1/*
2 * Copyright (C) 2008 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/bit_spinlock.h>
34#include <linux/slab.h>
35#include "ctree.h"
36#include "disk-io.h"
37#include "transaction.h"
38#include "btrfs_inode.h"
39#include "volumes.h"
40#include "ordered-data.h"
41#include "compression.h"
42#include "extent_io.h"
43#include "extent_map.h"
44
45struct compressed_bio {
46	/* number of bios pending for this compressed extent */
47	atomic_t pending_bios;
48
49	/* the pages with the compressed data on them */
50	struct page **compressed_pages;
51
52	/* inode that owns this data */
53	struct inode *inode;
54
55	/* starting offset in the inode for our pages */
56	u64 start;
57
58	/* number of bytes in the inode we're working on */
59	unsigned long len;
60
61	/* number of bytes on disk */
62	unsigned long compressed_len;
63
64	/* the compression algorithm for this bio */
65	int compress_type;
66
67	/* number of compressed pages in the array */
68	unsigned long nr_pages;
69
70	/* IO errors */
71	int errors;
72	int mirror_num;
73
74	/* for reads, this is the bio we are copying the data into */
75	struct bio *orig_bio;
76
77	/*
78	 * the start of a variable length array of checksums only
79	 * used by reads
80	 */
81	u32 sums;
82};
83
84static int btrfs_decompress_biovec(int type, struct page **pages_in,
85				   u64 disk_start, struct bio_vec *bvec,
86				   int vcnt, size_t srclen);
87
88static inline int compressed_bio_size(struct btrfs_root *root,
89				      unsigned long disk_size)
90{
91	u16 csum_size = btrfs_super_csum_size(root->fs_info->super_copy);
92
93	return sizeof(struct compressed_bio) +
94		(DIV_ROUND_UP(disk_size, root->sectorsize)) * csum_size;
95}
96
97static struct bio *compressed_bio_alloc(struct block_device *bdev,
98					u64 first_byte, gfp_t gfp_flags)
99{
100	int nr_vecs;
101
102	nr_vecs = bio_get_nr_vecs(bdev);
103	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
104}
105
106static int check_compressed_csum(struct inode *inode,
107				 struct compressed_bio *cb,
108				 u64 disk_start)
109{
110	int ret;
111	struct page *page;
112	unsigned long i;
113	char *kaddr;
114	u32 csum;
115	u32 *cb_sum = &cb->sums;
116
117	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
118		return 0;
119
120	for (i = 0; i < cb->nr_pages; i++) {
121		page = cb->compressed_pages[i];
122		csum = ~(u32)0;
123
124		kaddr = kmap_atomic(page);
125		csum = btrfs_csum_data(kaddr, csum, PAGE_CACHE_SIZE);
126		btrfs_csum_final(csum, (char *)&csum);
127		kunmap_atomic(kaddr);
128
129		if (csum != *cb_sum) {
130			btrfs_info(BTRFS_I(inode)->root->fs_info,
131			   "csum failed ino %llu extent %llu csum %u wanted %u mirror %d",
132			   btrfs_ino(inode), disk_start, csum, *cb_sum,
133			   cb->mirror_num);
134			ret = -EIO;
135			goto fail;
136		}
137		cb_sum++;
138
139	}
140	ret = 0;
141fail:
142	return ret;
143}
144
145/* when we finish reading compressed pages from the disk, we
146 * decompress them and then run the bio end_io routines on the
147 * decompressed pages (in the inode address space).
148 *
149 * This allows the checksumming and other IO error handling routines
150 * to work normally
151 *
152 * The compressed pages are freed here, and it must be run
153 * in process context
154 */
155static void end_compressed_bio_read(struct bio *bio, int err)
156{
157	struct compressed_bio *cb = bio->bi_private;
158	struct inode *inode;
159	struct page *page;
160	unsigned long index;
161	int ret;
162
163	if (err)
164		cb->errors = 1;
165
166	/* if there are more bios still pending for this compressed
167	 * extent, just exit
168	 */
169	if (!atomic_dec_and_test(&cb->pending_bios))
170		goto out;
171
172	inode = cb->inode;
173	ret = check_compressed_csum(inode, cb,
174				    (u64)bio->bi_iter.bi_sector << 9);
175	if (ret)
176		goto csum_failed;
177
178	/* ok, we're the last bio for this extent, lets start
179	 * the decompression.
180	 */
181	ret = btrfs_decompress_biovec(cb->compress_type,
182				      cb->compressed_pages,
183				      cb->start,
184				      cb->orig_bio->bi_io_vec,
185				      cb->orig_bio->bi_vcnt,
186				      cb->compressed_len);
187csum_failed:
188	if (ret)
189		cb->errors = 1;
190
191	/* release the compressed pages */
192	index = 0;
193	for (index = 0; index < cb->nr_pages; index++) {
194		page = cb->compressed_pages[index];
195		page->mapping = NULL;
196		page_cache_release(page);
197	}
198
199	/* do io completion on the original bio */
200	if (cb->errors) {
201		bio_io_error(cb->orig_bio);
202	} else {
203		int i;
204		struct bio_vec *bvec;
205
206		/*
207		 * we have verified the checksum already, set page
208		 * checked so the end_io handlers know about it
209		 */
210		bio_for_each_segment_all(bvec, cb->orig_bio, i)
211			SetPageChecked(bvec->bv_page);
212
213		bio_endio(cb->orig_bio, 0);
214	}
215
216	/* finally free the cb struct */
217	kfree(cb->compressed_pages);
218	kfree(cb);
219out:
220	bio_put(bio);
221}
222
223/*
224 * Clear the writeback bits on all of the file
225 * pages for a compressed write
226 */
227static noinline void end_compressed_writeback(struct inode *inode,
228					      const struct compressed_bio *cb)
229{
230	unsigned long index = cb->start >> PAGE_CACHE_SHIFT;
231	unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_CACHE_SHIFT;
232	struct page *pages[16];
233	unsigned long nr_pages = end_index - index + 1;
234	int i;
235	int ret;
236
237	if (cb->errors)
238		mapping_set_error(inode->i_mapping, -EIO);
239
240	while (nr_pages > 0) {
241		ret = find_get_pages_contig(inode->i_mapping, index,
242				     min_t(unsigned long,
243				     nr_pages, ARRAY_SIZE(pages)), pages);
244		if (ret == 0) {
245			nr_pages -= 1;
246			index += 1;
247			continue;
248		}
249		for (i = 0; i < ret; i++) {
250			if (cb->errors)
251				SetPageError(pages[i]);
252			end_page_writeback(pages[i]);
253			page_cache_release(pages[i]);
254		}
255		nr_pages -= ret;
256		index += ret;
257	}
258	/* the inode may be gone now */
259}
260
261/*
262 * do the cleanup once all the compressed pages hit the disk.
263 * This will clear writeback on the file pages and free the compressed
264 * pages.
265 *
266 * This also calls the writeback end hooks for the file pages so that
267 * metadata and checksums can be updated in the file.
268 */
269static void end_compressed_bio_write(struct bio *bio, int err)
270{
271	struct extent_io_tree *tree;
272	struct compressed_bio *cb = bio->bi_private;
273	struct inode *inode;
274	struct page *page;
275	unsigned long index;
276
277	if (err)
278		cb->errors = 1;
279
280	/* if there are more bios still pending for this compressed
281	 * extent, just exit
282	 */
283	if (!atomic_dec_and_test(&cb->pending_bios))
284		goto out;
285
286	/* ok, we're the last bio for this extent, step one is to
287	 * call back into the FS and do all the end_io operations
288	 */
289	inode = cb->inode;
290	tree = &BTRFS_I(inode)->io_tree;
291	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
292	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
293					 cb->start,
294					 cb->start + cb->len - 1,
295					 NULL,
296					 err ? 0 : 1);
297	cb->compressed_pages[0]->mapping = NULL;
298
299	end_compressed_writeback(inode, cb);
300	/* note, our inode could be gone now */
301
302	/*
303	 * release the compressed pages, these came from alloc_page and
304	 * are not attached to the inode at all
305	 */
306	index = 0;
307	for (index = 0; index < cb->nr_pages; index++) {
308		page = cb->compressed_pages[index];
309		page->mapping = NULL;
310		page_cache_release(page);
311	}
312
313	/* finally free the cb struct */
314	kfree(cb->compressed_pages);
315	kfree(cb);
316out:
317	bio_put(bio);
318}
319
320/*
321 * worker function to build and submit bios for previously compressed pages.
322 * The corresponding pages in the inode should be marked for writeback
323 * and the compressed pages should have a reference on them for dropping
324 * when the IO is complete.
325 *
326 * This also checksums the file bytes and gets things ready for
327 * the end io hooks.
328 */
329int btrfs_submit_compressed_write(struct inode *inode, u64 start,
330				 unsigned long len, u64 disk_start,
331				 unsigned long compressed_len,
332				 struct page **compressed_pages,
333				 unsigned long nr_pages)
334{
335	struct bio *bio = NULL;
336	struct btrfs_root *root = BTRFS_I(inode)->root;
337	struct compressed_bio *cb;
338	unsigned long bytes_left;
339	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
340	int pg_index = 0;
341	struct page *page;
342	u64 first_byte = disk_start;
343	struct block_device *bdev;
344	int ret;
345	int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
346
347	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
348	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
349	if (!cb)
350		return -ENOMEM;
351	atomic_set(&cb->pending_bios, 0);
352	cb->errors = 0;
353	cb->inode = inode;
354	cb->start = start;
355	cb->len = len;
356	cb->mirror_num = 0;
357	cb->compressed_pages = compressed_pages;
358	cb->compressed_len = compressed_len;
359	cb->orig_bio = NULL;
360	cb->nr_pages = nr_pages;
361
362	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
363
364	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
365	if (!bio) {
366		kfree(cb);
367		return -ENOMEM;
368	}
369	bio->bi_private = cb;
370	bio->bi_end_io = end_compressed_bio_write;
371	atomic_inc(&cb->pending_bios);
372
373	/* create and submit bios for the compressed pages */
374	bytes_left = compressed_len;
375	for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
376		page = compressed_pages[pg_index];
377		page->mapping = inode->i_mapping;
378		if (bio->bi_iter.bi_size)
379			ret = io_tree->ops->merge_bio_hook(WRITE, page, 0,
380							   PAGE_CACHE_SIZE,
381							   bio, 0);
382		else
383			ret = 0;
384
385		page->mapping = NULL;
386		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
387		    PAGE_CACHE_SIZE) {
388			bio_get(bio);
389
390			/*
391			 * inc the count before we submit the bio so
392			 * we know the end IO handler won't happen before
393			 * we inc the count.  Otherwise, the cb might get
394			 * freed before we're done setting it up
395			 */
396			atomic_inc(&cb->pending_bios);
397			ret = btrfs_bio_wq_end_io(root->fs_info, bio,
398					BTRFS_WQ_ENDIO_DATA);
399			BUG_ON(ret); /* -ENOMEM */
400
401			if (!skip_sum) {
402				ret = btrfs_csum_one_bio(root, inode, bio,
403							 start, 1);
404				BUG_ON(ret); /* -ENOMEM */
405			}
406
407			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
408			BUG_ON(ret); /* -ENOMEM */
409
410			bio_put(bio);
411
412			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
413			BUG_ON(!bio);
414			bio->bi_private = cb;
415			bio->bi_end_io = end_compressed_bio_write;
416			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
417		}
418		if (bytes_left < PAGE_CACHE_SIZE) {
419			btrfs_info(BTRFS_I(inode)->root->fs_info,
420					"bytes left %lu compress len %lu nr %lu",
421			       bytes_left, cb->compressed_len, cb->nr_pages);
422		}
423		bytes_left -= PAGE_CACHE_SIZE;
424		first_byte += PAGE_CACHE_SIZE;
425		cond_resched();
426	}
427	bio_get(bio);
428
429	ret = btrfs_bio_wq_end_io(root->fs_info, bio, BTRFS_WQ_ENDIO_DATA);
430	BUG_ON(ret); /* -ENOMEM */
431
432	if (!skip_sum) {
433		ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
434		BUG_ON(ret); /* -ENOMEM */
435	}
436
437	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
438	BUG_ON(ret); /* -ENOMEM */
439
440	bio_put(bio);
441	return 0;
442}
443
444static noinline int add_ra_bio_pages(struct inode *inode,
445				     u64 compressed_end,
446				     struct compressed_bio *cb)
447{
448	unsigned long end_index;
449	unsigned long pg_index;
450	u64 last_offset;
451	u64 isize = i_size_read(inode);
452	int ret;
453	struct page *page;
454	unsigned long nr_pages = 0;
455	struct extent_map *em;
456	struct address_space *mapping = inode->i_mapping;
457	struct extent_map_tree *em_tree;
458	struct extent_io_tree *tree;
459	u64 end;
460	int misses = 0;
461
462	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
463	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
464	em_tree = &BTRFS_I(inode)->extent_tree;
465	tree = &BTRFS_I(inode)->io_tree;
466
467	if (isize == 0)
468		return 0;
469
470	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
471
472	while (last_offset < compressed_end) {
473		pg_index = last_offset >> PAGE_CACHE_SHIFT;
474
475		if (pg_index > end_index)
476			break;
477
478		rcu_read_lock();
479		page = radix_tree_lookup(&mapping->page_tree, pg_index);
480		rcu_read_unlock();
481		if (page && !radix_tree_exceptional_entry(page)) {
482			misses++;
483			if (misses > 4)
484				break;
485			goto next;
486		}
487
488		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
489								~__GFP_FS);
490		if (!page)
491			break;
492
493		if (add_to_page_cache_lru(page, mapping, pg_index,
494								GFP_NOFS)) {
495			page_cache_release(page);
496			goto next;
497		}
498
499		end = last_offset + PAGE_CACHE_SIZE - 1;
500		/*
501		 * at this point, we have a locked page in the page cache
502		 * for these bytes in the file.  But, we have to make
503		 * sure they map to this compressed extent on disk.
504		 */
505		set_page_extent_mapped(page);
506		lock_extent(tree, last_offset, end);
507		read_lock(&em_tree->lock);
508		em = lookup_extent_mapping(em_tree, last_offset,
509					   PAGE_CACHE_SIZE);
510		read_unlock(&em_tree->lock);
511
512		if (!em || last_offset < em->start ||
513		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
514		    (em->block_start >> 9) != cb->orig_bio->bi_iter.bi_sector) {
515			free_extent_map(em);
516			unlock_extent(tree, last_offset, end);
517			unlock_page(page);
518			page_cache_release(page);
519			break;
520		}
521		free_extent_map(em);
522
523		if (page->index == end_index) {
524			char *userpage;
525			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
526
527			if (zero_offset) {
528				int zeros;
529				zeros = PAGE_CACHE_SIZE - zero_offset;
530				userpage = kmap_atomic(page);
531				memset(userpage + zero_offset, 0, zeros);
532				flush_dcache_page(page);
533				kunmap_atomic(userpage);
534			}
535		}
536
537		ret = bio_add_page(cb->orig_bio, page,
538				   PAGE_CACHE_SIZE, 0);
539
540		if (ret == PAGE_CACHE_SIZE) {
541			nr_pages++;
542			page_cache_release(page);
543		} else {
544			unlock_extent(tree, last_offset, end);
545			unlock_page(page);
546			page_cache_release(page);
547			break;
548		}
549next:
550		last_offset += PAGE_CACHE_SIZE;
551	}
552	return 0;
553}
554
555/*
556 * for a compressed read, the bio we get passed has all the inode pages
557 * in it.  We don't actually do IO on those pages but allocate new ones
558 * to hold the compressed pages on disk.
559 *
560 * bio->bi_iter.bi_sector points to the compressed extent on disk
561 * bio->bi_io_vec points to all of the inode pages
562 * bio->bi_vcnt is a count of pages
563 *
564 * After the compressed pages are read, we copy the bytes into the
565 * bio we were passed and then call the bio end_io calls
566 */
567int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
568				 int mirror_num, unsigned long bio_flags)
569{
570	struct extent_io_tree *tree;
571	struct extent_map_tree *em_tree;
572	struct compressed_bio *cb;
573	struct btrfs_root *root = BTRFS_I(inode)->root;
574	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
575	unsigned long compressed_len;
576	unsigned long nr_pages;
577	unsigned long pg_index;
578	struct page *page;
579	struct block_device *bdev;
580	struct bio *comp_bio;
581	u64 cur_disk_byte = (u64)bio->bi_iter.bi_sector << 9;
582	u64 em_len;
583	u64 em_start;
584	struct extent_map *em;
585	int ret = -ENOMEM;
586	int faili = 0;
587	u32 *sums;
588
589	tree = &BTRFS_I(inode)->io_tree;
590	em_tree = &BTRFS_I(inode)->extent_tree;
591
592	/* we need the actual starting offset of this extent in the file */
593	read_lock(&em_tree->lock);
594	em = lookup_extent_mapping(em_tree,
595				   page_offset(bio->bi_io_vec->bv_page),
596				   PAGE_CACHE_SIZE);
597	read_unlock(&em_tree->lock);
598	if (!em)
599		return -EIO;
600
601	compressed_len = em->block_len;
602	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
603	if (!cb)
604		goto out;
605
606	atomic_set(&cb->pending_bios, 0);
607	cb->errors = 0;
608	cb->inode = inode;
609	cb->mirror_num = mirror_num;
610	sums = &cb->sums;
611
612	cb->start = em->orig_start;
613	em_len = em->len;
614	em_start = em->start;
615
616	free_extent_map(em);
617	em = NULL;
618
619	cb->len = uncompressed_len;
620	cb->compressed_len = compressed_len;
621	cb->compress_type = extent_compress_type(bio_flags);
622	cb->orig_bio = bio;
623
624	nr_pages = DIV_ROUND_UP(compressed_len, PAGE_CACHE_SIZE);
625	cb->compressed_pages = kcalloc(nr_pages, sizeof(struct page *),
626				       GFP_NOFS);
627	if (!cb->compressed_pages)
628		goto fail1;
629
630	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
631
632	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
633		cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
634							      __GFP_HIGHMEM);
635		if (!cb->compressed_pages[pg_index]) {
636			faili = pg_index - 1;
637			ret = -ENOMEM;
638			goto fail2;
639		}
640	}
641	faili = nr_pages - 1;
642	cb->nr_pages = nr_pages;
643
644	/* In the parent-locked case, we only locked the range we are
645	 * interested in.  In all other cases, we can opportunistically
646	 * cache decompressed data that goes beyond the requested range. */
647	if (!(bio_flags & EXTENT_BIO_PARENT_LOCKED))
648		add_ra_bio_pages(inode, em_start + em_len, cb);
649
650	/* include any pages we added in add_ra-bio_pages */
651	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
652	cb->len = uncompressed_len;
653
654	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
655	if (!comp_bio)
656		goto fail2;
657	comp_bio->bi_private = cb;
658	comp_bio->bi_end_io = end_compressed_bio_read;
659	atomic_inc(&cb->pending_bios);
660
661	for (pg_index = 0; pg_index < nr_pages; pg_index++) {
662		page = cb->compressed_pages[pg_index];
663		page->mapping = inode->i_mapping;
664		page->index = em_start >> PAGE_CACHE_SHIFT;
665
666		if (comp_bio->bi_iter.bi_size)
667			ret = tree->ops->merge_bio_hook(READ, page, 0,
668							PAGE_CACHE_SIZE,
669							comp_bio, 0);
670		else
671			ret = 0;
672
673		page->mapping = NULL;
674		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
675		    PAGE_CACHE_SIZE) {
676			bio_get(comp_bio);
677
678			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
679					BTRFS_WQ_ENDIO_DATA);
680			BUG_ON(ret); /* -ENOMEM */
681
682			/*
683			 * inc the count before we submit the bio so
684			 * we know the end IO handler won't happen before
685			 * we inc the count.  Otherwise, the cb might get
686			 * freed before we're done setting it up
687			 */
688			atomic_inc(&cb->pending_bios);
689
690			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
691				ret = btrfs_lookup_bio_sums(root, inode,
692							comp_bio, sums);
693				BUG_ON(ret); /* -ENOMEM */
694			}
695			sums += DIV_ROUND_UP(comp_bio->bi_iter.bi_size,
696					     root->sectorsize);
697
698			ret = btrfs_map_bio(root, READ, comp_bio,
699					    mirror_num, 0);
700			if (ret)
701				bio_endio(comp_bio, ret);
702
703			bio_put(comp_bio);
704
705			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
706							GFP_NOFS);
707			BUG_ON(!comp_bio);
708			comp_bio->bi_private = cb;
709			comp_bio->bi_end_io = end_compressed_bio_read;
710
711			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
712		}
713		cur_disk_byte += PAGE_CACHE_SIZE;
714	}
715	bio_get(comp_bio);
716
717	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio,
718			BTRFS_WQ_ENDIO_DATA);
719	BUG_ON(ret); /* -ENOMEM */
720
721	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
722		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
723		BUG_ON(ret); /* -ENOMEM */
724	}
725
726	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
727	if (ret)
728		bio_endio(comp_bio, ret);
729
730	bio_put(comp_bio);
731	return 0;
732
733fail2:
734	while (faili >= 0) {
735		__free_page(cb->compressed_pages[faili]);
736		faili--;
737	}
738
739	kfree(cb->compressed_pages);
740fail1:
741	kfree(cb);
742out:
743	free_extent_map(em);
744	return ret;
745}
746
747static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
748static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
749static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
750static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
751static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
752
753static const struct btrfs_compress_op * const btrfs_compress_op[] = {
754	&btrfs_zlib_compress,
755	&btrfs_lzo_compress,
756};
757
758void __init btrfs_init_compress(void)
759{
760	int i;
761
762	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
763		INIT_LIST_HEAD(&comp_idle_workspace[i]);
764		spin_lock_init(&comp_workspace_lock[i]);
765		atomic_set(&comp_alloc_workspace[i], 0);
766		init_waitqueue_head(&comp_workspace_wait[i]);
767	}
768}
769
770/*
771 * this finds an available workspace or allocates a new one
772 * ERR_PTR is returned if things go bad.
773 */
774static struct list_head *find_workspace(int type)
775{
776	struct list_head *workspace;
777	int cpus = num_online_cpus();
778	int idx = type - 1;
779
780	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
781	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
782	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
783	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
784	int *num_workspace			= &comp_num_workspace[idx];
785again:
786	spin_lock(workspace_lock);
787	if (!list_empty(idle_workspace)) {
788		workspace = idle_workspace->next;
789		list_del(workspace);
790		(*num_workspace)--;
791		spin_unlock(workspace_lock);
792		return workspace;
793
794	}
795	if (atomic_read(alloc_workspace) > cpus) {
796		DEFINE_WAIT(wait);
797
798		spin_unlock(workspace_lock);
799		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
800		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
801			schedule();
802		finish_wait(workspace_wait, &wait);
803		goto again;
804	}
805	atomic_inc(alloc_workspace);
806	spin_unlock(workspace_lock);
807
808	workspace = btrfs_compress_op[idx]->alloc_workspace();
809	if (IS_ERR(workspace)) {
810		atomic_dec(alloc_workspace);
811		wake_up(workspace_wait);
812	}
813	return workspace;
814}
815
816/*
817 * put a workspace struct back on the list or free it if we have enough
818 * idle ones sitting around
819 */
820static void free_workspace(int type, struct list_head *workspace)
821{
822	int idx = type - 1;
823	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
824	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
825	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
826	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
827	int *num_workspace			= &comp_num_workspace[idx];
828
829	spin_lock(workspace_lock);
830	if (*num_workspace < num_online_cpus()) {
831		list_add(workspace, idle_workspace);
832		(*num_workspace)++;
833		spin_unlock(workspace_lock);
834		goto wake;
835	}
836	spin_unlock(workspace_lock);
837
838	btrfs_compress_op[idx]->free_workspace(workspace);
839	atomic_dec(alloc_workspace);
840wake:
841	smp_mb();
842	if (waitqueue_active(workspace_wait))
843		wake_up(workspace_wait);
844}
845
846/*
847 * cleanup function for module exit
848 */
849static void free_workspaces(void)
850{
851	struct list_head *workspace;
852	int i;
853
854	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
855		while (!list_empty(&comp_idle_workspace[i])) {
856			workspace = comp_idle_workspace[i].next;
857			list_del(workspace);
858			btrfs_compress_op[i]->free_workspace(workspace);
859			atomic_dec(&comp_alloc_workspace[i]);
860		}
861	}
862}
863
864/*
865 * given an address space and start/len, compress the bytes.
866 *
867 * pages are allocated to hold the compressed result and stored
868 * in 'pages'
869 *
870 * out_pages is used to return the number of pages allocated.  There
871 * may be pages allocated even if we return an error
872 *
873 * total_in is used to return the number of bytes actually read.  It
874 * may be smaller then len if we had to exit early because we
875 * ran out of room in the pages array or because we cross the
876 * max_out threshold.
877 *
878 * total_out is used to return the total number of compressed bytes
879 *
880 * max_out tells us the max number of bytes that we're allowed to
881 * stuff into pages
882 */
883int btrfs_compress_pages(int type, struct address_space *mapping,
884			 u64 start, unsigned long len,
885			 struct page **pages,
886			 unsigned long nr_dest_pages,
887			 unsigned long *out_pages,
888			 unsigned long *total_in,
889			 unsigned long *total_out,
890			 unsigned long max_out)
891{
892	struct list_head *workspace;
893	int ret;
894
895	workspace = find_workspace(type);
896	if (IS_ERR(workspace))
897		return PTR_ERR(workspace);
898
899	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
900						      start, len, pages,
901						      nr_dest_pages, out_pages,
902						      total_in, total_out,
903						      max_out);
904	free_workspace(type, workspace);
905	return ret;
906}
907
908/*
909 * pages_in is an array of pages with compressed data.
910 *
911 * disk_start is the starting logical offset of this array in the file
912 *
913 * bvec is a bio_vec of pages from the file that we want to decompress into
914 *
915 * vcnt is the count of pages in the biovec
916 *
917 * srclen is the number of bytes in pages_in
918 *
919 * The basic idea is that we have a bio that was created by readpages.
920 * The pages in the bio are for the uncompressed data, and they may not
921 * be contiguous.  They all correspond to the range of bytes covered by
922 * the compressed extent.
923 */
924static int btrfs_decompress_biovec(int type, struct page **pages_in,
925				   u64 disk_start, struct bio_vec *bvec,
926				   int vcnt, size_t srclen)
927{
928	struct list_head *workspace;
929	int ret;
930
931	workspace = find_workspace(type);
932	if (IS_ERR(workspace))
933		return PTR_ERR(workspace);
934
935	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
936							 disk_start,
937							 bvec, vcnt, srclen);
938	free_workspace(type, workspace);
939	return ret;
940}
941
942/*
943 * a less complex decompression routine.  Our compressed data fits in a
944 * single page, and we want to read a single page out of it.
945 * start_byte tells us the offset into the compressed data we're interested in
946 */
947int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
948		     unsigned long start_byte, size_t srclen, size_t destlen)
949{
950	struct list_head *workspace;
951	int ret;
952
953	workspace = find_workspace(type);
954	if (IS_ERR(workspace))
955		return PTR_ERR(workspace);
956
957	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
958						  dest_page, start_byte,
959						  srclen, destlen);
960
961	free_workspace(type, workspace);
962	return ret;
963}
964
965void btrfs_exit_compress(void)
966{
967	free_workspaces();
968}
969
970/*
971 * Copy uncompressed data from working buffer to pages.
972 *
973 * buf_start is the byte offset we're of the start of our workspace buffer.
974 *
975 * total_out is the last byte of the buffer
976 */
977int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
978			      unsigned long total_out, u64 disk_start,
979			      struct bio_vec *bvec, int vcnt,
980			      unsigned long *pg_index,
981			      unsigned long *pg_offset)
982{
983	unsigned long buf_offset;
984	unsigned long current_buf_start;
985	unsigned long start_byte;
986	unsigned long working_bytes = total_out - buf_start;
987	unsigned long bytes;
988	char *kaddr;
989	struct page *page_out = bvec[*pg_index].bv_page;
990
991	/*
992	 * start byte is the first byte of the page we're currently
993	 * copying into relative to the start of the compressed data.
994	 */
995	start_byte = page_offset(page_out) - disk_start;
996
997	/* we haven't yet hit data corresponding to this page */
998	if (total_out <= start_byte)
999		return 1;
1000
1001	/*
1002	 * the start of the data we care about is offset into
1003	 * the middle of our working buffer
1004	 */
1005	if (total_out > start_byte && buf_start < start_byte) {
1006		buf_offset = start_byte - buf_start;
1007		working_bytes -= buf_offset;
1008	} else {
1009		buf_offset = 0;
1010	}
1011	current_buf_start = buf_start;
1012
1013	/* copy bytes from the working buffer into the pages */
1014	while (working_bytes > 0) {
1015		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
1016			    PAGE_CACHE_SIZE - buf_offset);
1017		bytes = min(bytes, working_bytes);
1018		kaddr = kmap_atomic(page_out);
1019		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
1020		kunmap_atomic(kaddr);
1021		flush_dcache_page(page_out);
1022
1023		*pg_offset += bytes;
1024		buf_offset += bytes;
1025		working_bytes -= bytes;
1026		current_buf_start += bytes;
1027
1028		/* check if we need to pick another page */
1029		if (*pg_offset == PAGE_CACHE_SIZE) {
1030			(*pg_index)++;
1031			if (*pg_index >= vcnt)
1032				return 0;
1033
1034			page_out = bvec[*pg_index].bv_page;
1035			*pg_offset = 0;
1036			start_byte = page_offset(page_out) - disk_start;
1037
1038			/*
1039			 * make sure our new page is covered by this
1040			 * working buffer
1041			 */
1042			if (total_out <= start_byte)
1043				return 1;
1044
1045			/*
1046			 * the next page in the biovec might not be adjacent
1047			 * to the last page, but it might still be found
1048			 * inside this working buffer. bump our offset pointer
1049			 */
1050			if (total_out > start_byte &&
1051			    current_buf_start < start_byte) {
1052				buf_offset = start_byte - buf_start;
1053				working_bytes = total_out - start_byte;
1054				current_buf_start = buf_start + buf_offset;
1055			}
1056		}
1057	}
1058
1059	return 1;
1060}
1061
1062/*
1063 * When uncompressing data, we need to make sure and zero any parts of
1064 * the biovec that were not filled in by the decompression code.  pg_index
1065 * and pg_offset indicate the last page and the last offset of that page
1066 * that have been filled in.  This will zero everything remaining in the
1067 * biovec.
1068 */
1069void btrfs_clear_biovec_end(struct bio_vec *bvec, int vcnt,
1070				   unsigned long pg_index,
1071				   unsigned long pg_offset)
1072{
1073	while (pg_index < vcnt) {
1074		struct page *page = bvec[pg_index].bv_page;
1075		unsigned long off = bvec[pg_index].bv_offset;
1076		unsigned long len = bvec[pg_index].bv_len;
1077
1078		if (pg_offset < off)
1079			pg_offset = off;
1080		if (pg_offset < off + len) {
1081			unsigned long bytes = off + len - pg_offset;
1082			char *kaddr;
1083
1084			kaddr = kmap_atomic(page);
1085			memset(kaddr + pg_offset, 0, bytes);
1086			kunmap_atomic(kaddr);
1087		}
1088		pg_index++;
1089		pg_offset = 0;
1090	}
1091}
1092