1/*
2 * Xilinx USB peripheral controller driver
3 *
4 * Copyright (C) 2004 by Thomas Rathbone
5 * Copyright (C) 2005 by HP Labs
6 * Copyright (C) 2005 by David Brownell
7 * Copyright (C) 2010 - 2014 Xilinx, Inc.
8 *
9 * Some parts of this driver code is based on the driver for at91-series
10 * USB peripheral controller (at91_udc.c).
11 *
12 * This program is free software; you can redistribute it
13 * and/or modify it under the terms of the GNU General Public
14 * License as published by the Free Software Foundation;
15 * either version 2 of the License, or (at your option) any
16 * later version.
17 */
18
19#include <linux/delay.h>
20#include <linux/device.h>
21#include <linux/dma-mapping.h>
22#include <linux/interrupt.h>
23#include <linux/io.h>
24#include <linux/module.h>
25#include <linux/of_address.h>
26#include <linux/of_device.h>
27#include <linux/of_platform.h>
28#include <linux/of_irq.h>
29#include <linux/prefetch.h>
30#include <linux/usb/ch9.h>
31#include <linux/usb/gadget.h>
32
33/* Register offsets for the USB device.*/
34#define XUSB_EP0_CONFIG_OFFSET		0x0000  /* EP0 Config Reg Offset */
35#define XUSB_SETUP_PKT_ADDR_OFFSET	0x0080  /* Setup Packet Address */
36#define XUSB_ADDRESS_OFFSET		0x0100  /* Address Register */
37#define XUSB_CONTROL_OFFSET		0x0104  /* Control Register */
38#define XUSB_STATUS_OFFSET		0x0108  /* Status Register */
39#define XUSB_FRAMENUM_OFFSET		0x010C	/* Frame Number Register */
40#define XUSB_IER_OFFSET			0x0110	/* Interrupt Enable Register */
41#define XUSB_BUFFREADY_OFFSET		0x0114	/* Buffer Ready Register */
42#define XUSB_TESTMODE_OFFSET		0x0118	/* Test Mode Register */
43#define XUSB_DMA_RESET_OFFSET		0x0200  /* DMA Soft Reset Register */
44#define XUSB_DMA_CONTROL_OFFSET		0x0204	/* DMA Control Register */
45#define XUSB_DMA_DSAR_ADDR_OFFSET	0x0208	/* DMA source Address Reg */
46#define XUSB_DMA_DDAR_ADDR_OFFSET	0x020C	/* DMA destination Addr Reg */
47#define XUSB_DMA_LENGTH_OFFSET		0x0210	/* DMA Length Register */
48#define XUSB_DMA_STATUS_OFFSET		0x0214	/* DMA Status Register */
49
50/* Endpoint Configuration Space offsets */
51#define XUSB_EP_CFGSTATUS_OFFSET	0x00	/* Endpoint Config Status  */
52#define XUSB_EP_BUF0COUNT_OFFSET	0x08	/* Buffer 0 Count */
53#define XUSB_EP_BUF1COUNT_OFFSET	0x0C	/* Buffer 1 Count */
54
55#define XUSB_CONTROL_USB_READY_MASK	0x80000000 /* USB ready Mask */
56#define XUSB_CONTROL_USB_RMTWAKE_MASK	0x40000000 /* Remote wake up mask */
57
58/* Interrupt register related masks.*/
59#define XUSB_STATUS_GLOBAL_INTR_MASK	0x80000000 /* Global Intr Enable */
60#define XUSB_STATUS_DMADONE_MASK	0x04000000 /* DMA done Mask */
61#define XUSB_STATUS_DMAERR_MASK		0x02000000 /* DMA Error Mask */
62#define XUSB_STATUS_DMABUSY_MASK	0x80000000 /* DMA Error Mask */
63#define XUSB_STATUS_RESUME_MASK		0x01000000 /* USB Resume Mask */
64#define XUSB_STATUS_RESET_MASK		0x00800000 /* USB Reset Mask */
65#define XUSB_STATUS_SUSPEND_MASK	0x00400000 /* USB Suspend Mask */
66#define XUSB_STATUS_DISCONNECT_MASK	0x00200000 /* USB Disconnect Mask */
67#define XUSB_STATUS_FIFO_BUFF_RDY_MASK	0x00100000 /* FIFO Buff Ready Mask */
68#define XUSB_STATUS_FIFO_BUFF_FREE_MASK	0x00080000 /* FIFO Buff Free Mask */
69#define XUSB_STATUS_SETUP_PACKET_MASK	0x00040000 /* Setup packet received */
70#define XUSB_STATUS_EP1_BUFF2_COMP_MASK	0x00000200 /* EP 1 Buff 2 Processed */
71#define XUSB_STATUS_EP1_BUFF1_COMP_MASK	0x00000002 /* EP 1 Buff 1 Processed */
72#define XUSB_STATUS_EP0_BUFF2_COMP_MASK	0x00000100 /* EP 0 Buff 2 Processed */
73#define XUSB_STATUS_EP0_BUFF1_COMP_MASK	0x00000001 /* EP 0 Buff 1 Processed */
74#define XUSB_STATUS_HIGH_SPEED_MASK	0x00010000 /* USB Speed Mask */
75/* Suspend,Reset,Suspend and Disconnect Mask */
76#define XUSB_STATUS_INTR_EVENT_MASK	0x01E00000
77/* Buffers  completion Mask */
78#define XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK	0x0000FEFF
79/* Mask for buffer 0 and buffer 1 completion for all Endpoints */
80#define XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK	0x00000101
81#define XUSB_STATUS_EP_BUFF2_SHIFT	8	   /* EP buffer offset */
82
83/* Endpoint Configuration Status Register */
84#define XUSB_EP_CFG_VALID_MASK		0x80000000 /* Endpoint Valid bit */
85#define XUSB_EP_CFG_STALL_MASK		0x40000000 /* Endpoint Stall bit */
86#define XUSB_EP_CFG_DATA_TOGGLE_MASK	0x08000000 /* Endpoint Data toggle */
87
88/* USB device specific global configuration constants.*/
89#define XUSB_MAX_ENDPOINTS		8	/* Maximum End Points */
90#define XUSB_EP_NUMBER_ZERO		0	/* End point Zero */
91/* DPRAM is the source address for DMA transfer */
92#define XUSB_DMA_READ_FROM_DPRAM	0x80000000
93#define XUSB_DMA_DMASR_BUSY		0x80000000 /* DMA busy */
94#define XUSB_DMA_DMASR_ERROR		0x40000000 /* DMA Error */
95/*
96 * When this bit is set, the DMA buffer ready bit is set by hardware upon
97 * DMA transfer completion.
98 */
99#define XUSB_DMA_BRR_CTRL		0x40000000 /* DMA bufready ctrl bit */
100/* Phase States */
101#define SETUP_PHASE			0x0000	/* Setup Phase */
102#define DATA_PHASE			0x0001  /* Data Phase */
103#define STATUS_PHASE			0x0002  /* Status Phase */
104
105#define EP0_MAX_PACKET		64 /* Endpoint 0 maximum packet length */
106#define STATUSBUFF_SIZE		2  /* Buffer size for GET_STATUS command */
107#define EPNAME_SIZE		4  /* Buffer size for endpoint name */
108
109/* container_of helper macros */
110#define to_udc(g)	 container_of((g), struct xusb_udc, gadget)
111#define to_xusb_ep(ep)	 container_of((ep), struct xusb_ep, ep_usb)
112#define to_xusb_req(req) container_of((req), struct xusb_req, usb_req)
113
114/**
115 * struct xusb_req - Xilinx USB device request structure
116 * @usb_req: Linux usb request structure
117 * @queue: usb device request queue
118 * @ep: pointer to xusb_endpoint structure
119 */
120struct xusb_req {
121	struct usb_request usb_req;
122	struct list_head queue;
123	struct xusb_ep *ep;
124};
125
126/**
127 * struct xusb_ep - USB end point structure.
128 * @ep_usb: usb endpoint instance
129 * @queue: endpoint message queue
130 * @udc: xilinx usb peripheral driver instance pointer
131 * @desc: pointer to the usb endpoint descriptor
132 * @rambase: the endpoint buffer address
133 * @offset: the endpoint register offset value
134 * @name: name of the endpoint
135 * @epnumber: endpoint number
136 * @maxpacket: maximum packet size the endpoint can store
137 * @buffer0count: the size of the packet recieved in the first buffer
138 * @buffer1count: the size of the packet received in the second buffer
139 * @curbufnum: current buffer of endpoint that will be processed next
140 * @buffer0ready: the busy state of first buffer
141 * @buffer1ready: the busy state of second buffer
142 * @is_in: endpoint direction (IN or OUT)
143 * @is_iso: endpoint type(isochronous or non isochronous)
144 */
145struct xusb_ep {
146	struct usb_ep ep_usb;
147	struct list_head queue;
148	struct xusb_udc *udc;
149	const struct usb_endpoint_descriptor *desc;
150	u32  rambase;
151	u32  offset;
152	char name[4];
153	u16  epnumber;
154	u16  maxpacket;
155	u16  buffer0count;
156	u16  buffer1count;
157	u8   curbufnum;
158	bool buffer0ready;
159	bool buffer1ready;
160	bool is_in;
161	bool is_iso;
162};
163
164/**
165 * struct xusb_udc -  USB peripheral driver structure
166 * @gadget: USB gadget driver instance
167 * @ep: an array of endpoint structures
168 * @driver: pointer to the usb gadget driver instance
169 * @setup: usb_ctrlrequest structure for control requests
170 * @req: pointer to dummy request for get status command
171 * @dev: pointer to device structure in gadget
172 * @usb_state: device in suspended state or not
173 * @remote_wkp: remote wakeup enabled by host
174 * @setupseqtx: tx status
175 * @setupseqrx: rx status
176 * @addr: the usb device base address
177 * @lock: instance of spinlock
178 * @dma_enabled: flag indicating whether the dma is included in the system
179 * @read_fn: function pointer to read device registers
180 * @write_fn: function pointer to write to device registers
181 */
182struct xusb_udc {
183	struct usb_gadget gadget;
184	struct xusb_ep ep[8];
185	struct usb_gadget_driver *driver;
186	struct usb_ctrlrequest setup;
187	struct xusb_req *req;
188	struct device *dev;
189	u32 usb_state;
190	u32 remote_wkp;
191	u32 setupseqtx;
192	u32 setupseqrx;
193	void __iomem *addr;
194	spinlock_t lock;
195	bool dma_enabled;
196
197	unsigned int (*read_fn)(void __iomem *);
198	void (*write_fn)(void __iomem *, u32, u32);
199};
200
201/* Endpoint buffer start addresses in the core */
202static u32 rambase[8] = { 0x22, 0x1000, 0x1100, 0x1200, 0x1300, 0x1400, 0x1500,
203			  0x1600 };
204
205static const char driver_name[] = "xilinx-udc";
206static const char ep0name[] = "ep0";
207
208/* Control endpoint configuration.*/
209static const struct usb_endpoint_descriptor config_bulk_out_desc = {
210	.bLength		= USB_DT_ENDPOINT_SIZE,
211	.bDescriptorType	= USB_DT_ENDPOINT,
212	.bEndpointAddress	= USB_DIR_OUT,
213	.bmAttributes		= USB_ENDPOINT_XFER_BULK,
214	.wMaxPacketSize		= cpu_to_le16(EP0_MAX_PACKET),
215};
216
217/**
218 * xudc_write32 - little endian write to device registers
219 * @addr: base addr of device registers
220 * @offset: register offset
221 * @val: data to be written
222 */
223static void xudc_write32(void __iomem *addr, u32 offset, u32 val)
224{
225	iowrite32(val, addr + offset);
226}
227
228/**
229 * xudc_read32 - little endian read from device registers
230 * @addr: addr of device register
231 * Return: value at addr
232 */
233static unsigned int xudc_read32(void __iomem *addr)
234{
235	return ioread32(addr);
236}
237
238/**
239 * xudc_write32_be - big endian write to device registers
240 * @addr: base addr of device registers
241 * @offset: register offset
242 * @val: data to be written
243 */
244static void xudc_write32_be(void __iomem *addr, u32 offset, u32 val)
245{
246	iowrite32be(val, addr + offset);
247}
248
249/**
250 * xudc_read32_be - big endian read from device registers
251 * @addr: addr of device register
252 * Return: value at addr
253 */
254static unsigned int xudc_read32_be(void __iomem *addr)
255{
256	return ioread32be(addr);
257}
258
259/**
260 * xudc_wrstatus - Sets up the usb device status stages.
261 * @udc: pointer to the usb device controller structure.
262 */
263static void xudc_wrstatus(struct xusb_udc *udc)
264{
265	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
266	u32 epcfgreg;
267
268	epcfgreg = udc->read_fn(udc->addr + ep0->offset)|
269				XUSB_EP_CFG_DATA_TOGGLE_MASK;
270	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
271	udc->write_fn(udc->addr, ep0->offset + XUSB_EP_BUF0COUNT_OFFSET, 0);
272	udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
273}
274
275/**
276 * xudc_epconfig - Configures the given endpoint.
277 * @ep: pointer to the usb device endpoint structure.
278 * @udc: pointer to the usb peripheral controller structure.
279 *
280 * This function configures a specific endpoint with the given configuration
281 * data.
282 */
283static void xudc_epconfig(struct xusb_ep *ep, struct xusb_udc *udc)
284{
285	u32 epcfgreg;
286
287	/*
288	 * Configure the end point direction, type, Max Packet Size and the
289	 * EP buffer location.
290	 */
291	epcfgreg = ((ep->is_in << 29) | (ep->is_iso << 28) |
292		   (ep->ep_usb.maxpacket << 15) | (ep->rambase));
293	udc->write_fn(udc->addr, ep->offset, epcfgreg);
294
295	/* Set the Buffer count and the Buffer ready bits.*/
296	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF0COUNT_OFFSET,
297		      ep->buffer0count);
298	udc->write_fn(udc->addr, ep->offset + XUSB_EP_BUF1COUNT_OFFSET,
299		      ep->buffer1count);
300	if (ep->buffer0ready)
301		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
302			      1 << ep->epnumber);
303	if (ep->buffer1ready)
304		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
305			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
306}
307
308/**
309 * xudc_start_dma - Starts DMA transfer.
310 * @ep: pointer to the usb device endpoint structure.
311 * @src: DMA source address.
312 * @dst: DMA destination address.
313 * @length: number of bytes to transfer.
314 *
315 * Return: 0 on success, error code on failure
316 *
317 * This function starts DMA transfer by writing to DMA source,
318 * destination and lenth registers.
319 */
320static int xudc_start_dma(struct xusb_ep *ep, dma_addr_t src,
321			  dma_addr_t dst, u32 length)
322{
323	struct xusb_udc *udc = ep->udc;
324	int rc = 0;
325	u32 timeout = 500;
326	u32 reg;
327
328	/*
329	 * Set the addresses in the DMA source and
330	 * destination registers and then set the length
331	 * into the DMA length register.
332	 */
333	udc->write_fn(udc->addr, XUSB_DMA_DSAR_ADDR_OFFSET, src);
334	udc->write_fn(udc->addr, XUSB_DMA_DDAR_ADDR_OFFSET, dst);
335	udc->write_fn(udc->addr, XUSB_DMA_LENGTH_OFFSET, length);
336
337	/*
338	 * Wait till DMA transaction is complete and
339	 * check whether the DMA transaction was
340	 * successful.
341	 */
342	do {
343		reg = udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET);
344		if (!(reg &  XUSB_DMA_DMASR_BUSY))
345			break;
346
347		/*
348		 * We can't sleep here, because it's also called from
349		 * interrupt context.
350		 */
351		timeout--;
352		if (!timeout) {
353			dev_err(udc->dev, "DMA timeout\n");
354			return -ETIMEDOUT;
355		}
356		udelay(1);
357	} while (1);
358
359	if ((udc->read_fn(udc->addr + XUSB_DMA_STATUS_OFFSET) &
360			  XUSB_DMA_DMASR_ERROR) == XUSB_DMA_DMASR_ERROR){
361		dev_err(udc->dev, "DMA Error\n");
362		rc = -EINVAL;
363	}
364
365	return rc;
366}
367
368/**
369 * xudc_dma_send - Sends IN data using DMA.
370 * @ep: pointer to the usb device endpoint structure.
371 * @req: pointer to the usb request structure.
372 * @buffer: pointer to data to be sent.
373 * @length: number of bytes to send.
374 *
375 * Return: 0 on success, -EAGAIN if no buffer is free and error
376 *	   code on failure.
377 *
378 * This function sends data using DMA.
379 */
380static int xudc_dma_send(struct xusb_ep *ep, struct xusb_req *req,
381			 u8 *buffer, u32 length)
382{
383	u32 *eprambase;
384	dma_addr_t src;
385	dma_addr_t dst;
386	struct xusb_udc *udc = ep->udc;
387
388	src = req->usb_req.dma + req->usb_req.actual;
389	if (req->usb_req.length)
390		dma_sync_single_for_device(udc->dev, src,
391					   length, DMA_TO_DEVICE);
392	if (!ep->curbufnum && !ep->buffer0ready) {
393		/* Get the Buffer address and copy the transmit data.*/
394		eprambase = (u32 __force *)(udc->addr + ep->rambase);
395		dst = virt_to_phys(eprambase);
396		udc->write_fn(udc->addr, ep->offset +
397			      XUSB_EP_BUF0COUNT_OFFSET, length);
398		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
399			      XUSB_DMA_BRR_CTRL | (1 << ep->epnumber));
400		ep->buffer0ready = 1;
401		ep->curbufnum = 1;
402	} else if (ep->curbufnum && !ep->buffer1ready) {
403		/* Get the Buffer address and copy the transmit data.*/
404		eprambase = (u32 __force *)(udc->addr + ep->rambase +
405			     ep->ep_usb.maxpacket);
406		dst = virt_to_phys(eprambase);
407		udc->write_fn(udc->addr, ep->offset +
408			      XUSB_EP_BUF1COUNT_OFFSET, length);
409		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
410			      XUSB_DMA_BRR_CTRL | (1 << (ep->epnumber +
411			      XUSB_STATUS_EP_BUFF2_SHIFT)));
412		ep->buffer1ready = 1;
413		ep->curbufnum = 0;
414	} else {
415		/* None of ping pong buffers are ready currently .*/
416		return -EAGAIN;
417	}
418
419	return xudc_start_dma(ep, src, dst, length);
420}
421
422/**
423 * xudc_dma_receive - Receives OUT data using DMA.
424 * @ep: pointer to the usb device endpoint structure.
425 * @req: pointer to the usb request structure.
426 * @buffer: pointer to storage buffer of received data.
427 * @length: number of bytes to receive.
428 *
429 * Return: 0 on success, -EAGAIN if no buffer is free and error
430 *	   code on failure.
431 *
432 * This function receives data using DMA.
433 */
434static int xudc_dma_receive(struct xusb_ep *ep, struct xusb_req *req,
435			    u8 *buffer, u32 length)
436{
437	u32 *eprambase;
438	dma_addr_t src;
439	dma_addr_t dst;
440	struct xusb_udc *udc = ep->udc;
441
442	dst = req->usb_req.dma + req->usb_req.actual;
443	if (!ep->curbufnum && !ep->buffer0ready) {
444		/* Get the Buffer address and copy the transmit data */
445		eprambase = (u32 __force *)(udc->addr + ep->rambase);
446		src = virt_to_phys(eprambase);
447		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
448			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
449			      (1 << ep->epnumber));
450		ep->buffer0ready = 1;
451		ep->curbufnum = 1;
452	} else if (ep->curbufnum && !ep->buffer1ready) {
453		/* Get the Buffer address and copy the transmit data */
454		eprambase = (u32 __force *)(udc->addr +
455			     ep->rambase + ep->ep_usb.maxpacket);
456		src = virt_to_phys(eprambase);
457		udc->write_fn(udc->addr, XUSB_DMA_CONTROL_OFFSET,
458			      XUSB_DMA_BRR_CTRL | XUSB_DMA_READ_FROM_DPRAM |
459			      (1 << (ep->epnumber +
460			      XUSB_STATUS_EP_BUFF2_SHIFT)));
461		ep->buffer1ready = 1;
462		ep->curbufnum = 0;
463	} else {
464		/* None of the ping-pong buffers are ready currently */
465		return -EAGAIN;
466	}
467
468	return xudc_start_dma(ep, src, dst, length);
469}
470
471/**
472 * xudc_eptxrx - Transmits or receives data to or from an endpoint.
473 * @ep: pointer to the usb endpoint configuration structure.
474 * @req: pointer to the usb request structure.
475 * @bufferptr: pointer to buffer containing the data to be sent.
476 * @bufferlen: The number of data bytes to be sent.
477 *
478 * Return: 0 on success, -EAGAIN if no buffer is free.
479 *
480 * This function copies the transmit/receive data to/from the end point buffer
481 * and enables the buffer for transmission/reception.
482 */
483static int xudc_eptxrx(struct xusb_ep *ep, struct xusb_req *req,
484		       u8 *bufferptr, u32 bufferlen)
485{
486	u32 *eprambase;
487	u32 bytestosend;
488	int rc = 0;
489	struct xusb_udc *udc = ep->udc;
490
491	bytestosend = bufferlen;
492	if (udc->dma_enabled) {
493		if (ep->is_in)
494			rc = xudc_dma_send(ep, req, bufferptr, bufferlen);
495		else
496			rc = xudc_dma_receive(ep, req, bufferptr, bufferlen);
497		return rc;
498	}
499	/* Put the transmit buffer into the correct ping-pong buffer.*/
500	if (!ep->curbufnum && !ep->buffer0ready) {
501		/* Get the Buffer address and copy the transmit data.*/
502		eprambase = (u32 __force *)(udc->addr + ep->rambase);
503		if (ep->is_in) {
504			memcpy(eprambase, bufferptr, bytestosend);
505			udc->write_fn(udc->addr, ep->offset +
506				      XUSB_EP_BUF0COUNT_OFFSET, bufferlen);
507		} else {
508			memcpy(bufferptr, eprambase, bytestosend);
509		}
510		/*
511		 * Enable the buffer for transmission.
512		 */
513		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
514			      1 << ep->epnumber);
515		ep->buffer0ready = 1;
516		ep->curbufnum = 1;
517	} else if (ep->curbufnum && !ep->buffer1ready) {
518		/* Get the Buffer address and copy the transmit data.*/
519		eprambase = (u32 __force *)(udc->addr + ep->rambase +
520			     ep->ep_usb.maxpacket);
521		if (ep->is_in) {
522			memcpy(eprambase, bufferptr, bytestosend);
523			udc->write_fn(udc->addr, ep->offset +
524				      XUSB_EP_BUF1COUNT_OFFSET, bufferlen);
525		} else {
526			memcpy(bufferptr, eprambase, bytestosend);
527		}
528		/*
529		 * Enable the buffer for transmission.
530		 */
531		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
532			      1 << (ep->epnumber + XUSB_STATUS_EP_BUFF2_SHIFT));
533		ep->buffer1ready = 1;
534		ep->curbufnum = 0;
535	} else {
536		/* None of the ping-pong buffers are ready currently */
537		return -EAGAIN;
538	}
539	return rc;
540}
541
542/**
543 * xudc_done - Exeutes the endpoint data transfer completion tasks.
544 * @ep: pointer to the usb device endpoint structure.
545 * @req: pointer to the usb request structure.
546 * @status: Status of the data transfer.
547 *
548 * Deletes the message from the queue and updates data transfer completion
549 * status.
550 */
551static void xudc_done(struct xusb_ep *ep, struct xusb_req *req, int status)
552{
553	struct xusb_udc *udc = ep->udc;
554
555	list_del_init(&req->queue);
556
557	if (req->usb_req.status == -EINPROGRESS)
558		req->usb_req.status = status;
559	else
560		status = req->usb_req.status;
561
562	if (status && status != -ESHUTDOWN)
563		dev_dbg(udc->dev, "%s done %p, status %d\n",
564			ep->ep_usb.name, req, status);
565	/* unmap request if DMA is present*/
566	if (udc->dma_enabled && ep->epnumber && req->usb_req.length)
567		usb_gadget_unmap_request(&udc->gadget, &req->usb_req,
568					 ep->is_in);
569
570	if (req->usb_req.complete) {
571		spin_unlock(&udc->lock);
572		req->usb_req.complete(&ep->ep_usb, &req->usb_req);
573		spin_lock(&udc->lock);
574	}
575}
576
577/**
578 * xudc_read_fifo - Reads the data from the given endpoint buffer.
579 * @ep: pointer to the usb device endpoint structure.
580 * @req: pointer to the usb request structure.
581 *
582 * Return: 0 if request is completed and -EAGAIN if not completed.
583 *
584 * Pulls OUT packet data from the endpoint buffer.
585 */
586static int xudc_read_fifo(struct xusb_ep *ep, struct xusb_req *req)
587{
588	u8 *buf;
589	u32 is_short, count, bufferspace;
590	u8 bufoffset;
591	u8 two_pkts = 0;
592	int ret;
593	int retval = -EAGAIN;
594	struct xusb_udc *udc = ep->udc;
595
596	if (ep->buffer0ready && ep->buffer1ready) {
597		dev_dbg(udc->dev, "Packet NOT ready!\n");
598		return retval;
599	}
600top:
601	if (ep->curbufnum)
602		bufoffset = XUSB_EP_BUF1COUNT_OFFSET;
603	else
604		bufoffset = XUSB_EP_BUF0COUNT_OFFSET;
605
606	count = udc->read_fn(udc->addr + ep->offset + bufoffset);
607
608	if (!ep->buffer0ready && !ep->buffer1ready)
609		two_pkts = 1;
610
611	buf = req->usb_req.buf + req->usb_req.actual;
612	prefetchw(buf);
613	bufferspace = req->usb_req.length - req->usb_req.actual;
614	is_short = count < ep->ep_usb.maxpacket;
615
616	if (unlikely(!bufferspace)) {
617		/*
618		 * This happens when the driver's buffer
619		 * is smaller than what the host sent.
620		 * discard the extra data.
621		 */
622		if (req->usb_req.status != -EOVERFLOW)
623			dev_dbg(udc->dev, "%s overflow %d\n",
624				ep->ep_usb.name, count);
625		req->usb_req.status = -EOVERFLOW;
626		xudc_done(ep, req, -EOVERFLOW);
627		return 0;
628	}
629
630	ret = xudc_eptxrx(ep, req, buf, count);
631	switch (ret) {
632	case 0:
633		req->usb_req.actual += min(count, bufferspace);
634		dev_dbg(udc->dev, "read %s, %d bytes%s req %p %d/%d\n",
635			ep->ep_usb.name, count, is_short ? "/S" : "", req,
636			req->usb_req.actual, req->usb_req.length);
637		bufferspace -= count;
638		/* Completion */
639		if ((req->usb_req.actual == req->usb_req.length) || is_short) {
640			if (udc->dma_enabled && req->usb_req.length)
641				dma_sync_single_for_cpu(udc->dev,
642							req->usb_req.dma,
643							req->usb_req.actual,
644							DMA_FROM_DEVICE);
645			xudc_done(ep, req, 0);
646			return 0;
647		}
648		if (two_pkts) {
649			two_pkts = 0;
650			goto top;
651		}
652		break;
653	case -EAGAIN:
654		dev_dbg(udc->dev, "receive busy\n");
655		break;
656	case -EINVAL:
657	case -ETIMEDOUT:
658		/* DMA error, dequeue the request */
659		xudc_done(ep, req, -ECONNRESET);
660		retval = 0;
661		break;
662	}
663
664	return retval;
665}
666
667/**
668 * xudc_write_fifo - Writes data into the given endpoint buffer.
669 * @ep: pointer to the usb device endpoint structure.
670 * @req: pointer to the usb request structure.
671 *
672 * Return: 0 if request is completed and -EAGAIN if not completed.
673 *
674 * Loads endpoint buffer for an IN packet.
675 */
676static int xudc_write_fifo(struct xusb_ep *ep, struct xusb_req *req)
677{
678	u32 max;
679	u32 length;
680	int ret;
681	int retval = -EAGAIN;
682	struct xusb_udc *udc = ep->udc;
683	int is_last, is_short = 0;
684	u8 *buf;
685
686	max = le16_to_cpu(ep->desc->wMaxPacketSize);
687	buf = req->usb_req.buf + req->usb_req.actual;
688	prefetch(buf);
689	length = req->usb_req.length - req->usb_req.actual;
690	length = min(length, max);
691
692	ret = xudc_eptxrx(ep, req, buf, length);
693	switch (ret) {
694	case 0:
695		req->usb_req.actual += length;
696		if (unlikely(length != max)) {
697			is_last = is_short = 1;
698		} else {
699			if (likely(req->usb_req.length !=
700				   req->usb_req.actual) || req->usb_req.zero)
701				is_last = 0;
702			else
703				is_last = 1;
704		}
705		dev_dbg(udc->dev, "%s: wrote %s %d bytes%s%s %d left %p\n",
706			__func__, ep->ep_usb.name, length, is_last ? "/L" : "",
707			is_short ? "/S" : "",
708			req->usb_req.length - req->usb_req.actual, req);
709		/* completion */
710		if (is_last) {
711			xudc_done(ep, req, 0);
712			retval = 0;
713		}
714		break;
715	case -EAGAIN:
716		dev_dbg(udc->dev, "Send busy\n");
717		break;
718	case -EINVAL:
719	case -ETIMEDOUT:
720		/* DMA error, dequeue the request */
721		xudc_done(ep, req, -ECONNRESET);
722		retval = 0;
723		break;
724	}
725
726	return retval;
727}
728
729/**
730 * xudc_nuke - Cleans up the data transfer message list.
731 * @ep: pointer to the usb device endpoint structure.
732 * @status: Status of the data transfer.
733 */
734static void xudc_nuke(struct xusb_ep *ep, int status)
735{
736	struct xusb_req *req;
737
738	while (!list_empty(&ep->queue)) {
739		req = list_first_entry(&ep->queue, struct xusb_req, queue);
740		xudc_done(ep, req, status);
741	}
742}
743
744/**
745 * xudc_ep_set_halt - Stalls/unstalls the given endpoint.
746 * @_ep: pointer to the usb device endpoint structure.
747 * @value: value to indicate stall/unstall.
748 *
749 * Return: 0 for success and error value on failure
750 */
751static int xudc_ep_set_halt(struct usb_ep *_ep, int value)
752{
753	struct xusb_ep *ep = to_xusb_ep(_ep);
754	struct xusb_udc *udc;
755	unsigned long flags;
756	u32 epcfgreg;
757
758	if (!_ep || (!ep->desc && ep->epnumber)) {
759		pr_debug("%s: bad ep or descriptor\n", __func__);
760		return -EINVAL;
761	}
762	udc = ep->udc;
763
764	if (ep->is_in && (!list_empty(&ep->queue)) && value) {
765		dev_dbg(udc->dev, "requests pending can't halt\n");
766		return -EAGAIN;
767	}
768
769	if (ep->buffer0ready || ep->buffer1ready) {
770		dev_dbg(udc->dev, "HW buffers busy can't halt\n");
771		return -EAGAIN;
772	}
773
774	spin_lock_irqsave(&udc->lock, flags);
775
776	if (value) {
777		/* Stall the device.*/
778		epcfgreg = udc->read_fn(udc->addr + ep->offset);
779		epcfgreg |= XUSB_EP_CFG_STALL_MASK;
780		udc->write_fn(udc->addr, ep->offset, epcfgreg);
781	} else {
782		/* Unstall the device.*/
783		epcfgreg = udc->read_fn(udc->addr + ep->offset);
784		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
785		udc->write_fn(udc->addr, ep->offset, epcfgreg);
786		if (ep->epnumber) {
787			/* Reset the toggle bit.*/
788			epcfgreg = udc->read_fn(ep->udc->addr + ep->offset);
789			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
790			udc->write_fn(udc->addr, ep->offset, epcfgreg);
791		}
792	}
793
794	spin_unlock_irqrestore(&udc->lock, flags);
795	return 0;
796}
797
798/**
799 * xudc_ep_enable - Enables the given endpoint.
800 * @ep: pointer to the xusb endpoint structure.
801 * @desc: pointer to usb endpoint descriptor.
802 *
803 * Return: 0 for success and error value on failure
804 */
805static int __xudc_ep_enable(struct xusb_ep *ep,
806			    const struct usb_endpoint_descriptor *desc)
807{
808	struct xusb_udc *udc = ep->udc;
809	u32 tmp;
810	u32 epcfg;
811	u32 ier;
812	u16 maxpacket;
813
814	ep->is_in = ((desc->bEndpointAddress & USB_DIR_IN) != 0);
815	/* Bit 3...0:endpoint number */
816	ep->epnumber = (desc->bEndpointAddress & 0x0f);
817	ep->desc = desc;
818	ep->ep_usb.desc = desc;
819	tmp = desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK;
820	ep->ep_usb.maxpacket = maxpacket = le16_to_cpu(desc->wMaxPacketSize);
821
822	switch (tmp) {
823	case USB_ENDPOINT_XFER_CONTROL:
824		dev_dbg(udc->dev, "only one control endpoint\n");
825		/* NON- ISO */
826		ep->is_iso = 0;
827		return -EINVAL;
828	case USB_ENDPOINT_XFER_INT:
829		/* NON- ISO */
830		ep->is_iso = 0;
831		if (maxpacket > 64) {
832			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
833			return -EINVAL;
834		}
835		break;
836	case USB_ENDPOINT_XFER_BULK:
837		/* NON- ISO */
838		ep->is_iso = 0;
839		if (!(is_power_of_2(maxpacket) && maxpacket >= 8 &&
840				maxpacket <= 512)) {
841			dev_dbg(udc->dev, "bogus maxpacket %d\n", maxpacket);
842			return -EINVAL;
843		}
844		break;
845	case USB_ENDPOINT_XFER_ISOC:
846		/* ISO */
847		ep->is_iso = 1;
848		break;
849	}
850
851	ep->buffer0ready = 0;
852	ep->buffer1ready = 0;
853	ep->curbufnum = 0;
854	ep->rambase = rambase[ep->epnumber];
855	xudc_epconfig(ep, udc);
856
857	dev_dbg(udc->dev, "Enable Endpoint %d max pkt is %d\n",
858		ep->epnumber, maxpacket);
859
860	/* Enable the End point.*/
861	epcfg = udc->read_fn(udc->addr + ep->offset);
862	epcfg |= XUSB_EP_CFG_VALID_MASK;
863	udc->write_fn(udc->addr, ep->offset, epcfg);
864	if (ep->epnumber)
865		ep->rambase <<= 2;
866
867	/* Enable buffer completion interrupts for endpoint */
868	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
869	ier |= (XUSB_STATUS_INTR_BUFF_COMP_SHIFT_MASK << ep->epnumber);
870	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
871
872	/* for OUT endpoint set buffers ready to receive */
873	if (ep->epnumber && !ep->is_in) {
874		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
875			      1 << ep->epnumber);
876		ep->buffer0ready = 1;
877		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET,
878			     (1 << (ep->epnumber +
879			      XUSB_STATUS_EP_BUFF2_SHIFT)));
880		ep->buffer1ready = 1;
881	}
882
883	return 0;
884}
885
886/**
887 * xudc_ep_enable - Enables the given endpoint.
888 * @_ep: pointer to the usb endpoint structure.
889 * @desc: pointer to usb endpoint descriptor.
890 *
891 * Return: 0 for success and error value on failure
892 */
893static int xudc_ep_enable(struct usb_ep *_ep,
894			  const struct usb_endpoint_descriptor *desc)
895{
896	struct xusb_ep *ep;
897	struct xusb_udc *udc;
898	unsigned long flags;
899	int ret;
900
901	if (!_ep || !desc || desc->bDescriptorType != USB_DT_ENDPOINT) {
902		pr_debug("%s: bad ep or descriptor\n", __func__);
903		return -EINVAL;
904	}
905
906	ep = to_xusb_ep(_ep);
907	udc = ep->udc;
908
909	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
910		dev_dbg(udc->dev, "bogus device state\n");
911		return -ESHUTDOWN;
912	}
913
914	spin_lock_irqsave(&udc->lock, flags);
915	ret = __xudc_ep_enable(ep, desc);
916	spin_unlock_irqrestore(&udc->lock, flags);
917
918	return ret;
919}
920
921/**
922 * xudc_ep_disable - Disables the given endpoint.
923 * @_ep: pointer to the usb endpoint structure.
924 *
925 * Return: 0 for success and error value on failure
926 */
927static int xudc_ep_disable(struct usb_ep *_ep)
928{
929	struct xusb_ep *ep;
930	unsigned long flags;
931	u32 epcfg;
932	struct xusb_udc *udc;
933
934	if (!_ep) {
935		pr_debug("%s: invalid ep\n", __func__);
936		return -EINVAL;
937	}
938
939	ep = to_xusb_ep(_ep);
940	udc = ep->udc;
941
942	spin_lock_irqsave(&udc->lock, flags);
943
944	xudc_nuke(ep, -ESHUTDOWN);
945
946	/* Restore the endpoint's pristine config */
947	ep->desc = NULL;
948	ep->ep_usb.desc = NULL;
949
950	dev_dbg(udc->dev, "USB Ep %d disable\n ", ep->epnumber);
951	/* Disable the endpoint.*/
952	epcfg = udc->read_fn(udc->addr + ep->offset);
953	epcfg &= ~XUSB_EP_CFG_VALID_MASK;
954	udc->write_fn(udc->addr, ep->offset, epcfg);
955
956	spin_unlock_irqrestore(&udc->lock, flags);
957	return 0;
958}
959
960/**
961 * xudc_ep_alloc_request - Initializes the request queue.
962 * @_ep: pointer to the usb endpoint structure.
963 * @gfp_flags: Flags related to the request call.
964 *
965 * Return: pointer to request structure on success and a NULL on failure.
966 */
967static struct usb_request *xudc_ep_alloc_request(struct usb_ep *_ep,
968						 gfp_t gfp_flags)
969{
970	struct xusb_ep *ep = to_xusb_ep(_ep);
971	struct xusb_udc *udc;
972	struct xusb_req *req;
973
974	udc = ep->udc;
975	req = kzalloc(sizeof(*req), gfp_flags);
976	if (!req) {
977		dev_err(udc->dev, "%s:not enough memory", __func__);
978		return NULL;
979	}
980
981	req->ep = ep;
982	INIT_LIST_HEAD(&req->queue);
983	return &req->usb_req;
984}
985
986/**
987 * xudc_free_request - Releases the request from queue.
988 * @_ep: pointer to the usb device endpoint structure.
989 * @_req: pointer to the usb request structure.
990 */
991static void xudc_free_request(struct usb_ep *_ep, struct usb_request *_req)
992{
993	struct xusb_req *req = to_xusb_req(_req);
994
995	kfree(req);
996}
997
998/**
999 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1000 * @ep0: pointer to the xusb endpoint 0 structure.
1001 * @req: pointer to the xusb request structure.
1002 *
1003 * Return: 0 for success and error value on failure
1004 */
1005static int __xudc_ep0_queue(struct xusb_ep *ep0, struct xusb_req *req)
1006{
1007	struct xusb_udc *udc = ep0->udc;
1008	u32 length;
1009	u8 *corebuf;
1010
1011	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1012		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1013		return -EINVAL;
1014	}
1015	if (!list_empty(&ep0->queue)) {
1016		dev_dbg(udc->dev, "%s:ep0 busy\n", __func__);
1017		return -EBUSY;
1018	}
1019
1020	req->usb_req.status = -EINPROGRESS;
1021	req->usb_req.actual = 0;
1022
1023	list_add_tail(&req->queue, &ep0->queue);
1024
1025	if (udc->setup.bRequestType & USB_DIR_IN) {
1026		prefetch(req->usb_req.buf);
1027		length = req->usb_req.length;
1028		corebuf = (void __force *) ((ep0->rambase << 2) +
1029			   udc->addr);
1030		length = req->usb_req.actual = min_t(u32, length,
1031						     EP0_MAX_PACKET);
1032		memcpy(corebuf, req->usb_req.buf, length);
1033		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, length);
1034		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1035	} else {
1036		if (udc->setup.wLength) {
1037			/* Enable EP0 buffer to receive data */
1038			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1039			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1040		} else {
1041			xudc_wrstatus(udc);
1042		}
1043	}
1044
1045	return 0;
1046}
1047
1048/**
1049 * xudc_ep0_queue - Adds the request to endpoint 0 queue.
1050 * @_ep: pointer to the usb endpoint 0 structure.
1051 * @_req: pointer to the usb request structure.
1052 * @gfp_flags: Flags related to the request call.
1053 *
1054 * Return: 0 for success and error value on failure
1055 */
1056static int xudc_ep0_queue(struct usb_ep *_ep, struct usb_request *_req,
1057			  gfp_t gfp_flags)
1058{
1059	struct xusb_req *req	= to_xusb_req(_req);
1060	struct xusb_ep	*ep0	= to_xusb_ep(_ep);
1061	struct xusb_udc *udc	= ep0->udc;
1062	unsigned long flags;
1063	int ret;
1064
1065	spin_lock_irqsave(&udc->lock, flags);
1066	ret = __xudc_ep0_queue(ep0, req);
1067	spin_unlock_irqrestore(&udc->lock, flags);
1068
1069	return ret;
1070}
1071
1072/**
1073 * xudc_ep_queue - Adds the request to endpoint queue.
1074 * @_ep: pointer to the usb endpoint structure.
1075 * @_req: pointer to the usb request structure.
1076 * @gfp_flags: Flags related to the request call.
1077 *
1078 * Return: 0 for success and error value on failure
1079 */
1080static int xudc_ep_queue(struct usb_ep *_ep, struct usb_request *_req,
1081			 gfp_t gfp_flags)
1082{
1083	struct xusb_req *req = to_xusb_req(_req);
1084	struct xusb_ep	*ep  = to_xusb_ep(_ep);
1085	struct xusb_udc *udc = ep->udc;
1086	int  ret;
1087	unsigned long flags;
1088
1089	if (!ep->desc) {
1090		dev_dbg(udc->dev, "%s:queing request to disabled %s\n",
1091			__func__, ep->name);
1092		return -ESHUTDOWN;
1093	}
1094
1095	if (!udc->driver || udc->gadget.speed == USB_SPEED_UNKNOWN) {
1096		dev_dbg(udc->dev, "%s, bogus device state\n", __func__);
1097		return -EINVAL;
1098	}
1099
1100	spin_lock_irqsave(&udc->lock, flags);
1101
1102	_req->status = -EINPROGRESS;
1103	_req->actual = 0;
1104
1105	if (udc->dma_enabled) {
1106		ret = usb_gadget_map_request(&udc->gadget, &req->usb_req,
1107					     ep->is_in);
1108		if (ret) {
1109			dev_dbg(udc->dev, "gadget_map failed ep%d\n",
1110				ep->epnumber);
1111			spin_unlock_irqrestore(&udc->lock, flags);
1112			return -EAGAIN;
1113		}
1114	}
1115
1116	if (list_empty(&ep->queue)) {
1117		if (ep->is_in) {
1118			dev_dbg(udc->dev, "xudc_write_fifo from ep_queue\n");
1119			if (!xudc_write_fifo(ep, req))
1120				req = NULL;
1121		} else {
1122			dev_dbg(udc->dev, "xudc_read_fifo from ep_queue\n");
1123			if (!xudc_read_fifo(ep, req))
1124				req = NULL;
1125		}
1126	}
1127
1128	if (req != NULL)
1129		list_add_tail(&req->queue, &ep->queue);
1130
1131	spin_unlock_irqrestore(&udc->lock, flags);
1132	return 0;
1133}
1134
1135/**
1136 * xudc_ep_dequeue - Removes the request from the queue.
1137 * @_ep: pointer to the usb device endpoint structure.
1138 * @_req: pointer to the usb request structure.
1139 *
1140 * Return: 0 for success and error value on failure
1141 */
1142static int xudc_ep_dequeue(struct usb_ep *_ep, struct usb_request *_req)
1143{
1144	struct xusb_ep *ep	= to_xusb_ep(_ep);
1145	struct xusb_req *req	= to_xusb_req(_req);
1146	struct xusb_udc *udc	= ep->udc;
1147	unsigned long flags;
1148
1149	spin_lock_irqsave(&udc->lock, flags);
1150	/* Make sure it's actually queued on this endpoint */
1151	list_for_each_entry(req, &ep->queue, queue) {
1152		if (&req->usb_req == _req)
1153			break;
1154	}
1155	if (&req->usb_req != _req) {
1156		spin_unlock_irqrestore(&ep->udc->lock, flags);
1157		return -EINVAL;
1158	}
1159	xudc_done(ep, req, -ECONNRESET);
1160	spin_unlock_irqrestore(&udc->lock, flags);
1161
1162	return 0;
1163}
1164
1165/**
1166 * xudc_ep0_enable - Enables the given endpoint.
1167 * @ep: pointer to the usb endpoint structure.
1168 * @desc: pointer to usb endpoint descriptor.
1169 *
1170 * Return: error always.
1171 *
1172 * endpoint 0 enable should not be called by gadget layer.
1173 */
1174static int xudc_ep0_enable(struct usb_ep *ep,
1175			   const struct usb_endpoint_descriptor *desc)
1176{
1177	return -EINVAL;
1178}
1179
1180/**
1181 * xudc_ep0_disable - Disables the given endpoint.
1182 * @ep: pointer to the usb endpoint structure.
1183 *
1184 * Return: error always.
1185 *
1186 * endpoint 0 disable should not be called by gadget layer.
1187 */
1188static int xudc_ep0_disable(struct usb_ep *ep)
1189{
1190	return -EINVAL;
1191}
1192
1193static const struct usb_ep_ops xusb_ep0_ops = {
1194	.enable		= xudc_ep0_enable,
1195	.disable	= xudc_ep0_disable,
1196	.alloc_request	= xudc_ep_alloc_request,
1197	.free_request	= xudc_free_request,
1198	.queue		= xudc_ep0_queue,
1199	.dequeue	= xudc_ep_dequeue,
1200	.set_halt	= xudc_ep_set_halt,
1201};
1202
1203static const struct usb_ep_ops xusb_ep_ops = {
1204	.enable		= xudc_ep_enable,
1205	.disable	= xudc_ep_disable,
1206	.alloc_request	= xudc_ep_alloc_request,
1207	.free_request	= xudc_free_request,
1208	.queue		= xudc_ep_queue,
1209	.dequeue	= xudc_ep_dequeue,
1210	.set_halt	= xudc_ep_set_halt,
1211};
1212
1213/**
1214 * xudc_get_frame - Reads the current usb frame number.
1215 * @gadget: pointer to the usb gadget structure.
1216 *
1217 * Return: current frame number for success and error value on failure.
1218 */
1219static int xudc_get_frame(struct usb_gadget *gadget)
1220{
1221	struct xusb_udc *udc;
1222	int frame;
1223
1224	if (!gadget)
1225		return -ENODEV;
1226
1227	udc = to_udc(gadget);
1228	frame = udc->read_fn(udc->addr + XUSB_FRAMENUM_OFFSET);
1229	return frame;
1230}
1231
1232/**
1233 * xudc_wakeup - Send remote wakeup signal to host
1234 * @gadget: pointer to the usb gadget structure.
1235 *
1236 * Return: 0 on success and error on failure
1237 */
1238static int xudc_wakeup(struct usb_gadget *gadget)
1239{
1240	struct xusb_udc *udc = to_udc(gadget);
1241	u32 crtlreg;
1242	int status = -EINVAL;
1243	unsigned long flags;
1244
1245	spin_lock_irqsave(&udc->lock, flags);
1246
1247	/* Remote wake up not enabled by host */
1248	if (!udc->remote_wkp)
1249		goto done;
1250
1251	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1252	crtlreg |= XUSB_CONTROL_USB_RMTWAKE_MASK;
1253	/* set remote wake up bit */
1254	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1255	/*
1256	 * wait for a while and reset remote wake up bit since this bit
1257	 * is not cleared by HW after sending remote wakeup to host.
1258	 */
1259	mdelay(2);
1260
1261	crtlreg &= ~XUSB_CONTROL_USB_RMTWAKE_MASK;
1262	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1263	status = 0;
1264done:
1265	spin_unlock_irqrestore(&udc->lock, flags);
1266	return status;
1267}
1268
1269/**
1270 * xudc_pullup - start/stop USB traffic
1271 * @gadget: pointer to the usb gadget structure.
1272 * @is_on: flag to start or stop
1273 *
1274 * Return: 0 always
1275 *
1276 * This function starts/stops SIE engine of IP based on is_on.
1277 */
1278static int xudc_pullup(struct usb_gadget *gadget, int is_on)
1279{
1280	struct xusb_udc *udc = to_udc(gadget);
1281	unsigned long flags;
1282	u32 crtlreg;
1283
1284	spin_lock_irqsave(&udc->lock, flags);
1285
1286	crtlreg = udc->read_fn(udc->addr + XUSB_CONTROL_OFFSET);
1287	if (is_on)
1288		crtlreg |= XUSB_CONTROL_USB_READY_MASK;
1289	else
1290		crtlreg &= ~XUSB_CONTROL_USB_READY_MASK;
1291
1292	udc->write_fn(udc->addr, XUSB_CONTROL_OFFSET, crtlreg);
1293
1294	spin_unlock_irqrestore(&udc->lock, flags);
1295
1296	return 0;
1297}
1298
1299/**
1300 * xudc_eps_init - initialize endpoints.
1301 * @udc: pointer to the usb device controller structure.
1302 */
1303static void xudc_eps_init(struct xusb_udc *udc)
1304{
1305	u32 ep_number;
1306
1307	INIT_LIST_HEAD(&udc->gadget.ep_list);
1308
1309	for (ep_number = 0; ep_number < XUSB_MAX_ENDPOINTS; ep_number++) {
1310		struct xusb_ep *ep = &udc->ep[ep_number];
1311
1312		if (ep_number) {
1313			list_add_tail(&ep->ep_usb.ep_list,
1314				      &udc->gadget.ep_list);
1315			usb_ep_set_maxpacket_limit(&ep->ep_usb,
1316						  (unsigned short) ~0);
1317			snprintf(ep->name, EPNAME_SIZE, "ep%d", ep_number);
1318			ep->ep_usb.name = ep->name;
1319			ep->ep_usb.ops = &xusb_ep_ops;
1320		} else {
1321			ep->ep_usb.name = ep0name;
1322			usb_ep_set_maxpacket_limit(&ep->ep_usb, EP0_MAX_PACKET);
1323			ep->ep_usb.ops = &xusb_ep0_ops;
1324		}
1325
1326		ep->udc = udc;
1327		ep->epnumber = ep_number;
1328		ep->desc = NULL;
1329		/*
1330		 * The configuration register address offset between
1331		 * each endpoint is 0x10.
1332		 */
1333		ep->offset = XUSB_EP0_CONFIG_OFFSET + (ep_number * 0x10);
1334		ep->is_in = 0;
1335		ep->is_iso = 0;
1336		ep->maxpacket = 0;
1337		xudc_epconfig(ep, udc);
1338
1339		/* Initialize one queue per endpoint */
1340		INIT_LIST_HEAD(&ep->queue);
1341	}
1342}
1343
1344/**
1345 * xudc_stop_activity - Stops any further activity on the device.
1346 * @udc: pointer to the usb device controller structure.
1347 */
1348static void xudc_stop_activity(struct xusb_udc *udc)
1349{
1350	int i;
1351	struct xusb_ep *ep;
1352
1353	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1354		ep = &udc->ep[i];
1355		xudc_nuke(ep, -ESHUTDOWN);
1356	}
1357}
1358
1359/**
1360 * xudc_start - Starts the device.
1361 * @gadget: pointer to the usb gadget structure
1362 * @driver: pointer to gadget driver structure
1363 *
1364 * Return: zero on success and error on failure
1365 */
1366static int xudc_start(struct usb_gadget *gadget,
1367		      struct usb_gadget_driver *driver)
1368{
1369	struct xusb_udc *udc	= to_udc(gadget);
1370	struct xusb_ep *ep0	= &udc->ep[XUSB_EP_NUMBER_ZERO];
1371	const struct usb_endpoint_descriptor *desc = &config_bulk_out_desc;
1372	unsigned long flags;
1373	int ret = 0;
1374
1375	spin_lock_irqsave(&udc->lock, flags);
1376
1377	if (udc->driver) {
1378		dev_err(udc->dev, "%s is already bound to %s\n",
1379			udc->gadget.name, udc->driver->driver.name);
1380		ret = -EBUSY;
1381		goto err;
1382	}
1383
1384	/* hook up the driver */
1385	udc->driver = driver;
1386	udc->gadget.speed = driver->max_speed;
1387
1388	/* Enable the control endpoint. */
1389	ret = __xudc_ep_enable(ep0, desc);
1390
1391	/* Set device address and remote wakeup to 0 */
1392	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1393	udc->remote_wkp = 0;
1394err:
1395	spin_unlock_irqrestore(&udc->lock, flags);
1396	return ret;
1397}
1398
1399/**
1400 * xudc_stop - stops the device.
1401 * @gadget: pointer to the usb gadget structure
1402 * @driver: pointer to usb gadget driver structure
1403 *
1404 * Return: zero always
1405 */
1406static int xudc_stop(struct usb_gadget *gadget)
1407{
1408	struct xusb_udc *udc = to_udc(gadget);
1409	unsigned long flags;
1410
1411	spin_lock_irqsave(&udc->lock, flags);
1412
1413	udc->gadget.speed = USB_SPEED_UNKNOWN;
1414	udc->driver = NULL;
1415
1416	/* Set device address and remote wakeup to 0 */
1417	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1418	udc->remote_wkp = 0;
1419
1420	xudc_stop_activity(udc);
1421
1422	spin_unlock_irqrestore(&udc->lock, flags);
1423
1424	return 0;
1425}
1426
1427static const struct usb_gadget_ops xusb_udc_ops = {
1428	.get_frame	= xudc_get_frame,
1429	.wakeup		= xudc_wakeup,
1430	.pullup		= xudc_pullup,
1431	.udc_start	= xudc_start,
1432	.udc_stop	= xudc_stop,
1433};
1434
1435/**
1436 * xudc_clear_stall_all_ep - clears stall of every endpoint.
1437 * @udc: pointer to the udc structure.
1438 */
1439static void xudc_clear_stall_all_ep(struct xusb_udc *udc)
1440{
1441	struct xusb_ep *ep;
1442	u32 epcfgreg;
1443	int i;
1444
1445	for (i = 0; i < XUSB_MAX_ENDPOINTS; i++) {
1446		ep = &udc->ep[i];
1447		epcfgreg = udc->read_fn(udc->addr + ep->offset);
1448		epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1449		udc->write_fn(udc->addr, ep->offset, epcfgreg);
1450		if (ep->epnumber) {
1451			/* Reset the toggle bit.*/
1452			epcfgreg = udc->read_fn(udc->addr + ep->offset);
1453			epcfgreg &= ~XUSB_EP_CFG_DATA_TOGGLE_MASK;
1454			udc->write_fn(udc->addr, ep->offset, epcfgreg);
1455		}
1456	}
1457}
1458
1459/**
1460 * xudc_startup_handler - The usb device controller interrupt handler.
1461 * @udc: pointer to the udc structure.
1462 * @intrstatus: The mask value containing the interrupt sources.
1463 *
1464 * This function handles the RESET,SUSPEND,RESUME and DISCONNECT interrupts.
1465 */
1466static void xudc_startup_handler(struct xusb_udc *udc, u32 intrstatus)
1467{
1468	u32 intrreg;
1469
1470	if (intrstatus & XUSB_STATUS_RESET_MASK) {
1471
1472		dev_dbg(udc->dev, "Reset\n");
1473
1474		if (intrstatus & XUSB_STATUS_HIGH_SPEED_MASK)
1475			udc->gadget.speed = USB_SPEED_HIGH;
1476		else
1477			udc->gadget.speed = USB_SPEED_FULL;
1478
1479		xudc_stop_activity(udc);
1480		xudc_clear_stall_all_ep(udc);
1481		udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
1482
1483		/* Set device address and remote wakeup to 0 */
1484		udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
1485		udc->remote_wkp = 0;
1486
1487		/* Enable the suspend, resume and disconnect */
1488		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1489		intrreg |= XUSB_STATUS_SUSPEND_MASK | XUSB_STATUS_RESUME_MASK |
1490			   XUSB_STATUS_DISCONNECT_MASK;
1491		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1492	}
1493	if (intrstatus & XUSB_STATUS_SUSPEND_MASK) {
1494
1495		dev_dbg(udc->dev, "Suspend\n");
1496
1497		/* Enable the reset, resume and disconnect */
1498		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1499		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1500			   XUSB_STATUS_DISCONNECT_MASK;
1501		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1502
1503		udc->usb_state = USB_STATE_SUSPENDED;
1504
1505		if (udc->driver->suspend) {
1506			spin_unlock(&udc->lock);
1507			udc->driver->suspend(&udc->gadget);
1508			spin_lock(&udc->lock);
1509		}
1510	}
1511	if (intrstatus & XUSB_STATUS_RESUME_MASK) {
1512		bool condition = (udc->usb_state != USB_STATE_SUSPENDED);
1513
1514		dev_WARN_ONCE(udc->dev, condition,
1515				"Resume IRQ while not suspended\n");
1516
1517		dev_dbg(udc->dev, "Resume\n");
1518
1519		/* Enable the reset, suspend and disconnect */
1520		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1521		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_SUSPEND_MASK |
1522			   XUSB_STATUS_DISCONNECT_MASK;
1523		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1524
1525		udc->usb_state = 0;
1526
1527		if (udc->driver->resume) {
1528			spin_unlock(&udc->lock);
1529			udc->driver->resume(&udc->gadget);
1530			spin_lock(&udc->lock);
1531		}
1532	}
1533	if (intrstatus & XUSB_STATUS_DISCONNECT_MASK) {
1534
1535		dev_dbg(udc->dev, "Disconnect\n");
1536
1537		/* Enable the reset, resume and suspend */
1538		intrreg = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1539		intrreg |= XUSB_STATUS_RESET_MASK | XUSB_STATUS_RESUME_MASK |
1540			   XUSB_STATUS_SUSPEND_MASK;
1541		udc->write_fn(udc->addr, XUSB_IER_OFFSET, intrreg);
1542
1543		if (udc->driver && udc->driver->disconnect) {
1544			spin_unlock(&udc->lock);
1545			udc->driver->disconnect(&udc->gadget);
1546			spin_lock(&udc->lock);
1547		}
1548	}
1549}
1550
1551/**
1552 * xudc_ep0_stall - Stall endpoint zero.
1553 * @udc: pointer to the udc structure.
1554 *
1555 * This function stalls endpoint zero.
1556 */
1557static void xudc_ep0_stall(struct xusb_udc *udc)
1558{
1559	u32 epcfgreg;
1560	struct xusb_ep *ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO];
1561
1562	epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1563	epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1564	udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1565}
1566
1567/**
1568 * xudc_setaddress - executes SET_ADDRESS command
1569 * @udc: pointer to the udc structure.
1570 *
1571 * This function executes USB SET_ADDRESS command
1572 */
1573static void xudc_setaddress(struct xusb_udc *udc)
1574{
1575	struct xusb_ep *ep0	= &udc->ep[0];
1576	struct xusb_req *req	= udc->req;
1577	int ret;
1578
1579	req->usb_req.length = 0;
1580	ret = __xudc_ep0_queue(ep0, req);
1581	if (ret == 0)
1582		return;
1583
1584	dev_err(udc->dev, "Can't respond to SET ADDRESS request\n");
1585	xudc_ep0_stall(udc);
1586}
1587
1588/**
1589 * xudc_getstatus - executes GET_STATUS command
1590 * @udc: pointer to the udc structure.
1591 *
1592 * This function executes USB GET_STATUS command
1593 */
1594static void xudc_getstatus(struct xusb_udc *udc)
1595{
1596	struct xusb_ep *ep0	= &udc->ep[0];
1597	struct xusb_req *req	= udc->req;
1598	struct xusb_ep *target_ep;
1599	u16 status = 0;
1600	u32 epcfgreg;
1601	int epnum;
1602	u32 halt;
1603	int ret;
1604
1605	switch (udc->setup.bRequestType & USB_RECIP_MASK) {
1606	case USB_RECIP_DEVICE:
1607		/* Get device status */
1608		status = 1 << USB_DEVICE_SELF_POWERED;
1609		if (udc->remote_wkp)
1610			status |= (1 << USB_DEVICE_REMOTE_WAKEUP);
1611		break;
1612	case USB_RECIP_INTERFACE:
1613		break;
1614	case USB_RECIP_ENDPOINT:
1615		epnum = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1616		target_ep = &udc->ep[epnum];
1617		epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1618		halt = epcfgreg & XUSB_EP_CFG_STALL_MASK;
1619		if (udc->setup.wIndex & USB_DIR_IN) {
1620			if (!target_ep->is_in)
1621				goto stall;
1622		} else {
1623			if (target_ep->is_in)
1624				goto stall;
1625		}
1626		if (halt)
1627			status = 1 << USB_ENDPOINT_HALT;
1628		break;
1629	default:
1630		goto stall;
1631	}
1632
1633	req->usb_req.length = 2;
1634	*(u16 *)req->usb_req.buf = cpu_to_le16(status);
1635	ret = __xudc_ep0_queue(ep0, req);
1636	if (ret == 0)
1637		return;
1638stall:
1639	dev_err(udc->dev, "Can't respond to getstatus request\n");
1640	xudc_ep0_stall(udc);
1641}
1642
1643/**
1644 * xudc_set_clear_feature - Executes the set feature and clear feature commands.
1645 * @udc: pointer to the usb device controller structure.
1646 *
1647 * Processes the SET_FEATURE and CLEAR_FEATURE commands.
1648 */
1649static void xudc_set_clear_feature(struct xusb_udc *udc)
1650{
1651	struct xusb_ep *ep0	= &udc->ep[0];
1652	struct xusb_req *req	= udc->req;
1653	struct xusb_ep *target_ep;
1654	u8 endpoint;
1655	u8 outinbit;
1656	u32 epcfgreg;
1657	int flag = (udc->setup.bRequest == USB_REQ_SET_FEATURE ? 1 : 0);
1658	int ret;
1659
1660	switch (udc->setup.bRequestType) {
1661	case USB_RECIP_DEVICE:
1662		switch (udc->setup.wValue) {
1663		case USB_DEVICE_TEST_MODE:
1664			/*
1665			 * The Test Mode will be executed
1666			 * after the status phase.
1667			 */
1668			break;
1669		case USB_DEVICE_REMOTE_WAKEUP:
1670			if (flag)
1671				udc->remote_wkp = 1;
1672			else
1673				udc->remote_wkp = 0;
1674			break;
1675		default:
1676			xudc_ep0_stall(udc);
1677			break;
1678		}
1679		break;
1680	case USB_RECIP_ENDPOINT:
1681		if (!udc->setup.wValue) {
1682			endpoint = udc->setup.wIndex & USB_ENDPOINT_NUMBER_MASK;
1683			target_ep = &udc->ep[endpoint];
1684			outinbit = udc->setup.wIndex & USB_ENDPOINT_DIR_MASK;
1685			outinbit = outinbit >> 7;
1686
1687			/* Make sure direction matches.*/
1688			if (outinbit != target_ep->is_in) {
1689				xudc_ep0_stall(udc);
1690				return;
1691			}
1692			epcfgreg = udc->read_fn(udc->addr + target_ep->offset);
1693			if (!endpoint) {
1694				/* Clear the stall.*/
1695				epcfgreg &= ~XUSB_EP_CFG_STALL_MASK;
1696				udc->write_fn(udc->addr,
1697					      target_ep->offset, epcfgreg);
1698			} else {
1699				if (flag) {
1700					epcfgreg |= XUSB_EP_CFG_STALL_MASK;
1701					udc->write_fn(udc->addr,
1702						      target_ep->offset,
1703						      epcfgreg);
1704				} else {
1705					/* Unstall the endpoint.*/
1706					epcfgreg &= ~(XUSB_EP_CFG_STALL_MASK |
1707						XUSB_EP_CFG_DATA_TOGGLE_MASK);
1708					udc->write_fn(udc->addr,
1709						      target_ep->offset,
1710						      epcfgreg);
1711				}
1712			}
1713		}
1714		break;
1715	default:
1716		xudc_ep0_stall(udc);
1717		return;
1718	}
1719
1720	req->usb_req.length = 0;
1721	ret = __xudc_ep0_queue(ep0, req);
1722	if (ret == 0)
1723		return;
1724
1725	dev_err(udc->dev, "Can't respond to SET/CLEAR FEATURE\n");
1726	xudc_ep0_stall(udc);
1727}
1728
1729/**
1730 * xudc_handle_setup - Processes the setup packet.
1731 * @udc: pointer to the usb device controller structure.
1732 *
1733 * Process setup packet and delegate to gadget layer.
1734 */
1735static void xudc_handle_setup(struct xusb_udc *udc)
1736{
1737	struct xusb_ep *ep0 = &udc->ep[0];
1738	struct usb_ctrlrequest setup;
1739	u32 *ep0rambase;
1740
1741	/* Load up the chapter 9 command buffer.*/
1742	ep0rambase = (u32 __force *) (udc->addr + XUSB_SETUP_PKT_ADDR_OFFSET);
1743	memcpy(&setup, ep0rambase, 8);
1744
1745	udc->setup = setup;
1746	udc->setup.wValue = cpu_to_le16(setup.wValue);
1747	udc->setup.wIndex = cpu_to_le16(setup.wIndex);
1748	udc->setup.wLength = cpu_to_le16(setup.wLength);
1749
1750	/* Clear previous requests */
1751	xudc_nuke(ep0, -ECONNRESET);
1752
1753	if (udc->setup.bRequestType & USB_DIR_IN) {
1754		/* Execute the get command.*/
1755		udc->setupseqrx = STATUS_PHASE;
1756		udc->setupseqtx = DATA_PHASE;
1757	} else {
1758		/* Execute the put command.*/
1759		udc->setupseqrx = DATA_PHASE;
1760		udc->setupseqtx = STATUS_PHASE;
1761	}
1762
1763	switch (udc->setup.bRequest) {
1764	case USB_REQ_GET_STATUS:
1765		/* Data+Status phase form udc */
1766		if ((udc->setup.bRequestType &
1767				(USB_DIR_IN | USB_TYPE_MASK)) !=
1768				(USB_DIR_IN | USB_TYPE_STANDARD))
1769			break;
1770		xudc_getstatus(udc);
1771		return;
1772	case USB_REQ_SET_ADDRESS:
1773		/* Status phase from udc */
1774		if (udc->setup.bRequestType != (USB_DIR_OUT |
1775				USB_TYPE_STANDARD | USB_RECIP_DEVICE))
1776			break;
1777		xudc_setaddress(udc);
1778		return;
1779	case USB_REQ_CLEAR_FEATURE:
1780	case USB_REQ_SET_FEATURE:
1781		/* Requests with no data phase, status phase from udc */
1782		if ((udc->setup.bRequestType & USB_TYPE_MASK)
1783				!= USB_TYPE_STANDARD)
1784			break;
1785		xudc_set_clear_feature(udc);
1786		return;
1787	default:
1788		break;
1789	}
1790
1791	spin_unlock(&udc->lock);
1792	if (udc->driver->setup(&udc->gadget, &setup) < 0)
1793		xudc_ep0_stall(udc);
1794	spin_lock(&udc->lock);
1795}
1796
1797/**
1798 * xudc_ep0_out - Processes the endpoint 0 OUT token.
1799 * @udc: pointer to the usb device controller structure.
1800 */
1801static void xudc_ep0_out(struct xusb_udc *udc)
1802{
1803	struct xusb_ep *ep0 = &udc->ep[0];
1804	struct xusb_req *req;
1805	u8 *ep0rambase;
1806	unsigned int bytes_to_rx;
1807	void *buffer;
1808
1809	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1810
1811	switch (udc->setupseqrx) {
1812	case STATUS_PHASE:
1813		/*
1814		 * This resets both state machines for the next
1815		 * Setup packet.
1816		 */
1817		udc->setupseqrx = SETUP_PHASE;
1818		udc->setupseqtx = SETUP_PHASE;
1819		req->usb_req.actual = req->usb_req.length;
1820		xudc_done(ep0, req, 0);
1821		break;
1822	case DATA_PHASE:
1823		bytes_to_rx = udc->read_fn(udc->addr +
1824					   XUSB_EP_BUF0COUNT_OFFSET);
1825		/* Copy the data to be received from the DPRAM. */
1826		ep0rambase = (u8 __force *) (udc->addr +
1827			     (ep0->rambase << 2));
1828		buffer = req->usb_req.buf + req->usb_req.actual;
1829		req->usb_req.actual = req->usb_req.actual + bytes_to_rx;
1830		memcpy(buffer, ep0rambase, bytes_to_rx);
1831
1832		if (req->usb_req.length == req->usb_req.actual) {
1833			/* Data transfer completed get ready for Status stage */
1834			xudc_wrstatus(udc);
1835		} else {
1836			/* Enable EP0 buffer to receive data */
1837			udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, 0);
1838			udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1839		}
1840		break;
1841	default:
1842		break;
1843	}
1844}
1845
1846/**
1847 * xudc_ep0_in - Processes the endpoint 0 IN token.
1848 * @udc: pointer to the usb device controller structure.
1849 */
1850static void xudc_ep0_in(struct xusb_udc *udc)
1851{
1852	struct xusb_ep *ep0 = &udc->ep[0];
1853	struct xusb_req *req;
1854	unsigned int bytes_to_tx;
1855	void *buffer;
1856	u32 epcfgreg;
1857	u16 count = 0;
1858	u16 length;
1859	u8 *ep0rambase;
1860	u8 test_mode = udc->setup.wIndex >> 8;
1861
1862	req = list_first_entry(&ep0->queue, struct xusb_req, queue);
1863	bytes_to_tx = req->usb_req.length - req->usb_req.actual;
1864
1865	switch (udc->setupseqtx) {
1866	case STATUS_PHASE:
1867		switch (udc->setup.bRequest) {
1868		case USB_REQ_SET_ADDRESS:
1869			/* Set the address of the device.*/
1870			udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET,
1871				      udc->setup.wValue);
1872			break;
1873		case USB_REQ_SET_FEATURE:
1874			if (udc->setup.bRequestType ==
1875					USB_RECIP_DEVICE) {
1876				if (udc->setup.wValue ==
1877						USB_DEVICE_TEST_MODE)
1878					udc->write_fn(udc->addr,
1879						      XUSB_TESTMODE_OFFSET,
1880						      test_mode);
1881			}
1882			break;
1883		}
1884		req->usb_req.actual = req->usb_req.length;
1885		xudc_done(ep0, req, 0);
1886		break;
1887	case DATA_PHASE:
1888		if (!bytes_to_tx) {
1889			/*
1890			 * We're done with data transfer, next
1891			 * will be zero length OUT with data toggle of
1892			 * 1. Setup data_toggle.
1893			 */
1894			epcfgreg = udc->read_fn(udc->addr + ep0->offset);
1895			epcfgreg |= XUSB_EP_CFG_DATA_TOGGLE_MASK;
1896			udc->write_fn(udc->addr, ep0->offset, epcfgreg);
1897			udc->setupseqtx = STATUS_PHASE;
1898		} else {
1899			length = count = min_t(u32, bytes_to_tx,
1900					       EP0_MAX_PACKET);
1901			/* Copy the data to be transmitted into the DPRAM. */
1902			ep0rambase = (u8 __force *) (udc->addr +
1903				     (ep0->rambase << 2));
1904			buffer = req->usb_req.buf + req->usb_req.actual;
1905			req->usb_req.actual = req->usb_req.actual + length;
1906			memcpy(ep0rambase, buffer, length);
1907		}
1908		udc->write_fn(udc->addr, XUSB_EP_BUF0COUNT_OFFSET, count);
1909		udc->write_fn(udc->addr, XUSB_BUFFREADY_OFFSET, 1);
1910		break;
1911	default:
1912		break;
1913	}
1914}
1915
1916/**
1917 * xudc_ctrl_ep_handler - Endpoint 0 interrupt handler.
1918 * @udc: pointer to the udc structure.
1919 * @intrstatus:	It's the mask value for the interrupt sources on endpoint 0.
1920 *
1921 * Processes the commands received during enumeration phase.
1922 */
1923static void xudc_ctrl_ep_handler(struct xusb_udc *udc, u32 intrstatus)
1924{
1925
1926	if (intrstatus & XUSB_STATUS_SETUP_PACKET_MASK) {
1927		xudc_handle_setup(udc);
1928	} else {
1929		if (intrstatus & XUSB_STATUS_FIFO_BUFF_RDY_MASK)
1930			xudc_ep0_out(udc);
1931		else if (intrstatus & XUSB_STATUS_FIFO_BUFF_FREE_MASK)
1932			xudc_ep0_in(udc);
1933	}
1934}
1935
1936/**
1937 * xudc_nonctrl_ep_handler - Non control endpoint interrupt handler.
1938 * @udc: pointer to the udc structure.
1939 * @epnum: End point number for which the interrupt is to be processed
1940 * @intrstatus:	mask value for interrupt sources of endpoints other
1941 *		than endpoint 0.
1942 *
1943 * Processes the buffer completion interrupts.
1944 */
1945static void xudc_nonctrl_ep_handler(struct xusb_udc *udc, u8 epnum,
1946				    u32 intrstatus)
1947{
1948
1949	struct xusb_req *req;
1950	struct xusb_ep *ep;
1951
1952	ep = &udc->ep[epnum];
1953	/* Process the End point interrupts.*/
1954	if (intrstatus & (XUSB_STATUS_EP0_BUFF1_COMP_MASK << epnum))
1955		ep->buffer0ready = 0;
1956	if (intrstatus & (XUSB_STATUS_EP0_BUFF2_COMP_MASK << epnum))
1957		ep->buffer1ready = 0;
1958
1959	if (list_empty(&ep->queue))
1960		return;
1961
1962	req = list_first_entry(&ep->queue, struct xusb_req, queue);
1963
1964	if (ep->is_in)
1965		xudc_write_fifo(ep, req);
1966	else
1967		xudc_read_fifo(ep, req);
1968}
1969
1970/**
1971 * xudc_irq - The main interrupt handler.
1972 * @irq: The interrupt number.
1973 * @_udc: pointer to the usb device controller structure.
1974 *
1975 * Return: IRQ_HANDLED after the interrupt is handled.
1976 */
1977static irqreturn_t xudc_irq(int irq, void *_udc)
1978{
1979	struct xusb_udc *udc = _udc;
1980	u32 intrstatus;
1981	u32 ier;
1982	u8 index;
1983	u32 bufintr;
1984	unsigned long flags;
1985
1986	spin_lock_irqsave(&udc->lock, flags);
1987
1988	/*
1989	 * Event interrupts are level sensitive hence first disable
1990	 * IER, read ISR and figure out active interrupts.
1991	 */
1992	ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
1993	ier &= ~XUSB_STATUS_INTR_EVENT_MASK;
1994	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
1995
1996	/* Read the Interrupt Status Register.*/
1997	intrstatus = udc->read_fn(udc->addr + XUSB_STATUS_OFFSET);
1998
1999	/* Call the handler for the event interrupt.*/
2000	if (intrstatus & XUSB_STATUS_INTR_EVENT_MASK) {
2001		/*
2002		 * Check if there is any action to be done for :
2003		 * - USB Reset received {XUSB_STATUS_RESET_MASK}
2004		 * - USB Suspend received {XUSB_STATUS_SUSPEND_MASK}
2005		 * - USB Resume received {XUSB_STATUS_RESUME_MASK}
2006		 * - USB Disconnect received {XUSB_STATUS_DISCONNECT_MASK}
2007		 */
2008		xudc_startup_handler(udc, intrstatus);
2009	}
2010
2011	/* Check the buffer completion interrupts */
2012	if (intrstatus & XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK) {
2013		/* Enable Reset, Suspend, Resume and Disconnect  */
2014		ier = udc->read_fn(udc->addr + XUSB_IER_OFFSET);
2015		ier |= XUSB_STATUS_INTR_EVENT_MASK;
2016		udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2017
2018		if (intrstatus & XUSB_STATUS_EP0_BUFF1_COMP_MASK)
2019			xudc_ctrl_ep_handler(udc, intrstatus);
2020
2021		for (index = 1; index < 8; index++) {
2022			bufintr = ((intrstatus &
2023				  (XUSB_STATUS_EP1_BUFF1_COMP_MASK <<
2024				  (index - 1))) || (intrstatus &
2025				  (XUSB_STATUS_EP1_BUFF2_COMP_MASK <<
2026				  (index - 1))));
2027			if (bufintr) {
2028				xudc_nonctrl_ep_handler(udc, index,
2029							intrstatus);
2030			}
2031		}
2032	}
2033
2034	spin_unlock_irqrestore(&udc->lock, flags);
2035	return IRQ_HANDLED;
2036}
2037
2038/**
2039 * xudc_probe - The device probe function for driver initialization.
2040 * @pdev: pointer to the platform device structure.
2041 *
2042 * Return: 0 for success and error value on failure
2043 */
2044static int xudc_probe(struct platform_device *pdev)
2045{
2046	struct device_node *np = pdev->dev.of_node;
2047	struct resource *res;
2048	struct xusb_udc *udc;
2049	struct xusb_ep *ep0;
2050	int irq;
2051	int ret;
2052	u32 ier;
2053	u8 *buff;
2054
2055	udc = devm_kzalloc(&pdev->dev, sizeof(*udc), GFP_KERNEL);
2056	if (!udc)
2057		return -ENOMEM;
2058
2059	/* Create a dummy request for GET_STATUS, SET_ADDRESS */
2060	udc->req = devm_kzalloc(&pdev->dev, sizeof(struct xusb_req),
2061				GFP_KERNEL);
2062	if (!udc->req)
2063		return -ENOMEM;
2064
2065	buff = devm_kzalloc(&pdev->dev, STATUSBUFF_SIZE, GFP_KERNEL);
2066	if (!buff)
2067		return -ENOMEM;
2068
2069	udc->req->usb_req.buf = buff;
2070
2071	/* Map the registers */
2072	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2073	udc->addr = devm_ioremap_resource(&pdev->dev, res);
2074	if (IS_ERR(udc->addr))
2075		return PTR_ERR(udc->addr);
2076
2077	irq = platform_get_irq(pdev, 0);
2078	if (irq < 0) {
2079		dev_err(&pdev->dev, "unable to get irq\n");
2080		return irq;
2081	}
2082	ret = devm_request_irq(&pdev->dev, irq, xudc_irq, 0,
2083			       dev_name(&pdev->dev), udc);
2084	if (ret < 0) {
2085		dev_dbg(&pdev->dev, "unable to request irq %d", irq);
2086		goto fail;
2087	}
2088
2089	udc->dma_enabled = of_property_read_bool(np, "xlnx,has-builtin-dma");
2090
2091	/* Setup gadget structure */
2092	udc->gadget.ops = &xusb_udc_ops;
2093	udc->gadget.max_speed = USB_SPEED_HIGH;
2094	udc->gadget.speed = USB_SPEED_UNKNOWN;
2095	udc->gadget.ep0 = &udc->ep[XUSB_EP_NUMBER_ZERO].ep_usb;
2096	udc->gadget.name = driver_name;
2097
2098	spin_lock_init(&udc->lock);
2099
2100	/* Check for IP endianness */
2101	udc->write_fn = xudc_write32_be;
2102	udc->read_fn = xudc_read32_be;
2103	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, TEST_J);
2104	if ((udc->read_fn(udc->addr + XUSB_TESTMODE_OFFSET))
2105			!= TEST_J) {
2106		udc->write_fn = xudc_write32;
2107		udc->read_fn = xudc_read32;
2108	}
2109	udc->write_fn(udc->addr, XUSB_TESTMODE_OFFSET, 0);
2110
2111	xudc_eps_init(udc);
2112
2113	ep0 = &udc->ep[0];
2114
2115	/* Set device address to 0.*/
2116	udc->write_fn(udc->addr, XUSB_ADDRESS_OFFSET, 0);
2117
2118	ret = usb_add_gadget_udc(&pdev->dev, &udc->gadget);
2119	if (ret)
2120		goto fail;
2121
2122	udc->dev = &udc->gadget.dev;
2123
2124	/* Enable the interrupts.*/
2125	ier = XUSB_STATUS_GLOBAL_INTR_MASK | XUSB_STATUS_INTR_EVENT_MASK |
2126	      XUSB_STATUS_FIFO_BUFF_RDY_MASK | XUSB_STATUS_FIFO_BUFF_FREE_MASK |
2127	      XUSB_STATUS_SETUP_PACKET_MASK |
2128	      XUSB_STATUS_INTR_BUFF_COMP_ALL_MASK;
2129
2130	udc->write_fn(udc->addr, XUSB_IER_OFFSET, ier);
2131
2132	platform_set_drvdata(pdev, udc);
2133
2134	dev_vdbg(&pdev->dev, "%s at 0x%08X mapped to %p %s\n",
2135		 driver_name, (u32)res->start, udc->addr,
2136		 udc->dma_enabled ? "with DMA" : "without DMA");
2137
2138	return 0;
2139fail:
2140	dev_err(&pdev->dev, "probe failed, %d\n", ret);
2141	return ret;
2142}
2143
2144/**
2145 * xudc_remove - Releases the resources allocated during the initialization.
2146 * @pdev: pointer to the platform device structure.
2147 *
2148 * Return: 0 always
2149 */
2150static int xudc_remove(struct platform_device *pdev)
2151{
2152	struct xusb_udc *udc = platform_get_drvdata(pdev);
2153
2154	usb_del_gadget_udc(&udc->gadget);
2155
2156	return 0;
2157}
2158
2159/* Match table for of_platform binding */
2160static const struct of_device_id usb_of_match[] = {
2161	{ .compatible = "xlnx,usb2-device-4.00.a", },
2162	{ /* end of list */ },
2163};
2164MODULE_DEVICE_TABLE(of, usb_of_match);
2165
2166static struct platform_driver xudc_driver = {
2167	.driver = {
2168		.name = driver_name,
2169		.of_match_table = usb_of_match,
2170	},
2171	.probe = xudc_probe,
2172	.remove = xudc_remove,
2173};
2174
2175module_platform_driver(xudc_driver);
2176
2177MODULE_DESCRIPTION("Xilinx udc driver");
2178MODULE_AUTHOR("Xilinx, Inc");
2179MODULE_LICENSE("GPL");
2180