0;
1225
1226			}
1227		}
1228	}
1229
1230finished:
1231	spin_unlock_irqrestore(&dev->lock, iflags);
1232	return retval;
1233}
1234
1235/* Empty request queue of an endpoint; caller holds spinlock */
1236static void empty_req_queue(struct udc_ep *ep)
1237{
1238	struct udc_request	*req;
1239
1240	ep->halted = 1;
1241	while (!list_empty(&ep->queue)) {
1242		req = list_entry(ep->queue.next,
1243			struct udc_request,
1244			queue);
1245		complete_req(ep, req, -ESHUTDOWN);
1246	}
1247}
1248
1249/* Dequeues a request packet, called by gadget driver */
1250static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1251{
1252	struct udc_ep		*ep;
1253	struct udc_request	*req;
1254	unsigned		halted;
1255	unsigned long		iflags;
1256
1257	ep = container_of(usbep, struct udc_ep, ep);
1258	if (!usbep || !usbreq || (!ep->ep.desc && (ep->num != 0
1259				&& ep->num != UDC_EP0OUT_IX)))
1260		return -EINVAL;
1261
1262	req = container_of(usbreq, struct udc_request, req);
1263
1264	spin_lock_irqsave(&ep->dev->lock, iflags);
1265	halted = ep->halted;
1266	ep->halted = 1;
1267	/* request in processing or next one */
1268	if (ep->queue.next == &req->queue) {
1269		if (ep->dma && req->dma_going) {
1270			if (ep->in)
1271				ep->cancel_transfer = 1;
1272			else {
1273				u32 tmp;
1274				u32 dma_sts;
1275				/* stop potential receive DMA */
1276				tmp = readl(&udc->regs->ctl);
1277				writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1278							&udc->regs->ctl);
1279				/*
1280				 * Cancel transfer later in ISR
1281				 * if descriptor was touched.
1282				 */
1283				dma_sts = AMD_GETBITS(req->td_data->status,
1284							UDC_DMA_OUT_STS_BS);
1285				if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1286					ep->cancel_transfer = 1;
1287				else {
1288					udc_init_bna_dummy(ep->req);
1289					writel(ep->bna_dummy_req->td_phys,
1290						&ep->regs->desptr);
1291				}
1292				writel(tmp, &udc->regs->ctl);
1293			}
1294		}
1295	}
1296	complete_req(ep, req, -ECONNRESET);
1297	ep->halted = halted;
1298
1299	spin_unlock_irqrestore(&ep->dev->lock, iflags);
1300	return 0;
1301}
1302
1303/* Halt or clear halt of endpoint */
1304static int
1305udc_set_halt(struct usb_ep *usbep, int halt)
1306{
1307	struct udc_ep	*ep;
1308	u32 tmp;
1309	unsigned long iflags;
1310	int retval = 0;
1311
1312	if (!usbep)
1313		return -EINVAL;
1314
1315	pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1316
1317	ep = container_of(usbep, struct udc_ep, ep);
1318	if (!ep->ep.desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1319		return -EINVAL;
1320	if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1321		return -ESHUTDOWN;
1322
1323	spin_lock_irqsave(&udc_stall_spinlock, iflags);
1324	/* halt or clear halt */
1325	if (halt) {
1326		if (ep->num == 0)
1327			ep->dev->stall_ep0in = 1;
1328		else {
1329			/*
1330			 * set STALL
1331			 * rxfifo empty not taken into acount
1332			 */
1333			tmp = readl(&ep->regs->ctl);
1334			tmp |= AMD_BIT(UDC_EPCTL_S);
1335			writel(tmp, &ep->regs->ctl);
1336			ep->halted = 1;
1337
1338			/* setup poll timer */
1339			if (!timer_pending(&udc_pollstall_timer)) {
1340				udc_pollstall_timer.expires = jiffies +
1341					HZ * UDC_POLLSTALL_TIMER_USECONDS
1342					/ (1000 * 1000);
1343				if (!stop_pollstall_timer) {
1344					DBG(ep->dev, "start polltimer\n");
1345					add_timer(&udc_pollstall_timer);
1346				}
1347			}
1348		}
1349	} else {
1350		/* ep is halted by set_halt() before */
1351		if (ep->halted) {
1352			tmp = readl(&ep->regs->ctl);
1353			/* clear stall bit */
1354			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1355			/* clear NAK by writing CNAK */
1356			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1357			writel(tmp, &ep->regs->ctl);
1358			ep->halted = 0;
1359			UDC_QUEUE_CNAK(ep, ep->num);
1360		}
1361	}
1362	spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1363	return retval;
1364}
1365
1366/* gadget interface */
1367static const struct usb_ep_ops udc_ep_ops = {
1368	.enable		= udc_ep_enable,
1369	.disable	= udc_ep_disable,
1370
1371	.alloc_request	= udc_alloc_request,
1372	.free_request	= udc_free_request,
1373
1374	.queue		= udc_queue,
1375	.dequeue	= udc_dequeue,
1376
1377	.set_halt	= udc_set_halt,
1378	/* fifo ops not implemented */
1379};
1380
1381/*-------------------------------------------------------------------------*/
1382
1383/* Get frame counter (not implemented) */
1384static int udc_get_frame(struct usb_gadget *gadget)
1385{
1386	return -EOPNOTSUPP;
1387}
1388
1389/* Remote wakeup gadget interface */
1390static int udc_wakeup(struct usb_gadget *gadget)
1391{
1392	struct udc		*dev;
1393
1394	if (!gadget)
1395		return -EINVAL;
1396	dev = container_of(gadget, struct udc, gadget);
1397	udc_remote_wakeup(dev);
1398
1399	return 0;
1400}
1401
1402static int amd5536_udc_start(struct usb_gadget *g,
1403		struct usb_gadget_driver *driver);
1404static int amd5536_udc_stop(struct usb_gadget *g);
1405
1406static const struct usb_gadget_ops udc_ops = {
1407	.wakeup		= udc_wakeup,
1408	.get_frame	= udc_get_frame,
1409	.udc_start	= amd5536_udc_start,
1410	.udc_stop	= amd5536_udc_stop,
1411};
1412
1413/* Setups endpoint parameters, adds endpoints to linked list */
1414static void make_ep_lists(struct udc *dev)
1415{
1416	/* make gadget ep lists */
1417	INIT_LIST_HEAD(&dev->gadget.ep_list);
1418	list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1419						&dev->gadget.ep_list);
1420	list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1421						&dev->gadget.ep_list);
1422	list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1423						&dev->gadget.ep_list);
1424
1425	/* fifo config */
1426	dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1427	if (dev->gadget.speed == USB_SPEED_FULL)
1428		dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1429	else if (dev->gadget.speed == USB_SPEED_HIGH)
1430		dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1431	dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1432}
1433
1434/* init registers at driver load time */
1435static int startup_registers(struct udc *dev)
1436{
1437	u32 tmp;
1438
1439	/* init controller by soft reset */
1440	udc_soft_reset(dev);
1441
1442	/* mask not needed interrupts */
1443	udc_mask_unused_interrupts(dev);
1444
1445	/* put into initial config */
1446	udc_basic_init(dev);
1447	/* link up all endpoints */
1448	udc_setup_endpoints(dev);
1449
1450	/* program speed */
1451	tmp = readl(&dev->regs->cfg);
1452	if (use_fullspeed)
1453		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1454	else
1455		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1456	writel(tmp, &dev->regs->cfg);
1457
1458	return 0;
1459}
1460
1461/* Inits UDC context */
1462static void udc_basic_init(struct udc *dev)
1463{
1464	u32	tmp;
1465
1466	DBG(dev, "udc_basic_init()\n");
1467
1468	dev->gadget.speed = USB_SPEED_UNKNOWN;
1469
1470	/* stop RDE timer */
1471	if (timer_pending(&udc_timer)) {
1472		set_rde = 0;
1473		mod_timer(&udc_timer, jiffies - 1);
1474	}
1475	/* stop poll stall timer */
1476	if (timer_pending(&udc_pollstall_timer))
1477		mod_timer(&udc_pollstall_timer, jiffies - 1);
1478	/* disable DMA */
1479	tmp = readl(&dev->regs->ctl);
1480	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1481	tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1482	writel(tmp, &dev->regs->ctl);
1483
1484	/* enable dynamic CSR programming */
1485	tmp = readl(&dev->regs->cfg);
1486	tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1487	/* set self powered */
1488	tmp |= AMD_BIT(UDC_DEVCFG_SP);
1489	/* set remote wakeupable */
1490	tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1491	writel(tmp, &dev->regs->cfg);
1492
1493	make_ep_lists(dev);
1494
1495	dev->data_ep_enabled = 0;
1496	dev->data_ep_queued = 0;
1497}
1498
1499/* Sets initial endpoint parameters */
1500static void udc_setup_endpoints(struct udc *dev)
1501{
1502	struct udc_ep	*ep;
1503	u32	tmp;
1504	u32	reg;
1505
1506	DBG(dev, "udc_setup_endpoints()\n");
1507
1508	/* read enum speed */
1509	tmp = readl(&dev->regs->sts);
1510	tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1511	if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH)
1512		dev->gadget.speed = USB_SPEED_HIGH;
1513	else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL)
1514		dev->gadget.speed = USB_SPEED_FULL;
1515
1516	/* set basic ep parameters */
1517	for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1518		ep = &dev->ep[tmp];
1519		ep->dev = dev;
1520		ep->ep.name = ep_string[tmp];
1521		ep->num = tmp;
1522		/* txfifo size is calculated at enable time */
1523		ep->txfifo = dev->txfifo;
1524
1525		/* fifo size */
1526		if (tmp < UDC_EPIN_NUM) {
1527			ep->fifo_depth = UDC_TXFIFO_SIZE;
1528			ep->in = 1;
1529		} else {
1530			ep->fifo_depth = UDC_RXFIFO_SIZE;
1531			ep->in = 0;
1532
1533		}
1534		ep->regs = &dev->ep_regs[tmp];
1535		/*
1536		 * ep will be reset only if ep was not enabled before to avoid
1537		 * disabling ep interrupts when ENUM interrupt occurs but ep is
1538		 * not enabled by gadget driver
1539		 */
1540		if (!ep->ep.desc)
1541			ep_init(dev->regs, ep);
1542
1543		if (use_dma) {
1544			/*
1545			 * ep->dma is not really used, just to indicate that
1546			 * DMA is active: remove this
1547			 * dma regs = dev control regs
1548			 */
1549			ep->dma = &dev->regs->ctl;
1550
1551			/* nak OUT endpoints until enable - not for ep0 */
1552			if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1553						&& tmp > UDC_EPIN_NUM) {
1554				/* set NAK */
1555				reg = readl(&dev->ep[tmp].regs->ctl);
1556				reg |= AMD_BIT(UDC_EPCTL_SNAK);
1557				writel(reg, &dev->ep[tmp].regs->ctl);
1558				dev->ep[tmp].naking = 1;
1559
1560			}
1561		}
1562	}
1563	/* EP0 max packet */
1564	if (dev->gadget.speed == USB_SPEED_FULL) {
1565		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1566					   UDC_FS_EP0IN_MAX_PKT_SIZE);
1567		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1568					   UDC_FS_EP0OUT_MAX_PKT_SIZE);
1569	} else if (dev->gadget.speed == USB_SPEED_HIGH) {
1570		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0IN_IX].ep,
1571					   UDC_EP0IN_MAX_PKT_SIZE);
1572		usb_ep_set_maxpacket_limit(&dev->ep[UDC_EP0OUT_IX].ep,
1573					   UDC_EP0OUT_MAX_PKT_SIZE);
1574	}
1575
1576	/*
1577	 * with suspend bug workaround, ep0 params for gadget driver
1578	 * are set at gadget driver bind() call
1579	 */
1580	dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1581	dev->ep[UDC_EP0IN_IX].halted = 0;
1582	INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1583
1584	/* init cfg/alt/int */
1585	dev->cur_config = 0;
1586	dev->cur_intf = 0;
1587	dev->cur_alt = 0;
1588}
1589
1590/* Bringup after Connect event, initial bringup to be ready for ep0 events */
1591static void usb_connect(struct udc *dev)
1592{
1593
1594	dev_info(&dev->pdev->dev, "USB Connect\n");
1595
1596	dev->connected = 1;
1597
1598	/* put into initial config */
1599	udc_basic_init(dev);
1600
1601	/* enable device setup interrupts */
1602	udc_enable_dev_setup_interrupts(dev);
1603}
1604
1605/*
1606 * Calls gadget with disconnect event and resets the UDC and makes
1607 * initial bringup to be ready for ep0 events
1608 */
1609static void usb_disconnect(struct udc *dev)
1610{
1611
1612	dev_info(&dev->pdev->dev, "USB Disconnect\n");
1613
1614	dev->connected = 0;
1615
1616	/* mask interrupts */
1617	udc_mask_unused_interrupts(dev);
1618
1619	/* REVISIT there doesn't seem to be a point to having this
1620	 * talk to a tasklet ... do it directly, we already hold
1621	 * the spinlock needed to process the disconnect.
1622	 */
1623
1624	tasklet_schedule(&disconnect_tasklet);
1625}
1626
1627/* Tasklet for disconnect to be outside of interrupt context */
1628static void udc_tasklet_disconnect(unsigned long par)
1629{
1630	struct udc *dev = (struct udc *)(*((struct udc **) par));
1631	u32 tmp;
1632
1633	DBG(dev, "Tasklet disconnect\n");
1634	spin_lock_irq(&dev->lock);
1635
1636	if (dev->driver) {
1637		spin_unlock(&dev->lock);
1638		dev->driver->disconnect(&dev->gadget);
1639		spin_lock(&dev->lock);
1640
1641		/* empty queues */
1642		for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1643			empty_req_queue(&dev->ep[tmp]);
1644
1645	}
1646
1647	/* disable ep0 */
1648	ep_init(dev->regs,
1649			&dev->ep[UDC_EP0IN_IX]);
1650
1651
1652	if (!soft_reset_occured) {
1653		/* init controller by soft reset */
1654		udc_soft_reset(dev);
1655		soft_reset_occured++;
1656	}
1657
1658	/* re-enable dev interrupts */
1659	udc_enable_dev_setup_interrupts(dev);
1660	/* back to full speed ? */
1661	if (use_fullspeed) {
1662		tmp = readl(&dev->regs->cfg);
1663		tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1664		writel(tmp, &dev->regs->cfg);
1665	}
1666
1667	spin_unlock_irq(&dev->lock);
1668}
1669
1670/* Reset the UDC core */
1671static void udc_soft_reset(struct udc *dev)
1672{
1673	unsigned long	flags;
1674
1675	DBG(dev, "Soft reset\n");
1676	/*
1677	 * reset possible waiting interrupts, because int.
1678	 * status is lost after soft reset,
1679	 * ep int. status reset
1680	 */
1681	writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1682	/* device int. status reset */
1683	writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1684
1685	spin_lock_irqsave(&udc_irq_spinlock, flags);
1686	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1687	readl(&dev->regs->cfg);
1688	spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1689
1690}
1691
1692/* RDE timer callback to set RDE bit */
1693static void udc_timer_function(unsigned long v)
1694{
1695	u32 tmp;
1696
1697	spin_lock_irq(&udc_irq_spinlock);
1698
1699	if (set_rde > 0) {
1700		/*
1701		 * open the fifo if fifo was filled on last timer call
1702		 * conditionally
1703		 */
1704		if (set_rde > 1) {
1705			/* set RDE to receive setup data */
1706			tmp = readl(&udc->regs->ctl);
1707			tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1708			writel(tmp, &udc->regs->ctl);
1709			set_rde = -1;
1710		} else if (readl(&udc->regs->sts)
1711				& AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1712			/*
1713			 * if fifo empty setup polling, do not just
1714			 * open the fifo
1715			 */
1716			udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1717			if (!stop_timer)
1718				add_timer(&udc_timer);
1719		} else {
1720			/*
1721			 * fifo contains data now, setup timer for opening
1722			 * the fifo when timer expires to be able to receive
1723			 * setup packets, when data packets gets queued by
1724			 * gadget layer then timer will forced to expire with
1725			 * set_rde=0 (RDE is set in udc_queue())
1726			 */
1727			set_rde++;
1728			/* debug: lhadmot_timer_start = 221070 */
1729			udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1730			if (!stop_timer)
1731				add_timer(&udc_timer);
1732		}
1733
1734	} else
1735		set_rde = -1; /* RDE was set by udc_queue() */
1736	spin_unlock_irq(&udc_irq_spinlock);
1737	if (stop_timer)
1738		complete(&on_exit);
1739
1740}
1741
1742/* Handle halt state, used in stall poll timer */
1743static void udc_handle_halt_state(struct udc_ep *ep)
1744{
1745	u32 tmp;
1746	/* set stall as long not halted */
1747	if (ep->halted == 1) {
1748		tmp = readl(&ep->regs->ctl);
1749		/* STALL cleared ? */
1750		if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1751			/*
1752			 * FIXME: MSC spec requires that stall remains
1753			 * even on receivng of CLEAR_FEATURE HALT. So
1754			 * we would set STALL again here to be compliant.
1755			 * But with current mass storage drivers this does
1756			 * not work (would produce endless host retries).
1757			 * So we clear halt on CLEAR_FEATURE.
1758			 *
1759			DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1760			tmp |= AMD_BIT(UDC_EPCTL_S);
1761			writel(tmp, &ep->regs->ctl);*/
1762
1763			/* clear NAK by writing CNAK */
1764			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1765			writel(tmp, &ep->regs->ctl);
1766			ep->halted = 0;
1767			UDC_QUEUE_CNAK(ep, ep->num);
1768		}
1769	}
1770}
1771
1772/* Stall timer callback to poll S bit and set it again after */
1773static void udc_pollstall_timer_function(unsigned long v)
1774{
1775	struct udc_ep *ep;
1776	int halted = 0;
1777
1778	spin_lock_irq(&udc_stall_spinlock);
1779	/*
1780	 * only one IN and OUT endpoints are handled
1781	 * IN poll stall
1782	 */
1783	ep = &udc->ep[UDC_EPIN_IX];
1784	udc_handle_halt_state(ep);
1785	if (ep->halted)
1786		halted = 1;
1787	/* OUT poll stall */
1788	ep = &udc->ep[UDC_EPOUT_IX];
1789	udc_handle_halt_state(ep);
1790	if (ep->halted)
1791		halted = 1;
1792
1793	/* setup timer again when still halted */
1794	if (!stop_pollstall_timer && halted) {
1795		udc_pollstall_timer.expires = jiffies +
1796					HZ * UDC_POLLSTALL_TIMER_USECONDS
1797					/ (1000 * 1000);
1798		add_timer(&udc_pollstall_timer);
1799	}
1800	spin_unlock_irq(&udc_stall_spinlock);
1801
1802	if (stop_pollstall_timer)
1803		complete(&on_pollstall_exit);
1804}
1805
1806/* Inits endpoint 0 so that SETUP packets are processed */
1807static void activate_control_endpoints(struct udc *dev)
1808{
1809	u32 tmp;
1810
1811	DBG(dev, "activate_control_endpoints\n");
1812
1813	/* flush fifo */
1814	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1815	tmp |= AMD_BIT(UDC_EPCTL_F);
1816	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1817
1818	/* set ep0 directions */
1819	dev->ep[UDC_EP0IN_IX].in = 1;
1820	dev->ep[UDC_EP0OUT_IX].in = 0;
1821
1822	/* set buffer size (tx fifo entries) of EP0_IN */
1823	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1824	if (dev->gadget.speed == USB_SPEED_FULL)
1825		tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1826					UDC_EPIN_BUFF_SIZE);
1827	else if (dev->gadget.speed == USB_SPEED_HIGH)
1828		tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1829					UDC_EPIN_BUFF_SIZE);
1830	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1831
1832	/* set max packet size of EP0_IN */
1833	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1834	if (dev->gadget.speed == USB_SPEED_FULL)
1835		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1836					UDC_EP_MAX_PKT_SIZE);
1837	else if (dev->gadget.speed == USB_SPEED_HIGH)
1838		tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1839				UDC_EP_MAX_PKT_SIZE);
1840	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1841
1842	/* set max packet size of EP0_OUT */
1843	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1844	if (dev->gadget.speed == USB_SPEED_FULL)
1845		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1846					UDC_EP_MAX_PKT_SIZE);
1847	else if (dev->gadget.speed == USB_SPEED_HIGH)
1848		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1849					UDC_EP_MAX_PKT_SIZE);
1850	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1851
1852	/* set max packet size of EP0 in UDC CSR */
1853	tmp = readl(&dev->csr->ne[0]);
1854	if (dev->gadget.speed == USB_SPEED_FULL)
1855		tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1856					UDC_CSR_NE_MAX_PKT);
1857	else if (dev->gadget.speed == USB_SPEED_HIGH)
1858		tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1859					UDC_CSR_NE_MAX_PKT);
1860	writel(tmp, &dev->csr->ne[0]);
1861
1862	if (use_dma) {
1863		dev->ep[UDC_EP0OUT_IX].td->status |=
1864			AMD_BIT(UDC_DMA_OUT_STS_L);
1865		/* write dma desc address */
1866		writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1867			&dev->ep[UDC_EP0OUT_IX].regs->subptr);
1868		writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1869			&dev->ep[UDC_EP0OUT_IX].regs->desptr);
1870		/* stop RDE timer */
1871		if (timer_pending(&udc_timer)) {
1872			set_rde = 0;
1873			mod_timer(&udc_timer, jiffies - 1);
1874		}
1875		/* stop pollstall timer */
1876		if (timer_pending(&udc_pollstall_timer))
1877			mod_timer(&udc_pollstall_timer, jiffies - 1);
1878		/* enable DMA */
1879		tmp = readl(&dev->regs->ctl);
1880		tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1881				| AMD_BIT(UDC_DEVCTL_RDE)
1882				| AMD_BIT(UDC_DEVCTL_TDE);
1883		if (use_dma_bufferfill_mode)
1884			tmp |= AMD_BIT(UDC_DEVCTL_BF);
1885		else if (use_dma_ppb_du)
1886			tmp |= AMD_BIT(UDC_DEVCTL_DU);
1887		writel(tmp, &dev->regs->ctl);
1888	}
1889
1890	/* clear NAK by writing CNAK for EP0IN */
1891	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1892	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1893	writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1894	dev->ep[UDC_EP0IN_IX].naking = 0;
1895	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1896
1897	/* clear NAK by writing CNAK for EP0OUT */
1898	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1899	tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1900	writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1901	dev->ep[UDC_EP0OUT_IX].naking = 0;
1902	UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1903}
1904
1905/* Make endpoint 0 ready for control traffic */
1906static int setup_ep0(struct udc *dev)
1907{
1908	activate_control_endpoints(dev);
1909	/* enable ep0 interrupts */
1910	udc_enable_ep0_interrupts(dev);
1911	/* enable device setup interrupts */
1912	udc_enable_dev_setup_interrupts(dev);
1913
1914	return 0;
1915}
1916
1917/* Called by gadget driver to register itself */
1918static int amd5536_udc_start(struct usb_gadget *g,
1919		struct usb_gadget_driver *driver)
1920{
1921	struct udc *dev = to_amd5536_udc(g);
1922	u32 tmp;
1923
1924	driver->driver.bus = NULL;
1925	dev->driver = driver;
1926
1927	/* Some gadget drivers use both ep0 directions.
1928	 * NOTE: to gadget driver, ep0 is just one endpoint...
1929	 */
1930	dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1931		dev->ep[UDC_EP0IN_IX].ep.driver_data;
1932
1933	/* get ready for ep0 traffic */
1934	setup_ep0(dev);
1935
1936	/* clear SD */
1937	tmp = readl(&dev->regs->ctl);
1938	tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1939	writel(tmp, &dev->regs->ctl);
1940
1941	usb_connect(dev);
1942
1943	return 0;
1944}
1945
1946/* shutdown requests and disconnect from gadget */
1947static void
1948shutdown(struct udc *dev, struct usb_gadget_driver *driver)
1949__releases(dev->lock)
1950__acquires(dev->lock)
1951{
1952	int tmp;
1953
1954	/* empty queues and init hardware */
1955	udc_basic_init(dev);
1956
1957	for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
1958		empty_req_queue(&dev->ep[tmp]);
1959
1960	udc_setup_endpoints(dev);
1961}
1962
1963/* Called by gadget driver to unregister itself */
1964static int amd5536_udc_stop(struct usb_gadget *g)
1965{
1966	struct udc *dev = to_amd5536_udc(g);
1967	unsigned long flags;
1968	u32 tmp;
1969
1970	spin_lock_irqsave(&dev->lock, flags);
1971	udc_mask_unused_interrupts(dev);
1972	shutdown(dev, NULL);
1973	spin_unlock_irqrestore(&dev->lock, flags);
1974
1975	dev->driver = NULL;
1976
1977	/* set SD */
1978	tmp = readl(&dev->regs->ctl);
1979	tmp |= AMD_BIT(UDC_DEVCTL_SD);
1980	writel(tmp, &dev->regs->ctl);
1981
1982	return 0;
1983}
1984
1985/* Clear pending NAK bits */
1986static void udc_process_cnak_queue(struct udc *dev)
1987{
1988	u32 tmp;
1989	u32 reg;
1990
1991	/* check epin's */
1992	DBG(dev, "CNAK pending queue processing\n");
1993	for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
1994		if (cnak_pending & (1 << tmp)) {
1995			DBG(dev, "CNAK pending for ep%d\n", tmp);
1996			/* clear NAK by writing CNAK */
1997			reg = readl(&dev->ep[tmp].regs->ctl);
1998			reg |= AMD_BIT(UDC_EPCTL_CNAK);
1999			writel(reg, &dev->ep[tmp].regs->ctl);
2000			dev->ep[tmp].naking = 0;
2001			UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2002		}
2003	}
2004	/* ...	and ep0out */
2005	if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2006		DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2007		/* clear NAK by writing CNAK */
2008		reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2009		reg |= AMD_BIT(UDC_EPCTL_CNAK);
2010		writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2011		dev->ep[UDC_EP0OUT_IX].naking = 0;
2012		UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2013				dev->ep[UDC_EP0OUT_IX].num);
2014	}
2015}
2016
2017/* Enabling RX DMA after setup packet */
2018static void udc_ep0_set_rde(struct udc *dev)
2019{
2020	if (use_dma) {
2021		/*
2022		 * only enable RXDMA when no data endpoint enabled
2023		 * or data is queued
2024		 */
2025		if (!dev->data_ep_enabled || dev->data_ep_queued) {
2026			udc_set_rde(dev);
2027		} else {
2028			/*
2029			 * setup timer for enabling RDE (to not enable
2030			 * RXFIFO DMA for data endpoints to early)
2031			 */
2032			if (set_rde != 0 && !timer_pending(&udc_timer)) {
2033				udc_timer.expires =
2034					jiffies + HZ/UDC_RDE_TIMER_DIV;
2035				set_rde = 1;
2036				if (!stop_timer)
2037					add_timer(&udc_timer);
2038			}
2039		}
2040	}
2041}
2042
2043
2044/* Interrupt handler for data OUT traffic */
2045static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2046{
2047	irqreturn_t		ret_val = IRQ_NONE;
2048	u32			tmp;
2049	struct udc_ep		*ep;
2050	struct udc_request	*req;
2051	unsigned int		count;
2052	struct udc_data_dma	*td = NULL;
2053	unsigned		dma_done;
2054
2055	VDBG(dev, "ep%d irq\n", ep_ix);
2056	ep = &dev->ep[ep_ix];
2057
2058	tmp = readl(&ep->regs->sts);
2059	if (use_dma) {
2060		/* BNA event ? */
2061		if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2062			DBG(dev, "BNA ep%dout occurred - DESPTR = %x\n",
2063					ep->num, readl(&ep->regs->desptr));
2064			/* clear BNA */
2065			writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2066			if (!ep->cancel_transfer)
2067				ep->bna_occurred = 1;
2068			else
2069				ep->cancel_transfer = 0;
2070			ret_val = IRQ_HANDLED;
2071			goto finished;
2072		}
2073	}
2074	/* HE event ? */
2075	if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2076		dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2077
2078		/* clear HE */
2079		writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2080		ret_val = IRQ_HANDLED;
2081		goto finished;
2082	}
2083
2084	if (!list_empty(&ep->queue)) {
2085
2086		/* next request */
2087		req = list_entry(ep->queue.next,
2088			struct udc_request, queue);
2089	} else {
2090		req = NULL;
2091		udc_rxfifo_pending = 1;
2092	}
2093	VDBG(dev, "req = %p\n", req);
2094	/* fifo mode */
2095	if (!use_dma) {
2096
2097		/* read fifo */
2098		if (req && udc_rxfifo_read(ep, req)) {
2099			ret_val = IRQ_HANDLED;
2100
2101			/* finish */
2102			complete_req(ep, req, 0);
2103			/* next request */
2104			if (!list_empty(&ep->queue) && !ep->halted) {
2105				req = list_entry(ep->queue.next,
2106					struct udc_request, queue);
2107			} else
2108				req = NULL;
2109		}
2110
2111	/* DMA */
2112	} else if (!ep->cancel_transfer && req != NULL) {
2113		ret_val = IRQ_HANDLED;
2114
2115		/* check for DMA done */
2116		if (!use_dma_ppb) {
2117			dma_done = AMD_GETBITS(req->td_data->status,
2118						UDC_DMA_OUT_STS_BS);
2119		/* packet per buffer mode - rx bytes */
2120		} else {
2121			/*
2122			 * if BNA occurred then recover desc. from
2123			 * BNA dummy desc.
2124			 */
2125			if (ep->bna_occurred) {
2126				VDBG(dev, "Recover desc. from BNA dummy\n");
2127				memcpy(req->td_data, ep->bna_dummy_req->td_data,
2128						sizeof(struct udc_data_dma));
2129				ep->bna_occurred = 0;
2130				udc_init_bna_dummy(ep->req);
2131			}
2132			td = udc_get_last_dma_desc(req);
2133			dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2134		}
2135		if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2136			/* buffer fill mode - rx bytes */
2137			if (!use_dma_ppb) {
2138				/* received number bytes */
2139				count = AMD_GETBITS(req->td_data->status,
2140						UDC_DMA_OUT_STS_RXBYTES);
2141				VDBG(dev, "rx bytes=%u\n", count);
2142			/* packet per buffer mode - rx bytes */
2143			} else {
2144				VDBG(dev, "req->td_data=%p\n", req->td_data);
2145				VDBG(dev, "last desc = %p\n", td);
2146				/* received number bytes */
2147				if (use_dma_ppb_du) {
2148					/* every desc. counts bytes */
2149					count = udc_get_ppbdu_rxbytes(req);
2150				} else {
2151					/* last desc. counts bytes */
2152					count = AMD_GETBITS(td->status,
2153						UDC_DMA_OUT_STS_RXBYTES);
2154					if (!count && req->req.length
2155						== UDC_DMA_MAXPACKET) {
2156						/*
2157						 * on 64k packets the RXBYTES
2158						 * field is zero
2159						 */
2160						count = UDC_DMA_MAXPACKET;
2161					}
2162				}
2163				VDBG(dev, "last desc rx bytes=%u\n", count);
2164			}
2165
2166			tmp = req->req.length - req->req.actual;
2167			if (count > tmp) {
2168				if ((tmp % ep->ep.maxpacket) != 0) {
2169					DBG(dev, "%s: rx %db, space=%db\n",
2170						ep->ep.name, count, tmp);
2171					req->req.status = -EOVERFLOW;
2172				}
2173				count = tmp;
2174			}
2175			req->req.actual += count;
2176			req->dma_going = 0;
2177			/* complete request */
2178			complete_req(ep, req, 0);
2179
2180			/* next request */
2181			if (!list_empty(&ep->queue) && !ep->halted) {
2182				req = list_entry(ep->queue.next,
2183					struct udc_request,
2184					queue);
2185				/*
2186				 * DMA may be already started by udc_queue()
2187				 * called by gadget drivers completion
2188				 * routine. This happens when queue
2189				 * holds one request only.
2190				 */
2191				if (req->dma_going == 0) {
2192					/* next dma */
2193					if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2194						goto finished;
2195					/* write desc pointer */
2196					writel(req->td_phys,
2197						&ep->regs->desptr);
2198					req->dma_going = 1;
2199					/* enable DMA */
2200					udc_set_rde(dev);
2201				}
2202			} else {
2203				/*
2204				 * implant BNA dummy descriptor to allow
2205				 * RXFIFO opening by RDE
2206				 */
2207				if (ep->bna_dummy_req) {
2208					/* write desc pointer */
2209					writel(ep->bna_dummy_req->td_phys,
2210						&ep->regs->desptr);
2211					ep->bna_occurred = 0;
2212				}
2213
2214				/*
2215				 * schedule timer for setting RDE if queue
2216				 * remains empty to allow ep0 packets pass
2217				 * through
2218				 */
2219				if (set_rde != 0
2220						&& !timer_pending(&udc_timer)) {
2221					udc_timer.expires =
2222						jiffies
2223						+ HZ*UDC_RDE_TIMER_SECONDS;
2224					set_rde = 1;
2225					if (!stop_timer)
2226						add_timer(&udc_timer);
2227				}
2228				if (ep->num != UDC_EP0OUT_IX)
2229					dev->data_ep_queued = 0;
2230			}
2231
2232		} else {
2233			/*
2234			* RX DMA must be reenabled for each desc in PPBDU mode
2235			* and must be enabled for PPBNDU mode in case of BNA
2236			*/
2237			udc_set_rde(dev);
2238		}
2239
2240	} else if (ep->cancel_transfer) {
2241		ret_val = IRQ_HANDLED;
2242		ep->cancel_transfer = 0;
2243	}
2244
2245	/* check pending CNAKS */
2246	if (cnak_pending) {
2247		/* CNAk processing when rxfifo empty only */
2248		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2249			udc_process_cnak_queue(dev);
2250	}
2251
2252	/* clear OUT bits in ep status */
2253	writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2254finished:
2255	return ret_val;
2256}
2257
2258/* Interrupt handler for data IN traffic */
2259static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2260{
2261	irqreturn_t ret_val = IRQ_NONE;
2262	u32 tmp;
2263	u32 epsts;
2264	struct udc_ep *ep;
2265	struct udc_request *req;
2266	struct udc_data_dma *td;
2267	unsigned dma_done;
2268	unsigned len;
2269
2270	ep = &dev->ep[ep_ix];
2271
2272	epsts = readl(&ep->regs->sts);
2273	if (use_dma) {
2274		/* BNA ? */
2275		if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2276			dev_err(&dev->pdev->dev,
2277				"BNA ep%din occurred - DESPTR = %08lx\n",
2278				ep->num,
2279				(unsigned long) readl(&ep->regs->desptr));
2280
2281			/* clear BNA */
2282			writel(epsts, &ep->regs->sts);
2283			ret_val = IRQ_HANDLED;
2284			goto finished;
2285		}
2286	}
2287	/* HE event ? */
2288	if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2289		dev_err(&dev->pdev->dev,
2290			"HE ep%dn occurred - DESPTR = %08lx\n",
2291			ep->num, (unsigned long) readl(&ep->regs->desptr));
2292
2293		/* clear HE */
2294		writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2295		ret_val = IRQ_HANDLED;
2296		goto finished;
2297	}
2298
2299	/* DMA completion */
2300	if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2301		VDBG(dev, "TDC set- completion\n");
2302		ret_val = IRQ_HANDLED;
2303		if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2304			req = list_entry(ep->queue.next,
2305					struct udc_request, queue);
2306			/*
2307			 * length bytes transferred
2308			 * check dma done of last desc. in PPBDU mode
2309			 */
2310			if (use_dma_ppb_du) {
2311				td = udc_get_last_dma_desc(req);
2312				if (td) {
2313					dma_done =
2314						AMD_GETBITS(td->status,
2315						UDC_DMA_IN_STS_BS);
2316					/* don't care DMA done */
2317					req->req.actual = req->req.length;
2318				}
2319			} else {
2320				/* assume all bytes transferred */
2321				req->req.actual = req->req.length;
2322			}
2323
2324			if (req->req.actual == req->req.length) {
2325				/* complete req */
2326				complete_req(ep, req, 0);
2327				req->dma_going = 0;
2328				/* further request available ? */
2329				if (list_empty(&ep->queue)) {
2330					/* disable interrupt */
2331					tmp = readl(&dev->regs->ep_irqmsk);
2332					tmp |= AMD_BIT(ep->num);
2333					writel(tmp, &dev->regs->ep_irqmsk);
2334				}
2335			}
2336		}
2337		ep->cancel_transfer = 0;
2338
2339	}
2340	/*
2341	 * status reg has IN bit set and TDC not set (if TDC was handled,
2342	 * IN must not be handled (UDC defect) ?
2343	 */
2344	if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2345			&& !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2346		ret_val = IRQ_HANDLED;
2347		if (!list_empty(&ep->queue)) {
2348			/* next request */
2349			req = list_entry(ep->queue.next,
2350					struct udc_request, queue);
2351			/* FIFO mode */
2352			if (!use_dma) {
2353				/* write fifo */
2354				udc_txfifo_write(ep, &req->req);
2355				len = req->req.length - req->req.actual;
2356				if (len > ep->ep.maxpacket)
2357					len = ep->ep.maxpacket;
2358				req->req.actual += len;
2359				if (req->req.actual == req->req.length
2360					|| (len != ep->ep.maxpacket)) {
2361					/* complete req */
2362					complete_req(ep, req, 0);
2363				}
2364			/* DMA */
2365			} else if (req && !req->dma_going) {
2366				VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2367					req, req->td_data);
2368				if (req->td_data) {
2369
2370					req->dma_going = 1;
2371
2372					/*
2373					 * unset L bit of first desc.
2374					 * for chain
2375					 */
2376					if (use_dma_ppb && req->req.length >
2377							ep->ep.maxpacket) {
2378						req->td_data->status &=
2379							AMD_CLEAR_BIT(
2380							UDC_DMA_IN_STS_L);
2381					}
2382
2383					/* write desc pointer */
2384					writel(req->td_phys, &ep->regs->desptr);
2385
2386					/* set HOST READY */
2387					req->td_data->status =
2388						AMD_ADDBITS(
2389						req->td_data->status,
2390						UDC_DMA_IN_STS_BS_HOST_READY,
2391						UDC_DMA_IN_STS_BS);
2392
2393					/* set poll demand bit */
2394					tmp = readl(&ep->regs->ctl);
2395					tmp |= AMD_BIT(UDC_EPCTL_P);
2396					writel(tmp, &ep->regs->ctl);
2397				}
2398			}
2399
2400		} else if (!use_dma && ep->in) {
2401			/* disable interrupt */
2402			tmp = readl(
2403				&dev->regs->ep_irqmsk);
2404			tmp |= AMD_BIT(ep->num);
2405			writel(tmp,
2406				&dev->regs->ep_irqmsk);
2407		}
2408	}
2409	/* clear status bits */
2410	writel(epsts, &ep->regs->sts);
2411
2412finished:
2413	return ret_val;
2414
2415}
2416
2417/* Interrupt handler for Control OUT traffic */
2418static irqreturn_t udc_control_out_isr(struct udc *dev)
2419__releases(dev->lock)
2420__acquires(dev->lock)
2421{
2422	irqreturn_t ret_val = IRQ_NONE;
2423	u32 tmp;
2424	int setup_supported;
2425	u32 count;
2426	int set = 0;
2427	struct udc_ep	*ep;
2428	struct udc_ep	*ep_tmp;
2429
2430	ep = &dev->ep[UDC_EP0OUT_IX];
2431
2432	/* clear irq */
2433	writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2434
2435	tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2436	/* check BNA and clear if set */
2437	if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2438		VDBG(dev, "ep0: BNA set\n");
2439		writel(AMD_BIT(UDC_EPSTS_BNA),
2440			&dev->ep[UDC_EP0OUT_IX].regs->sts);
2441		ep->bna_occurred = 1;
2442		ret_val = IRQ_HANDLED;
2443		goto finished;
2444	}
2445
2446	/* type of data: SETUP or DATA 0 bytes */
2447	tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2448	VDBG(dev, "data_typ = %x\n", tmp);
2449
2450	/* setup data */
2451	if (tmp == UDC_EPSTS_OUT_SETUP) {
2452		ret_val = IRQ_HANDLED;
2453
2454		ep->dev->stall_ep0in = 0;
2455		dev->waiting_zlp_ack_ep0in = 0;
2456
2457		/* set NAK for EP0_IN */
2458		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2459		tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2460		writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2461		dev->ep[UDC_EP0IN_IX].naking = 1;
2462		/* get setup data */
2463		if (use_dma) {
2464
2465			/* clear OUT bits in ep status */
2466			writel(UDC_EPSTS_OUT_CLEAR,
2467				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2468
2469			setup_data.data[0] =
2470				dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2471			setup_data.data[1] =
2472				dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2473			/* set HOST READY */
2474			dev->ep[UDC_EP0OUT_IX].td_stp->status =
2475					UDC_DMA_STP_STS_BS_HOST_READY;
2476		} else {
2477			/* read fifo */
2478			udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2479		}
2480
2481		/* determine direction of control data */
2482		if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2483			dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2484			/* enable RDE */
2485			udc_ep0_set_rde(dev);
2486			set = 0;
2487		} else {
2488			dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2489			/*
2490			 * implant BNA dummy descriptor to allow RXFIFO opening
2491			 * by RDE
2492			 */
2493			if (ep->bna_dummy_req) {
2494				/* write desc pointer */
2495				writel(ep->bna_dummy_req->td_phys,
2496					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2497				ep->bna_occurred = 0;
2498			}
2499
2500			set = 1;
2501			dev->ep[UDC_EP0OUT_IX].naking = 1;
2502			/*
2503			 * setup timer for enabling RDE (to not enable
2504			 * RXFIFO DMA for data to early)
2505			 */
2506			set_rde = 1;
2507			if (!timer_pending(&udc_timer)) {
2508				udc_timer.expires = jiffies +
2509							HZ/UDC_RDE_TIMER_DIV;
2510				if (!stop_timer)
2511					add_timer(&udc_timer);
2512			}
2513		}
2514
2515		/*
2516		 * mass storage reset must be processed here because
2517		 * next packet may be a CLEAR_FEATURE HALT which would not
2518		 * clear the stall bit when no STALL handshake was received
2519		 * before (autostall can cause this)
2520		 */
2521		if (setup_data.data[0] == UDC_MSCRES_DWORD0
2522				&& setup_data.data[1] == UDC_MSCRES_DWORD1) {
2523			DBG(dev, "MSC Reset\n");
2524			/*
2525			 * clear stall bits
2526			 * only one IN and OUT endpoints are handled
2527			 */
2528			ep_tmp = &udc->ep[UDC_EPIN_IX];
2529			udc_set_halt(&ep_tmp->ep, 0);
2530			ep_tmp = &udc->ep[UDC_EPOUT_IX];
2531			udc_set_halt(&ep_tmp->ep, 0);
2532		}
2533
2534		/* call gadget with setup data received */
2535		spin_unlock(&dev->lock);
2536		setup_supported = dev->driver->setup(&dev->gadget,
2537						&setup_data.request);
2538		spin_lock(&dev->lock);
2539
2540		tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2541		/* ep0 in returns data (not zlp) on IN phase */
2542		if (setup_supported >= 0 && setup_supported <
2543				UDC_EP0IN_MAXPACKET) {
2544			/* clear NAK by writing CNAK in EP0_IN */
2545			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2546			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2547			dev->ep[UDC_EP0IN_IX].naking = 0;
2548			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2549
2550		/* if unsupported request then stall */
2551		} else if (setup_supported < 0) {
2552			tmp |= AMD_BIT(UDC_EPCTL_S);
2553			writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2554		} else
2555			dev->waiting_zlp_ack_ep0in = 1;
2556
2557
2558		/* clear NAK by writing CNAK in EP0_OUT */
2559		if (!set) {
2560			tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2561			tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2562			writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2563			dev->ep[UDC_EP0OUT_IX].naking = 0;
2564			UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2565		}
2566
2567		if (!use_dma) {
2568			/* clear OUT bits in ep status */
2569			writel(UDC_EPSTS_OUT_CLEAR,
2570				&dev->ep[UDC_EP0OUT_IX].regs->sts);
2571		}
2572
2573	/* data packet 0 bytes */
2574	} else if (tmp == UDC_EPSTS_OUT_DATA) {
2575		/* clear OUT bits in ep status */
2576		writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2577
2578		/* get setup data: only 0 packet */
2579		if (use_dma) {
2580			/* no req if 0 packet, just reactivate */
2581			if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2582				VDBG(dev, "ZLP\n");
2583
2584				/* set HOST READY */
2585				dev->ep[UDC_EP0OUT_IX].td->status =
2586					AMD_ADDBITS(
2587					dev->ep[UDC_EP0OUT_IX].td->status,
2588					UDC_DMA_OUT_STS_BS_HOST_READY,
2589					UDC_DMA_OUT_STS_BS);
2590				/* enable RDE */
2591				udc_ep0_set_rde(dev);
2592				ret_val = IRQ_HANDLED;
2593
2594			} else {
2595				/* control write */
2596				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2597				/* re-program desc. pointer for possible ZLPs */
2598				writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2599					&dev->ep[UDC_EP0OUT_IX].regs->desptr);
2600				/* enable RDE */
2601				udc_ep0_set_rde(dev);
2602			}
2603		} else {
2604
2605			/* received number bytes */
2606			count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2607			count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2608			/* out data for fifo mode not working */
2609			count = 0;
2610
2611			/* 0 packet or real data ? */
2612			if (count != 0) {
2613				ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2614			} else {
2615				/* dummy read confirm */
2616				readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2617				ret_val = IRQ_HANDLED;
2618			}
2619		}
2620	}
2621
2622	/* check pending CNAKS */
2623	if (cnak_pending) {
2624		/* CNAk processing when rxfifo empty only */
2625		if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2626			udc_process_cnak_queue(dev);
2627	}
2628
2629finished:
2630	return ret_val;
2631}
2632
2633/* Interrupt handler for Control IN traffic */
2634static irqreturn_t udc_control_in_isr(struct udc *dev)
2635{
2636	irqreturn_t ret_val = IRQ_NONE;
2637	u32 tmp;
2638	struct udc_ep *ep;
2639	struct udc_request *req;
2640	unsigned len;
2641
2642	ep = &dev->ep[UDC_EP0IN_IX];
2643
2644	/* clear irq */
2645	writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2646
2647	tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2648	/* DMA completion */
2649	if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2650		VDBG(dev, "isr: TDC clear\n");
2651		ret_val = IRQ_HANDLED;
2652
2653		/* clear TDC bit */
2654		writel(AMD_BIT(UDC_EPSTS_TDC),
2655				&dev->ep[UDC_EP0IN_IX].regs->sts);
2656
2657	/* status reg has IN bit set ? */
2658	} else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2659		ret_val = IRQ_HANDLED;
2660
2661		if (ep->dma) {
2662			/* clear IN bit */
2663			writel(AMD_BIT(UDC_EPSTS_IN),
2664				&dev->ep[UDC_EP0IN_IX].regs->sts);
2665		}
2666		if (dev->stall_ep0in) {
2667			DBG(dev, "stall ep0in\n");
2668			/* halt ep0in */
2669			tmp = readl(&ep->regs->ctl);
2670			tmp |= AMD_BIT(UDC_EPCTL_S);
2671			writel(tmp, &ep->regs->ctl);
2672		} else {
2673			if (!list_empty(&ep->queue)) {
2674				/* next request */
2675				req = list_entry(ep->queue.next,
2676						struct udc_request, queue);
2677
2678				if (ep->dma) {
2679					/* write desc pointer */
2680					writel(req->td_phys, &ep->regs->desptr);
2681					/* set HOST READY */
2682					req->td_data->status =
2683						AMD_ADDBITS(
2684						req->td_data->status,
2685						UDC_DMA_STP_STS_BS_HOST_READY,
2686						UDC_DMA_STP_STS_BS);
2687
2688					/* set poll demand bit */
2689					tmp =
2690					readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2691					tmp |= AMD_BIT(UDC_EPCTL_P);
2692					writel(tmp,
2693					&dev->ep[UDC_EP0IN_IX].regs->ctl);
2694
2695					/* all bytes will be transferred */
2696					req->req.actual = req->req.length;
2697
2698					/* complete req */
2699					complete_req(ep, req, 0);
2700
2701				} else {
2702					/* write fifo */
2703					udc_txfifo_write(ep, &req->req);
2704
2705					/* lengh bytes transferred */
2706					len = req->req.length - req->req.actual;
2707					if (len > ep->ep.maxpacket)
2708						len = ep->ep.maxpacket;
2709
2710					req->req.actual += len;
2711					if (req->req.actual == req->req.length
2712						|| (len != ep->ep.maxpacket)) {
2713						/* complete req */
2714						complete_req(ep, req, 0);
2715					}
2716				}
2717
2718			}
2719		}
2720		ep->halted = 0;
2721		dev->stall_ep0in = 0;
2722		if (!ep->dma) {
2723			/* clear IN bit */
2724			writel(AMD_BIT(UDC_EPSTS_IN),
2725				&dev->ep[UDC_EP0IN_IX].regs->sts);
2726		}
2727	}
2728
2729	return ret_val;
2730}
2731
2732
2733/* Interrupt handler for global device events */
2734static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2735__releases(dev->lock)
2736__acquires(dev->lock)
2737{
2738	irqreturn_t ret_val = IRQ_NONE;
2739	u32 tmp;
2740	u32 cfg;
2741	struct udc_ep *ep;
2742	u16 i;
2743	u8 udc_csr_epix;
2744
2745	/* SET_CONFIG irq ? */
2746	if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2747		ret_val = IRQ_HANDLED;
2748
2749		/* read config value */
2750		tmp = readl(&dev->regs->sts);
2751		cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2752		DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2753		dev->cur_config = cfg;
2754		dev->set_cfg_not_acked = 1;
2755
2756		/* make usb request for gadget driver */
2757		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2758		setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2759		setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2760
2761		/* programm the NE registers */
2762		for (i = 0; i < UDC_EP_NUM; i++) {
2763			ep = &dev->ep[i];
2764			if (ep->in) {
2765
2766				/* ep ix in UDC CSR register space */
2767				udc_csr_epix = ep->num;
2768
2769
2770			/* OUT ep */
2771			} else {
2772				/* ep ix in UDC CSR register space */
2773				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2774			}
2775
2776			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2777			/* ep cfg */
2778			tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2779						UDC_CSR_NE_CFG);
2780			/* write reg */
2781			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2782
2783			/* clear stall bits */
2784			ep->halted = 0;
2785			tmp = readl(&ep->regs->ctl);
2786			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2787			writel(tmp, &ep->regs->ctl);
2788		}
2789		/* call gadget zero with setup data received */
2790		spin_unlock(&dev->lock);
2791		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2792		spin_lock(&dev->lock);
2793
2794	} /* SET_INTERFACE ? */
2795	if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2796		ret_val = IRQ_HANDLED;
2797
2798		dev->set_cfg_not_acked = 1;
2799		/* read interface and alt setting values */
2800		tmp = readl(&dev->regs->sts);
2801		dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2802		dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2803
2804		/* make usb request for gadget driver */
2805		memset(&setup_data, 0 , sizeof(union udc_setup_data));
2806		setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2807		setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2808		setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2809		setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2810
2811		DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2812				dev->cur_alt, dev->cur_intf);
2813
2814		/* programm the NE registers */
2815		for (i = 0; i < UDC_EP_NUM; i++) {
2816			ep = &dev->ep[i];
2817			if (ep->in) {
2818
2819				/* ep ix in UDC CSR register space */
2820				udc_csr_epix = ep->num;
2821
2822
2823			/* OUT ep */
2824			} else {
2825				/* ep ix in UDC CSR register space */
2826				udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2827			}
2828
2829			/* UDC CSR reg */
2830			/* set ep values */
2831			tmp = readl(&dev->csr->ne[udc_csr_epix]);
2832			/* ep interface */
2833			tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2834						UDC_CSR_NE_INTF);
2835			/* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2836			/* ep alt */
2837			tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2838						UDC_CSR_NE_ALT);
2839			/* write reg */
2840			writel(tmp, &dev->csr->ne[udc_csr_epix]);
2841
2842			/* clear stall bits */
2843			ep->halted = 0;
2844			tmp = readl(&ep->regs->ctl);
2845			tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2846			writel(tmp, &ep->regs->ctl);
2847		}
2848
2849		/* call gadget zero with setup data received */
2850		spin_unlock(&dev->lock);
2851		tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2852		spin_lock(&dev->lock);
2853
2854	} /* USB reset */
2855	if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2856		DBG(dev, "USB Reset interrupt\n");
2857		ret_val = IRQ_HANDLED;
2858
2859		/* allow soft reset when suspend occurs */
2860		soft_reset_occured = 0;
2861
2862		dev->waiting_zlp_ack_ep0in = 0;
2863		dev->set_cfg_not_acked = 0;
2864
2865		/* mask not needed interrupts */
2866		udc_mask_unused_interrupts(dev);
2867
2868		/* call gadget to resume and reset configs etc. */
2869		spin_unlock(&dev->lock);
2870		if (dev->sys_suspended && dev->driver->resume) {
2871			dev->driver->resume(&dev->gadget);
2872			dev->sys_suspended = 0;
2873		}
2874		usb_gadget_udc_reset(&dev->gadget, dev->driver);
2875		spin_lock(&dev->lock);
2876
2877		/* disable ep0 to empty req queue */
2878		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2879		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2880
2881		/* soft reset when rxfifo not empty */
2882		tmp = readl(&dev->regs->sts);
2883		if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2884				&& !soft_reset_after_usbreset_occured) {
2885			udc_soft_reset(dev);
2886			soft_reset_after_usbreset_occured++;
2887		}
2888
2889		/*
2890		 * DMA reset to kill potential old DMA hw hang,
2891		 * POLL bit is already reset by ep_init() through
2892		 * disconnect()
2893		 */
2894		DBG(dev, "DMA machine reset\n");
2895		tmp = readl(&dev->regs->cfg);
2896		writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2897		writel(tmp, &dev->regs->cfg);
2898
2899		/* put into initial config */
2900		udc_basic_init(dev);
2901
2902		/* enable device setup interrupts */
2903		udc_enable_dev_setup_interrupts(dev);
2904
2905		/* enable suspend interrupt */
2906		tmp = readl(&dev->regs->irqmsk);
2907		tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2908		writel(tmp, &dev->regs->irqmsk);
2909
2910	} /* USB suspend */
2911	if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2912		DBG(dev, "USB Suspend interrupt\n");
2913		ret_val = IRQ_HANDLED;
2914		if (dev->driver->suspend) {
2915			spin_unlock(&dev->lock);
2916			dev->sys_suspended = 1;
2917			dev->driver->suspend(&dev->gadget);
2918			spin_lock(&dev->lock);
2919		}
2920	} /* new speed ? */
2921	if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2922		DBG(dev, "ENUM interrupt\n");
2923		ret_val = IRQ_HANDLED;
2924		soft_reset_after_usbreset_occured = 0;
2925
2926		/* disable ep0 to empty req queue */
2927		empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2928		ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2929
2930		/* link up all endpoints */
2931		udc_setup_endpoints(dev);
2932		dev_info(&dev->pdev->dev, "Connect: %s\n",
2933			 usb_speed_string(dev->gadget.speed));
2934
2935		/* init ep 0 */
2936		activate_control_endpoints(dev);
2937
2938		/* enable ep0 interrupts */
2939		udc_enable_ep0_interrupts(dev);
2940	}
2941	/* session valid change interrupt */
2942	if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
2943		DBG(dev, "USB SVC interrupt\n");
2944		ret_val = IRQ_HANDLED;
2945
2946		/* check that session is not valid to detect disconnect */
2947		tmp = readl(&dev->regs->sts);
2948		if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
2949			/* disable suspend interrupt */
2950			tmp = readl(&dev->regs->irqmsk);
2951			tmp |= AMD_BIT(UDC_DEVINT_US);
2952			writel(tmp, &dev->regs->irqmsk);
2953			DBG(dev, "USB Disconnect (session valid low)\n");
2954			/* cleanup on disconnect */
2955			usb_disconnect(udc);
2956		}
2957
2958	}
2959
2960	return ret_val;
2961}
2962
2963/* Interrupt Service Routine, see Linux Kernel Doc for parameters */
2964static irqreturn_t udc_irq(int irq, void *pdev)
2965{
2966	struct udc *dev = pdev;
2967	u32 reg;
2968	u16 i;
2969	u32 ep_irq;
2970	irqreturn_t ret_val = IRQ_NONE;
2971
2972	spin_lock(&dev->lock);
2973
2974	/* check for ep irq */
2975	reg = readl(&dev->regs->ep_irqsts);
2976	if (reg) {
2977		if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
2978			ret_val |= udc_control_out_isr(dev);
2979		if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
2980			ret_val |= udc_control_in_isr(dev);
2981
2982		/*
2983		 * data endpoint
2984		 * iterate ep's
2985		 */
2986		for (i = 1; i < UDC_EP_NUM; i++) {
2987			ep_irq = 1 << i;
2988			if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
2989				continue;
2990
2991			/* clear irq status */
2992			writel(ep_irq, &dev->regs->ep_irqsts);
2993
2994			/* irq for out ep ? */
2995			if (i > UDC_EPIN_NUM)
2996				ret_val |= udc_data_out_isr(dev, i);
2997			else
2998				ret_val |= udc_data_in_isr(dev, i);
2999		}
3000
3001	}
3002
3003
3004	/* check for dev irq */
3005	reg = readl(&dev->regs->irqsts);
3006	if (reg) {
3007		/* clear irq */
3008		writel(reg, &dev->regs->irqsts);
3009		ret_val |= udc_dev_isr(dev, reg);
3010	}
3011
3012
3013	spin_unlock(&dev->lock);
3014	return ret_val;
3015}
3016
3017/* Tears down device */
3018static void gadget_release(struct device *pdev)
3019{
3020	struct amd5536udc *dev = dev_get_drvdata(pdev);
3021	kfree(dev);
3022}
3023
3024/* Cleanup on device remove */
3025static void udc_remove(struct udc *dev)
3026{
3027	/* remove timer */
3028	stop_timer++;
3029	if (timer_pending(&udc_timer))
3030		wait_for_completion(&on_exit);
3031	if (udc_timer.data)
3032		del_timer_sync(&udc_timer);
3033	/* remove pollstall timer */
3034	stop_pollstall_timer++;
3035	if (timer_pending(&udc_pollstall_timer))
3036		wait_for_completion(&on_pollstall_exit);
3037	if (udc_pollstall_timer.data)
3038		del_timer_sync(&udc_pollstall_timer);
3039	udc = NULL;
3040}
3041
3042/* Reset all pci context */
3043static void udc_pci_remove(struct pci_dev *pdev)
3044{
3045	struct udc		*dev;
3046
3047	dev = pci_get_drvdata(pdev);
3048
3049	usb_del_gadget_udc(&udc->gadget);
3050	/* gadget driver must not be registered */
3051	BUG_ON(dev->driver != NULL);
3052
3053	/* dma pool cleanup */
3054	if (dev->data_requests)
3055		pci_pool_destroy(dev->data_requests);
3056
3057	if (dev->stp_requests) {
3058		/* cleanup DMA desc's for ep0in */
3059		pci_pool_free(dev->stp_requests,
3060			dev->ep[UDC_EP0OUT_IX].td_stp,
3061			dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3062		pci_pool_free(dev->stp_requests,
3063			dev->ep[UDC_EP0OUT_IX].td,
3064			dev->ep[UDC_EP0OUT_IX].td_phys);
3065
3066		pci_pool_destroy(dev->stp_requests);
3067	}
3068
3069	/* reset controller */
3070	writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3071	if (dev->irq_registered)
3072		free_irq(pdev->irq, dev);
3073	if (dev->regs)
3074		iounmap(dev->regs);
3075	if (dev->mem_region)
3076		release_mem_region(pci_resource_start(pdev, 0),
3077				pci_resource_len(pdev, 0));
3078	if (dev->active)
3079		pci_disable_device(pdev);
3080
3081	udc_remove(dev);
3082}
3083
3084/* create dma pools on init */
3085static int init_dma_pools(struct udc *dev)
3086{
3087	struct udc_stp_dma	*td_stp;
3088	struct udc_data_dma	*td_data;
3089	int retval;
3090
3091	/* consistent DMA mode setting ? */
3092	if (use_dma_ppb) {
3093		use_dma_bufferfill_mode = 0;
3094	} else {
3095		use_dma_ppb_du = 0;
3096		use_dma_bufferfill_mode = 1;
3097	}
3098
3099	/* DMA setup */
3100	dev->data_requests = dma_pool_create("data_requests", NULL,
3101		sizeof(struct udc_data_dma), 0, 0);
3102	if (!dev->data_requests) {
3103		DBG(dev, "can't get request data pool\n");
3104		retval = -ENOMEM;
3105		goto finished;
3106	}
3107
3108	/* EP0 in dma regs = dev control regs */
3109	dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3110
3111	/* dma desc for setup data */
3112	dev->stp_requests = dma_pool_create("setup requests", NULL,
3113		sizeof(struct udc_stp_dma), 0, 0);
3114	if (!dev->stp_requests) {
3115		DBG(dev, "can't get stp request pool\n");
3116		retval = -ENOMEM;
3117		goto finished;
3118	}
3119	/* setup */
3120	td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3121				&dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3122	if (td_stp == NULL) {
3123		retval = -ENOMEM;
3124		goto finished;
3125	}
3126	dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3127
3128	/* data: 0 packets !? */
3129	td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3130				&dev->ep[UDC_EP0OUT_IX].td_phys);
3131	if (td_data == NULL) {
3132		retval = -ENOMEM;
3133		goto finished;
3134	}
3135	dev->ep[UDC_EP0OUT_IX].td = td_data;
3136	return 0;
3137
3138finished:
3139	return retval;
3140}
3141
3142/* Called by pci bus driver to init pci context */
3143static int udc_pci_probe(
3144	struct pci_dev *pdev,
3145	const struct pci_device_id *id
3146)
3147{
3148	struct udc		*dev;
3149	unsigned long		resource;
3150	unsigned long		len;
3151	int			retval = 0;
3152
3153	/* one udc only */
3154	if (udc) {
3155		dev_dbg(&pdev->dev, "already probed\n");
3156		return -EBUSY;
3157	}
3158
3159	/* init */
3160	dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3161	if (!dev) {
3162		retval = -ENOMEM;
3163		goto finished;
3164	}
3165
3166	/* pci setup */
3167	if (pci_enable_device(pdev) < 0) {
3168		kfree(dev);
3169		dev = NULL;
3170		retval = -ENODEV;
3171		goto finished;
3172	}
3173	dev->active = 1;
3174
3175	/* PCI resource allocation */
3176	resource = pci_resource_start(pdev, 0);
3177	len = pci_resource_len(pdev, 0);
3178
3179	if (!request_mem_region(resource, len, name)) {
3180		dev_dbg(&pdev->dev, "pci device used already\n");
3181		kfree(dev);
3182		dev = NULL;
3183		retval = -EBUSY;
3184		goto finished;
3185	}
3186	dev->mem_region = 1;
3187
3188	dev->virt_addr = ioremap_nocache(resource, len);
3189	if (dev->virt_addr == NULL) {
3190		dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3191		kfree(dev);
3192		dev = NULL;
3193		retval = -EFAULT;
3194		goto finished;
3195	}
3196
3197	if (!pdev->irq) {
3198		dev_err(&pdev->dev, "irq not set\n");
3199		kfree(dev);
3200		dev = NULL;
3201		retval = -ENODEV;
3202		goto finished;
3203	}
3204
3205	spin_lock_init(&dev->lock);
3206	/* udc csr registers base */
3207	dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3208	/* dev registers base */
3209	dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3210	/* ep registers base */
3211	dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3212	/* fifo's base */
3213	dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3214	dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3215
3216	if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3217		dev_dbg(&pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3218		kfree(dev);
3219		dev = NULL;
3220		retval = -EBUSY;
3221		goto finished;
3222	}
3223	dev->irq_registered = 1;
3224
3225	pci_set_drvdata(pdev, dev);
3226
3227	/* chip revision for Hs AMD5536 */
3228	dev->chiprev = pdev->revision;
3229
3230	pci_set_master(pdev);
3231	pci_try_set_mwi(pdev);
3232
3233	/* init dma pools */
3234	if (use_dma) {
3235		retval = init_dma_pools(dev);
3236		if (retval != 0)
3237			goto finished;
3238	}
3239
3240	dev->phys_addr = resource;
3241	dev->irq = pdev->irq;
3242	dev->pdev = pdev;
3243
3244	/* general probing */
3245	if (udc_probe(dev) == 0)
3246		return 0;
3247
3248finished:
3249	if (dev)
3250		udc_pci_remove(pdev);
3251	return retval;
3252}
3253
3254/* general probe */
3255static int udc_probe(struct udc *dev)
3256{
3257	char		tmp[128];
3258	u32		reg;
3259	int		retval;
3260
3261	/* mark timer as not initialized */
3262	udc_timer.data = 0;
3263	udc_pollstall_timer.data = 0;
3264
3265	/* device struct setup */
3266	dev->gadget.ops = &udc_ops;
3267
3268	dev_set_name(&dev->gadget.dev, "gadget");
3269	dev->gadget.name = name;
3270	dev->gadget.max_speed = USB_SPEED_HIGH;
3271
3272	/* init registers, interrupts, ... */
3273	startup_registers(dev);
3274
3275	dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3276
3277	snprintf(tmp, sizeof tmp, "%d", dev->irq);
3278	dev_info(&dev->pdev->dev,
3279		"irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3280		tmp, dev->phys_addr, dev->chiprev,
3281		(dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3282	strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3283	if (dev->chiprev == UDC_HSA0_REV) {
3284		dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3285		retval = -ENODEV;
3286		goto finished;
3287	}
3288	dev_info(&dev->pdev->dev,
3289		"driver version: %s(for Geode5536 B1)\n", tmp);
3290	udc = dev;
3291
3292	retval = usb_add_gadget_udc_release(&udc->pdev->dev, &dev->gadget,
3293			gadget_release);
3294	if (retval)
3295		goto finished;
3296
3297	/* timer init */
3298	init_timer(&udc_timer);
3299	udc_timer.function = udc_timer_function;
3300	udc_timer.data = 1;
3301	/* timer pollstall init */
3302	init_timer(&udc_pollstall_timer);
3303	udc_pollstall_timer.function = udc_pollstall_timer_function;
3304	udc_pollstall_timer.data = 1;
3305
3306	/* set SD */
3307	reg = readl(&dev->regs->ctl);
3308	reg |= AMD_BIT(UDC_DEVCTL_SD);
3309	writel(reg, &dev->regs->ctl);
3310
3311	/* print dev register info */
3312	print_regs(dev);
3313
3314	return 0;
3315
3316finished:
3317	return retval;
3318}
3319
3320/* Initiates a remote wakeup */
3321static int udc_remote_wakeup(struct udc *dev)
3322{
3323	unsigned long flags;
3324	u32 tmp;
3325
3326	DBG(dev, "UDC initiates remote wakeup\n");
3327
3328	spin_lock_irqsave(&dev->lock, flags);
3329
3330	tmp = readl(&dev->regs->ctl);
3331	tmp |= AMD_BIT(UDC_DEVCTL_RES);
3332	writel(tmp, &dev->regs->ctl);
3333	tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3334	writel(tmp, &dev->regs->ctl);
3335
3336	spin_unlock_irqrestore(&dev->lock, flags);
3337	return 0;
3338}
3339
3340/* PCI device parameters */
3341static const struct pci_device_id pci_id[] = {
3342	{
3343		PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3344		.class =	(PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3345		.class_mask =	0xffffffff,
3346	},
3347	{},
3348};
3349MODULE_DEVICE_TABLE(pci, pci_id);
3350
3351/* PCI functions */
3352static struct pci_driver udc_pci_driver = {
3353	.name =		(char *) name,
3354	.id_table =	pci_id,
3355	.probe =	udc_pci_probe,
3356	.remove =	udc_pci_remove,
3357};
3358
3359module_pci_driver(udc_pci_driver);
3360
3361MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3362MODULE_AUTHOR("Thomas Dahlmann");
3363MODULE_LICENSE("GPL");
3364
3365