1/*
2 * Copyright (C) 2011 STRATO.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/vmalloc.h>
20#include "ctree.h"
21#include "disk-io.h"
22#include "backref.h"
23#include "ulist.h"
24#include "transaction.h"
25#include "delayed-ref.h"
26#include "locking.h"
27
28/* Just an arbitrary number so we can be sure this happened */
29#define BACKREF_FOUND_SHARED 6
30
31struct extent_inode_elem {
32	u64 inum;
33	u64 offset;
34	struct extent_inode_elem *next;
35};
36
37static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
38				struct btrfs_file_extent_item *fi,
39				u64 extent_item_pos,
40				struct extent_inode_elem **eie)
41{
42	u64 offset = 0;
43	struct extent_inode_elem *e;
44
45	if (!btrfs_file_extent_compression(eb, fi) &&
46	    !btrfs_file_extent_encryption(eb, fi) &&
47	    !btrfs_file_extent_other_encoding(eb, fi)) {
48		u64 data_offset;
49		u64 data_len;
50
51		data_offset = btrfs_file_extent_offset(eb, fi);
52		data_len = btrfs_file_extent_num_bytes(eb, fi);
53
54		if (extent_item_pos < data_offset ||
55		    extent_item_pos >= data_offset + data_len)
56			return 1;
57		offset = extent_item_pos - data_offset;
58	}
59
60	e = kmalloc(sizeof(*e), GFP_NOFS);
61	if (!e)
62		return -ENOMEM;
63
64	e->next = *eie;
65	e->inum = key->objectid;
66	e->offset = key->offset + offset;
67	*eie = e;
68
69	return 0;
70}
71
72static void free_inode_elem_list(struct extent_inode_elem *eie)
73{
74	struct extent_inode_elem *eie_next;
75
76	for (; eie; eie = eie_next) {
77		eie_next = eie->next;
78		kfree(eie);
79	}
80}
81
82static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
83				u64 extent_item_pos,
84				struct extent_inode_elem **eie)
85{
86	u64 disk_byte;
87	struct btrfs_key key;
88	struct btrfs_file_extent_item *fi;
89	int slot;
90	int nritems;
91	int extent_type;
92	int ret;
93
94	/*
95	 * from the shared data ref, we only have the leaf but we need
96	 * the key. thus, we must look into all items and see that we
97	 * find one (some) with a reference to our extent item.
98	 */
99	nritems = btrfs_header_nritems(eb);
100	for (slot = 0; slot < nritems; ++slot) {
101		btrfs_item_key_to_cpu(eb, &key, slot);
102		if (key.type != BTRFS_EXTENT_DATA_KEY)
103			continue;
104		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
105		extent_type = btrfs_file_extent_type(eb, fi);
106		if (extent_type == BTRFS_FILE_EXTENT_INLINE)
107			continue;
108		/* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
109		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
110		if (disk_byte != wanted_disk_byte)
111			continue;
112
113		ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
114		if (ret < 0)
115			return ret;
116	}
117
118	return 0;
119}
120
121/*
122 * this structure records all encountered refs on the way up to the root
123 */
124struct __prelim_ref {
125	struct list_head list;
126	u64 root_id;
127	struct btrfs_key key_for_search;
128	int level;
129	int count;
130	struct extent_inode_elem *inode_list;
131	u64 parent;
132	u64 wanted_disk_byte;
133};
134
135static struct kmem_cache *btrfs_prelim_ref_cache;
136
137int __init btrfs_prelim_ref_init(void)
138{
139	btrfs_prelim_ref_cache = kmem_cache_create("btrfs_prelim_ref",
140					sizeof(struct __prelim_ref),
141					0,
142					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
143					NULL);
144	if (!btrfs_prelim_ref_cache)
145		return -ENOMEM;
146	return 0;
147}
148
149void btrfs_prelim_ref_exit(void)
150{
151	if (btrfs_prelim_ref_cache)
152		kmem_cache_destroy(btrfs_prelim_ref_cache);
153}
154
155/*
156 * the rules for all callers of this function are:
157 * - obtaining the parent is the goal
158 * - if you add a key, you must know that it is a correct key
159 * - if you cannot add the parent or a correct key, then we will look into the
160 *   block later to set a correct key
161 *
162 * delayed refs
163 * ============
164 *        backref type | shared | indirect | shared | indirect
165 * information         |   tree |     tree |   data |     data
166 * --------------------+--------+----------+--------+----------
167 *      parent logical |    y   |     -    |    -   |     -
168 *      key to resolve |    -   |     y    |    y   |     y
169 *  tree block logical |    -   |     -    |    -   |     -
170 *  root for resolving |    y   |     y    |    y   |     y
171 *
172 * - column 1:       we've the parent -> done
173 * - column 2, 3, 4: we use the key to find the parent
174 *
175 * on disk refs (inline or keyed)
176 * ==============================
177 *        backref type | shared | indirect | shared | indirect
178 * information         |   tree |     tree |   data |     data
179 * --------------------+--------+----------+--------+----------
180 *      parent logical |    y   |     -    |    y   |     -
181 *      key to resolve |    -   |     -    |    -   |     y
182 *  tree block logical |    y   |     y    |    y   |     y
183 *  root for resolving |    -   |     y    |    y   |     y
184 *
185 * - column 1, 3: we've the parent -> done
186 * - column 2:    we take the first key from the block to find the parent
187 *                (see __add_missing_keys)
188 * - column 4:    we use the key to find the parent
189 *
190 * additional information that's available but not required to find the parent
191 * block might help in merging entries to gain some speed.
192 */
193
194static int __add_prelim_ref(struct list_head *head, u64 root_id,
195			    struct btrfs_key *key, int level,
196			    u64 parent, u64 wanted_disk_byte, int count,
197			    gfp_t gfp_mask)
198{
199	struct __prelim_ref *ref;
200
201	if (root_id == BTRFS_DATA_RELOC_TREE_OBJECTID)
202		return 0;
203
204	ref = kmem_cache_alloc(btrfs_prelim_ref_cache, gfp_mask);
205	if (!ref)
206		return -ENOMEM;
207
208	ref->root_id = root_id;
209	if (key)
210		ref->key_for_search = *key;
211	else
212		memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
213
214	ref->inode_list = NULL;
215	ref->level = level;
216	ref->count = count;
217	ref->parent = parent;
218	ref->wanted_disk_byte = wanted_disk_byte;
219	list_add_tail(&ref->list, head);
220
221	return 0;
222}
223
224static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
225			   struct ulist *parents, struct __prelim_ref *ref,
226			   int level, u64 time_seq, const u64 *extent_item_pos,
227			   u64 total_refs)
228{
229	int ret = 0;
230	int slot;
231	struct extent_buffer *eb;
232	struct btrfs_key key;
233	struct btrfs_key *key_for_search = &ref->key_for_search;
234	struct btrfs_file_extent_item *fi;
235	struct extent_inode_elem *eie = NULL, *old = NULL;
236	u64 disk_byte;
237	u64 wanted_disk_byte = ref->wanted_disk_byte;
238	u64 count = 0;
239
240	if (level != 0) {
241		eb = path->nodes[level];
242		ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
243		if (ret < 0)
244			return ret;
245		return 0;
246	}
247
248	/*
249	 * We normally enter this function with the path already pointing to
250	 * the first item to check. But sometimes, we may enter it with
251	 * slot==nritems. In that case, go to the next leaf before we continue.
252	 */
253	if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
254		ret = btrfs_next_old_leaf(root, path, time_seq);
255
256	while (!ret && count < total_refs) {
257		eb = path->nodes[0];
258		slot = path->slots[0];
259
260		btrfs_item_key_to_cpu(eb, &key, slot);
261
262		if (key.objectid != key_for_search->objectid ||
263		    key.type != BTRFS_EXTENT_DATA_KEY)
264			break;
265
266		fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
267		disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
268
269		if (disk_byte == wanted_disk_byte) {
270			eie = NULL;
271			old = NULL;
272			count++;
273			if (extent_item_pos) {
274				ret = check_extent_in_eb(&key, eb, fi,
275						*extent_item_pos,
276						&eie);
277				if (ret < 0)
278					break;
279			}
280			if (ret > 0)
281				goto next;
282			ret = ulist_add_merge_ptr(parents, eb->start,
283						  eie, (void **)&old, GFP_NOFS);
284			if (ret < 0)
285				break;
286			if (!ret && extent_item_pos) {
287				while (old->next)
288					old = old->next;
289				old->next = eie;
290			}
291			eie = NULL;
292		}
293next:
294		ret = btrfs_next_old_item(root, path, time_seq);
295	}
296
297	if (ret > 0)
298		ret = 0;
299	else if (ret < 0)
300		free_inode_elem_list(eie);
301	return ret;
302}
303
304/*
305 * resolve an indirect backref in the form (root_id, key, level)
306 * to a logical address
307 */
308static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
309				  struct btrfs_path *path, u64 time_seq,
310				  struct __prelim_ref *ref,
311				  struct ulist *parents,
312				  const u64 *extent_item_pos, u64 total_refs)
313{
314	struct btrfs_root *root;
315	struct btrfs_key root_key;
316	struct extent_buffer *eb;
317	int ret = 0;
318	int root_level;
319	int level = ref->level;
320	int index;
321
322	root_key.objectid = ref->root_id;
323	root_key.type = BTRFS_ROOT_ITEM_KEY;
324	root_key.offset = (u64)-1;
325
326	index = srcu_read_lock(&fs_info->subvol_srcu);
327
328	root = btrfs_read_fs_root_no_name(fs_info, &root_key);
329	if (IS_ERR(root)) {
330		srcu_read_unlock(&fs_info->subvol_srcu, index);
331		ret = PTR_ERR(root);
332		goto out;
333	}
334
335	if (path->search_commit_root)
336		root_level = btrfs_header_level(root->commit_root);
337	else
338		root_level = btrfs_old_root_level(root, time_seq);
339
340	if (root_level + 1 == level) {
341		srcu_read_unlock(&fs_info->subvol_srcu, index);
342		goto out;
343	}
344
345	path->lowest_level = level;
346	ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
347
348	/* root node has been locked, we can release @subvol_srcu safely here */
349	srcu_read_unlock(&fs_info->subvol_srcu, index);
350
351	pr_debug("search slot in root %llu (level %d, ref count %d) returned "
352		 "%d for key (%llu %u %llu)\n",
353		 ref->root_id, level, ref->count, ret,
354		 ref->key_for_search.objectid, ref->key_for_search.type,
355		 ref->key_for_search.offset);
356	if (ret < 0)
357		goto out;
358
359	eb = path->nodes[level];
360	while (!eb) {
361		if (WARN_ON(!level)) {
362			ret = 1;
363			goto out;
364		}
365		level--;
366		eb = path->nodes[level];
367	}
368
369	ret = add_all_parents(root, path, parents, ref, level, time_seq,
370			      extent_item_pos, total_refs);
371out:
372	path->lowest_level = 0;
373	btrfs_release_path(path);
374	return ret;
375}
376
377/*
378 * resolve all indirect backrefs from the list
379 */
380static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
381				   struct btrfs_path *path, u64 time_seq,
382				   struct list_head *head,
383				   const u64 *extent_item_pos, u64 total_refs,
384				   u64 root_objectid)
385{
386	int err;
387	int ret = 0;
388	struct __prelim_ref *ref;
389	struct __prelim_ref *ref_safe;
390	struct __prelim_ref *new_ref;
391	struct ulist *parents;
392	struct ulist_node *node;
393	struct ulist_iterator uiter;
394
395	parents = ulist_alloc(GFP_NOFS);
396	if (!parents)
397		return -ENOMEM;
398
399	/*
400	 * _safe allows us to insert directly after the current item without
401	 * iterating over the newly inserted items.
402	 * we're also allowed to re-assign ref during iteration.
403	 */
404	list_for_each_entry_safe(ref, ref_safe, head, list) {
405		if (ref->parent)	/* already direct */
406			continue;
407		if (ref->count == 0)
408			continue;
409		if (root_objectid && ref->root_id != root_objectid) {
410			ret = BACKREF_FOUND_SHARED;
411			goto out;
412		}
413		err = __resolve_indirect_ref(fs_info, path, time_seq, ref,
414					     parents, extent_item_pos,
415					     total_refs);
416		/*
417		 * we can only tolerate ENOENT,otherwise,we should catch error
418		 * and return directly.
419		 */
420		if (err == -ENOENT) {
421			continue;
422		} else if (err) {
423			ret = err;
424			goto out;
425		}
426
427		/* we put the first parent into the ref at hand */
428		ULIST_ITER_INIT(&uiter);
429		node = ulist_next(parents, &uiter);
430		ref->parent = node ? node->val : 0;
431		ref->inode_list = node ?
432			(struct extent_inode_elem *)(uintptr_t)node->aux : NULL;
433
434		/* additional parents require new refs being added here */
435		while ((node = ulist_next(parents, &uiter))) {
436			new_ref = kmem_cache_alloc(btrfs_prelim_ref_cache,
437						   GFP_NOFS);
438			if (!new_ref) {
439				ret = -ENOMEM;
440				goto out;
441			}
442			memcpy(new_ref, ref, sizeof(*ref));
443			new_ref->parent = node->val;
444			new_ref->inode_list = (struct extent_inode_elem *)
445							(uintptr_t)node->aux;
446			list_add(&new_ref->list, &ref->list);
447		}
448		ulist_reinit(parents);
449	}
450out:
451	ulist_free(parents);
452	return ret;
453}
454
455static inline int ref_for_same_block(struct __prelim_ref *ref1,
456				     struct __prelim_ref *ref2)
457{
458	if (ref1->level != ref2->level)
459		return 0;
460	if (ref1->root_id != ref2->root_id)
461		return 0;
462	if (ref1->key_for_search.type != ref2->key_for_search.type)
463		return 0;
464	if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
465		return 0;
466	if (ref1->key_for_search.offset != ref2->key_for_search.offset)
467		return 0;
468	if (ref1->parent != ref2->parent)
469		return 0;
470
471	return 1;
472}
473
474/*
475 * read tree blocks and add keys where required.
476 */
477static int __add_missing_keys(struct btrfs_fs_info *fs_info,
478			      struct list_head *head)
479{
480	struct list_head *pos;
481	struct extent_buffer *eb;
482
483	list_for_each(pos, head) {
484		struct __prelim_ref *ref;
485		ref = list_entry(pos, struct __prelim_ref, list);
486
487		if (ref->parent)
488			continue;
489		if (ref->key_for_search.type)
490			continue;
491		BUG_ON(!ref->wanted_disk_byte);
492		eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
493				     0);
494		if (!eb || !extent_buffer_uptodate(eb)) {
495			free_extent_buffer(eb);
496			return -EIO;
497		}
498		btrfs_tree_read_lock(eb);
499		if (btrfs_header_level(eb) == 0)
500			btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
501		else
502			btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
503		btrfs_tree_read_unlock(eb);
504		free_extent_buffer(eb);
505	}
506	return 0;
507}
508
509/*
510 * merge two lists of backrefs and adjust counts accordingly
511 *
512 * mode = 1: merge identical keys, if key is set
513 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
514 *           additionally, we could even add a key range for the blocks we
515 *           looked into to merge even more (-> replace unresolved refs by those
516 *           having a parent).
517 * mode = 2: merge identical parents
518 */
519static void __merge_refs(struct list_head *head, int mode)
520{
521	struct list_head *pos1;
522
523	list_for_each(pos1, head) {
524		struct list_head *n2;
525		struct list_head *pos2;
526		struct __prelim_ref *ref1;
527
528		ref1 = list_entry(pos1, struct __prelim_ref, list);
529
530		for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
531		     pos2 = n2, n2 = pos2->next) {
532			struct __prelim_ref *ref2;
533			struct __prelim_ref *xchg;
534			struct extent_inode_elem *eie;
535
536			ref2 = list_entry(pos2, struct __prelim_ref, list);
537
538			if (mode == 1) {
539				if (!ref_for_same_block(ref1, ref2))
540					continue;
541				if (!ref1->parent && ref2->parent) {
542					xchg = ref1;
543					ref1 = ref2;
544					ref2 = xchg;
545				}
546			} else {
547				if (ref1->parent != ref2->parent)
548					continue;
549			}
550
551			eie = ref1->inode_list;
552			while (eie && eie->next)
553				eie = eie->next;
554			if (eie)
555				eie->next = ref2->inode_list;
556			else
557				ref1->inode_list = ref2->inode_list;
558			ref1->count += ref2->count;
559
560			list_del(&ref2->list);
561			kmem_cache_free(btrfs_prelim_ref_cache, ref2);
562		}
563
564	}
565}
566
567/*
568 * add all currently queued delayed refs from this head whose seq nr is
569 * smaller or equal that seq to the list
570 */
571static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
572			      struct list_head *prefs, u64 *total_refs,
573			      u64 inum)
574{
575	struct btrfs_delayed_extent_op *extent_op = head->extent_op;
576	struct rb_node *n = &head->node.rb_node;
577	struct btrfs_key key;
578	struct btrfs_key op_key = {0};
579	int sgn;
580	int ret = 0;
581
582	if (extent_op && extent_op->update_key)
583		btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
584
585	spin_lock(&head->lock);
586	n = rb_first(&head->ref_root);
587	while (n) {
588		struct btrfs_delayed_ref_node *node;
589		node = rb_entry(n, struct btrfs_delayed_ref_node,
590				rb_node);
591		n = rb_next(n);
592		if (node->seq > seq)
593			continue;
594
595		switch (node->action) {
596		case BTRFS_ADD_DELAYED_EXTENT:
597		case BTRFS_UPDATE_DELAYED_HEAD:
598			WARN_ON(1);
599			continue;
600		case BTRFS_ADD_DELAYED_REF:
601			sgn = 1;
602			break;
603		case BTRFS_DROP_DELAYED_REF:
604			sgn = -1;
605			break;
606		default:
607			BUG_ON(1);
608		}
609		*total_refs += (node->ref_mod * sgn);
610		switch (node->type) {
611		case BTRFS_TREE_BLOCK_REF_KEY: {
612			struct btrfs_delayed_tree_ref *ref;
613
614			ref = btrfs_delayed_node_to_tree_ref(node);
615			ret = __add_prelim_ref(prefs, ref->root, &op_key,
616					       ref->level + 1, 0, node->bytenr,
617					       node->ref_mod * sgn, GFP_ATOMIC);
618			break;
619		}
620		case BTRFS_SHARED_BLOCK_REF_KEY: {
621			struct btrfs_delayed_tree_ref *ref;
622
623			ref = btrfs_delayed_node_to_tree_ref(node);
624			ret = __add_prelim_ref(prefs, ref->root, NULL,
625					       ref->level + 1, ref->parent,
626					       node->bytenr,
627					       node->ref_mod * sgn, GFP_ATOMIC);
628			break;
629		}
630		case BTRFS_EXTENT_DATA_REF_KEY: {
631			struct btrfs_delayed_data_ref *ref;
632			ref = btrfs_delayed_node_to_data_ref(node);
633
634			key.objectid = ref->objectid;
635			key.type = BTRFS_EXTENT_DATA_KEY;
636			key.offset = ref->offset;
637
638			/*
639			 * Found a inum that doesn't match our known inum, we
640			 * know it's shared.
641			 */
642			if (inum && ref->objectid != inum) {
643				ret = BACKREF_FOUND_SHARED;
644				break;
645			}
646
647			ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
648					       node->bytenr,
649					       node->ref_mod * sgn, GFP_ATOMIC);
650			break;
651		}
652		case BTRFS_SHARED_DATA_REF_KEY: {
653			struct btrfs_delayed_data_ref *ref;
654
655			ref = btrfs_delayed_node_to_data_ref(node);
656
657			key.objectid = ref->objectid;
658			key.type = BTRFS_EXTENT_DATA_KEY;
659			key.offset = ref->offset;
660			ret = __add_prelim_ref(prefs, ref->root, &key, 0,
661					       ref->parent, node->bytenr,
662					       node->ref_mod * sgn, GFP_ATOMIC);
663			break;
664		}
665		default:
666			WARN_ON(1);
667		}
668		if (ret)
669			break;
670	}
671	spin_unlock(&head->lock);
672	return ret;
673}
674
675/*
676 * add all inline backrefs for bytenr to the list
677 */
678static int __add_inline_refs(struct btrfs_fs_info *fs_info,
679			     struct btrfs_path *path, u64 bytenr,
680			     int *info_level, struct list_head *prefs,
681			     u64 *total_refs, u64 inum)
682{
683	int ret = 0;
684	int slot;
685	struct extent_buffer *leaf;
686	struct btrfs_key key;
687	struct btrfs_key found_key;
688	unsigned long ptr;
689	unsigned long end;
690	struct btrfs_extent_item *ei;
691	u64 flags;
692	u64 item_size;
693
694	/*
695	 * enumerate all inline refs
696	 */
697	leaf = path->nodes[0];
698	slot = path->slots[0];
699
700	item_size = btrfs_item_size_nr(leaf, slot);
701	BUG_ON(item_size < sizeof(*ei));
702
703	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
704	flags = btrfs_extent_flags(leaf, ei);
705	*total_refs += btrfs_extent_refs(leaf, ei);
706	btrfs_item_key_to_cpu(leaf, &found_key, slot);
707
708	ptr = (unsigned long)(ei + 1);
709	end = (unsigned long)ei + item_size;
710
711	if (found_key.type == BTRFS_EXTENT_ITEM_KEY &&
712	    flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
713		struct btrfs_tree_block_info *info;
714
715		info = (struct btrfs_tree_block_info *)ptr;
716		*info_level = btrfs_tree_block_level(leaf, info);
717		ptr += sizeof(struct btrfs_tree_block_info);
718		BUG_ON(ptr > end);
719	} else if (found_key.type == BTRFS_METADATA_ITEM_KEY) {
720		*info_level = found_key.offset;
721	} else {
722		BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
723	}
724
725	while (ptr < end) {
726		struct btrfs_extent_inline_ref *iref;
727		u64 offset;
728		int type;
729
730		iref = (struct btrfs_extent_inline_ref *)ptr;
731		type = btrfs_extent_inline_ref_type(leaf, iref);
732		offset = btrfs_extent_inline_ref_offset(leaf, iref);
733
734		switch (type) {
735		case BTRFS_SHARED_BLOCK_REF_KEY:
736			ret = __add_prelim_ref(prefs, 0, NULL,
737						*info_level + 1, offset,
738						bytenr, 1, GFP_NOFS);
739			break;
740		case BTRFS_SHARED_DATA_REF_KEY: {
741			struct btrfs_shared_data_ref *sdref;
742			int count;
743
744			sdref = (struct btrfs_shared_data_ref *)(iref + 1);
745			count = btrfs_shared_data_ref_count(leaf, sdref);
746			ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
747					       bytenr, count, GFP_NOFS);
748			break;
749		}
750		case BTRFS_TREE_BLOCK_REF_KEY:
751			ret = __add_prelim_ref(prefs, offset, NULL,
752					       *info_level + 1, 0,
753					       bytenr, 1, GFP_NOFS);
754			break;
755		case BTRFS_EXTENT_DATA_REF_KEY: {
756			struct btrfs_extent_data_ref *dref;
757			int count;
758			u64 root;
759
760			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
761			count = btrfs_extent_data_ref_count(leaf, dref);
762			key.objectid = btrfs_extent_data_ref_objectid(leaf,
763								      dref);
764			key.type = BTRFS_EXTENT_DATA_KEY;
765			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
766
767			if (inum && key.objectid != inum) {
768				ret = BACKREF_FOUND_SHARED;
769				break;
770			}
771
772			root = btrfs_extent_data_ref_root(leaf, dref);
773			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
774					       bytenr, count, GFP_NOFS);
775			break;
776		}
777		default:
778			WARN_ON(1);
779		}
780		if (ret)
781			return ret;
782		ptr += btrfs_extent_inline_ref_size(type);
783	}
784
785	return 0;
786}
787
788/*
789 * add all non-inline backrefs for bytenr to the list
790 */
791static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
792			    struct btrfs_path *path, u64 bytenr,
793			    int info_level, struct list_head *prefs, u64 inum)
794{
795	struct btrfs_root *extent_root = fs_info->extent_root;
796	int ret;
797	int slot;
798	struct extent_buffer *leaf;
799	struct btrfs_key key;
800
801	while (1) {
802		ret = btrfs_next_item(extent_root, path);
803		if (ret < 0)
804			break;
805		if (ret) {
806			ret = 0;
807			break;
808		}
809
810		slot = path->slots[0];
811		leaf = path->nodes[0];
812		btrfs_item_key_to_cpu(leaf, &key, slot);
813
814		if (key.objectid != bytenr)
815			break;
816		if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
817			continue;
818		if (key.type > BTRFS_SHARED_DATA_REF_KEY)
819			break;
820
821		switch (key.type) {
822		case BTRFS_SHARED_BLOCK_REF_KEY:
823			ret = __add_prelim_ref(prefs, 0, NULL,
824						info_level + 1, key.offset,
825						bytenr, 1, GFP_NOFS);
826			break;
827		case BTRFS_SHARED_DATA_REF_KEY: {
828			struct btrfs_shared_data_ref *sdref;
829			int count;
830
831			sdref = btrfs_item_ptr(leaf, slot,
832					      struct btrfs_shared_data_ref);
833			count = btrfs_shared_data_ref_count(leaf, sdref);
834			ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
835						bytenr, count, GFP_NOFS);
836			break;
837		}
838		case BTRFS_TREE_BLOCK_REF_KEY:
839			ret = __add_prelim_ref(prefs, key.offset, NULL,
840					       info_level + 1, 0,
841					       bytenr, 1, GFP_NOFS);
842			break;
843		case BTRFS_EXTENT_DATA_REF_KEY: {
844			struct btrfs_extent_data_ref *dref;
845			int count;
846			u64 root;
847
848			dref = btrfs_item_ptr(leaf, slot,
849					      struct btrfs_extent_data_ref);
850			count = btrfs_extent_data_ref_count(leaf, dref);
851			key.objectid = btrfs_extent_data_ref_objectid(leaf,
852								      dref);
853			key.type = BTRFS_EXTENT_DATA_KEY;
854			key.offset = btrfs_extent_data_ref_offset(leaf, dref);
855
856			if (inum && key.objectid != inum) {
857				ret = BACKREF_FOUND_SHARED;
858				break;
859			}
860
861			root = btrfs_extent_data_ref_root(leaf, dref);
862			ret = __add_prelim_ref(prefs, root, &key, 0, 0,
863					       bytenr, count, GFP_NOFS);
864			break;
865		}
866		default:
867			WARN_ON(1);
868		}
869		if (ret)
870			return ret;
871
872	}
873
874	return ret;
875}
876
877/*
878 * this adds all existing backrefs (inline backrefs, backrefs and delayed
879 * refs) for the given bytenr to the refs list, merges duplicates and resolves
880 * indirect refs to their parent bytenr.
881 * When roots are found, they're added to the roots list
882 *
883 * NOTE: This can return values > 0
884 *
885 * FIXME some caching might speed things up
886 */
887static int find_parent_nodes(struct btrfs_trans_handle *trans,
888			     struct btrfs_fs_info *fs_info, u64 bytenr,
889			     u64 time_seq, struct ulist *refs,
890			     struct ulist *roots, const u64 *extent_item_pos,
891			     u64 root_objectid, u64 inum)
892{
893	struct btrfs_key key;
894	struct btrfs_path *path;
895	struct btrfs_delayed_ref_root *delayed_refs = NULL;
896	struct btrfs_delayed_ref_head *head;
897	int info_level = 0;
898	int ret;
899	struct list_head prefs_delayed;
900	struct list_head prefs;
901	struct __prelim_ref *ref;
902	struct extent_inode_elem *eie = NULL;
903	u64 total_refs = 0;
904
905	INIT_LIST_HEAD(&prefs);
906	INIT_LIST_HEAD(&prefs_delayed);
907
908	key.objectid = bytenr;
909	key.offset = (u64)-1;
910	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
911		key.type = BTRFS_METADATA_ITEM_KEY;
912	else
913		key.type = BTRFS_EXTENT_ITEM_KEY;
914
915	path = btrfs_alloc_path();
916	if (!path)
917		return -ENOMEM;
918	if (!trans) {
919		path->search_commit_root = 1;
920		path->skip_locking = 1;
921	}
922
923	/*
924	 * grab both a lock on the path and a lock on the delayed ref head.
925	 * We need both to get a consistent picture of how the refs look
926	 * at a specified point in time
927	 */
928again:
929	head = NULL;
930
931	ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
932	if (ret < 0)
933		goto out;
934	BUG_ON(ret == 0);
935
936#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
937	if (trans && likely(trans->type != __TRANS_DUMMY)) {
938#else
939	if (trans) {
940#endif
941		/*
942		 * look if there are updates for this ref queued and lock the
943		 * head
944		 */
945		delayed_refs = &trans->transaction->delayed_refs;
946		spin_lock(&delayed_refs->lock);
947		head = btrfs_find_delayed_ref_head(trans, bytenr);
948		if (head) {
949			if (!mutex_trylock(&head->mutex)) {
950				atomic_inc(&head->node.refs);
951				spin_unlock(&delayed_refs->lock);
952
953				btrfs_release_path(path);
954
955				/*
956				 * Mutex was contended, block until it's
957				 * released and try again
958				 */
959				mutex_lock(&head->mutex);
960				mutex_unlock(&head->mutex);
961				btrfs_put_delayed_ref(&head->node);
962				goto again;
963			}
964			spin_unlock(&delayed_refs->lock);
965			ret = __add_delayed_refs(head, time_seq,
966						 &prefs_delayed, &total_refs,
967						 inum);
968			mutex_unlock(&head->mutex);
969			if (ret)
970				goto out;
971		} else {
972			spin_unlock(&delayed_refs->lock);
973		}
974	}
975
976	if (path->slots[0]) {
977		struct extent_buffer *leaf;
978		int slot;
979
980		path->slots[0]--;
981		leaf = path->nodes[0];
982		slot = path->slots[0];
983		btrfs_item_key_to_cpu(leaf, &key, slot);
984		if (key.objectid == bytenr &&
985		    (key.type == BTRFS_EXTENT_ITEM_KEY ||
986		     key.type == BTRFS_METADATA_ITEM_KEY)) {
987			ret = __add_inline_refs(fs_info, path, bytenr,
988						&info_level, &prefs,
989						&total_refs, inum);
990			if (ret)
991				goto out;
992			ret = __add_keyed_refs(fs_info, path, bytenr,
993					       info_level, &prefs, inum);
994			if (ret)
995				goto out;
996		}
997	}
998	btrfs_release_path(path);
999
1000	list_splice_init(&prefs_delayed, &prefs);
1001
1002	ret = __add_missing_keys(fs_info, &prefs);
1003	if (ret)
1004		goto out;
1005
1006	__merge_refs(&prefs, 1);
1007
1008	ret = __resolve_indirect_refs(fs_info, path, time_seq, &prefs,
1009				      extent_item_pos, total_refs,
1010				      root_objectid);
1011	if (ret)
1012		goto out;
1013
1014	__merge_refs(&prefs, 2);
1015
1016	while (!list_empty(&prefs)) {
1017		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1018		WARN_ON(ref->count < 0);
1019		if (roots && ref->count && ref->root_id && ref->parent == 0) {
1020			if (root_objectid && ref->root_id != root_objectid) {
1021				ret = BACKREF_FOUND_SHARED;
1022				goto out;
1023			}
1024
1025			/* no parent == root of tree */
1026			ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
1027			if (ret < 0)
1028				goto out;
1029		}
1030		if (ref->count && ref->parent) {
1031			if (extent_item_pos && !ref->inode_list &&
1032			    ref->level == 0) {
1033				struct extent_buffer *eb;
1034
1035				eb = read_tree_block(fs_info->extent_root,
1036							   ref->parent, 0);
1037				if (!eb || !extent_buffer_uptodate(eb)) {
1038					free_extent_buffer(eb);
1039					ret = -EIO;
1040					goto out;
1041				}
1042				btrfs_tree_read_lock(eb);
1043				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1044				ret = find_extent_in_eb(eb, bytenr,
1045							*extent_item_pos, &eie);
1046				btrfs_tree_read_unlock_blocking(eb);
1047				free_extent_buffer(eb);
1048				if (ret < 0)
1049					goto out;
1050				ref->inode_list = eie;
1051			}
1052			ret = ulist_add_merge_ptr(refs, ref->parent,
1053						  ref->inode_list,
1054						  (void **)&eie, GFP_NOFS);
1055			if (ret < 0)
1056				goto out;
1057			if (!ret && extent_item_pos) {
1058				/*
1059				 * we've recorded that parent, so we must extend
1060				 * its inode list here
1061				 */
1062				BUG_ON(!eie);
1063				while (eie->next)
1064					eie = eie->next;
1065				eie->next = ref->inode_list;
1066			}
1067			eie = NULL;
1068		}
1069		list_del(&ref->list);
1070		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1071	}
1072
1073out:
1074	btrfs_free_path(path);
1075	while (!list_empty(&prefs)) {
1076		ref = list_first_entry(&prefs, struct __prelim_ref, list);
1077		list_del(&ref->list);
1078		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1079	}
1080	while (!list_empty(&prefs_delayed)) {
1081		ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
1082				       list);
1083		list_del(&ref->list);
1084		kmem_cache_free(btrfs_prelim_ref_cache, ref);
1085	}
1086	if (ret < 0)
1087		free_inode_elem_list(eie);
1088	return ret;
1089}
1090
1091static void free_leaf_list(struct ulist *blocks)
1092{
1093	struct ulist_node *node = NULL;
1094	struct extent_inode_elem *eie;
1095	struct ulist_iterator uiter;
1096
1097	ULIST_ITER_INIT(&uiter);
1098	while ((node = ulist_next(blocks, &uiter))) {
1099		if (!node->aux)
1100			continue;
1101		eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
1102		free_inode_elem_list(eie);
1103		node->aux = 0;
1104	}
1105
1106	ulist_free(blocks);
1107}
1108
1109/*
1110 * Finds all leafs with a reference to the specified combination of bytenr and
1111 * offset. key_list_head will point to a list of corresponding keys (caller must
1112 * free each list element). The leafs will be stored in the leafs ulist, which
1113 * must be freed with ulist_free.
1114 *
1115 * returns 0 on success, <0 on error
1116 */
1117static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
1118				struct btrfs_fs_info *fs_info, u64 bytenr,
1119				u64 time_seq, struct ulist **leafs,
1120				const u64 *extent_item_pos)
1121{
1122	int ret;
1123
1124	*leafs = ulist_alloc(GFP_NOFS);
1125	if (!*leafs)
1126		return -ENOMEM;
1127
1128	ret = find_parent_nodes(trans, fs_info, bytenr,
1129				time_seq, *leafs, NULL, extent_item_pos, 0, 0);
1130	if (ret < 0 && ret != -ENOENT) {
1131		free_leaf_list(*leafs);
1132		return ret;
1133	}
1134
1135	return 0;
1136}
1137
1138/*
1139 * walk all backrefs for a given extent to find all roots that reference this
1140 * extent. Walking a backref means finding all extents that reference this
1141 * extent and in turn walk the backrefs of those, too. Naturally this is a
1142 * recursive process, but here it is implemented in an iterative fashion: We
1143 * find all referencing extents for the extent in question and put them on a
1144 * list. In turn, we find all referencing extents for those, further appending
1145 * to the list. The way we iterate the list allows adding more elements after
1146 * the current while iterating. The process stops when we reach the end of the
1147 * list. Found roots are added to the roots list.
1148 *
1149 * returns 0 on success, < 0 on error.
1150 */
1151static int __btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1152				  struct btrfs_fs_info *fs_info, u64 bytenr,
1153				  u64 time_seq, struct ulist **roots)
1154{
1155	struct ulist *tmp;
1156	struct ulist_node *node = NULL;
1157	struct ulist_iterator uiter;
1158	int ret;
1159
1160	tmp = ulist_alloc(GFP_NOFS);
1161	if (!tmp)
1162		return -ENOMEM;
1163	*roots = ulist_alloc(GFP_NOFS);
1164	if (!*roots) {
1165		ulist_free(tmp);
1166		return -ENOMEM;
1167	}
1168
1169	ULIST_ITER_INIT(&uiter);
1170	while (1) {
1171		ret = find_parent_nodes(trans, fs_info, bytenr,
1172					time_seq, tmp, *roots, NULL, 0, 0);
1173		if (ret < 0 && ret != -ENOENT) {
1174			ulist_free(tmp);
1175			ulist_free(*roots);
1176			return ret;
1177		}
1178		node = ulist_next(tmp, &uiter);
1179		if (!node)
1180			break;
1181		bytenr = node->val;
1182		cond_resched();
1183	}
1184
1185	ulist_free(tmp);
1186	return 0;
1187}
1188
1189int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1190			 struct btrfs_fs_info *fs_info, u64 bytenr,
1191			 u64 time_seq, struct ulist **roots)
1192{
1193	int ret;
1194
1195	if (!trans)
1196		down_read(&fs_info->commit_root_sem);
1197	ret = __btrfs_find_all_roots(trans, fs_info, bytenr, time_seq, roots);
1198	if (!trans)
1199		up_read(&fs_info->commit_root_sem);
1200	return ret;
1201}
1202
1203/**
1204 * btrfs_check_shared - tell us whether an extent is shared
1205 *
1206 * @trans: optional trans handle
1207 *
1208 * btrfs_check_shared uses the backref walking code but will short
1209 * circuit as soon as it finds a root or inode that doesn't match the
1210 * one passed in. This provides a significant performance benefit for
1211 * callers (such as fiemap) which want to know whether the extent is
1212 * shared but do not need a ref count.
1213 *
1214 * Return: 0 if extent is not shared, 1 if it is shared, < 0 on error.
1215 */
1216int btrfs_check_shared(struct btrfs_trans_handle *trans,
1217		       struct btrfs_fs_info *fs_info, u64 root_objectid,
1218		       u64 inum, u64 bytenr)
1219{
1220	struct ulist *tmp = NULL;
1221	struct ulist *roots = NULL;
1222	struct ulist_iterator uiter;
1223	struct ulist_node *node;
1224	struct seq_list elem = SEQ_LIST_INIT(elem);
1225	int ret = 0;
1226
1227	tmp = ulist_alloc(GFP_NOFS);
1228	roots = ulist_alloc(GFP_NOFS);
1229	if (!tmp || !roots) {
1230		ulist_free(tmp);
1231		ulist_free(roots);
1232		return -ENOMEM;
1233	}
1234
1235	if (trans)
1236		btrfs_get_tree_mod_seq(fs_info, &elem);
1237	else
1238		down_read(&fs_info->commit_root_sem);
1239	ULIST_ITER_INIT(&uiter);
1240	while (1) {
1241		ret = find_parent_nodes(trans, fs_info, bytenr, elem.seq, tmp,
1242					roots, NULL, root_objectid, inum);
1243		if (ret == BACKREF_FOUND_SHARED) {
1244			/* this is the only condition under which we return 1 */
1245			ret = 1;
1246			break;
1247		}
1248		if (ret < 0 && ret != -ENOENT)
1249			break;
1250		ret = 0;
1251		node = ulist_next(tmp, &uiter);
1252		if (!node)
1253			break;
1254		bytenr = node->val;
1255		cond_resched();
1256	}
1257	if (trans)
1258		btrfs_put_tree_mod_seq(fs_info, &elem);
1259	else
1260		up_read(&fs_info->commit_root_sem);
1261	ulist_free(tmp);
1262	ulist_free(roots);
1263	return ret;
1264}
1265
1266int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1267			  u64 start_off, struct btrfs_path *path,
1268			  struct btrfs_inode_extref **ret_extref,
1269			  u64 *found_off)
1270{
1271	int ret, slot;
1272	struct btrfs_key key;
1273	struct btrfs_key found_key;
1274	struct btrfs_inode_extref *extref;
1275	struct extent_buffer *leaf;
1276	unsigned long ptr;
1277
1278	key.objectid = inode_objectid;
1279	key.type = BTRFS_INODE_EXTREF_KEY;
1280	key.offset = start_off;
1281
1282	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1283	if (ret < 0)
1284		return ret;
1285
1286	while (1) {
1287		leaf = path->nodes[0];
1288		slot = path->slots[0];
1289		if (slot >= btrfs_header_nritems(leaf)) {
1290			/*
1291			 * If the item at offset is not found,
1292			 * btrfs_search_slot will point us to the slot
1293			 * where it should be inserted. In our case
1294			 * that will be the slot directly before the
1295			 * next INODE_REF_KEY_V2 item. In the case
1296			 * that we're pointing to the last slot in a
1297			 * leaf, we must move one leaf over.
1298			 */
1299			ret = btrfs_next_leaf(root, path);
1300			if (ret) {
1301				if (ret >= 1)
1302					ret = -ENOENT;
1303				break;
1304			}
1305			continue;
1306		}
1307
1308		btrfs_item_key_to_cpu(leaf, &found_key, slot);
1309
1310		/*
1311		 * Check that we're still looking at an extended ref key for
1312		 * this particular objectid. If we have different
1313		 * objectid or type then there are no more to be found
1314		 * in the tree and we can exit.
1315		 */
1316		ret = -ENOENT;
1317		if (found_key.objectid != inode_objectid)
1318			break;
1319		if (found_key.type != BTRFS_INODE_EXTREF_KEY)
1320			break;
1321
1322		ret = 0;
1323		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1324		extref = (struct btrfs_inode_extref *)ptr;
1325		*ret_extref = extref;
1326		if (found_off)
1327			*found_off = found_key.offset;
1328		break;
1329	}
1330
1331	return ret;
1332}
1333
1334/*
1335 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1336 * Elements of the path are separated by '/' and the path is guaranteed to be
1337 * 0-terminated. the path is only given within the current file system.
1338 * Therefore, it never starts with a '/'. the caller is responsible to provide
1339 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1340 * the start point of the resulting string is returned. this pointer is within
1341 * dest, normally.
1342 * in case the path buffer would overflow, the pointer is decremented further
1343 * as if output was written to the buffer, though no more output is actually
1344 * generated. that way, the caller can determine how much space would be
1345 * required for the path to fit into the buffer. in that case, the returned
1346 * value will be smaller than dest. callers must check this!
1347 */
1348char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1349			u32 name_len, unsigned long name_off,
1350			struct extent_buffer *eb_in, u64 parent,
1351			char *dest, u32 size)
1352{
1353	int slot;
1354	u64 next_inum;
1355	int ret;
1356	s64 bytes_left = ((s64)size) - 1;
1357	struct extent_buffer *eb = eb_in;
1358	struct btrfs_key found_key;
1359	int leave_spinning = path->leave_spinning;
1360	struct btrfs_inode_ref *iref;
1361
1362	if (bytes_left >= 0)
1363		dest[bytes_left] = '\0';
1364
1365	path->leave_spinning = 1;
1366	while (1) {
1367		bytes_left -= name_len;
1368		if (bytes_left >= 0)
1369			read_extent_buffer(eb, dest + bytes_left,
1370					   name_off, name_len);
1371		if (eb != eb_in) {
1372			if (!path->skip_locking)
1373				btrfs_tree_read_unlock_blocking(eb);
1374			free_extent_buffer(eb);
1375		}
1376		ret = btrfs_find_item(fs_root, path, parent, 0,
1377				BTRFS_INODE_REF_KEY, &found_key);
1378		if (ret > 0)
1379			ret = -ENOENT;
1380		if (ret)
1381			break;
1382
1383		next_inum = found_key.offset;
1384
1385		/* regular exit ahead */
1386		if (parent == next_inum)
1387			break;
1388
1389		slot = path->slots[0];
1390		eb = path->nodes[0];
1391		/* make sure we can use eb after releasing the path */
1392		if (eb != eb_in) {
1393			if (!path->skip_locking)
1394				btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1395			path->nodes[0] = NULL;
1396			path->locks[0] = 0;
1397		}
1398		btrfs_release_path(path);
1399		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1400
1401		name_len = btrfs_inode_ref_name_len(eb, iref);
1402		name_off = (unsigned long)(iref + 1);
1403
1404		parent = next_inum;
1405		--bytes_left;
1406		if (bytes_left >= 0)
1407			dest[bytes_left] = '/';
1408	}
1409
1410	btrfs_release_path(path);
1411	path->leave_spinning = leave_spinning;
1412
1413	if (ret)
1414		return ERR_PTR(ret);
1415
1416	return dest + bytes_left;
1417}
1418
1419/*
1420 * this makes the path point to (logical EXTENT_ITEM *)
1421 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1422 * tree blocks and <0 on error.
1423 */
1424int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1425			struct btrfs_path *path, struct btrfs_key *found_key,
1426			u64 *flags_ret)
1427{
1428	int ret;
1429	u64 flags;
1430	u64 size = 0;
1431	u32 item_size;
1432	struct extent_buffer *eb;
1433	struct btrfs_extent_item *ei;
1434	struct btrfs_key key;
1435
1436	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
1437		key.type = BTRFS_METADATA_ITEM_KEY;
1438	else
1439		key.type = BTRFS_EXTENT_ITEM_KEY;
1440	key.objectid = logical;
1441	key.offset = (u64)-1;
1442
1443	ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1444	if (ret < 0)
1445		return ret;
1446
1447	ret = btrfs_previous_extent_item(fs_info->extent_root, path, 0);
1448	if (ret) {
1449		if (ret > 0)
1450			ret = -ENOENT;
1451		return ret;
1452	}
1453	btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1454	if (found_key->type == BTRFS_METADATA_ITEM_KEY)
1455		size = fs_info->extent_root->nodesize;
1456	else if (found_key->type == BTRFS_EXTENT_ITEM_KEY)
1457		size = found_key->offset;
1458
1459	if (found_key->objectid > logical ||
1460	    found_key->objectid + size <= logical) {
1461		pr_debug("logical %llu is not within any extent\n", logical);
1462		return -ENOENT;
1463	}
1464
1465	eb = path->nodes[0];
1466	item_size = btrfs_item_size_nr(eb, path->slots[0]);
1467	BUG_ON(item_size < sizeof(*ei));
1468
1469	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1470	flags = btrfs_extent_flags(eb, ei);
1471
1472	pr_debug("logical %llu is at position %llu within the extent (%llu "
1473		 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1474		 logical, logical - found_key->objectid, found_key->objectid,
1475		 found_key->offset, flags, item_size);
1476
1477	WARN_ON(!flags_ret);
1478	if (flags_ret) {
1479		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1480			*flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1481		else if (flags & BTRFS_EXTENT_FLAG_DATA)
1482			*flags_ret = BTRFS_EXTENT_FLAG_DATA;
1483		else
1484			BUG_ON(1);
1485		return 0;
1486	}
1487
1488	return -EIO;
1489}
1490
1491/*
1492 * helper function to iterate extent inline refs. ptr must point to a 0 value
1493 * for the first call and may be modified. it is used to track state.
1494 * if more refs exist, 0 is returned and the next call to
1495 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1496 * next ref. after the last ref was processed, 1 is returned.
1497 * returns <0 on error
1498 */
1499static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1500				   struct btrfs_key *key,
1501				   struct btrfs_extent_item *ei, u32 item_size,
1502				   struct btrfs_extent_inline_ref **out_eiref,
1503				   int *out_type)
1504{
1505	unsigned long end;
1506	u64 flags;
1507	struct btrfs_tree_block_info *info;
1508
1509	if (!*ptr) {
1510		/* first call */
1511		flags = btrfs_extent_flags(eb, ei);
1512		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1513			if (key->type == BTRFS_METADATA_ITEM_KEY) {
1514				/* a skinny metadata extent */
1515				*out_eiref =
1516				     (struct btrfs_extent_inline_ref *)(ei + 1);
1517			} else {
1518				WARN_ON(key->type != BTRFS_EXTENT_ITEM_KEY);
1519				info = (struct btrfs_tree_block_info *)(ei + 1);
1520				*out_eiref =
1521				   (struct btrfs_extent_inline_ref *)(info + 1);
1522			}
1523		} else {
1524			*out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1525		}
1526		*ptr = (unsigned long)*out_eiref;
1527		if ((unsigned long)(*ptr) >= (unsigned long)ei + item_size)
1528			return -ENOENT;
1529	}
1530
1531	end = (unsigned long)ei + item_size;
1532	*out_eiref = (struct btrfs_extent_inline_ref *)(*ptr);
1533	*out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1534
1535	*ptr += btrfs_extent_inline_ref_size(*out_type);
1536	WARN_ON(*ptr > end);
1537	if (*ptr == end)
1538		return 1; /* last */
1539
1540	return 0;
1541}
1542
1543/*
1544 * reads the tree block backref for an extent. tree level and root are returned
1545 * through out_level and out_root. ptr must point to a 0 value for the first
1546 * call and may be modified (see __get_extent_inline_ref comment).
1547 * returns 0 if data was provided, 1 if there was no more data to provide or
1548 * <0 on error.
1549 */
1550int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1551			    struct btrfs_key *key, struct btrfs_extent_item *ei,
1552			    u32 item_size, u64 *out_root, u8 *out_level)
1553{
1554	int ret;
1555	int type;
1556	struct btrfs_extent_inline_ref *eiref;
1557
1558	if (*ptr == (unsigned long)-1)
1559		return 1;
1560
1561	while (1) {
1562		ret = __get_extent_inline_ref(ptr, eb, key, ei, item_size,
1563					      &eiref, &type);
1564		if (ret < 0)
1565			return ret;
1566
1567		if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1568		    type == BTRFS_SHARED_BLOCK_REF_KEY)
1569			break;
1570
1571		if (ret == 1)
1572			return 1;
1573	}
1574
1575	/* we can treat both ref types equally here */
1576	*out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1577
1578	if (key->type == BTRFS_EXTENT_ITEM_KEY) {
1579		struct btrfs_tree_block_info *info;
1580
1581		info = (struct btrfs_tree_block_info *)(ei + 1);
1582		*out_level = btrfs_tree_block_level(eb, info);
1583	} else {
1584		ASSERT(key->type == BTRFS_METADATA_ITEM_KEY);
1585		*out_level = (u8)key->offset;
1586	}
1587
1588	if (ret == 1)
1589		*ptr = (unsigned long)-1;
1590
1591	return 0;
1592}
1593
1594static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1595				u64 root, u64 extent_item_objectid,
1596				iterate_extent_inodes_t *iterate, void *ctx)
1597{
1598	struct extent_inode_elem *eie;
1599	int ret = 0;
1600
1601	for (eie = inode_list; eie; eie = eie->next) {
1602		pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1603			 "root %llu\n", extent_item_objectid,
1604			 eie->inum, eie->offset, root);
1605		ret = iterate(eie->inum, eie->offset, root, ctx);
1606		if (ret) {
1607			pr_debug("stopping iteration for %llu due to ret=%d\n",
1608				 extent_item_objectid, ret);
1609			break;
1610		}
1611	}
1612
1613	return ret;
1614}
1615
1616/*
1617 * calls iterate() for every inode that references the extent identified by
1618 * the given parameters.
1619 * when the iterator function returns a non-zero value, iteration stops.
1620 */
1621int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1622				u64 extent_item_objectid, u64 extent_item_pos,
1623				int search_commit_root,
1624				iterate_extent_inodes_t *iterate, void *ctx)
1625{
1626	int ret;
1627	struct btrfs_trans_handle *trans = NULL;
1628	struct ulist *refs = NULL;
1629	struct ulist *roots = NULL;
1630	struct ulist_node *ref_node = NULL;
1631	struct ulist_node *root_node = NULL;
1632	struct seq_list tree_mod_seq_elem = SEQ_LIST_INIT(tree_mod_seq_elem);
1633	struct ulist_iterator ref_uiter;
1634	struct ulist_iterator root_uiter;
1635
1636	pr_debug("resolving all inodes for extent %llu\n",
1637			extent_item_objectid);
1638
1639	if (!search_commit_root) {
1640		trans = btrfs_join_transaction(fs_info->extent_root);
1641		if (IS_ERR(trans))
1642			return PTR_ERR(trans);
1643		btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1644	} else {
1645		down_read(&fs_info->commit_root_sem);
1646	}
1647
1648	ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1649				   tree_mod_seq_elem.seq, &refs,
1650				   &extent_item_pos);
1651	if (ret)
1652		goto out;
1653
1654	ULIST_ITER_INIT(&ref_uiter);
1655	while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1656		ret = __btrfs_find_all_roots(trans, fs_info, ref_node->val,
1657					     tree_mod_seq_elem.seq, &roots);
1658		if (ret)
1659			break;
1660		ULIST_ITER_INIT(&root_uiter);
1661		while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1662			pr_debug("root %llu references leaf %llu, data list "
1663				 "%#llx\n", root_node->val, ref_node->val,
1664				 ref_node->aux);
1665			ret = iterate_leaf_refs((struct extent_inode_elem *)
1666						(uintptr_t)ref_node->aux,
1667						root_node->val,
1668						extent_item_objectid,
1669						iterate, ctx);
1670		}
1671		ulist_free(roots);
1672	}
1673
1674	free_leaf_list(refs);
1675out:
1676	if (!search_commit_root) {
1677		btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1678		btrfs_end_transaction(trans, fs_info->extent_root);
1679	} else {
1680		up_read(&fs_info->commit_root_sem);
1681	}
1682
1683	return ret;
1684}
1685
1686int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1687				struct btrfs_path *path,
1688				iterate_extent_inodes_t *iterate, void *ctx)
1689{
1690	int ret;
1691	u64 extent_item_pos;
1692	u64 flags = 0;
1693	struct btrfs_key found_key;
1694	int search_commit_root = path->search_commit_root;
1695
1696	ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1697	btrfs_release_path(path);
1698	if (ret < 0)
1699		return ret;
1700	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1701		return -EINVAL;
1702
1703	extent_item_pos = logical - found_key.objectid;
1704	ret = iterate_extent_inodes(fs_info, found_key.objectid,
1705					extent_item_pos, search_commit_root,
1706					iterate, ctx);
1707
1708	return ret;
1709}
1710
1711typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1712			      struct extent_buffer *eb, void *ctx);
1713
1714static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1715			      struct btrfs_path *path,
1716			      iterate_irefs_t *iterate, void *ctx)
1717{
1718	int ret = 0;
1719	int slot;
1720	u32 cur;
1721	u32 len;
1722	u32 name_len;
1723	u64 parent = 0;
1724	int found = 0;
1725	struct extent_buffer *eb;
1726	struct btrfs_item *item;
1727	struct btrfs_inode_ref *iref;
1728	struct btrfs_key found_key;
1729
1730	while (!ret) {
1731		ret = btrfs_find_item(fs_root, path, inum,
1732				parent ? parent + 1 : 0, BTRFS_INODE_REF_KEY,
1733				&found_key);
1734
1735		if (ret < 0)
1736			break;
1737		if (ret) {
1738			ret = found ? 0 : -ENOENT;
1739			break;
1740		}
1741		++found;
1742
1743		parent = found_key.offset;
1744		slot = path->slots[0];
1745		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1746		if (!eb) {
1747			ret = -ENOMEM;
1748			break;
1749		}
1750		extent_buffer_get(eb);
1751		btrfs_tree_read_lock(eb);
1752		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1753		btrfs_release_path(path);
1754
1755		item = btrfs_item_nr(slot);
1756		iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1757
1758		for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1759			name_len = btrfs_inode_ref_name_len(eb, iref);
1760			/* path must be released before calling iterate()! */
1761			pr_debug("following ref at offset %u for inode %llu in "
1762				 "tree %llu\n", cur, found_key.objectid,
1763				 fs_root->objectid);
1764			ret = iterate(parent, name_len,
1765				      (unsigned long)(iref + 1), eb, ctx);
1766			if (ret)
1767				break;
1768			len = sizeof(*iref) + name_len;
1769			iref = (struct btrfs_inode_ref *)((char *)iref + len);
1770		}
1771		btrfs_tree_read_unlock_blocking(eb);
1772		free_extent_buffer(eb);
1773	}
1774
1775	btrfs_release_path(path);
1776
1777	return ret;
1778}
1779
1780static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1781				 struct btrfs_path *path,
1782				 iterate_irefs_t *iterate, void *ctx)
1783{
1784	int ret;
1785	int slot;
1786	u64 offset = 0;
1787	u64 parent;
1788	int found = 0;
1789	struct extent_buffer *eb;
1790	struct btrfs_inode_extref *extref;
1791	u32 item_size;
1792	u32 cur_offset;
1793	unsigned long ptr;
1794
1795	while (1) {
1796		ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1797					    &offset);
1798		if (ret < 0)
1799			break;
1800		if (ret) {
1801			ret = found ? 0 : -ENOENT;
1802			break;
1803		}
1804		++found;
1805
1806		slot = path->slots[0];
1807		eb = btrfs_clone_extent_buffer(path->nodes[0]);
1808		if (!eb) {
1809			ret = -ENOMEM;
1810			break;
1811		}
1812		extent_buffer_get(eb);
1813
1814		btrfs_tree_read_lock(eb);
1815		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1816		btrfs_release_path(path);
1817
1818		item_size = btrfs_item_size_nr(eb, slot);
1819		ptr = btrfs_item_ptr_offset(eb, slot);
1820		cur_offset = 0;
1821
1822		while (cur_offset < item_size) {
1823			u32 name_len;
1824
1825			extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1826			parent = btrfs_inode_extref_parent(eb, extref);
1827			name_len = btrfs_inode_extref_name_len(eb, extref);
1828			ret = iterate(parent, name_len,
1829				      (unsigned long)&extref->name, eb, ctx);
1830			if (ret)
1831				break;
1832
1833			cur_offset += btrfs_inode_extref_name_len(eb, extref);
1834			cur_offset += sizeof(*extref);
1835		}
1836		btrfs_tree_read_unlock_blocking(eb);
1837		free_extent_buffer(eb);
1838
1839		offset++;
1840	}
1841
1842	btrfs_release_path(path);
1843
1844	return ret;
1845}
1846
1847static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1848			 struct btrfs_path *path, iterate_irefs_t *iterate,
1849			 void *ctx)
1850{
1851	int ret;
1852	int found_refs = 0;
1853
1854	ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1855	if (!ret)
1856		++found_refs;
1857	else if (ret != -ENOENT)
1858		return ret;
1859
1860	ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1861	if (ret == -ENOENT && found_refs)
1862		return 0;
1863
1864	return ret;
1865}
1866
1867/*
1868 * returns 0 if the path could be dumped (probably truncated)
1869 * returns <0 in case of an error
1870 */
1871static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1872			 struct extent_buffer *eb, void *ctx)
1873{
1874	struct inode_fs_paths *ipath = ctx;
1875	char *fspath;
1876	char *fspath_min;
1877	int i = ipath->fspath->elem_cnt;
1878	const int s_ptr = sizeof(char *);
1879	u32 bytes_left;
1880
1881	bytes_left = ipath->fspath->bytes_left > s_ptr ?
1882					ipath->fspath->bytes_left - s_ptr : 0;
1883
1884	fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1885	fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1886				   name_off, eb, inum, fspath_min, bytes_left);
1887	if (IS_ERR(fspath))
1888		return PTR_ERR(fspath);
1889
1890	if (fspath > fspath_min) {
1891		ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1892		++ipath->fspath->elem_cnt;
1893		ipath->fspath->bytes_left = fspath - fspath_min;
1894	} else {
1895		++ipath->fspath->elem_missed;
1896		ipath->fspath->bytes_missing += fspath_min - fspath;
1897		ipath->fspath->bytes_left = 0;
1898	}
1899
1900	return 0;
1901}
1902
1903/*
1904 * this dumps all file system paths to the inode into the ipath struct, provided
1905 * is has been created large enough. each path is zero-terminated and accessed
1906 * from ipath->fspath->val[i].
1907 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1908 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1909 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1910 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1911 * have been needed to return all paths.
1912 */
1913int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1914{
1915	return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1916			     inode_to_path, ipath);
1917}
1918
1919struct btrfs_data_container *init_data_container(u32 total_bytes)
1920{
1921	struct btrfs_data_container *data;
1922	size_t alloc_bytes;
1923
1924	alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1925	data = vmalloc(alloc_bytes);
1926	if (!data)
1927		return ERR_PTR(-ENOMEM);
1928
1929	if (total_bytes >= sizeof(*data)) {
1930		data->bytes_left = total_bytes - sizeof(*data);
1931		data->bytes_missing = 0;
1932	} else {
1933		data->bytes_missing = sizeof(*data) - total_bytes;
1934		data->bytes_left = 0;
1935	}
1936
1937	data->elem_cnt = 0;
1938	data->elem_missed = 0;
1939
1940	return data;
1941}
1942
1943/*
1944 * allocates space to return multiple file system paths for an inode.
1945 * total_bytes to allocate are passed, note that space usable for actual path
1946 * information will be total_bytes - sizeof(struct inode_fs_paths).
1947 * the returned pointer must be freed with free_ipath() in the end.
1948 */
1949struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1950					struct btrfs_path *path)
1951{
1952	struct inode_fs_paths *ifp;
1953	struct btrfs_data_container *fspath;
1954
1955	fspath = init_data_container(total_bytes);
1956	if (IS_ERR(fspath))
1957		return (void *)fspath;
1958
1959	ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1960	if (!ifp) {
1961		kfree(fspath);
1962		return ERR_PTR(-ENOMEM);
1963	}
1964
1965	ifp->btrfs_path = path;
1966	ifp->fspath = fspath;
1967	ifp->fs_root = fs_root;
1968
1969	return ifp;
1970}
1971
1972void free_ipath(struct inode_fs_paths *ipath)
1973{
1974	if (!ipath)
1975		return;
1976	vfree(ipath->fspath);
1977	kfree(ipath);
1978}
1979