1/*
2 * VFIO PCI config space virtualization
3 *
4 * Copyright (C) 2012 Red Hat, Inc.  All rights reserved.
5 *     Author: Alex Williamson <alex.williamson@redhat.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc.  All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
14 */
15
16/*
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
24 */
25
26#include <linux/fs.h>
27#include <linux/pci.h>
28#include <linux/uaccess.h>
29#include <linux/vfio.h>
30#include <linux/slab.h>
31
32#include "vfio_pci_private.h"
33
34#define PCI_CFG_SPACE_SIZE	256
35
36/* Useful "pseudo" capabilities */
37#define PCI_CAP_ID_BASIC	0
38#define PCI_CAP_ID_INVALID	0xFF
39
40#define is_bar(offset)	\
41	((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
42	 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
43
44/*
45 * Lengths of PCI Config Capabilities
46 *   0: Removed from the user visible capability list
47 *   FF: Variable length
48 */
49static u8 pci_cap_length[] = {
50	[PCI_CAP_ID_BASIC]	= PCI_STD_HEADER_SIZEOF, /* pci config header */
51	[PCI_CAP_ID_PM]		= PCI_PM_SIZEOF,
52	[PCI_CAP_ID_AGP]	= PCI_AGP_SIZEOF,
53	[PCI_CAP_ID_VPD]	= PCI_CAP_VPD_SIZEOF,
54	[PCI_CAP_ID_SLOTID]	= 0,		/* bridge - don't care */
55	[PCI_CAP_ID_MSI]	= 0xFF,		/* 10, 14, 20, or 24 */
56	[PCI_CAP_ID_CHSWP]	= 0,		/* cpci - not yet */
57	[PCI_CAP_ID_PCIX]	= 0xFF,		/* 8 or 24 */
58	[PCI_CAP_ID_HT]		= 0xFF,		/* hypertransport */
59	[PCI_CAP_ID_VNDR]	= 0xFF,		/* variable */
60	[PCI_CAP_ID_DBG]	= 0,		/* debug - don't care */
61	[PCI_CAP_ID_CCRC]	= 0,		/* cpci - not yet */
62	[PCI_CAP_ID_SHPC]	= 0,		/* hotswap - not yet */
63	[PCI_CAP_ID_SSVID]	= 0,		/* bridge - don't care */
64	[PCI_CAP_ID_AGP3]	= 0,		/* AGP8x - not yet */
65	[PCI_CAP_ID_SECDEV]	= 0,		/* secure device not yet */
66	[PCI_CAP_ID_EXP]	= 0xFF,		/* 20 or 44 */
67	[PCI_CAP_ID_MSIX]	= PCI_CAP_MSIX_SIZEOF,
68	[PCI_CAP_ID_SATA]	= 0xFF,
69	[PCI_CAP_ID_AF]		= PCI_CAP_AF_SIZEOF,
70};
71
72/*
73 * Lengths of PCIe/PCI-X Extended Config Capabilities
74 *   0: Removed or masked from the user visible capabilty list
75 *   FF: Variable length
76 */
77static u16 pci_ext_cap_length[] = {
78	[PCI_EXT_CAP_ID_ERR]	=	PCI_ERR_ROOT_COMMAND,
79	[PCI_EXT_CAP_ID_VC]	=	0xFF,
80	[PCI_EXT_CAP_ID_DSN]	=	PCI_EXT_CAP_DSN_SIZEOF,
81	[PCI_EXT_CAP_ID_PWR]	=	PCI_EXT_CAP_PWR_SIZEOF,
82	[PCI_EXT_CAP_ID_RCLD]	=	0,	/* root only - don't care */
83	[PCI_EXT_CAP_ID_RCILC]	=	0,	/* root only - don't care */
84	[PCI_EXT_CAP_ID_RCEC]	=	0,	/* root only - don't care */
85	[PCI_EXT_CAP_ID_MFVC]	=	0xFF,
86	[PCI_EXT_CAP_ID_VC9]	=	0xFF,	/* same as CAP_ID_VC */
87	[PCI_EXT_CAP_ID_RCRB]	=	0,	/* root only - don't care */
88	[PCI_EXT_CAP_ID_VNDR]	=	0xFF,
89	[PCI_EXT_CAP_ID_CAC]	=	0,	/* obsolete */
90	[PCI_EXT_CAP_ID_ACS]	=	0xFF,
91	[PCI_EXT_CAP_ID_ARI]	=	PCI_EXT_CAP_ARI_SIZEOF,
92	[PCI_EXT_CAP_ID_ATS]	=	PCI_EXT_CAP_ATS_SIZEOF,
93	[PCI_EXT_CAP_ID_SRIOV]	=	PCI_EXT_CAP_SRIOV_SIZEOF,
94	[PCI_EXT_CAP_ID_MRIOV]	=	0,	/* not yet */
95	[PCI_EXT_CAP_ID_MCAST]	=	PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF,
96	[PCI_EXT_CAP_ID_PRI]	=	PCI_EXT_CAP_PRI_SIZEOF,
97	[PCI_EXT_CAP_ID_AMD_XXX] =	0,	/* not yet */
98	[PCI_EXT_CAP_ID_REBAR]	=	0xFF,
99	[PCI_EXT_CAP_ID_DPA]	=	0xFF,
100	[PCI_EXT_CAP_ID_TPH]	=	0xFF,
101	[PCI_EXT_CAP_ID_LTR]	=	PCI_EXT_CAP_LTR_SIZEOF,
102	[PCI_EXT_CAP_ID_SECPCI]	=	0,	/* not yet */
103	[PCI_EXT_CAP_ID_PMUX]	=	0,	/* not yet */
104	[PCI_EXT_CAP_ID_PASID]	=	0,	/* not yet */
105};
106
107/*
108 * Read/Write Permission Bits - one bit for each bit in capability
109 * Any field can be read if it exists, but what is read depends on
110 * whether the field is 'virtualized', or just pass thru to the
111 * hardware.  Any virtualized field is also virtualized for writes.
112 * Writes are only permitted if they have a 1 bit here.
113 */
114struct perm_bits {
115	u8	*virt;		/* read/write virtual data, not hw */
116	u8	*write;		/* writeable bits */
117	int	(*readfn)(struct vfio_pci_device *vdev, int pos, int count,
118			  struct perm_bits *perm, int offset, __le32 *val);
119	int	(*writefn)(struct vfio_pci_device *vdev, int pos, int count,
120			   struct perm_bits *perm, int offset, __le32 val);
121};
122
123#define	NO_VIRT		0
124#define	ALL_VIRT	0xFFFFFFFFU
125#define	NO_WRITE	0
126#define	ALL_WRITE	0xFFFFFFFFU
127
128static int vfio_user_config_read(struct pci_dev *pdev, int offset,
129				 __le32 *val, int count)
130{
131	int ret = -EINVAL;
132	u32 tmp_val = 0;
133
134	switch (count) {
135	case 1:
136	{
137		u8 tmp;
138		ret = pci_user_read_config_byte(pdev, offset, &tmp);
139		tmp_val = tmp;
140		break;
141	}
142	case 2:
143	{
144		u16 tmp;
145		ret = pci_user_read_config_word(pdev, offset, &tmp);
146		tmp_val = tmp;
147		break;
148	}
149	case 4:
150		ret = pci_user_read_config_dword(pdev, offset, &tmp_val);
151		break;
152	}
153
154	*val = cpu_to_le32(tmp_val);
155
156	return pcibios_err_to_errno(ret);
157}
158
159static int vfio_user_config_write(struct pci_dev *pdev, int offset,
160				  __le32 val, int count)
161{
162	int ret = -EINVAL;
163	u32 tmp_val = le32_to_cpu(val);
164
165	switch (count) {
166	case 1:
167		ret = pci_user_write_config_byte(pdev, offset, tmp_val);
168		break;
169	case 2:
170		ret = pci_user_write_config_word(pdev, offset, tmp_val);
171		break;
172	case 4:
173		ret = pci_user_write_config_dword(pdev, offset, tmp_val);
174		break;
175	}
176
177	return pcibios_err_to_errno(ret);
178}
179
180static int vfio_default_config_read(struct vfio_pci_device *vdev, int pos,
181				    int count, struct perm_bits *perm,
182				    int offset, __le32 *val)
183{
184	__le32 virt = 0;
185
186	memcpy(val, vdev->vconfig + pos, count);
187
188	memcpy(&virt, perm->virt + offset, count);
189
190	/* Any non-virtualized bits? */
191	if (cpu_to_le32(~0U >> (32 - (count * 8))) != virt) {
192		struct pci_dev *pdev = vdev->pdev;
193		__le32 phys_val = 0;
194		int ret;
195
196		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
197		if (ret)
198			return ret;
199
200		*val = (phys_val & ~virt) | (*val & virt);
201	}
202
203	return count;
204}
205
206static int vfio_default_config_write(struct vfio_pci_device *vdev, int pos,
207				     int count, struct perm_bits *perm,
208				     int offset, __le32 val)
209{
210	__le32 virt = 0, write = 0;
211
212	memcpy(&write, perm->write + offset, count);
213
214	if (!write)
215		return count; /* drop, no writable bits */
216
217	memcpy(&virt, perm->virt + offset, count);
218
219	/* Virtualized and writable bits go to vconfig */
220	if (write & virt) {
221		__le32 virt_val = 0;
222
223		memcpy(&virt_val, vdev->vconfig + pos, count);
224
225		virt_val &= ~(write & virt);
226		virt_val |= (val & (write & virt));
227
228		memcpy(vdev->vconfig + pos, &virt_val, count);
229	}
230
231	/* Non-virtualzed and writable bits go to hardware */
232	if (write & ~virt) {
233		struct pci_dev *pdev = vdev->pdev;
234		__le32 phys_val = 0;
235		int ret;
236
237		ret = vfio_user_config_read(pdev, pos, &phys_val, count);
238		if (ret)
239			return ret;
240
241		phys_val &= ~(write & ~virt);
242		phys_val |= (val & (write & ~virt));
243
244		ret = vfio_user_config_write(pdev, pos, phys_val, count);
245		if (ret)
246			return ret;
247	}
248
249	return count;
250}
251
252/* Allow direct read from hardware, except for capability next pointer */
253static int vfio_direct_config_read(struct vfio_pci_device *vdev, int pos,
254				   int count, struct perm_bits *perm,
255				   int offset, __le32 *val)
256{
257	int ret;
258
259	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
260	if (ret)
261		return pcibios_err_to_errno(ret);
262
263	if (pos >= PCI_CFG_SPACE_SIZE) { /* Extended cap header mangling */
264		if (offset < 4)
265			memcpy(val, vdev->vconfig + pos, count);
266	} else if (pos >= PCI_STD_HEADER_SIZEOF) { /* Std cap mangling */
267		if (offset == PCI_CAP_LIST_ID && count > 1)
268			memcpy(val, vdev->vconfig + pos,
269			       min(PCI_CAP_FLAGS, count));
270		else if (offset == PCI_CAP_LIST_NEXT)
271			memcpy(val, vdev->vconfig + pos, 1);
272	}
273
274	return count;
275}
276
277/* Raw access skips any kind of virtualization */
278static int vfio_raw_config_write(struct vfio_pci_device *vdev, int pos,
279				 int count, struct perm_bits *perm,
280				 int offset, __le32 val)
281{
282	int ret;
283
284	ret = vfio_user_config_write(vdev->pdev, pos, val, count);
285	if (ret)
286		return ret;
287
288	return count;
289}
290
291static int vfio_raw_config_read(struct vfio_pci_device *vdev, int pos,
292				int count, struct perm_bits *perm,
293				int offset, __le32 *val)
294{
295	int ret;
296
297	ret = vfio_user_config_read(vdev->pdev, pos, val, count);
298	if (ret)
299		return pcibios_err_to_errno(ret);
300
301	return count;
302}
303
304/* Default capability regions to read-only, no-virtualization */
305static struct perm_bits cap_perms[PCI_CAP_ID_MAX + 1] = {
306	[0 ... PCI_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
307};
308static struct perm_bits ecap_perms[PCI_EXT_CAP_ID_MAX + 1] = {
309	[0 ... PCI_EXT_CAP_ID_MAX] = { .readfn = vfio_direct_config_read }
310};
311/*
312 * Default unassigned regions to raw read-write access.  Some devices
313 * require this to function as they hide registers between the gaps in
314 * config space (be2net).  Like MMIO and I/O port registers, we have
315 * to trust the hardware isolation.
316 */
317static struct perm_bits unassigned_perms = {
318	.readfn = vfio_raw_config_read,
319	.writefn = vfio_raw_config_write
320};
321
322static void free_perm_bits(struct perm_bits *perm)
323{
324	kfree(perm->virt);
325	kfree(perm->write);
326	perm->virt = NULL;
327	perm->write = NULL;
328}
329
330static int alloc_perm_bits(struct perm_bits *perm, int size)
331{
332	/*
333	 * Round up all permission bits to the next dword, this lets us
334	 * ignore whether a read/write exceeds the defined capability
335	 * structure.  We can do this because:
336	 *  - Standard config space is already dword aligned
337	 *  - Capabilities are all dword alinged (bits 0:1 of next reserved)
338	 *  - Express capabilities defined as dword aligned
339	 */
340	size = round_up(size, 4);
341
342	/*
343	 * Zero state is
344	 * - All Readable, None Writeable, None Virtualized
345	 */
346	perm->virt = kzalloc(size, GFP_KERNEL);
347	perm->write = kzalloc(size, GFP_KERNEL);
348	if (!perm->virt || !perm->write) {
349		free_perm_bits(perm);
350		return -ENOMEM;
351	}
352
353	perm->readfn = vfio_default_config_read;
354	perm->writefn = vfio_default_config_write;
355
356	return 0;
357}
358
359/*
360 * Helper functions for filling in permission tables
361 */
362static inline void p_setb(struct perm_bits *p, int off, u8 virt, u8 write)
363{
364	p->virt[off] = virt;
365	p->write[off] = write;
366}
367
368/* Handle endian-ness - pci and tables are little-endian */
369static inline void p_setw(struct perm_bits *p, int off, u16 virt, u16 write)
370{
371	*(__le16 *)(&p->virt[off]) = cpu_to_le16(virt);
372	*(__le16 *)(&p->write[off]) = cpu_to_le16(write);
373}
374
375/* Handle endian-ness - pci and tables are little-endian */
376static inline void p_setd(struct perm_bits *p, int off, u32 virt, u32 write)
377{
378	*(__le32 *)(&p->virt[off]) = cpu_to_le32(virt);
379	*(__le32 *)(&p->write[off]) = cpu_to_le32(write);
380}
381
382/*
383 * Restore the *real* BARs after we detect a FLR or backdoor reset.
384 * (backdoor = some device specific technique that we didn't catch)
385 */
386static void vfio_bar_restore(struct vfio_pci_device *vdev)
387{
388	struct pci_dev *pdev = vdev->pdev;
389	u32 *rbar = vdev->rbar;
390	int i;
391
392	if (pdev->is_virtfn)
393		return;
394
395	pr_info("%s: %s reset recovery - restoring bars\n",
396		__func__, dev_name(&pdev->dev));
397
398	for (i = PCI_BASE_ADDRESS_0; i <= PCI_BASE_ADDRESS_5; i += 4, rbar++)
399		pci_user_write_config_dword(pdev, i, *rbar);
400
401	pci_user_write_config_dword(pdev, PCI_ROM_ADDRESS, *rbar);
402}
403
404static __le32 vfio_generate_bar_flags(struct pci_dev *pdev, int bar)
405{
406	unsigned long flags = pci_resource_flags(pdev, bar);
407	u32 val;
408
409	if (flags & IORESOURCE_IO)
410		return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO);
411
412	val = PCI_BASE_ADDRESS_SPACE_MEMORY;
413
414	if (flags & IORESOURCE_PREFETCH)
415		val |= PCI_BASE_ADDRESS_MEM_PREFETCH;
416
417	if (flags & IORESOURCE_MEM_64)
418		val |= PCI_BASE_ADDRESS_MEM_TYPE_64;
419
420	return cpu_to_le32(val);
421}
422
423/*
424 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
425 * to reflect the hardware capabilities.  This implements BAR sizing.
426 */
427static void vfio_bar_fixup(struct vfio_pci_device *vdev)
428{
429	struct pci_dev *pdev = vdev->pdev;
430	int i;
431	__le32 *bar;
432	u64 mask;
433
434	bar = (__le32 *)&vdev->vconfig[PCI_BASE_ADDRESS_0];
435
436	for (i = PCI_STD_RESOURCES; i <= PCI_STD_RESOURCE_END; i++, bar++) {
437		if (!pci_resource_start(pdev, i)) {
438			*bar = 0; /* Unmapped by host = unimplemented to user */
439			continue;
440		}
441
442		mask = ~(pci_resource_len(pdev, i) - 1);
443
444		*bar &= cpu_to_le32((u32)mask);
445		*bar |= vfio_generate_bar_flags(pdev, i);
446
447		if (*bar & cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64)) {
448			bar++;
449			*bar &= cpu_to_le32((u32)(mask >> 32));
450			i++;
451		}
452	}
453
454	bar = (__le32 *)&vdev->vconfig[PCI_ROM_ADDRESS];
455
456	/*
457	 * NB. we expose the actual BAR size here, regardless of whether
458	 * we can read it.  When we report the REGION_INFO for the ROM
459	 * we report what PCI tells us is the actual ROM size.
460	 */
461	if (pci_resource_start(pdev, PCI_ROM_RESOURCE)) {
462		mask = ~(pci_resource_len(pdev, PCI_ROM_RESOURCE) - 1);
463		mask |= PCI_ROM_ADDRESS_ENABLE;
464		*bar &= cpu_to_le32((u32)mask);
465	} else
466		*bar = 0;
467
468	vdev->bardirty = false;
469}
470
471static int vfio_basic_config_read(struct vfio_pci_device *vdev, int pos,
472				  int count, struct perm_bits *perm,
473				  int offset, __le32 *val)
474{
475	if (is_bar(offset)) /* pos == offset for basic config */
476		vfio_bar_fixup(vdev);
477
478	count = vfio_default_config_read(vdev, pos, count, perm, offset, val);
479
480	/* Mask in virtual memory enable for SR-IOV devices */
481	if (offset == PCI_COMMAND && vdev->pdev->is_virtfn) {
482		u16 cmd = le16_to_cpu(*(__le16 *)&vdev->vconfig[PCI_COMMAND]);
483		u32 tmp_val = le32_to_cpu(*val);
484
485		tmp_val |= cmd & PCI_COMMAND_MEMORY;
486		*val = cpu_to_le32(tmp_val);
487	}
488
489	return count;
490}
491
492static int vfio_basic_config_write(struct vfio_pci_device *vdev, int pos,
493				   int count, struct perm_bits *perm,
494				   int offset, __le32 val)
495{
496	struct pci_dev *pdev = vdev->pdev;
497	__le16 *virt_cmd;
498	u16 new_cmd = 0;
499	int ret;
500
501	virt_cmd = (__le16 *)&vdev->vconfig[PCI_COMMAND];
502
503	if (offset == PCI_COMMAND) {
504		bool phys_mem, virt_mem, new_mem, phys_io, virt_io, new_io;
505		u16 phys_cmd;
506
507		ret = pci_user_read_config_word(pdev, PCI_COMMAND, &phys_cmd);
508		if (ret)
509			return ret;
510
511		new_cmd = le32_to_cpu(val);
512
513		phys_mem = !!(phys_cmd & PCI_COMMAND_MEMORY);
514		virt_mem = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_MEMORY);
515		new_mem = !!(new_cmd & PCI_COMMAND_MEMORY);
516
517		phys_io = !!(phys_cmd & PCI_COMMAND_IO);
518		virt_io = !!(le16_to_cpu(*virt_cmd) & PCI_COMMAND_IO);
519		new_io = !!(new_cmd & PCI_COMMAND_IO);
520
521		/*
522		 * If the user is writing mem/io enable (new_mem/io) and we
523		 * think it's already enabled (virt_mem/io), but the hardware
524		 * shows it disabled (phys_mem/io, then the device has
525		 * undergone some kind of backdoor reset and needs to be
526		 * restored before we allow it to enable the bars.
527		 * SR-IOV devices will trigger this, but we catch them later
528		 */
529		if ((new_mem && virt_mem && !phys_mem) ||
530		    (new_io && virt_io && !phys_io))
531			vfio_bar_restore(vdev);
532	}
533
534	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
535	if (count < 0)
536		return count;
537
538	/*
539	 * Save current memory/io enable bits in vconfig to allow for
540	 * the test above next time.
541	 */
542	if (offset == PCI_COMMAND) {
543		u16 mask = PCI_COMMAND_MEMORY | PCI_COMMAND_IO;
544
545		*virt_cmd &= cpu_to_le16(~mask);
546		*virt_cmd |= cpu_to_le16(new_cmd & mask);
547	}
548
549	/* Emulate INTx disable */
550	if (offset >= PCI_COMMAND && offset <= PCI_COMMAND + 1) {
551		bool virt_intx_disable;
552
553		virt_intx_disable = !!(le16_to_cpu(*virt_cmd) &
554				       PCI_COMMAND_INTX_DISABLE);
555
556		if (virt_intx_disable && !vdev->virq_disabled) {
557			vdev->virq_disabled = true;
558			vfio_pci_intx_mask(vdev);
559		} else if (!virt_intx_disable && vdev->virq_disabled) {
560			vdev->virq_disabled = false;
561			vfio_pci_intx_unmask(vdev);
562		}
563	}
564
565	if (is_bar(offset))
566		vdev->bardirty = true;
567
568	return count;
569}
570
571/* Permissions for the Basic PCI Header */
572static int __init init_pci_cap_basic_perm(struct perm_bits *perm)
573{
574	if (alloc_perm_bits(perm, PCI_STD_HEADER_SIZEOF))
575		return -ENOMEM;
576
577	perm->readfn = vfio_basic_config_read;
578	perm->writefn = vfio_basic_config_write;
579
580	/* Virtualized for SR-IOV functions, which just have FFFF */
581	p_setw(perm, PCI_VENDOR_ID, (u16)ALL_VIRT, NO_WRITE);
582	p_setw(perm, PCI_DEVICE_ID, (u16)ALL_VIRT, NO_WRITE);
583
584	/*
585	 * Virtualize INTx disable, we use it internally for interrupt
586	 * control and can emulate it for non-PCI 2.3 devices.
587	 */
588	p_setw(perm, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE, (u16)ALL_WRITE);
589
590	/* Virtualize capability list, we might want to skip/disable */
591	p_setw(perm, PCI_STATUS, PCI_STATUS_CAP_LIST, NO_WRITE);
592
593	/* No harm to write */
594	p_setb(perm, PCI_CACHE_LINE_SIZE, NO_VIRT, (u8)ALL_WRITE);
595	p_setb(perm, PCI_LATENCY_TIMER, NO_VIRT, (u8)ALL_WRITE);
596	p_setb(perm, PCI_BIST, NO_VIRT, (u8)ALL_WRITE);
597
598	/* Virtualize all bars, can't touch the real ones */
599	p_setd(perm, PCI_BASE_ADDRESS_0, ALL_VIRT, ALL_WRITE);
600	p_setd(perm, PCI_BASE_ADDRESS_1, ALL_VIRT, ALL_WRITE);
601	p_setd(perm, PCI_BASE_ADDRESS_2, ALL_VIRT, ALL_WRITE);
602	p_setd(perm, PCI_BASE_ADDRESS_3, ALL_VIRT, ALL_WRITE);
603	p_setd(perm, PCI_BASE_ADDRESS_4, ALL_VIRT, ALL_WRITE);
604	p_setd(perm, PCI_BASE_ADDRESS_5, ALL_VIRT, ALL_WRITE);
605	p_setd(perm, PCI_ROM_ADDRESS, ALL_VIRT, ALL_WRITE);
606
607	/* Allow us to adjust capability chain */
608	p_setb(perm, PCI_CAPABILITY_LIST, (u8)ALL_VIRT, NO_WRITE);
609
610	/* Sometimes used by sw, just virtualize */
611	p_setb(perm, PCI_INTERRUPT_LINE, (u8)ALL_VIRT, (u8)ALL_WRITE);
612
613	/* Virtualize interrupt pin to allow hiding INTx */
614	p_setb(perm, PCI_INTERRUPT_PIN, (u8)ALL_VIRT, (u8)NO_WRITE);
615
616	return 0;
617}
618
619static int vfio_pm_config_write(struct vfio_pci_device *vdev, int pos,
620				int count, struct perm_bits *perm,
621				int offset, __le32 val)
622{
623	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
624	if (count < 0)
625		return count;
626
627	if (offset == PCI_PM_CTRL) {
628		pci_power_t state;
629
630		switch (le32_to_cpu(val) & PCI_PM_CTRL_STATE_MASK) {
631		case 0:
632			state = PCI_D0;
633			break;
634		case 1:
635			state = PCI_D1;
636			break;
637		case 2:
638			state = PCI_D2;
639			break;
640		case 3:
641			state = PCI_D3hot;
642			break;
643		}
644
645		pci_set_power_state(vdev->pdev, state);
646	}
647
648	return count;
649}
650
651/* Permissions for the Power Management capability */
652static int __init init_pci_cap_pm_perm(struct perm_bits *perm)
653{
654	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_PM]))
655		return -ENOMEM;
656
657	perm->writefn = vfio_pm_config_write;
658
659	/*
660	 * We always virtualize the next field so we can remove
661	 * capabilities from the chain if we want to.
662	 */
663	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
664
665	/*
666	 * Power management is defined *per function*, so we can let
667	 * the user change power state, but we trap and initiate the
668	 * change ourselves, so the state bits are read-only.
669	 */
670	p_setd(perm, PCI_PM_CTRL, NO_VIRT, ~PCI_PM_CTRL_STATE_MASK);
671	return 0;
672}
673
674/* Permissions for PCI-X capability */
675static int __init init_pci_cap_pcix_perm(struct perm_bits *perm)
676{
677	/* Alloc 24, but only 8 are used in v0 */
678	if (alloc_perm_bits(perm, PCI_CAP_PCIX_SIZEOF_V2))
679		return -ENOMEM;
680
681	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
682
683	p_setw(perm, PCI_X_CMD, NO_VIRT, (u16)ALL_WRITE);
684	p_setd(perm, PCI_X_ECC_CSR, NO_VIRT, ALL_WRITE);
685	return 0;
686}
687
688/* Permissions for PCI Express capability */
689static int __init init_pci_cap_exp_perm(struct perm_bits *perm)
690{
691	/* Alloc larger of two possible sizes */
692	if (alloc_perm_bits(perm, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2))
693		return -ENOMEM;
694
695	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
696
697	/*
698	 * Allow writes to device control fields (includes FLR!)
699	 * but not to devctl_phantom which could confuse IOMMU
700	 * or to the ARI bit in devctl2 which is set at probe time
701	 */
702	p_setw(perm, PCI_EXP_DEVCTL, NO_VIRT, ~PCI_EXP_DEVCTL_PHANTOM);
703	p_setw(perm, PCI_EXP_DEVCTL2, NO_VIRT, ~PCI_EXP_DEVCTL2_ARI);
704	return 0;
705}
706
707/* Permissions for Advanced Function capability */
708static int __init init_pci_cap_af_perm(struct perm_bits *perm)
709{
710	if (alloc_perm_bits(perm, pci_cap_length[PCI_CAP_ID_AF]))
711		return -ENOMEM;
712
713	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
714	p_setb(perm, PCI_AF_CTRL, NO_VIRT, PCI_AF_CTRL_FLR);
715	return 0;
716}
717
718/* Permissions for Advanced Error Reporting extended capability */
719static int __init init_pci_ext_cap_err_perm(struct perm_bits *perm)
720{
721	u32 mask;
722
723	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_ERR]))
724		return -ENOMEM;
725
726	/*
727	 * Virtualize the first dword of all express capabilities
728	 * because it includes the next pointer.  This lets us later
729	 * remove capabilities from the chain if we need to.
730	 */
731	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
732
733	/* Writable bits mask */
734	mask =	PCI_ERR_UNC_UND |		/* Undefined */
735		PCI_ERR_UNC_DLP |		/* Data Link Protocol */
736		PCI_ERR_UNC_SURPDN |		/* Surprise Down */
737		PCI_ERR_UNC_POISON_TLP |	/* Poisoned TLP */
738		PCI_ERR_UNC_FCP |		/* Flow Control Protocol */
739		PCI_ERR_UNC_COMP_TIME |		/* Completion Timeout */
740		PCI_ERR_UNC_COMP_ABORT |	/* Completer Abort */
741		PCI_ERR_UNC_UNX_COMP |		/* Unexpected Completion */
742		PCI_ERR_UNC_RX_OVER |		/* Receiver Overflow */
743		PCI_ERR_UNC_MALF_TLP |		/* Malformed TLP */
744		PCI_ERR_UNC_ECRC |		/* ECRC Error Status */
745		PCI_ERR_UNC_UNSUP |		/* Unsupported Request */
746		PCI_ERR_UNC_ACSV |		/* ACS Violation */
747		PCI_ERR_UNC_INTN |		/* internal error */
748		PCI_ERR_UNC_MCBTLP |		/* MC blocked TLP */
749		PCI_ERR_UNC_ATOMEG |		/* Atomic egress blocked */
750		PCI_ERR_UNC_TLPPRE;		/* TLP prefix blocked */
751	p_setd(perm, PCI_ERR_UNCOR_STATUS, NO_VIRT, mask);
752	p_setd(perm, PCI_ERR_UNCOR_MASK, NO_VIRT, mask);
753	p_setd(perm, PCI_ERR_UNCOR_SEVER, NO_VIRT, mask);
754
755	mask =	PCI_ERR_COR_RCVR |		/* Receiver Error Status */
756		PCI_ERR_COR_BAD_TLP |		/* Bad TLP Status */
757		PCI_ERR_COR_BAD_DLLP |		/* Bad DLLP Status */
758		PCI_ERR_COR_REP_ROLL |		/* REPLAY_NUM Rollover */
759		PCI_ERR_COR_REP_TIMER |		/* Replay Timer Timeout */
760		PCI_ERR_COR_ADV_NFAT |		/* Advisory Non-Fatal */
761		PCI_ERR_COR_INTERNAL |		/* Corrected Internal */
762		PCI_ERR_COR_LOG_OVER;		/* Header Log Overflow */
763	p_setd(perm, PCI_ERR_COR_STATUS, NO_VIRT, mask);
764	p_setd(perm, PCI_ERR_COR_MASK, NO_VIRT, mask);
765
766	mask =	PCI_ERR_CAP_ECRC_GENE |		/* ECRC Generation Enable */
767		PCI_ERR_CAP_ECRC_CHKE;		/* ECRC Check Enable */
768	p_setd(perm, PCI_ERR_CAP, NO_VIRT, mask);
769	return 0;
770}
771
772/* Permissions for Power Budgeting extended capability */
773static int __init init_pci_ext_cap_pwr_perm(struct perm_bits *perm)
774{
775	if (alloc_perm_bits(perm, pci_ext_cap_length[PCI_EXT_CAP_ID_PWR]))
776		return -ENOMEM;
777
778	p_setd(perm, 0, ALL_VIRT, NO_WRITE);
779
780	/* Writing the data selector is OK, the info is still read-only */
781	p_setb(perm, PCI_PWR_DATA, NO_VIRT, (u8)ALL_WRITE);
782	return 0;
783}
784
785/*
786 * Initialize the shared permission tables
787 */
788void vfio_pci_uninit_perm_bits(void)
789{
790	free_perm_bits(&cap_perms[PCI_CAP_ID_BASIC]);
791
792	free_perm_bits(&cap_perms[PCI_CAP_ID_PM]);
793	free_perm_bits(&cap_perms[PCI_CAP_ID_PCIX]);
794	free_perm_bits(&cap_perms[PCI_CAP_ID_EXP]);
795	free_perm_bits(&cap_perms[PCI_CAP_ID_AF]);
796
797	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
798	free_perm_bits(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
799}
800
801int __init vfio_pci_init_perm_bits(void)
802{
803	int ret;
804
805	/* Basic config space */
806	ret = init_pci_cap_basic_perm(&cap_perms[PCI_CAP_ID_BASIC]);
807
808	/* Capabilities */
809	ret |= init_pci_cap_pm_perm(&cap_perms[PCI_CAP_ID_PM]);
810	cap_perms[PCI_CAP_ID_VPD].writefn = vfio_raw_config_write;
811	ret |= init_pci_cap_pcix_perm(&cap_perms[PCI_CAP_ID_PCIX]);
812	cap_perms[PCI_CAP_ID_VNDR].writefn = vfio_raw_config_write;
813	ret |= init_pci_cap_exp_perm(&cap_perms[PCI_CAP_ID_EXP]);
814	ret |= init_pci_cap_af_perm(&cap_perms[PCI_CAP_ID_AF]);
815
816	/* Extended capabilities */
817	ret |= init_pci_ext_cap_err_perm(&ecap_perms[PCI_EXT_CAP_ID_ERR]);
818	ret |= init_pci_ext_cap_pwr_perm(&ecap_perms[PCI_EXT_CAP_ID_PWR]);
819	ecap_perms[PCI_EXT_CAP_ID_VNDR].writefn = vfio_raw_config_write;
820
821	if (ret)
822		vfio_pci_uninit_perm_bits();
823
824	return ret;
825}
826
827static int vfio_find_cap_start(struct vfio_pci_device *vdev, int pos)
828{
829	u8 cap;
830	int base = (pos >= PCI_CFG_SPACE_SIZE) ? PCI_CFG_SPACE_SIZE :
831						 PCI_STD_HEADER_SIZEOF;
832	cap = vdev->pci_config_map[pos];
833
834	if (cap == PCI_CAP_ID_BASIC)
835		return 0;
836
837	/* XXX Can we have to abutting capabilities of the same type? */
838	while (pos - 1 >= base && vdev->pci_config_map[pos - 1] == cap)
839		pos--;
840
841	return pos;
842}
843
844static int vfio_msi_config_read(struct vfio_pci_device *vdev, int pos,
845				int count, struct perm_bits *perm,
846				int offset, __le32 *val)
847{
848	/* Update max available queue size from msi_qmax */
849	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
850		__le16 *flags;
851		int start;
852
853		start = vfio_find_cap_start(vdev, pos);
854
855		flags = (__le16 *)&vdev->vconfig[start];
856
857		*flags &= cpu_to_le16(~PCI_MSI_FLAGS_QMASK);
858		*flags |= cpu_to_le16(vdev->msi_qmax << 1);
859	}
860
861	return vfio_default_config_read(vdev, pos, count, perm, offset, val);
862}
863
864static int vfio_msi_config_write(struct vfio_pci_device *vdev, int pos,
865				 int count, struct perm_bits *perm,
866				 int offset, __le32 val)
867{
868	count = vfio_default_config_write(vdev, pos, count, perm, offset, val);
869	if (count < 0)
870		return count;
871
872	/* Fixup and write configured queue size and enable to hardware */
873	if (offset <= PCI_MSI_FLAGS && offset + count >= PCI_MSI_FLAGS) {
874		__le16 *pflags;
875		u16 flags;
876		int start, ret;
877
878		start = vfio_find_cap_start(vdev, pos);
879
880		pflags = (__le16 *)&vdev->vconfig[start + PCI_MSI_FLAGS];
881
882		flags = le16_to_cpu(*pflags);
883
884		/* MSI is enabled via ioctl */
885		if  (!is_msi(vdev))
886			flags &= ~PCI_MSI_FLAGS_ENABLE;
887
888		/* Check queue size */
889		if ((flags & PCI_MSI_FLAGS_QSIZE) >> 4 > vdev->msi_qmax) {
890			flags &= ~PCI_MSI_FLAGS_QSIZE;
891			flags |= vdev->msi_qmax << 4;
892		}
893
894		/* Write back to virt and to hardware */
895		*pflags = cpu_to_le16(flags);
896		ret = pci_user_write_config_word(vdev->pdev,
897						 start + PCI_MSI_FLAGS,
898						 flags);
899		if (ret)
900			return pcibios_err_to_errno(ret);
901	}
902
903	return count;
904}
905
906/*
907 * MSI determination is per-device, so this routine gets used beyond
908 * initialization time. Don't add __init
909 */
910static int init_pci_cap_msi_perm(struct perm_bits *perm, int len, u16 flags)
911{
912	if (alloc_perm_bits(perm, len))
913		return -ENOMEM;
914
915	perm->readfn = vfio_msi_config_read;
916	perm->writefn = vfio_msi_config_write;
917
918	p_setb(perm, PCI_CAP_LIST_NEXT, (u8)ALL_VIRT, NO_WRITE);
919
920	/*
921	 * The upper byte of the control register is reserved,
922	 * just setup the lower byte.
923	 */
924	p_setb(perm, PCI_MSI_FLAGS, (u8)ALL_VIRT, (u8)ALL_WRITE);
925	p_setd(perm, PCI_MSI_ADDRESS_LO, ALL_VIRT, ALL_WRITE);
926	if (flags & PCI_MSI_FLAGS_64BIT) {
927		p_setd(perm, PCI_MSI_ADDRESS_HI, ALL_VIRT, ALL_WRITE);
928		p_setw(perm, PCI_MSI_DATA_64, (u16)ALL_VIRT, (u16)ALL_WRITE);
929		if (flags & PCI_MSI_FLAGS_MASKBIT) {
930			p_setd(perm, PCI_MSI_MASK_64, NO_VIRT, ALL_WRITE);
931			p_setd(perm, PCI_MSI_PENDING_64, NO_VIRT, ALL_WRITE);
932		}
933	} else {
934		p_setw(perm, PCI_MSI_DATA_32, (u16)ALL_VIRT, (u16)ALL_WRITE);
935		if (flags & PCI_MSI_FLAGS_MASKBIT) {
936			p_setd(perm, PCI_MSI_MASK_32, NO_VIRT, ALL_WRITE);
937			p_setd(perm, PCI_MSI_PENDING_32, NO_VIRT, ALL_WRITE);
938		}
939	}
940	return 0;
941}
942
943/* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
944static int vfio_msi_cap_len(struct vfio_pci_device *vdev, u8 pos)
945{
946	struct pci_dev *pdev = vdev->pdev;
947	int len, ret;
948	u16 flags;
949
950	ret = pci_read_config_word(pdev, pos + PCI_MSI_FLAGS, &flags);
951	if (ret)
952		return pcibios_err_to_errno(ret);
953
954	len = 10; /* Minimum size */
955	if (flags & PCI_MSI_FLAGS_64BIT)
956		len += 4;
957	if (flags & PCI_MSI_FLAGS_MASKBIT)
958		len += 10;
959
960	if (vdev->msi_perm)
961		return len;
962
963	vdev->msi_perm = kmalloc(sizeof(struct perm_bits), GFP_KERNEL);
964	if (!vdev->msi_perm)
965		return -ENOMEM;
966
967	ret = init_pci_cap_msi_perm(vdev->msi_perm, len, flags);
968	if (ret)
969		return ret;
970
971	return len;
972}
973
974/* Determine extended capability length for VC (2 & 9) and MFVC */
975static int vfio_vc_cap_len(struct vfio_pci_device *vdev, u16 pos)
976{
977	struct pci_dev *pdev = vdev->pdev;
978	u32 tmp;
979	int ret, evcc, phases, vc_arb;
980	int len = PCI_CAP_VC_BASE_SIZEOF;
981
982	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP1, &tmp);
983	if (ret)
984		return pcibios_err_to_errno(ret);
985
986	evcc = tmp & PCI_VC_CAP1_EVCC; /* extended vc count */
987	ret = pci_read_config_dword(pdev, pos + PCI_VC_PORT_CAP2, &tmp);
988	if (ret)
989		return pcibios_err_to_errno(ret);
990
991	if (tmp & PCI_VC_CAP2_128_PHASE)
992		phases = 128;
993	else if (tmp & PCI_VC_CAP2_64_PHASE)
994		phases = 64;
995	else if (tmp & PCI_VC_CAP2_32_PHASE)
996		phases = 32;
997	else
998		phases = 0;
999
1000	vc_arb = phases * 4;
1001
1002	/*
1003	 * Port arbitration tables are root & switch only;
1004	 * function arbitration tables are function 0 only.
1005	 * In either case, we'll never let user write them so
1006	 * we don't care how big they are
1007	 */
1008	len += (1 + evcc) * PCI_CAP_VC_PER_VC_SIZEOF;
1009	if (vc_arb) {
1010		len = round_up(len, 16);
1011		len += vc_arb / 8;
1012	}
1013	return len;
1014}
1015
1016static int vfio_cap_len(struct vfio_pci_device *vdev, u8 cap, u8 pos)
1017{
1018	struct pci_dev *pdev = vdev->pdev;
1019	u32 dword;
1020	u16 word;
1021	u8 byte;
1022	int ret;
1023
1024	switch (cap) {
1025	case PCI_CAP_ID_MSI:
1026		return vfio_msi_cap_len(vdev, pos);
1027	case PCI_CAP_ID_PCIX:
1028		ret = pci_read_config_word(pdev, pos + PCI_X_CMD, &word);
1029		if (ret)
1030			return pcibios_err_to_errno(ret);
1031
1032		if (PCI_X_CMD_VERSION(word)) {
1033			/* Test for extended capabilities */
1034			pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1035			vdev->extended_caps = (dword != 0);
1036			return PCI_CAP_PCIX_SIZEOF_V2;
1037		} else
1038			return PCI_CAP_PCIX_SIZEOF_V0;
1039	case PCI_CAP_ID_VNDR:
1040		/* length follows next field */
1041		ret = pci_read_config_byte(pdev, pos + PCI_CAP_FLAGS, &byte);
1042		if (ret)
1043			return pcibios_err_to_errno(ret);
1044
1045		return byte;
1046	case PCI_CAP_ID_EXP:
1047		/* Test for extended capabilities */
1048		pci_read_config_dword(pdev, PCI_CFG_SPACE_SIZE, &dword);
1049		vdev->extended_caps = (dword != 0);
1050
1051		/* length based on version */
1052		if ((pcie_caps_reg(pdev) & PCI_EXP_FLAGS_VERS) == 1)
1053			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1;
1054		else
1055			return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2;
1056	case PCI_CAP_ID_HT:
1057		ret = pci_read_config_byte(pdev, pos + 3, &byte);
1058		if (ret)
1059			return pcibios_err_to_errno(ret);
1060
1061		return (byte & HT_3BIT_CAP_MASK) ?
1062			HT_CAP_SIZEOF_SHORT : HT_CAP_SIZEOF_LONG;
1063	case PCI_CAP_ID_SATA:
1064		ret = pci_read_config_byte(pdev, pos + PCI_SATA_REGS, &byte);
1065		if (ret)
1066			return pcibios_err_to_errno(ret);
1067
1068		byte &= PCI_SATA_REGS_MASK;
1069		if (byte == PCI_SATA_REGS_INLINE)
1070			return PCI_SATA_SIZEOF_LONG;
1071		else
1072			return PCI_SATA_SIZEOF_SHORT;
1073	default:
1074		pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1075			dev_name(&pdev->dev), __func__, cap, pos);
1076	}
1077
1078	return 0;
1079}
1080
1081static int vfio_ext_cap_len(struct vfio_pci_device *vdev, u16 ecap, u16 epos)
1082{
1083	struct pci_dev *pdev = vdev->pdev;
1084	u8 byte;
1085	u32 dword;
1086	int ret;
1087
1088	switch (ecap) {
1089	case PCI_EXT_CAP_ID_VNDR:
1090		ret = pci_read_config_dword(pdev, epos + PCI_VSEC_HDR, &dword);
1091		if (ret)
1092			return pcibios_err_to_errno(ret);
1093
1094		return dword >> PCI_VSEC_HDR_LEN_SHIFT;
1095	case PCI_EXT_CAP_ID_VC:
1096	case PCI_EXT_CAP_ID_VC9:
1097	case PCI_EXT_CAP_ID_MFVC:
1098		return vfio_vc_cap_len(vdev, epos);
1099	case PCI_EXT_CAP_ID_ACS:
1100		ret = pci_read_config_byte(pdev, epos + PCI_ACS_CAP, &byte);
1101		if (ret)
1102			return pcibios_err_to_errno(ret);
1103
1104		if (byte & PCI_ACS_EC) {
1105			int bits;
1106
1107			ret = pci_read_config_byte(pdev,
1108						   epos + PCI_ACS_EGRESS_BITS,
1109						   &byte);
1110			if (ret)
1111				return pcibios_err_to_errno(ret);
1112
1113			bits = byte ? round_up(byte, 32) : 256;
1114			return 8 + (bits / 8);
1115		}
1116		return 8;
1117
1118	case PCI_EXT_CAP_ID_REBAR:
1119		ret = pci_read_config_byte(pdev, epos + PCI_REBAR_CTRL, &byte);
1120		if (ret)
1121			return pcibios_err_to_errno(ret);
1122
1123		byte &= PCI_REBAR_CTRL_NBAR_MASK;
1124		byte >>= PCI_REBAR_CTRL_NBAR_SHIFT;
1125
1126		return 4 + (byte * 8);
1127	case PCI_EXT_CAP_ID_DPA:
1128		ret = pci_read_config_byte(pdev, epos + PCI_DPA_CAP, &byte);
1129		if (ret)
1130			return pcibios_err_to_errno(ret);
1131
1132		byte &= PCI_DPA_CAP_SUBSTATE_MASK;
1133		return PCI_DPA_BASE_SIZEOF + byte + 1;
1134	case PCI_EXT_CAP_ID_TPH:
1135		ret = pci_read_config_dword(pdev, epos + PCI_TPH_CAP, &dword);
1136		if (ret)
1137			return pcibios_err_to_errno(ret);
1138
1139		if ((dword & PCI_TPH_CAP_LOC_MASK) == PCI_TPH_LOC_CAP) {
1140			int sts;
1141
1142			sts = dword & PCI_TPH_CAP_ST_MASK;
1143			sts >>= PCI_TPH_CAP_ST_SHIFT;
1144			return PCI_TPH_BASE_SIZEOF + (sts * 2) + 2;
1145		}
1146		return PCI_TPH_BASE_SIZEOF;
1147	default:
1148		pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1149			dev_name(&pdev->dev), __func__, ecap, epos);
1150	}
1151
1152	return 0;
1153}
1154
1155static int vfio_fill_vconfig_bytes(struct vfio_pci_device *vdev,
1156				   int offset, int size)
1157{
1158	struct pci_dev *pdev = vdev->pdev;
1159	int ret = 0;
1160
1161	/*
1162	 * We try to read physical config space in the largest chunks
1163	 * we can, assuming that all of the fields support dword access.
1164	 * pci_save_state() makes this same assumption and seems to do ok.
1165	 */
1166	while (size) {
1167		int filled;
1168
1169		if (size >= 4 && !(offset % 4)) {
1170			__le32 *dwordp = (__le32 *)&vdev->vconfig[offset];
1171			u32 dword;
1172
1173			ret = pci_read_config_dword(pdev, offset, &dword);
1174			if (ret)
1175				return ret;
1176			*dwordp = cpu_to_le32(dword);
1177			filled = 4;
1178		} else if (size >= 2 && !(offset % 2)) {
1179			__le16 *wordp = (__le16 *)&vdev->vconfig[offset];
1180			u16 word;
1181
1182			ret = pci_read_config_word(pdev, offset, &word);
1183			if (ret)
1184				return ret;
1185			*wordp = cpu_to_le16(word);
1186			filled = 2;
1187		} else {
1188			u8 *byte = &vdev->vconfig[offset];
1189			ret = pci_read_config_byte(pdev, offset, byte);
1190			if (ret)
1191				return ret;
1192			filled = 1;
1193		}
1194
1195		offset += filled;
1196		size -= filled;
1197	}
1198
1199	return ret;
1200}
1201
1202static int vfio_cap_init(struct vfio_pci_device *vdev)
1203{
1204	struct pci_dev *pdev = vdev->pdev;
1205	u8 *map = vdev->pci_config_map;
1206	u16 status;
1207	u8 pos, *prev, cap;
1208	int loops, ret, caps = 0;
1209
1210	/* Any capabilities? */
1211	ret = pci_read_config_word(pdev, PCI_STATUS, &status);
1212	if (ret)
1213		return ret;
1214
1215	if (!(status & PCI_STATUS_CAP_LIST))
1216		return 0; /* Done */
1217
1218	ret = pci_read_config_byte(pdev, PCI_CAPABILITY_LIST, &pos);
1219	if (ret)
1220		return ret;
1221
1222	/* Mark the previous position in case we want to skip a capability */
1223	prev = &vdev->vconfig[PCI_CAPABILITY_LIST];
1224
1225	/* We can bound our loop, capabilities are dword aligned */
1226	loops = (PCI_CFG_SPACE_SIZE - PCI_STD_HEADER_SIZEOF) / PCI_CAP_SIZEOF;
1227	while (pos && loops--) {
1228		u8 next;
1229		int i, len = 0;
1230
1231		ret = pci_read_config_byte(pdev, pos, &cap);
1232		if (ret)
1233			return ret;
1234
1235		ret = pci_read_config_byte(pdev,
1236					   pos + PCI_CAP_LIST_NEXT, &next);
1237		if (ret)
1238			return ret;
1239
1240		if (cap <= PCI_CAP_ID_MAX) {
1241			len = pci_cap_length[cap];
1242			if (len == 0xFF) { /* Variable length */
1243				len = vfio_cap_len(vdev, cap, pos);
1244				if (len < 0)
1245					return len;
1246			}
1247		}
1248
1249		if (!len) {
1250			pr_info("%s: %s hiding cap 0x%x\n",
1251				__func__, dev_name(&pdev->dev), cap);
1252			*prev = next;
1253			pos = next;
1254			continue;
1255		}
1256
1257		/* Sanity check, do we overlap other capabilities? */
1258		for (i = 0; i < len; i++) {
1259			if (likely(map[pos + i] == PCI_CAP_ID_INVALID))
1260				continue;
1261
1262			pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1263				__func__, dev_name(&pdev->dev),
1264				pos + i, map[pos + i], cap);
1265		}
1266
1267		memset(map + pos, cap, len);
1268		ret = vfio_fill_vconfig_bytes(vdev, pos, len);
1269		if (ret)
1270			return ret;
1271
1272		prev = &vdev->vconfig[pos + PCI_CAP_LIST_NEXT];
1273		pos = next;
1274		caps++;
1275	}
1276
1277	/* If we didn't fill any capabilities, clear the status flag */
1278	if (!caps) {
1279		__le16 *vstatus = (__le16 *)&vdev->vconfig[PCI_STATUS];
1280		*vstatus &= ~cpu_to_le16(PCI_STATUS_CAP_LIST);
1281	}
1282
1283	return 0;
1284}
1285
1286static int vfio_ecap_init(struct vfio_pci_device *vdev)
1287{
1288	struct pci_dev *pdev = vdev->pdev;
1289	u8 *map = vdev->pci_config_map;
1290	u16 epos;
1291	__le32 *prev = NULL;
1292	int loops, ret, ecaps = 0;
1293
1294	if (!vdev->extended_caps)
1295		return 0;
1296
1297	epos = PCI_CFG_SPACE_SIZE;
1298
1299	loops = (pdev->cfg_size - PCI_CFG_SPACE_SIZE) / PCI_CAP_SIZEOF;
1300
1301	while (loops-- && epos >= PCI_CFG_SPACE_SIZE) {
1302		u32 header;
1303		u16 ecap;
1304		int i, len = 0;
1305		bool hidden = false;
1306
1307		ret = pci_read_config_dword(pdev, epos, &header);
1308		if (ret)
1309			return ret;
1310
1311		ecap = PCI_EXT_CAP_ID(header);
1312
1313		if (ecap <= PCI_EXT_CAP_ID_MAX) {
1314			len = pci_ext_cap_length[ecap];
1315			if (len == 0xFF) {
1316				len = vfio_ext_cap_len(vdev, ecap, epos);
1317				if (len < 0)
1318					return ret;
1319			}
1320		}
1321
1322		if (!len) {
1323			pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1324				__func__, dev_name(&pdev->dev), ecap, epos);
1325
1326			/* If not the first in the chain, we can skip over it */
1327			if (prev) {
1328				u32 val = epos = PCI_EXT_CAP_NEXT(header);
1329				*prev &= cpu_to_le32(~(0xffcU << 20));
1330				*prev |= cpu_to_le32(val << 20);
1331				continue;
1332			}
1333
1334			/*
1335			 * Otherwise, fill in a placeholder, the direct
1336			 * readfn will virtualize this automatically
1337			 */
1338			len = PCI_CAP_SIZEOF;
1339			hidden = true;
1340		}
1341
1342		for (i = 0; i < len; i++) {
1343			if (likely(map[epos + i] == PCI_CAP_ID_INVALID))
1344				continue;
1345
1346			pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1347				__func__, dev_name(&pdev->dev),
1348				epos + i, map[epos + i], ecap);
1349		}
1350
1351		/*
1352		 * Even though ecap is 2 bytes, we're currently a long way
1353		 * from exceeding 1 byte capabilities.  If we ever make it
1354		 * up to 0xFF we'll need to up this to a two-byte, byte map.
1355		 */
1356		BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX >= PCI_CAP_ID_INVALID);
1357
1358		memset(map + epos, ecap, len);
1359		ret = vfio_fill_vconfig_bytes(vdev, epos, len);
1360		if (ret)
1361			return ret;
1362
1363		/*
1364		 * If we're just using this capability to anchor the list,
1365		 * hide the real ID.  Only count real ecaps.  XXX PCI spec
1366		 * indicates to use cap id = 0, version = 0, next = 0 if
1367		 * ecaps are absent, hope users check all the way to next.
1368		 */
1369		if (hidden)
1370			*(__le32 *)&vdev->vconfig[epos] &=
1371				cpu_to_le32((0xffcU << 20));
1372		else
1373			ecaps++;
1374
1375		prev = (__le32 *)&vdev->vconfig[epos];
1376		epos = PCI_EXT_CAP_NEXT(header);
1377	}
1378
1379	if (!ecaps)
1380		*(u32 *)&vdev->vconfig[PCI_CFG_SPACE_SIZE] = 0;
1381
1382	return 0;
1383}
1384
1385/*
1386 * For each device we allocate a pci_config_map that indicates the
1387 * capability occupying each dword and thus the struct perm_bits we
1388 * use for read and write.  We also allocate a virtualized config
1389 * space which tracks reads and writes to bits that we emulate for
1390 * the user.  Initial values filled from device.
1391 *
1392 * Using shared stuct perm_bits between all vfio-pci devices saves
1393 * us from allocating cfg_size buffers for virt and write for every
1394 * device.  We could remove vconfig and allocate individual buffers
1395 * for each area requring emulated bits, but the array of pointers
1396 * would be comparable in size (at least for standard config space).
1397 */
1398int vfio_config_init(struct vfio_pci_device *vdev)
1399{
1400	struct pci_dev *pdev = vdev->pdev;
1401	u8 *map, *vconfig;
1402	int ret;
1403
1404	/*
1405	 * Config space, caps and ecaps are all dword aligned, so we could
1406	 * use one byte per dword to record the type.  However, there are
1407	 * no requiremenst on the length of a capability, so the gap between
1408	 * capabilities needs byte granularity.
1409	 */
1410	map = kmalloc(pdev->cfg_size, GFP_KERNEL);
1411	if (!map)
1412		return -ENOMEM;
1413
1414	vconfig = kmalloc(pdev->cfg_size, GFP_KERNEL);
1415	if (!vconfig) {
1416		kfree(map);
1417		return -ENOMEM;
1418	}
1419
1420	vdev->pci_config_map = map;
1421	vdev->vconfig = vconfig;
1422
1423	memset(map, PCI_CAP_ID_BASIC, PCI_STD_HEADER_SIZEOF);
1424	memset(map + PCI_STD_HEADER_SIZEOF, PCI_CAP_ID_INVALID,
1425	       pdev->cfg_size - PCI_STD_HEADER_SIZEOF);
1426
1427	ret = vfio_fill_vconfig_bytes(vdev, 0, PCI_STD_HEADER_SIZEOF);
1428	if (ret)
1429		goto out;
1430
1431	vdev->bardirty = true;
1432
1433	/*
1434	 * XXX can we just pci_load_saved_state/pci_restore_state?
1435	 * may need to rebuild vconfig after that
1436	 */
1437
1438	/* For restore after reset */
1439	vdev->rbar[0] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_0]);
1440	vdev->rbar[1] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_1]);
1441	vdev->rbar[2] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_2]);
1442	vdev->rbar[3] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_3]);
1443	vdev->rbar[4] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_4]);
1444	vdev->rbar[5] = le32_to_cpu(*(__le32 *)&vconfig[PCI_BASE_ADDRESS_5]);
1445	vdev->rbar[6] = le32_to_cpu(*(__le32 *)&vconfig[PCI_ROM_ADDRESS]);
1446
1447	if (pdev->is_virtfn) {
1448		*(__le16 *)&vconfig[PCI_VENDOR_ID] = cpu_to_le16(pdev->vendor);
1449		*(__le16 *)&vconfig[PCI_DEVICE_ID] = cpu_to_le16(pdev->device);
1450	}
1451
1452	if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX))
1453		vconfig[PCI_INTERRUPT_PIN] = 0;
1454
1455	ret = vfio_cap_init(vdev);
1456	if (ret)
1457		goto out;
1458
1459	ret = vfio_ecap_init(vdev);
1460	if (ret)
1461		goto out;
1462
1463	return 0;
1464
1465out:
1466	kfree(map);
1467	vdev->pci_config_map = NULL;
1468	kfree(vconfig);
1469	vdev->vconfig = NULL;
1470	return pcibios_err_to_errno(ret);
1471}
1472
1473void vfio_config_free(struct vfio_pci_device *vdev)
1474{
1475	kfree(vdev->vconfig);
1476	vdev->vconfig = NULL;
1477	kfree(vdev->pci_config_map);
1478	vdev->pci_config_map = NULL;
1479	kfree(vdev->msi_perm);
1480	vdev->msi_perm = NULL;
1481}
1482
1483/*
1484 * Find the remaining number of bytes in a dword that match the given
1485 * position.  Stop at either the end of the capability or the dword boundary.
1486 */
1487static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device *vdev,
1488					   loff_t pos)
1489{
1490	u8 cap = vdev->pci_config_map[pos];
1491	size_t i;
1492
1493	for (i = 1; (pos + i) % 4 && vdev->pci_config_map[pos + i] == cap; i++)
1494		/* nop */;
1495
1496	return i;
1497}
1498
1499static ssize_t vfio_config_do_rw(struct vfio_pci_device *vdev, char __user *buf,
1500				 size_t count, loff_t *ppos, bool iswrite)
1501{
1502	struct pci_dev *pdev = vdev->pdev;
1503	struct perm_bits *perm;
1504	__le32 val = 0;
1505	int cap_start = 0, offset;
1506	u8 cap_id;
1507	ssize_t ret;
1508
1509	if (*ppos < 0 || *ppos >= pdev->cfg_size ||
1510	    *ppos + count > pdev->cfg_size)
1511		return -EFAULT;
1512
1513	/*
1514	 * Chop accesses into aligned chunks containing no more than a
1515	 * single capability.  Caller increments to the next chunk.
1516	 */
1517	count = min(count, vfio_pci_cap_remaining_dword(vdev, *ppos));
1518	if (count >= 4 && !(*ppos % 4))
1519		count = 4;
1520	else if (count >= 2 && !(*ppos % 2))
1521		count = 2;
1522	else
1523		count = 1;
1524
1525	ret = count;
1526
1527	cap_id = vdev->pci_config_map[*ppos];
1528
1529	if (cap_id == PCI_CAP_ID_INVALID) {
1530		perm = &unassigned_perms;
1531		cap_start = *ppos;
1532	} else {
1533		if (*ppos >= PCI_CFG_SPACE_SIZE) {
1534			WARN_ON(cap_id > PCI_EXT_CAP_ID_MAX);
1535
1536			perm = &ecap_perms[cap_id];
1537			cap_start = vfio_find_cap_start(vdev, *ppos);
1538		} else {
1539			WARN_ON(cap_id > PCI_CAP_ID_MAX);
1540
1541			perm = &cap_perms[cap_id];
1542
1543			if (cap_id == PCI_CAP_ID_MSI)
1544				perm = vdev->msi_perm;
1545
1546			if (cap_id > PCI_CAP_ID_BASIC)
1547				cap_start = vfio_find_cap_start(vdev, *ppos);
1548		}
1549	}
1550
1551	WARN_ON(!cap_start && cap_id != PCI_CAP_ID_BASIC);
1552	WARN_ON(cap_start > *ppos);
1553
1554	offset = *ppos - cap_start;
1555
1556	if (iswrite) {
1557		if (!perm->writefn)
1558			return ret;
1559
1560		if (copy_from_user(&val, buf, count))
1561			return -EFAULT;
1562
1563		ret = perm->writefn(vdev, *ppos, count, perm, offset, val);
1564	} else {
1565		if (perm->readfn) {
1566			ret = perm->readfn(vdev, *ppos, count,
1567					   perm, offset, &val);
1568			if (ret < 0)
1569				return ret;
1570		}
1571
1572		if (copy_to_user(buf, &val, count))
1573			return -EFAULT;
1574	}
1575
1576	return ret;
1577}
1578
1579ssize_t vfio_pci_config_rw(struct vfio_pci_device *vdev, char __user *buf,
1580			   size_t count, loff_t *ppos, bool iswrite)
1581{
1582	size_t done = 0;
1583	int ret = 0;
1584	loff_t pos = *ppos;
1585
1586	pos &= VFIO_PCI_OFFSET_MASK;
1587
1588	while (count) {
1589		ret = vfio_config_do_rw(vdev, buf, count, &pos, iswrite);
1590		if (ret < 0)
1591			return ret;
1592
1593		count -= ret;
1594		done += ret;
1595		buf += ret;
1596		pos += ret;
1597	}
1598
1599	*ppos += done;
1600
1601	return done;
1602}
1603