1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/blkdev.h>
21#include <linux/scatterlist.h>
22#include <linux/swap.h>
23#include <linux/radix-tree.h>
24#include <linux/writeback.h>
25#include <linux/buffer_head.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28#include <linux/freezer.h>
29#include <linux/slab.h>
30#include <linux/migrate.h>
31#include <linux/ratelimit.h>
32#include <linux/uuid.h>
33#include <linux/semaphore.h>
34#include <asm/unaligned.h>
35#include "ctree.h"
36#include "disk-io.h"
37#include "hash.h"
38#include "transaction.h"
39#include "btrfs_inode.h"
40#include "volumes.h"
41#include "print-tree.h"
42#include "locking.h"
43#include "tree-log.h"
44#include "free-space-cache.h"
45#include "inode-map.h"
46#include "check-integrity.h"
47#include "rcu-string.h"
48#include "dev-replace.h"
49#include "raid56.h"
50#include "sysfs.h"
51#include "qgroup.h"
52
53#ifdef CONFIG_X86
54#include <asm/cpufeature.h>
55#endif
56
57static const struct extent_io_ops btree_extent_io_ops;
58static void end_workqueue_fn(struct btrfs_work *work);
59static void free_fs_root(struct btrfs_root *root);
60static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
61				    int read_only);
62static void btrfs_destroy_ordered_extents(struct btrfs_root *root);
63static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
64				      struct btrfs_root *root);
65static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
66static int btrfs_destroy_marked_extents(struct btrfs_root *root,
67					struct extent_io_tree *dirty_pages,
68					int mark);
69static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
70				       struct extent_io_tree *pinned_extents);
71static int btrfs_cleanup_transaction(struct btrfs_root *root);
72static void btrfs_error_commit_super(struct btrfs_root *root);
73
74/*
75 * btrfs_end_io_wq structs are used to do processing in task context when an IO
76 * is complete.  This is used during reads to verify checksums, and it is used
77 * by writes to insert metadata for new file extents after IO is complete.
78 */
79struct btrfs_end_io_wq {
80	struct bio *bio;
81	bio_end_io_t *end_io;
82	void *private;
83	struct btrfs_fs_info *info;
84	int error;
85	enum btrfs_wq_endio_type metadata;
86	struct list_head list;
87	struct btrfs_work work;
88};
89
90static struct kmem_cache *btrfs_end_io_wq_cache;
91
92int __init btrfs_end_io_wq_init(void)
93{
94	btrfs_end_io_wq_cache = kmem_cache_create("btrfs_end_io_wq",
95					sizeof(struct btrfs_end_io_wq),
96					0,
97					SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
98					NULL);
99	if (!btrfs_end_io_wq_cache)
100		return -ENOMEM;
101	return 0;
102}
103
104void btrfs_end_io_wq_exit(void)
105{
106	if (btrfs_end_io_wq_cache)
107		kmem_cache_destroy(btrfs_end_io_wq_cache);
108}
109
110/*
111 * async submit bios are used to offload expensive checksumming
112 * onto the worker threads.  They checksum file and metadata bios
113 * just before they are sent down the IO stack.
114 */
115struct async_submit_bio {
116	struct inode *inode;
117	struct bio *bio;
118	struct list_head list;
119	extent_submit_bio_hook_t *submit_bio_start;
120	extent_submit_bio_hook_t *submit_bio_done;
121	int rw;
122	int mirror_num;
123	unsigned long bio_flags;
124	/*
125	 * bio_offset is optional, can be used if the pages in the bio
126	 * can't tell us where in the file the bio should go
127	 */
128	u64 bio_offset;
129	struct btrfs_work work;
130	int error;
131};
132
133/*
134 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
135 * eb, the lockdep key is determined by the btrfs_root it belongs to and
136 * the level the eb occupies in the tree.
137 *
138 * Different roots are used for different purposes and may nest inside each
139 * other and they require separate keysets.  As lockdep keys should be
140 * static, assign keysets according to the purpose of the root as indicated
141 * by btrfs_root->objectid.  This ensures that all special purpose roots
142 * have separate keysets.
143 *
144 * Lock-nesting across peer nodes is always done with the immediate parent
145 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
146 * subclass to avoid triggering lockdep warning in such cases.
147 *
148 * The key is set by the readpage_end_io_hook after the buffer has passed
149 * csum validation but before the pages are unlocked.  It is also set by
150 * btrfs_init_new_buffer on freshly allocated blocks.
151 *
152 * We also add a check to make sure the highest level of the tree is the
153 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
154 * needs update as well.
155 */
156#ifdef CONFIG_DEBUG_LOCK_ALLOC
157# if BTRFS_MAX_LEVEL != 8
158#  error
159# endif
160
161static struct btrfs_lockdep_keyset {
162	u64			id;		/* root objectid */
163	const char		*name_stem;	/* lock name stem */
164	char			names[BTRFS_MAX_LEVEL + 1][20];
165	struct lock_class_key	keys[BTRFS_MAX_LEVEL + 1];
166} btrfs_lockdep_keysets[] = {
167	{ .id = BTRFS_ROOT_TREE_OBJECTID,	.name_stem = "root"	},
168	{ .id = BTRFS_EXTENT_TREE_OBJECTID,	.name_stem = "extent"	},
169	{ .id = BTRFS_CHUNK_TREE_OBJECTID,	.name_stem = "chunk"	},
170	{ .id = BTRFS_DEV_TREE_OBJECTID,	.name_stem = "dev"	},
171	{ .id = BTRFS_FS_TREE_OBJECTID,		.name_stem = "fs"	},
172	{ .id = BTRFS_CSUM_TREE_OBJECTID,	.name_stem = "csum"	},
173	{ .id = BTRFS_QUOTA_TREE_OBJECTID,	.name_stem = "quota"	},
174	{ .id = BTRFS_TREE_LOG_OBJECTID,	.name_stem = "log"	},
175	{ .id = BTRFS_TREE_RELOC_OBJECTID,	.name_stem = "treloc"	},
176	{ .id = BTRFS_DATA_RELOC_TREE_OBJECTID,	.name_stem = "dreloc"	},
177	{ .id = BTRFS_UUID_TREE_OBJECTID,	.name_stem = "uuid"	},
178	{ .id = 0,				.name_stem = "tree"	},
179};
180
181void __init btrfs_init_lockdep(void)
182{
183	int i, j;
184
185	/* initialize lockdep class names */
186	for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
187		struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
188
189		for (j = 0; j < ARRAY_SIZE(ks->names); j++)
190			snprintf(ks->names[j], sizeof(ks->names[j]),
191				 "btrfs-%s-%02d", ks->name_stem, j);
192	}
193}
194
195void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
196				    int level)
197{
198	struct btrfs_lockdep_keyset *ks;
199
200	BUG_ON(level >= ARRAY_SIZE(ks->keys));
201
202	/* find the matching keyset, id 0 is the default entry */
203	for (ks = btrfs_lockdep_keysets; ks->id; ks++)
204		if (ks->id == objectid)
205			break;
206
207	lockdep_set_class_and_name(&eb->lock,
208				   &ks->keys[level], ks->names[level]);
209}
210
211#endif
212
213/*
214 * extents on the btree inode are pretty simple, there's one extent
215 * that covers the entire device
216 */
217static struct extent_map *btree_get_extent(struct inode *inode,
218		struct page *page, size_t pg_offset, u64 start, u64 len,
219		int create)
220{
221	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
222	struct extent_map *em;
223	int ret;
224
225	read_lock(&em_tree->lock);
226	em = lookup_extent_mapping(em_tree, start, len);
227	if (em) {
228		em->bdev =
229			BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
230		read_unlock(&em_tree->lock);
231		goto out;
232	}
233	read_unlock(&em_tree->lock);
234
235	em = alloc_extent_map();
236	if (!em) {
237		em = ERR_PTR(-ENOMEM);
238		goto out;
239	}
240	em->start = 0;
241	em->len = (u64)-1;
242	em->block_len = (u64)-1;
243	em->block_start = 0;
244	em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
245
246	write_lock(&em_tree->lock);
247	ret = add_extent_mapping(em_tree, em, 0);
248	if (ret == -EEXIST) {
249		free_extent_map(em);
250		em = lookup_extent_mapping(em_tree, start, len);
251		if (!em)
252			em = ERR_PTR(-EIO);
253	} else if (ret) {
254		free_extent_map(em);
255		em = ERR_PTR(ret);
256	}
257	write_unlock(&em_tree->lock);
258
259out:
260	return em;
261}
262
263u32 btrfs_csum_data(char *data, u32 seed, size_t len)
264{
265	return btrfs_crc32c(seed, data, len);
266}
267
268void btrfs_csum_final(u32 crc, char *result)
269{
270	put_unaligned_le32(~crc, result);
271}
272
273/*
274 * compute the csum for a btree block, and either verify it or write it
275 * into the csum field of the block.
276 */
277static int csum_tree_block(struct btrfs_fs_info *fs_info,
278			   struct extent_buffer *buf,
279			   int verify)
280{
281	u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
282	char *result = NULL;
283	unsigned long len;
284	unsigned long cur_len;
285	unsigned long offset = BTRFS_CSUM_SIZE;
286	char *kaddr;
287	unsigned long map_start;
288	unsigned long map_len;
289	int err;
290	u32 crc = ~(u32)0;
291	unsigned long inline_result;
292
293	len = buf->len - offset;
294	while (len > 0) {
295		err = map_private_extent_buffer(buf, offset, 32,
296					&kaddr, &map_start, &map_len);
297		if (err)
298			return 1;
299		cur_len = min(len, map_len - (offset - map_start));
300		crc = btrfs_csum_data(kaddr + offset - map_start,
301				      crc, cur_len);
302		len -= cur_len;
303		offset += cur_len;
304	}
305	if (csum_size > sizeof(inline_result)) {
306		result = kzalloc(csum_size, GFP_NOFS);
307		if (!result)
308			return 1;
309	} else {
310		result = (char *)&inline_result;
311	}
312
313	btrfs_csum_final(crc, result);
314
315	if (verify) {
316		if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
317			u32 val;
318			u32 found = 0;
319			memcpy(&found, result, csum_size);
320
321			read_extent_buffer(buf, &val, 0, csum_size);
322			printk_ratelimited(KERN_WARNING
323				"BTRFS: %s checksum verify failed on %llu wanted %X found %X "
324				"level %d\n",
325				fs_info->sb->s_id, buf->start,
326				val, found, btrfs_header_level(buf));
327			if (result != (char *)&inline_result)
328				kfree(result);
329			return 1;
330		}
331	} else {
332		write_extent_buffer(buf, result, 0, csum_size);
333	}
334	if (result != (char *)&inline_result)
335		kfree(result);
336	return 0;
337}
338
339/*
340 * we can't consider a given block up to date unless the transid of the
341 * block matches the transid in the parent node's pointer.  This is how we
342 * detect blocks that either didn't get written at all or got written
343 * in the wrong place.
344 */
345static int verify_parent_transid(struct extent_io_tree *io_tree,
346				 struct extent_buffer *eb, u64 parent_transid,
347				 int atomic)
348{
349	struct extent_state *cached_state = NULL;
350	int ret;
351	bool need_lock = (current->journal_info == BTRFS_SEND_TRANS_STUB);
352
353	if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
354		return 0;
355
356	if (atomic)
357		return -EAGAIN;
358
359	if (need_lock) {
360		btrfs_tree_read_lock(eb);
361		btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
362	}
363
364	lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
365			 0, &cached_state);
366	if (extent_buffer_uptodate(eb) &&
367	    btrfs_header_generation(eb) == parent_transid) {
368		ret = 0;
369		goto out;
370	}
371	printk_ratelimited(KERN_ERR
372	    "BTRFS (device %s): parent transid verify failed on %llu wanted %llu found %llu\n",
373			eb->fs_info->sb->s_id, eb->start,
374			parent_transid, btrfs_header_generation(eb));
375	ret = 1;
376
377	/*
378	 * Things reading via commit roots that don't have normal protection,
379	 * like send, can have a really old block in cache that may point at a
380	 * block that has been free'd and re-allocated.  So don't clear uptodate
381	 * if we find an eb that is under IO (dirty/writeback) because we could
382	 * end up reading in the stale data and then writing it back out and
383	 * making everybody very sad.
384	 */
385	if (!extent_buffer_under_io(eb))
386		clear_extent_buffer_uptodate(eb);
387out:
388	unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
389			     &cached_state, GFP_NOFS);
390	if (need_lock)
391		btrfs_tree_read_unlock_blocking(eb);
392	return ret;
393}
394
395/*
396 * Return 0 if the superblock checksum type matches the checksum value of that
397 * algorithm. Pass the raw disk superblock data.
398 */
399static int btrfs_check_super_csum(char *raw_disk_sb)
400{
401	struct btrfs_super_block *disk_sb =
402		(struct btrfs_super_block *)raw_disk_sb;
403	u16 csum_type = btrfs_super_csum_type(disk_sb);
404	int ret = 0;
405
406	if (csum_type == BTRFS_CSUM_TYPE_CRC32) {
407		u32 crc = ~(u32)0;
408		const int csum_size = sizeof(crc);
409		char result[csum_size];
410
411		/*
412		 * The super_block structure does not span the whole
413		 * BTRFS_SUPER_INFO_SIZE range, we expect that the unused space
414		 * is filled with zeros and is included in the checkum.
415		 */
416		crc = btrfs_csum_data(raw_disk_sb + BTRFS_CSUM_SIZE,
417				crc, BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE);
418		btrfs_csum_final(crc, result);
419
420		if (memcmp(raw_disk_sb, result, csum_size))
421			ret = 1;
422	}
423
424	if (csum_type >= ARRAY_SIZE(btrfs_csum_sizes)) {
425		printk(KERN_ERR "BTRFS: unsupported checksum algorithm %u\n",
426				csum_type);
427		ret = 1;
428	}
429
430	return ret;
431}
432
433/*
434 * helper to read a given tree block, doing retries as required when
435 * the checksums don't match and we have alternate mirrors to try.
436 */
437static int btree_read_extent_buffer_pages(struct btrfs_root *root,
438					  struct extent_buffer *eb,
439					  u64 start, u64 parent_transid)
440{
441	struct extent_io_tree *io_tree;
442	int failed = 0;
443	int ret;
444	int num_copies = 0;
445	int mirror_num = 0;
446	int failed_mirror = 0;
447
448	clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
449	io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
450	while (1) {
451		ret = read_extent_buffer_pages(io_tree, eb, start,
452					       WAIT_COMPLETE,
453					       btree_get_extent, mirror_num);
454		if (!ret) {
455			if (!verify_parent_transid(io_tree, eb,
456						   parent_transid, 0))
457				break;
458			else
459				ret = -EIO;
460		}
461
462		/*
463		 * This buffer's crc is fine, but its contents are corrupted, so
464		 * there is no reason to read the other copies, they won't be
465		 * any less wrong.
466		 */
467		if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
468			break;
469
470		num_copies = btrfs_num_copies(root->fs_info,
471					      eb->start, eb->len);
472		if (num_copies == 1)
473			break;
474
475		if (!failed_mirror) {
476			failed = 1;
477			failed_mirror = eb->read_mirror;
478		}
479
480		mirror_num++;
481		if (mirror_num == failed_mirror)
482			mirror_num++;
483
484		if (mirror_num > num_copies)
485			break;
486	}
487
488	if (failed && !ret && failed_mirror)
489		repair_eb_io_failure(root, eb, failed_mirror);
490
491	return ret;
492}
493
494/*
495 * checksum a dirty tree block before IO.  This has extra checks to make sure
496 * we only fill in the checksum field in the first page of a multi-page block
497 */
498
499static int csum_dirty_buffer(struct btrfs_fs_info *fs_info, struct page *page)
500{
501	u64 start = page_offset(page);
502	u64 found_start;
503	struct extent_buffer *eb;
504
505	eb = (struct extent_buffer *)page->private;
506	if (page != eb->pages[0])
507		return 0;
508	found_start = btrfs_header_bytenr(eb);
509	if (WARN_ON(found_start != start || !PageUptodate(page)))
510		return 0;
511	csum_tree_block(fs_info, eb, 0);
512	return 0;
513}
514
515static int check_tree_block_fsid(struct btrfs_fs_info *fs_info,
516				 struct extent_buffer *eb)
517{
518	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
519	u8 fsid[BTRFS_UUID_SIZE];
520	int ret = 1;
521
522	read_extent_buffer(eb, fsid, btrfs_header_fsid(), BTRFS_FSID_SIZE);
523	while (fs_devices) {
524		if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
525			ret = 0;
526			break;
527		}
528		fs_devices = fs_devices->seed;
529	}
530	return ret;
531}
532
533#define CORRUPT(reason, eb, root, slot)				\
534	btrfs_crit(root->fs_info, "corrupt leaf, %s: block=%llu,"	\
535		   "root=%llu, slot=%d", reason,			\
536	       btrfs_header_bytenr(eb),	root->objectid, slot)
537
538static noinline int check_leaf(struct btrfs_root *root,
539			       struct extent_buffer *leaf)
540{
541	struct btrfs_key key;
542	struct btrfs_key leaf_key;
543	u32 nritems = btrfs_header_nritems(leaf);
544	int slot;
545
546	if (nritems == 0)
547		return 0;
548
549	/* Check the 0 item */
550	if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
551	    BTRFS_LEAF_DATA_SIZE(root)) {
552		CORRUPT("invalid item offset size pair", leaf, root, 0);
553		return -EIO;
554	}
555
556	/*
557	 * Check to make sure each items keys are in the correct order and their
558	 * offsets make sense.  We only have to loop through nritems-1 because
559	 * we check the current slot against the next slot, which verifies the
560	 * next slot's offset+size makes sense and that the current's slot
561	 * offset is correct.
562	 */
563	for (slot = 0; slot < nritems - 1; slot++) {
564		btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
565		btrfs_item_key_to_cpu(leaf, &key, slot + 1);
566
567		/* Make sure the keys are in the right order */
568		if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
569			CORRUPT("bad key order", leaf, root, slot);
570			return -EIO;
571		}
572
573		/*
574		 * Make sure the offset and ends are right, remember that the
575		 * item data starts at the end of the leaf and grows towards the
576		 * front.
577		 */
578		if (btrfs_item_offset_nr(leaf, slot) !=
579			btrfs_item_end_nr(leaf, slot + 1)) {
580			CORRUPT("slot offset bad", leaf, root, slot);
581			return -EIO;
582		}
583
584		/*
585		 * Check to make sure that we don't point outside of the leaf,
586		 * just incase all the items are consistent to eachother, but
587		 * all point outside of the leaf.
588		 */
589		if (btrfs_item_end_nr(leaf, slot) >
590		    BTRFS_LEAF_DATA_SIZE(root)) {
591			CORRUPT("slot end outside of leaf", leaf, root, slot);
592			return -EIO;
593		}
594	}
595
596	return 0;
597}
598
599static int btree_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
600				      u64 phy_offset, struct page *page,
601				      u64 start, u64 end, int mirror)
602{
603	u64 found_start;
604	int found_level;
605	struct extent_buffer *eb;
606	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
607	int ret = 0;
608	int reads_done;
609
610	if (!page->private)
611		goto out;
612
613	eb = (struct extent_buffer *)page->private;
614
615	/* the pending IO might have been the only thing that kept this buffer
616	 * in memory.  Make sure we have a ref for all this other checks
617	 */
618	extent_buffer_get(eb);
619
620	reads_done = atomic_dec_and_test(&eb->io_pages);
621	if (!reads_done)
622		goto err;
623
624	eb->read_mirror = mirror;
625	if (test_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags)) {
626		ret = -EIO;
627		goto err;
628	}
629
630	found_start = btrfs_header_bytenr(eb);
631	if (found_start != eb->start) {
632		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad tree block start "
633			       "%llu %llu\n",
634			       eb->fs_info->sb->s_id, found_start, eb->start);
635		ret = -EIO;
636		goto err;
637	}
638	if (check_tree_block_fsid(root->fs_info, eb)) {
639		printk_ratelimited(KERN_ERR "BTRFS (device %s): bad fsid on block %llu\n",
640			       eb->fs_info->sb->s_id, eb->start);
641		ret = -EIO;
642		goto err;
643	}
644	found_level = btrfs_header_level(eb);
645	if (found_level >= BTRFS_MAX_LEVEL) {
646		btrfs_err(root->fs_info, "bad tree block level %d",
647			   (int)btrfs_header_level(eb));
648		ret = -EIO;
649		goto err;
650	}
651
652	btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
653				       eb, found_level);
654
655	ret = csum_tree_block(root->fs_info, eb, 1);
656	if (ret) {
657		ret = -EIO;
658		goto err;
659	}
660
661	/*
662	 * If this is a leaf block and it is corrupt, set the corrupt bit so
663	 * that we don't try and read the other copies of this block, just
664	 * return -EIO.
665	 */
666	if (found_level == 0 && check_leaf(root, eb)) {
667		set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
668		ret = -EIO;
669	}
670
671	if (!ret)
672		set_extent_buffer_uptodate(eb);
673err:
674	if (reads_done &&
675	    test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
676		btree_readahead_hook(root, eb, eb->start, ret);
677
678	if (ret) {
679		/*
680		 * our io error hook is going to dec the io pages
681		 * again, we have to make sure it has something
682		 * to decrement
683		 */
684		atomic_inc(&eb->io_pages);
685		clear_extent_buffer_uptodate(eb);
686	}
687	free_extent_buffer(eb);
688out:
689	return ret;
690}
691
692static int btree_io_failed_hook(struct page *page, int failed_mirror)
693{
694	struct extent_buffer *eb;
695	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
696
697	eb = (struct extent_buffer *)page->private;
698	set_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
699	eb->read_mirror = failed_mirror;
700	atomic_dec(&eb->io_pages);
701	if (test_and_clear_bit(EXTENT_BUFFER_READAHEAD, &eb->bflags))
702		btree_readahead_hook(root, eb, eb->start, -EIO);
703	return -EIO;	/* we fixed nothing */
704}
705
706static void end_workqueue_bio(struct bio *bio, int err)
707{
708	struct btrfs_end_io_wq *end_io_wq = bio->bi_private;
709	struct btrfs_fs_info *fs_info;
710	struct btrfs_workqueue *wq;
711	btrfs_work_func_t func;
712
713	fs_info = end_io_wq->info;
714	end_io_wq->error = err;
715
716	if (bio->bi_rw & REQ_WRITE) {
717		if (end_io_wq->metadata == BTRFS_WQ_ENDIO_METADATA) {
718			wq = fs_info->endio_meta_write_workers;
719			func = btrfs_endio_meta_write_helper;
720		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_FREE_SPACE) {
721			wq = fs_info->endio_freespace_worker;
722			func = btrfs_freespace_write_helper;
723		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
724			wq = fs_info->endio_raid56_workers;
725			func = btrfs_endio_raid56_helper;
726		} else {
727			wq = fs_info->endio_write_workers;
728			func = btrfs_endio_write_helper;
729		}
730	} else {
731		if (unlikely(end_io_wq->metadata ==
732			     BTRFS_WQ_ENDIO_DIO_REPAIR)) {
733			wq = fs_info->endio_repair_workers;
734			func = btrfs_endio_repair_helper;
735		} else if (end_io_wq->metadata == BTRFS_WQ_ENDIO_RAID56) {
736			wq = fs_info->endio_raid56_workers;
737			func = btrfs_endio_raid56_helper;
738		} else if (end_io_wq->metadata) {
739			wq = fs_info->endio_meta_workers;
740			func = btrfs_endio_meta_helper;
741		} else {
742			wq = fs_info->endio_workers;
743			func = btrfs_endio_helper;
744		}
745	}
746
747	btrfs_init_work(&end_io_wq->work, func, end_workqueue_fn, NULL, NULL);
748	btrfs_queue_work(wq, &end_io_wq->work);
749}
750
751int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
752			enum btrfs_wq_endio_type metadata)
753{
754	struct btrfs_end_io_wq *end_io_wq;
755
756	end_io_wq = kmem_cache_alloc(btrfs_end_io_wq_cache, GFP_NOFS);
757	if (!end_io_wq)
758		return -ENOMEM;
759
760	end_io_wq->private = bio->bi_private;
761	end_io_wq->end_io = bio->bi_end_io;
762	end_io_wq->info = info;
763	end_io_wq->error = 0;
764	end_io_wq->bio = bio;
765	end_io_wq->metadata = metadata;
766
767	bio->bi_private = end_io_wq;
768	bio->bi_end_io = end_workqueue_bio;
769	return 0;
770}
771
772unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
773{
774	unsigned long limit = min_t(unsigned long,
775				    info->thread_pool_size,
776				    info->fs_devices->open_devices);
777	return 256 * limit;
778}
779
780static void run_one_async_start(struct btrfs_work *work)
781{
782	struct async_submit_bio *async;
783	int ret;
784
785	async = container_of(work, struct  async_submit_bio, work);
786	ret = async->submit_bio_start(async->inode, async->rw, async->bio,
787				      async->mirror_num, async->bio_flags,
788				      async->bio_offset);
789	if (ret)
790		async->error = ret;
791}
792
793static void run_one_async_done(struct btrfs_work *work)
794{
795	struct btrfs_fs_info *fs_info;
796	struct async_submit_bio *async;
797	int limit;
798
799	async = container_of(work, struct  async_submit_bio, work);
800	fs_info = BTRFS_I(async->inode)->root->fs_info;
801
802	limit = btrfs_async_submit_limit(fs_info);
803	limit = limit * 2 / 3;
804
805	if (atomic_dec_return(&fs_info->nr_async_submits) < limit &&
806	    waitqueue_active(&fs_info->async_submit_wait))
807		wake_up(&fs_info->async_submit_wait);
808
809	/* If an error occured we just want to clean up the bio and move on */
810	if (async->error) {
811		bio_endio(async->bio, async->error);
812		return;
813	}
814
815	async->submit_bio_done(async->inode, async->rw, async->bio,
816			       async->mirror_num, async->bio_flags,
817			       async->bio_offset);
818}
819
820static void run_one_async_free(struct btrfs_work *work)
821{
822	struct async_submit_bio *async;
823
824	async = container_of(work, struct  async_submit_bio, work);
825	kfree(async);
826}
827
828int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
829			int rw, struct bio *bio, int mirror_num,
830			unsigned long bio_flags,
831			u64 bio_offset,
832			extent_submit_bio_hook_t *submit_bio_start,
833			extent_submit_bio_hook_t *submit_bio_done)
834{
835	struct async_submit_bio *async;
836
837	async = kmalloc(sizeof(*async), GFP_NOFS);
838	if (!async)
839		return -ENOMEM;
840
841	async->inode = inode;
842	async->rw = rw;
843	async->bio = bio;
844	async->mirror_num = mirror_num;
845	async->submit_bio_start = submit_bio_start;
846	async->submit_bio_done = submit_bio_done;
847
848	btrfs_init_work(&async->work, btrfs_worker_helper, run_one_async_start,
849			run_one_async_done, run_one_async_free);
850
851	async->bio_flags = bio_flags;
852	async->bio_offset = bio_offset;
853
854	async->error = 0;
855
856	atomic_inc(&fs_info->nr_async_submits);
857
858	if (rw & REQ_SYNC)
859		btrfs_set_work_high_priority(&async->work);
860
861	btrfs_queue_work(fs_info->workers, &async->work);
862
863	while (atomic_read(&fs_info->async_submit_draining) &&
864	      atomic_read(&fs_info->nr_async_submits)) {
865		wait_event(fs_info->async_submit_wait,
866			   (atomic_read(&fs_info->nr_async_submits) == 0));
867	}
868
869	return 0;
870}
871
872static int btree_csum_one_bio(struct bio *bio)
873{
874	struct bio_vec *bvec;
875	struct btrfs_root *root;
876	int i, ret = 0;
877
878	bio_for_each_segment_all(bvec, bio, i) {
879		root = BTRFS_I(bvec->bv_page->mapping->host)->root;
880		ret = csum_dirty_buffer(root->fs_info, bvec->bv_page);
881		if (ret)
882			break;
883	}
884
885	return ret;
886}
887
888static int __btree_submit_bio_start(struct inode *inode, int rw,
889				    struct bio *bio, int mirror_num,
890				    unsigned long bio_flags,
891				    u64 bio_offset)
892{
893	/*
894	 * when we're called for a write, we're already in the async
895	 * submission context.  Just jump into btrfs_map_bio
896	 */
897	return btree_csum_one_bio(bio);
898}
899
900static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
901				 int mirror_num, unsigned long bio_flags,
902				 u64 bio_offset)
903{
904	int ret;
905
906	/*
907	 * when we're called for a write, we're already in the async
908	 * submission context.  Just jump into btrfs_map_bio
909	 */
910	ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
911	if (ret)
912		bio_endio(bio, ret);
913	return ret;
914}
915
916static int check_async_write(struct inode *inode, unsigned long bio_flags)
917{
918	if (bio_flags & EXTENT_BIO_TREE_LOG)
919		return 0;
920#ifdef CONFIG_X86
921	if (cpu_has_xmm4_2)
922		return 0;
923#endif
924	return 1;
925}
926
927static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
928				 int mirror_num, unsigned long bio_flags,
929				 u64 bio_offset)
930{
931	int async = check_async_write(inode, bio_flags);
932	int ret;
933
934	if (!(rw & REQ_WRITE)) {
935		/*
936		 * called for a read, do the setup so that checksum validation
937		 * can happen in the async kernel threads
938		 */
939		ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
940					  bio, BTRFS_WQ_ENDIO_METADATA);
941		if (ret)
942			goto out_w_error;
943		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
944				    mirror_num, 0);
945	} else if (!async) {
946		ret = btree_csum_one_bio(bio);
947		if (ret)
948			goto out_w_error;
949		ret = btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
950				    mirror_num, 0);
951	} else {
952		/*
953		 * kthread helpers are used to submit writes so that
954		 * checksumming can happen in parallel across all CPUs
955		 */
956		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
957					  inode, rw, bio, mirror_num, 0,
958					  bio_offset,
959					  __btree_submit_bio_start,
960					  __btree_submit_bio_done);
961	}
962
963	if (ret) {
964out_w_error:
965		bio_endio(bio, ret);
966	}
967	return ret;
968}
969
970#ifdef CONFIG_MIGRATION
971static int btree_migratepage(struct address_space *mapping,
972			struct page *newpage, struct page *page,
973			enum migrate_mode mode)
974{
975	/*
976	 * we can't safely write a btree page from here,
977	 * we haven't done the locking hook
978	 */
979	if (PageDirty(page))
980		return -EAGAIN;
981	/*
982	 * Buffers may be managed in a filesystem specific way.
983	 * We must have no buffers or drop them.
984	 */
985	if (page_has_private(page) &&
986	    !try_to_release_page(page, GFP_KERNEL))
987		return -EAGAIN;
988	return migrate_page(mapping, newpage, page, mode);
989}
990#endif
991
992
993static int btree_writepages(struct address_space *mapping,
994			    struct writeback_control *wbc)
995{
996	struct btrfs_fs_info *fs_info;
997	int ret;
998
999	if (wbc->sync_mode == WB_SYNC_NONE) {
1000
1001		if (wbc->for_kupdate)
1002			return 0;
1003
1004		fs_info = BTRFS_I(mapping->host)->root->fs_info;
1005		/* this is a bit racy, but that's ok */
1006		ret = percpu_counter_compare(&fs_info->dirty_metadata_bytes,
1007					     BTRFS_DIRTY_METADATA_THRESH);
1008		if (ret < 0)
1009			return 0;
1010	}
1011	return btree_write_cache_pages(mapping, wbc);
1012}
1013
1014static int btree_readpage(struct file *file, struct page *page)
1015{
1016	struct extent_io_tree *tree;
1017	tree = &BTRFS_I(page->mapping->host)->io_tree;
1018	return extent_read_full_page(tree, page, btree_get_extent, 0);
1019}
1020
1021static int btree_releasepage(struct page *page, gfp_t gfp_flags)
1022{
1023	if (PageWriteback(page) || PageDirty(page))
1024		return 0;
1025
1026	return try_release_extent_buffer(page);
1027}
1028
1029static void btree_invalidatepage(struct page *page, unsigned int offset,
1030				 unsigned int length)
1031{
1032	struct extent_io_tree *tree;
1033	tree = &BTRFS_I(page->mapping->host)->io_tree;
1034	extent_invalidatepage(tree, page, offset);
1035	btree_releasepage(page, GFP_NOFS);
1036	if (PagePrivate(page)) {
1037		btrfs_warn(BTRFS_I(page->mapping->host)->root->fs_info,
1038			   "page private not zero on page %llu",
1039			   (unsigned long long)page_offset(page));
1040		ClearPagePrivate(page);
1041		set_page_private(page, 0);
1042		page_cache_release(page);
1043	}
1044}
1045
1046static int btree_set_page_dirty(struct page *page)
1047{
1048#ifdef DEBUG
1049	struct extent_buffer *eb;
1050
1051	BUG_ON(!PagePrivate(page));
1052	eb = (struct extent_buffer *)page->private;
1053	BUG_ON(!eb);
1054	BUG_ON(!test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
1055	BUG_ON(!atomic_read(&eb->refs));
1056	btrfs_assert_tree_locked(eb);
1057#endif
1058	return __set_page_dirty_nobuffers(page);
1059}
1060
1061static const struct address_space_operations btree_aops = {
1062	.readpage	= btree_readpage,
1063	.writepages	= btree_writepages,
1064	.releasepage	= btree_releasepage,
1065	.invalidatepage = btree_invalidatepage,
1066#ifdef CONFIG_MIGRATION
1067	.migratepage	= btree_migratepage,
1068#endif
1069	.set_page_dirty = btree_set_page_dirty,
1070};
1071
1072void readahead_tree_block(struct btrfs_root *root, u64 bytenr)
1073{
1074	struct extent_buffer *buf = NULL;
1075	struct inode *btree_inode = root->fs_info->btree_inode;
1076
1077	buf = btrfs_find_create_tree_block(root, bytenr);
1078	if (!buf)
1079		return;
1080	read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
1081				 buf, 0, WAIT_NONE, btree_get_extent, 0);
1082	free_extent_buffer(buf);
1083}
1084
1085int reada_tree_block_flagged(struct btrfs_root *root, u64 bytenr,
1086			 int mirror_num, struct extent_buffer **eb)
1087{
1088	struct extent_buffer *buf = NULL;
1089	struct inode *btree_inode = root->fs_info->btree_inode;
1090	struct extent_io_tree *io_tree = &BTRFS_I(btree_inode)->io_tree;
1091	int ret;
1092
1093	buf = btrfs_find_create_tree_block(root, bytenr);
1094	if (!buf)
1095		return 0;
1096
1097	set_bit(EXTENT_BUFFER_READAHEAD, &buf->bflags);
1098
1099	ret = read_extent_buffer_pages(io_tree, buf, 0, WAIT_PAGE_LOCK,
1100				       btree_get_extent, mirror_num);
1101	if (ret) {
1102		free_extent_buffer(buf);
1103		return ret;
1104	}
1105
1106	if (test_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags)) {
1107		free_extent_buffer(buf);
1108		return -EIO;
1109	} else if (extent_buffer_uptodate(buf)) {
1110		*eb = buf;
1111	} else {
1112		free_extent_buffer(buf);
1113	}
1114	return 0;
1115}
1116
1117struct extent_buffer *btrfs_find_tree_block(struct btrfs_fs_info *fs_info,
1118					    u64 bytenr)
1119{
1120	return find_extent_buffer(fs_info, bytenr);
1121}
1122
1123struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
1124						 u64 bytenr)
1125{
1126	if (btrfs_test_is_dummy_root(root))
1127		return alloc_test_extent_buffer(root->fs_info, bytenr);
1128	return alloc_extent_buffer(root->fs_info, bytenr);
1129}
1130
1131
1132int btrfs_write_tree_block(struct extent_buffer *buf)
1133{
1134	return filemap_fdatawrite_range(buf->pages[0]->mapping, buf->start,
1135					buf->start + buf->len - 1);
1136}
1137
1138int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1139{
1140	return filemap_fdatawait_range(buf->pages[0]->mapping,
1141				       buf->start, buf->start + buf->len - 1);
1142}
1143
1144struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1145				      u64 parent_transid)
1146{
1147	struct extent_buffer *buf = NULL;
1148	int ret;
1149
1150	buf = btrfs_find_create_tree_block(root, bytenr);
1151	if (!buf)
1152		return NULL;
1153
1154	ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1155	if (ret) {
1156		free_extent_buffer(buf);
1157		return NULL;
1158	}
1159	return buf;
1160
1161}
1162
1163void clean_tree_block(struct btrfs_trans_handle *trans,
1164		      struct btrfs_fs_info *fs_info,
1165		      struct extent_buffer *buf)
1166{
1167	if (btrfs_header_generation(buf) ==
1168	    fs_info->running_transaction->transid) {
1169		btrfs_assert_tree_locked(buf);
1170
1171		if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1172			__percpu_counter_add(&fs_info->dirty_metadata_bytes,
1173					     -buf->len,
1174					     fs_info->dirty_metadata_batch);
1175			/* ugh, clear_extent_buffer_dirty needs to lock the page */
1176			btrfs_set_lock_blocking(buf);
1177			clear_extent_buffer_dirty(buf);
1178		}
1179	}
1180}
1181
1182static struct btrfs_subvolume_writers *btrfs_alloc_subvolume_writers(void)
1183{
1184	struct btrfs_subvolume_writers *writers;
1185	int ret;
1186
1187	writers = kmalloc(sizeof(*writers), GFP_NOFS);
1188	if (!writers)
1189		return ERR_PTR(-ENOMEM);
1190
1191	ret = percpu_counter_init(&writers->counter, 0, GFP_KERNEL);
1192	if (ret < 0) {
1193		kfree(writers);
1194		return ERR_PTR(ret);
1195	}
1196
1197	init_waitqueue_head(&writers->wait);
1198	return writers;
1199}
1200
1201static void
1202btrfs_free_subvolume_writers(struct btrfs_subvolume_writers *writers)
1203{
1204	percpu_counter_destroy(&writers->counter);
1205	kfree(writers);
1206}
1207
1208static void __setup_root(u32 nodesize, u32 sectorsize, u32 stripesize,
1209			 struct btrfs_root *root, struct btrfs_fs_info *fs_info,
1210			 u64 objectid)
1211{
1212	root->node = NULL;
1213	root->commit_root = NULL;
1214	root->sectorsize = sectorsize;
1215	root->nodesize = nodesize;
1216	root->stripesize = stripesize;
1217	root->state = 0;
1218	root->orphan_cleanup_state = 0;
1219
1220	root->objectid = objectid;
1221	root->last_trans = 0;
1222	root->highest_objectid = 0;
1223	root->nr_delalloc_inodes = 0;
1224	root->nr_ordered_extents = 0;
1225	root->name = NULL;
1226	root->inode_tree = RB_ROOT;
1227	INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1228	root->block_rsv = NULL;
1229	root->orphan_block_rsv = NULL;
1230
1231	INIT_LIST_HEAD(&root->dirty_list);
1232	INIT_LIST_HEAD(&root->root_list);
1233	INIT_LIST_HEAD(&root->delalloc_inodes);
1234	INIT_LIST_HEAD(&root->delalloc_root);
1235	INIT_LIST_HEAD(&root->ordered_extents);
1236	INIT_LIST_HEAD(&root->ordered_root);
1237	INIT_LIST_HEAD(&root->logged_list[0]);
1238	INIT_LIST_HEAD(&root->logged_list[1]);
1239	spin_lock_init(&root->orphan_lock);
1240	spin_lock_init(&root->inode_lock);
1241	spin_lock_init(&root->delalloc_lock);
1242	spin_lock_init(&root->ordered_extent_lock);
1243	spin_lock_init(&root->accounting_lock);
1244	spin_lock_init(&root->log_extents_lock[0]);
1245	spin_lock_init(&root->log_extents_lock[1]);
1246	mutex_init(&root->objectid_mutex);
1247	mutex_init(&root->log_mutex);
1248	mutex_init(&root->ordered_extent_mutex);
1249	mutex_init(&root->delalloc_mutex);
1250	init_waitqueue_head(&root->log_writer_wait);
1251	init_waitqueue_head(&root->log_commit_wait[0]);
1252	init_waitqueue_head(&root->log_commit_wait[1]);
1253	INIT_LIST_HEAD(&root->log_ctxs[0]);
1254	INIT_LIST_HEAD(&root->log_ctxs[1]);
1255	atomic_set(&root->log_commit[0], 0);
1256	atomic_set(&root->log_commit[1], 0);
1257	atomic_set(&root->log_writers, 0);
1258	atomic_set(&root->log_batch, 0);
1259	atomic_set(&root->orphan_inodes, 0);
1260	atomic_set(&root->refs, 1);
1261	atomic_set(&root->will_be_snapshoted, 0);
1262	root->log_transid = 0;
1263	root->log_transid_committed = -1;
1264	root->last_log_commit = 0;
1265	if (fs_info)
1266		extent_io_tree_init(&root->dirty_log_pages,
1267				     fs_info->btree_inode->i_mapping);
1268
1269	memset(&root->root_key, 0, sizeof(root->root_key));
1270	memset(&root->root_item, 0, sizeof(root->root_item));
1271	memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1272	if (fs_info)
1273		root->defrag_trans_start = fs_info->generation;
1274	else
1275		root->defrag_trans_start = 0;
1276	root->root_key.objectid = objectid;
1277	root->anon_dev = 0;
1278
1279	spin_lock_init(&root->root_item_lock);
1280}
1281
1282static struct btrfs_root *btrfs_alloc_root(struct btrfs_fs_info *fs_info)
1283{
1284	struct btrfs_root *root = kzalloc(sizeof(*root), GFP_NOFS);
1285	if (root)
1286		root->fs_info = fs_info;
1287	return root;
1288}
1289
1290#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1291/* Should only be used by the testing infrastructure */
1292struct btrfs_root *btrfs_alloc_dummy_root(void)
1293{
1294	struct btrfs_root *root;
1295
1296	root = btrfs_alloc_root(NULL);
1297	if (!root)
1298		return ERR_PTR(-ENOMEM);
1299	__setup_root(4096, 4096, 4096, root, NULL, 1);
1300	set_bit(BTRFS_ROOT_DUMMY_ROOT, &root->state);
1301	root->alloc_bytenr = 0;
1302
1303	return root;
1304}
1305#endif
1306
1307struct btrfs_root *btrfs_create_tree(struct btrfs_trans_handle *trans,
1308				     struct btrfs_fs_info *fs_info,
1309				     u64 objectid)
1310{
1311	struct extent_buffer *leaf;
1312	struct btrfs_root *tree_root = fs_info->tree_root;
1313	struct btrfs_root *root;
1314	struct btrfs_key key;
1315	int ret = 0;
1316	uuid_le uuid;
1317
1318	root = btrfs_alloc_root(fs_info);
1319	if (!root)
1320		return ERR_PTR(-ENOMEM);
1321
1322	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1323		tree_root->stripesize, root, fs_info, objectid);
1324	root->root_key.objectid = objectid;
1325	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1326	root->root_key.offset = 0;
1327
1328	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
1329	if (IS_ERR(leaf)) {
1330		ret = PTR_ERR(leaf);
1331		leaf = NULL;
1332		goto fail;
1333	}
1334
1335	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1336	btrfs_set_header_bytenr(leaf, leaf->start);
1337	btrfs_set_header_generation(leaf, trans->transid);
1338	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1339	btrfs_set_header_owner(leaf, objectid);
1340	root->node = leaf;
1341
1342	write_extent_buffer(leaf, fs_info->fsid, btrfs_header_fsid(),
1343			    BTRFS_FSID_SIZE);
1344	write_extent_buffer(leaf, fs_info->chunk_tree_uuid,
1345			    btrfs_header_chunk_tree_uuid(leaf),
1346			    BTRFS_UUID_SIZE);
1347	btrfs_mark_buffer_dirty(leaf);
1348
1349	root->commit_root = btrfs_root_node(root);
1350	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
1351
1352	root->root_item.flags = 0;
1353	root->root_item.byte_limit = 0;
1354	btrfs_set_root_bytenr(&root->root_item, leaf->start);
1355	btrfs_set_root_generation(&root->root_item, trans->transid);
1356	btrfs_set_root_level(&root->root_item, 0);
1357	btrfs_set_root_refs(&root->root_item, 1);
1358	btrfs_set_root_used(&root->root_item, leaf->len);
1359	btrfs_set_root_last_snapshot(&root->root_item, 0);
1360	btrfs_set_root_dirid(&root->root_item, 0);
1361	uuid_le_gen(&uuid);
1362	memcpy(root->root_item.uuid, uuid.b, BTRFS_UUID_SIZE);
1363	root->root_item.drop_level = 0;
1364
1365	key.objectid = objectid;
1366	key.type = BTRFS_ROOT_ITEM_KEY;
1367	key.offset = 0;
1368	ret = btrfs_insert_root(trans, tree_root, &key, &root->root_item);
1369	if (ret)
1370		goto fail;
1371
1372	btrfs_tree_unlock(leaf);
1373
1374	return root;
1375
1376fail:
1377	if (leaf) {
1378		btrfs_tree_unlock(leaf);
1379		free_extent_buffer(root->commit_root);
1380		free_extent_buffer(leaf);
1381	}
1382	kfree(root);
1383
1384	return ERR_PTR(ret);
1385}
1386
1387static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1388					 struct btrfs_fs_info *fs_info)
1389{
1390	struct btrfs_root *root;
1391	struct btrfs_root *tree_root = fs_info->tree_root;
1392	struct extent_buffer *leaf;
1393
1394	root = btrfs_alloc_root(fs_info);
1395	if (!root)
1396		return ERR_PTR(-ENOMEM);
1397
1398	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1399		     tree_root->stripesize, root, fs_info,
1400		     BTRFS_TREE_LOG_OBJECTID);
1401
1402	root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1403	root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1404	root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1405
1406	/*
1407	 * DON'T set REF_COWS for log trees
1408	 *
1409	 * log trees do not get reference counted because they go away
1410	 * before a real commit is actually done.  They do store pointers
1411	 * to file data extents, and those reference counts still get
1412	 * updated (along with back refs to the log tree).
1413	 */
1414
1415	leaf = btrfs_alloc_tree_block(trans, root, 0, BTRFS_TREE_LOG_OBJECTID,
1416			NULL, 0, 0, 0);
1417	if (IS_ERR(leaf)) {
1418		kfree(root);
1419		return ERR_CAST(leaf);
1420	}
1421
1422	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1423	btrfs_set_header_bytenr(leaf, leaf->start);
1424	btrfs_set_header_generation(leaf, trans->transid);
1425	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1426	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1427	root->node = leaf;
1428
1429	write_extent_buffer(root->node, root->fs_info->fsid,
1430			    btrfs_header_fsid(), BTRFS_FSID_SIZE);
1431	btrfs_mark_buffer_dirty(root->node);
1432	btrfs_tree_unlock(root->node);
1433	return root;
1434}
1435
1436int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1437			     struct btrfs_fs_info *fs_info)
1438{
1439	struct btrfs_root *log_root;
1440
1441	log_root = alloc_log_tree(trans, fs_info);
1442	if (IS_ERR(log_root))
1443		return PTR_ERR(log_root);
1444	WARN_ON(fs_info->log_root_tree);
1445	fs_info->log_root_tree = log_root;
1446	return 0;
1447}
1448
1449int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1450		       struct btrfs_root *root)
1451{
1452	struct btrfs_root *log_root;
1453	struct btrfs_inode_item *inode_item;
1454
1455	log_root = alloc_log_tree(trans, root->fs_info);
1456	if (IS_ERR(log_root))
1457		return PTR_ERR(log_root);
1458
1459	log_root->last_trans = trans->transid;
1460	log_root->root_key.offset = root->root_key.objectid;
1461
1462	inode_item = &log_root->root_item.inode;
1463	btrfs_set_stack_inode_generation(inode_item, 1);
1464	btrfs_set_stack_inode_size(inode_item, 3);
1465	btrfs_set_stack_inode_nlink(inode_item, 1);
1466	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
1467	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
1468
1469	btrfs_set_root_node(&log_root->root_item, log_root->node);
1470
1471	WARN_ON(root->log_root);
1472	root->log_root = log_root;
1473	root->log_transid = 0;
1474	root->log_transid_committed = -1;
1475	root->last_log_commit = 0;
1476	return 0;
1477}
1478
1479static struct btrfs_root *btrfs_read_tree_root(struct btrfs_root *tree_root,
1480					       struct btrfs_key *key)
1481{
1482	struct btrfs_root *root;
1483	struct btrfs_fs_info *fs_info = tree_root->fs_info;
1484	struct btrfs_path *path;
1485	u64 generation;
1486	int ret;
1487
1488	path = btrfs_alloc_path();
1489	if (!path)
1490		return ERR_PTR(-ENOMEM);
1491
1492	root = btrfs_alloc_root(fs_info);
1493	if (!root) {
1494		ret = -ENOMEM;
1495		goto alloc_fail;
1496	}
1497
1498	__setup_root(tree_root->nodesize, tree_root->sectorsize,
1499		tree_root->stripesize, root, fs_info, key->objectid);
1500
1501	ret = btrfs_find_root(tree_root, key, path,
1502			      &root->root_item, &root->root_key);
1503	if (ret) {
1504		if (ret > 0)
1505			ret = -ENOENT;
1506		goto find_fail;
1507	}
1508
1509	generation = btrfs_root_generation(&root->root_item);
1510	root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1511				     generation);
1512	if (!root->node) {
1513		ret = -ENOMEM;
1514		goto find_fail;
1515	} else if (!btrfs_buffer_uptodate(root->node, generation, 0)) {
1516		ret = -EIO;
1517		goto read_fail;
1518	}
1519	root->commit_root = btrfs_root_node(root);
1520out:
1521	btrfs_free_path(path);
1522	return root;
1523
1524read_fail:
1525	free_extent_buffer(root->node);
1526find_fail:
1527	kfree(root);
1528alloc_fail:
1529	root = ERR_PTR(ret);
1530	goto out;
1531}
1532
1533struct btrfs_root *btrfs_read_fs_root(struct btrfs_root *tree_root,
1534				      struct btrfs_key *location)
1535{
1536	struct btrfs_root *root;
1537
1538	root = btrfs_read_tree_root(tree_root, location);
1539	if (IS_ERR(root))
1540		return root;
1541
1542	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
1543		set_bit(BTRFS_ROOT_REF_COWS, &root->state);
1544		btrfs_check_and_init_root_item(&root->root_item);
1545	}
1546
1547	return root;
1548}
1549
1550int btrfs_init_fs_root(struct btrfs_root *root)
1551{
1552	int ret;
1553	struct btrfs_subvolume_writers *writers;
1554
1555	root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1556	root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1557					GFP_NOFS);
1558	if (!root->free_ino_pinned || !root->free_ino_ctl) {
1559		ret = -ENOMEM;
1560		goto fail;
1561	}
1562
1563	writers = btrfs_alloc_subvolume_writers();
1564	if (IS_ERR(writers)) {
1565		ret = PTR_ERR(writers);
1566		goto fail;
1567	}
1568	root->subv_writers = writers;
1569
1570	btrfs_init_free_ino_ctl(root);
1571	spin_lock_init(&root->ino_cache_lock);
1572	init_waitqueue_head(&root->ino_cache_wait);
1573
1574	ret = get_anon_bdev(&root->anon_dev);
1575	if (ret)
1576		goto free_writers;
1577
1578	mutex_lock(&root->objectid_mutex);
1579	ret = btrfs_find_highest_objectid(root,
1580					&root->highest_objectid);
1581	if (ret) {
1582		mutex_unlock(&root->objectid_mutex);
1583		goto free_root_dev;
1584	}
1585
1586	ASSERT(root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
1587
1588	mutex_unlock(&root->objectid_mutex);
1589
1590	return 0;
1591
1592free_root_dev:
1593	free_anon_bdev(root->anon_dev);
1594free_writers:
1595	btrfs_free_subvolume_writers(root->subv_writers);
1596fail:
1597	kfree(root->free_ino_ctl);
1598	kfree(root->free_ino_pinned);
1599	return ret;
1600}
1601
1602static struct btrfs_root *btrfs_lookup_fs_root(struct btrfs_fs_info *fs_info,
1603					       u64 root_id)
1604{
1605	struct btrfs_root *root;
1606
1607	spin_lock(&fs_info->fs_roots_radix_lock);
1608	root = radix_tree_lookup(&fs_info->fs_roots_radix,
1609				 (unsigned long)root_id);
1610	spin_unlock(&fs_info->fs_roots_radix_lock);
1611	return root;
1612}
1613
1614int btrfs_insert_fs_root(struct btrfs_fs_info *fs_info,
1615			 struct btrfs_root *root)
1616{
1617	int ret;
1618
1619	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1620	if (ret)
1621		return ret;
1622
1623	spin_lock(&fs_info->fs_roots_radix_lock);
1624	ret = radix_tree_insert(&fs_info->fs_roots_radix,
1625				(unsigned long)root->root_key.objectid,
1626				root);
1627	if (ret == 0)
1628		set_bit(BTRFS_ROOT_IN_RADIX, &root->state);
1629	spin_unlock(&fs_info->fs_roots_radix_lock);
1630	radix_tree_preload_end();
1631
1632	return ret;
1633}
1634
1635struct btrfs_root *btrfs_get_fs_root(struct btrfs_fs_info *fs_info,
1636				     struct btrfs_key *location,
1637				     bool check_ref)
1638{
1639	struct btrfs_root *root;
1640	struct btrfs_path *path;
1641	struct btrfs_key key;
1642	int ret;
1643
1644	if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1645		return fs_info->tree_root;
1646	if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1647		return fs_info->extent_root;
1648	if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1649		return fs_info->chunk_root;
1650	if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1651		return fs_info->dev_root;
1652	if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1653		return fs_info->csum_root;
1654	if (location->objectid == BTRFS_QUOTA_TREE_OBJECTID)
1655		return fs_info->quota_root ? fs_info->quota_root :
1656					     ERR_PTR(-ENOENT);
1657	if (location->objectid == BTRFS_UUID_TREE_OBJECTID)
1658		return fs_info->uuid_root ? fs_info->uuid_root :
1659					    ERR_PTR(-ENOENT);
1660again:
1661	root = btrfs_lookup_fs_root(fs_info, location->objectid);
1662	if (root) {
1663		if (check_ref && btrfs_root_refs(&root->root_item) == 0)
1664			return ERR_PTR(-ENOENT);
1665		return root;
1666	}
1667
1668	root = btrfs_read_fs_root(fs_info->tree_root, location);
1669	if (IS_ERR(root))
1670		return root;
1671
1672	if (check_ref && btrfs_root_refs(&root->root_item) == 0) {
1673		ret = -ENOENT;
1674		goto fail;
1675	}
1676
1677	ret = btrfs_init_fs_root(root);
1678	if (ret)
1679		goto fail;
1680
1681	path = btrfs_alloc_path();
1682	if (!path) {
1683		ret = -ENOMEM;
1684		goto fail;
1685	}
1686	key.objectid = BTRFS_ORPHAN_OBJECTID;
1687	key.type = BTRFS_ORPHAN_ITEM_KEY;
1688	key.offset = location->objectid;
1689
1690	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
1691	btrfs_free_path(path);
1692	if (ret < 0)
1693		goto fail;
1694	if (ret == 0)
1695		set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state);
1696
1697	ret = btrfs_insert_fs_root(fs_info, root);
1698	if (ret) {
1699		if (ret == -EEXIST) {
1700			free_fs_root(root);
1701			goto again;
1702		}
1703		goto fail;
1704	}
1705	return root;
1706fail:
1707	free_fs_root(root);
1708	return ERR_PTR(ret);
1709}
1710
1711static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1712{
1713	struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1714	int ret = 0;
1715	struct btrfs_device *device;
1716	struct backing_dev_info *bdi;
1717
1718	rcu_read_lock();
1719	list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1720		if (!device->bdev)
1721			continue;
1722		bdi = blk_get_backing_dev_info(device->bdev);
1723		if (bdi_congested(bdi, bdi_bits)) {
1724			ret = 1;
1725			break;
1726		}
1727	}
1728	rcu_read_unlock();
1729	return ret;
1730}
1731
1732static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1733{
1734	int err;
1735
1736	err = bdi_setup_and_register(bdi, "btrfs");
1737	if (err)
1738		return err;
1739
1740	bdi->ra_pages = VM_MAX_READAHEAD * 1024 / PAGE_CACHE_SIZE;
1741	bdi->congested_fn	= btrfs_congested_fn;
1742	bdi->congested_data	= info;
1743	return 0;
1744}
1745
1746/*
1747 * called by the kthread helper functions to finally call the bio end_io
1748 * functions.  This is where read checksum verification actually happens
1749 */
1750static void end_workqueue_fn(struct btrfs_work *work)
1751{
1752	struct bio *bio;
1753	struct btrfs_end_io_wq *end_io_wq;
1754	int error;
1755
1756	end_io_wq = container_of(work, struct btrfs_end_io_wq, work);
1757	bio = end_io_wq->bio;
1758
1759	error = end_io_wq->error;
1760	bio->bi_private = end_io_wq->private;
1761	bio->bi_end_io = end_io_wq->end_io;
1762	kmem_cache_free(btrfs_end_io_wq_cache, end_io_wq);
1763	bio_endio_nodec(bio, error);
1764}
1765
1766static int cleaner_kthread(void *arg)
1767{
1768	struct btrfs_root *root = arg;
1769	int again;
1770
1771	do {
1772		again = 0;
1773
1774		/* Make the cleaner go to sleep early. */
1775		if (btrfs_need_cleaner_sleep(root))
1776			goto sleep;
1777
1778		if (!mutex_trylock(&root->fs_info->cleaner_mutex))
1779			goto sleep;
1780
1781		/*
1782		 * Avoid the problem that we change the status of the fs
1783		 * during the above check and trylock.
1784		 */
1785		if (btrfs_need_cleaner_sleep(root)) {
1786			mutex_unlock(&root->fs_info->cleaner_mutex);
1787			goto sleep;
1788		}
1789
1790		mutex_lock(&root->fs_info->cleaner_delayed_iput_mutex);
1791		btrfs_run_delayed_iputs(root);
1792		btrfs_delete_unused_bgs(root->fs_info);
1793		mutex_unlock(&root->fs_info->cleaner_delayed_iput_mutex);
1794
1795		again = btrfs_clean_one_deleted_snapshot(root);
1796		mutex_unlock(&root->fs_info->cleaner_mutex);
1797
1798		/*
1799		 * The defragger has dealt with the R/O remount and umount,
1800		 * needn't do anything special here.
1801		 */
1802		btrfs_run_defrag_inodes(root->fs_info);
1803sleep:
1804		if (!try_to_freeze() && !again) {
1805			set_current_state(TASK_INTERRUPTIBLE);
1806			if (!kthread_should_stop())
1807				schedule();
1808			__set_current_state(TASK_RUNNING);
1809		}
1810	} while (!kthread_should_stop());
1811	return 0;
1812}
1813
1814static int transaction_kthread(void *arg)
1815{
1816	struct btrfs_root *root = arg;
1817	struct btrfs_trans_handle *trans;
1818	struct btrfs_transaction *cur;
1819	u64 transid;
1820	unsigned long now;
1821	unsigned long delay;
1822	bool cannot_commit;
1823
1824	do {
1825		cannot_commit = false;
1826		delay = HZ * root->fs_info->commit_interval;
1827		mutex_lock(&root->fs_info->transaction_kthread_mutex);
1828
1829		spin_lock(&root->fs_info->trans_lock);
1830		cur = root->fs_info->running_transaction;
1831		if (!cur) {
1832			spin_unlock(&root->fs_info->trans_lock);
1833			goto sleep;
1834		}
1835
1836		now = get_seconds();
1837		if (cur->state < TRANS_STATE_BLOCKED &&
1838		    (now < cur->start_time ||
1839		     now - cur->start_time < root->fs_info->commit_interval)) {
1840			spin_unlock(&root->fs_info->trans_lock);
1841			delay = HZ * 5;
1842			goto sleep;
1843		}
1844		transid = cur->transid;
1845		spin_unlock(&root->fs_info->trans_lock);
1846
1847		/* If the file system is aborted, this will always fail. */
1848		trans = btrfs_attach_transaction(root);
1849		if (IS_ERR(trans)) {
1850			if (PTR_ERR(trans) != -ENOENT)
1851				cannot_commit = true;
1852			goto sleep;
1853		}
1854		if (transid == trans->transid) {
1855			btrfs_commit_transaction(trans, root);
1856		} else {
1857			btrfs_end_transaction(trans, root);
1858		}
1859sleep:
1860		wake_up_process(root->fs_info->cleaner_kthread);
1861		mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1862
1863		if (unlikely(test_bit(BTRFS_FS_STATE_ERROR,
1864				      &root->fs_info->fs_state)))
1865			btrfs_cleanup_transaction(root);
1866		if (!try_to_freeze()) {
1867			set_current_state(TASK_INTERRUPTIBLE);
1868			if (!kthread_should_stop() &&
1869			    (!btrfs_transaction_blocked(root->fs_info) ||
1870			     cannot_commit))
1871				schedule_timeout(delay);
1872			__set_current_state(TASK_RUNNING);
1873		}
1874	} while (!kthread_should_stop());
1875	return 0;
1876}
1877
1878/*
1879 * this will find the highest generation in the array of
1880 * root backups.  The index of the highest array is returned,
1881 * or -1 if we can't find anything.
1882 *
1883 * We check to make sure the array is valid by comparing the
1884 * generation of the latest  root in the array with the generation
1885 * in the super block.  If they don't match we pitch it.
1886 */
1887static int find_newest_super_backup(struct btrfs_fs_info *info, u64 newest_gen)
1888{
1889	u64 cur;
1890	int newest_index = -1;
1891	struct btrfs_root_backup *root_backup;
1892	int i;
1893
1894	for (i = 0; i < BTRFS_NUM_BACKUP_ROOTS; i++) {
1895		root_backup = info->super_copy->super_roots + i;
1896		cur = btrfs_backup_tree_root_gen(root_backup);
1897		if (cur == newest_gen)
1898			newest_index = i;
1899	}
1900
1901	/* check to see if we actually wrapped around */
1902	if (newest_index == BTRFS_NUM_BACKUP_ROOTS - 1) {
1903		root_backup = info->super_copy->super_roots;
1904		cur = btrfs_backup_tree_root_gen(root_backup);
1905		if (cur == newest_gen)
1906			newest_index = 0;
1907	}
1908	return newest_index;
1909}
1910
1911
1912/*
1913 * find the oldest backup so we know where to store new entries
1914 * in the backup array.  This will set the backup_root_index
1915 * field in the fs_info struct
1916 */
1917static void find_oldest_super_backup(struct btrfs_fs_info *info,
1918				     u64 newest_gen)
1919{
1920	int newest_index = -1;
1921
1922	newest_index = find_newest_super_backup(info, newest_gen);
1923	/* if there was garbage in there, just move along */
1924	if (newest_index == -1) {
1925		info->backup_root_index = 0;
1926	} else {
1927		info->backup_root_index = (newest_index + 1) % BTRFS_NUM_BACKUP_ROOTS;
1928	}
1929}
1930
1931/*
1932 * copy all the root pointers into the super backup array.
1933 * this will bump the backup pointer by one when it is
1934 * done
1935 */
1936static void backup_super_roots(struct btrfs_fs_info *info)
1937{
1938	int next_backup;
1939	struct btrfs_root_backup *root_backup;
1940	int last_backup;
1941
1942	next_backup = info->backup_root_index;
1943	last_backup = (next_backup + BTRFS_NUM_BACKUP_ROOTS - 1) %
1944		BTRFS_NUM_BACKUP_ROOTS;
1945
1946	/*
1947	 * just overwrite the last backup if we're at the same generation
1948	 * this happens only at umount
1949	 */
1950	root_backup = info->super_for_commit->super_roots + last_backup;
1951	if (btrfs_backup_tree_root_gen(root_backup) ==
1952	    btrfs_header_generation(info->tree_root->node))
1953		next_backup = last_backup;
1954
1955	root_backup = info->super_for_commit->super_roots + next_backup;
1956
1957	/*
1958	 * make sure all of our padding and empty slots get zero filled
1959	 * regardless of which ones we use today
1960	 */
1961	memset(root_backup, 0, sizeof(*root_backup));
1962
1963	info->backup_root_index = (next_backup + 1) % BTRFS_NUM_BACKUP_ROOTS;
1964
1965	btrfs_set_backup_tree_root(root_backup, info->tree_root->node->start);
1966	btrfs_set_backup_tree_root_gen(root_backup,
1967			       btrfs_header_generation(info->tree_root->node));
1968
1969	btrfs_set_backup_tree_root_level(root_backup,
1970			       btrfs_header_level(info->tree_root->node));
1971
1972	btrfs_set_backup_chunk_root(root_backup, info->chunk_root->node->start);
1973	btrfs_set_backup_chunk_root_gen(root_backup,
1974			       btrfs_header_generation(info->chunk_root->node));
1975	btrfs_set_backup_chunk_root_level(root_backup,
1976			       btrfs_header_level(info->chunk_root->node));
1977
1978	btrfs_set_backup_extent_root(root_backup, info->extent_root->node->start);
1979	btrfs_set_backup_extent_root_gen(root_backup,
1980			       btrfs_header_generation(info->extent_root->node));
1981	btrfs_set_backup_extent_root_level(root_backup,
1982			       btrfs_header_level(info->extent_root->node));
1983
1984	/*
1985	 * we might commit during log recovery, which happens before we set
1986	 * the fs_root.  Make sure it is valid before we fill it in.
1987	 */
1988	if (info->fs_root && info->fs_root->node) {
1989		btrfs_set_backup_fs_root(root_backup,
1990					 info->fs_root->node->start);
1991		btrfs_set_backup_fs_root_gen(root_backup,
1992			       btrfs_header_generation(info->fs_root->node));
1993		btrfs_set_backup_fs_root_level(root_backup,
1994			       btrfs_header_level(info->fs_root->node));
1995	}
1996
1997	btrfs_set_backup_dev_root(root_backup, info->dev_root->node->start);
1998	btrfs_set_backup_dev_root_gen(root_backup,
1999			       btrfs_header_generation(info->dev_root->node));
2000	btrfs_set_backup_dev_root_level(root_backup,
2001				       btrfs_header_level(info->dev_root->node));
2002
2003	btrfs_set_backup_csum_root(root_backup, info->csum_root->node->start);
2004	btrfs_set_backup_csum_root_gen(root_backup,
2005			       btrfs_header_generation(info->csum_root->node));
2006	btrfs_set_backup_csum_root_level(root_backup,
2007			       btrfs_header_level(info->csum_root->node));
2008
2009	btrfs_set_backup_total_bytes(root_backup,
2010			     btrfs_super_total_bytes(info->super_copy));
2011	btrfs_set_backup_bytes_used(root_backup,
2012			     btrfs_super_bytes_used(info->super_copy));
2013	btrfs_set_backup_num_devices(root_backup,
2014			     btrfs_super_num_devices(info->super_copy));
2015
2016	/*
2017	 * if we don't copy this out to the super_copy, it won't get remembered
2018	 * for the next commit
2019	 */
2020	memcpy(&info->super_copy->super_roots,
2021	       &info->super_for_commit->super_roots,
2022	       sizeof(*root_backup) * BTRFS_NUM_BACKUP_ROOTS);
2023}
2024
2025/*
2026 * this copies info out of the root backup array and back into
2027 * the in-memory super block.  It is meant to help iterate through
2028 * the array, so you send it the number of backups you've already
2029 * tried and the last backup index you used.
2030 *
2031 * this returns -1 when it has tried all the backups
2032 */
2033static noinline int next_root_backup(struct btrfs_fs_info *info,
2034				     struct btrfs_super_block *super,
2035				     int *num_backups_tried, int *backup_index)
2036{
2037	struct btrfs_root_backup *root_backup;
2038	int newest = *backup_index;
2039
2040	if (*num_backups_tried == 0) {
2041		u64 gen = btrfs_super_generation(super);
2042
2043		newest = find_newest_super_backup(info, gen);
2044		if (newest == -1)
2045			return -1;
2046
2047		*backup_index = newest;
2048		*num_backups_tried = 1;
2049	} else if (*num_backups_tried == BTRFS_NUM_BACKUP_ROOTS) {
2050		/* we've tried all the backups, all done */
2051		return -1;
2052	} else {
2053		/* jump to the next oldest backup */
2054		newest = (*backup_index + BTRFS_NUM_BACKUP_ROOTS - 1) %
2055			BTRFS_NUM_BACKUP_ROOTS;
2056		*backup_index = newest;
2057		*num_backups_tried += 1;
2058	}
2059	root_backup = super->super_roots + newest;
2060
2061	btrfs_set_super_generation(super,
2062				   btrfs_backup_tree_root_gen(root_backup));
2063	btrfs_set_super_root(super, btrfs_backup_tree_root(root_backup));
2064	btrfs_set_super_root_level(super,
2065				   btrfs_backup_tree_root_level(root_backup));
2066	btrfs_set_super_bytes_used(super, btrfs_backup_bytes_used(root_backup));
2067
2068	/*
2069	 * fixme: the total bytes and num_devices need to match or we should
2070	 * need a fsck
2071	 */
2072	btrfs_set_super_total_bytes(super, btrfs_backup_total_bytes(root_backup));
2073	btrfs_set_super_num_devices(super, btrfs_backup_num_devices(root_backup));
2074	return 0;
2075}
2076
2077/* helper to cleanup workers */
2078static void btrfs_stop_all_workers(struct btrfs_fs_info *fs_info)
2079{
2080	btrfs_destroy_workqueue(fs_info->fixup_workers);
2081	btrfs_destroy_workqueue(fs_info->delalloc_workers);
2082	btrfs_destroy_workqueue(fs_info->workers);
2083	btrfs_destroy_workqueue(fs_info->endio_workers);
2084	btrfs_destroy_workqueue(fs_info->endio_meta_workers);
2085	btrfs_destroy_workqueue(fs_info->endio_raid56_workers);
2086	btrfs_destroy_workqueue(fs_info->endio_repair_workers);
2087	btrfs_destroy_workqueue(fs_info->rmw_workers);
2088	btrfs_destroy_workqueue(fs_info->endio_meta_write_workers);
2089	btrfs_destroy_workqueue(fs_info->endio_write_workers);
2090	btrfs_destroy_workqueue(fs_info->endio_freespace_worker);
2091	btrfs_destroy_workqueue(fs_info->submit_workers);
2092	btrfs_destroy_workqueue(fs_info->delayed_workers);
2093	btrfs_destroy_workqueue(fs_info->caching_workers);
2094	btrfs_destroy_workqueue(fs_info->readahead_workers);
2095	btrfs_destroy_workqueue(fs_info->flush_workers);
2096	btrfs_destroy_workqueue(fs_info->qgroup_rescan_workers);
2097	btrfs_destroy_workqueue(fs_info->extent_workers);
2098}
2099
2100static void free_root_extent_buffers(struct btrfs_root *root)
2101{
2102	if (root) {
2103		free_extent_buffer(root->node);
2104		free_extent_buffer(root->commit_root);
2105		root->node = NULL;
2106		root->commit_root = NULL;
2107	}
2108}
2109
2110/* helper to cleanup tree roots */
2111static void free_root_pointers(struct btrfs_fs_info *info, int chunk_root)
2112{
2113	free_root_extent_buffers(info->tree_root);
2114
2115	free_root_extent_buffers(info->dev_root);
2116	free_root_extent_buffers(info->extent_root);
2117	free_root_extent_buffers(info->csum_root);
2118	free_root_extent_buffers(info->quota_root);
2119	free_root_extent_buffers(info->uuid_root);
2120	if (chunk_root)
2121		free_root_extent_buffers(info->chunk_root);
2122}
2123
2124void btrfs_free_fs_roots(struct btrfs_fs_info *fs_info)
2125{
2126	int ret;
2127	struct btrfs_root *gang[8];
2128	int i;
2129
2130	while (!list_empty(&fs_info->dead_roots)) {
2131		gang[0] = list_entry(fs_info->dead_roots.next,
2132				     struct btrfs_root, root_list);
2133		list_del(&gang[0]->root_list);
2134
2135		if (test_bit(BTRFS_ROOT_IN_RADIX, &gang[0]->state)) {
2136			btrfs_drop_and_free_fs_root(fs_info, gang[0]);
2137		} else {
2138			free_extent_buffer(gang[0]->node);
2139			free_extent_buffer(gang[0]->commit_root);
2140			btrfs_put_fs_root(gang[0]);
2141		}
2142	}
2143
2144	while (1) {
2145		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2146					     (void **)gang, 0,
2147					     ARRAY_SIZE(gang));
2148		if (!ret)
2149			break;
2150		for (i = 0; i < ret; i++)
2151			btrfs_drop_and_free_fs_root(fs_info, gang[i]);
2152	}
2153
2154	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
2155		btrfs_free_log_root_tree(NULL, fs_info);
2156		btrfs_destroy_pinned_extent(fs_info->tree_root,
2157					    fs_info->pinned_extents);
2158	}
2159}
2160
2161static void btrfs_init_scrub(struct btrfs_fs_info *fs_info)
2162{
2163	mutex_init(&fs_info->scrub_lock);
2164	atomic_set(&fs_info->scrubs_running, 0);
2165	atomic_set(&fs_info->scrub_pause_req, 0);
2166	atomic_set(&fs_info->scrubs_paused, 0);
2167	atomic_set(&fs_info->scrub_cancel_req, 0);
2168	init_waitqueue_head(&fs_info->scrub_pause_wait);
2169	fs_info->scrub_workers_refcnt = 0;
2170}
2171
2172static void btrfs_init_balance(struct btrfs_fs_info *fs_info)
2173{
2174	spin_lock_init(&fs_info->balance_lock);
2175	mutex_init(&fs_info->balance_mutex);
2176	atomic_set(&fs_info->balance_running, 0);
2177	atomic_set(&fs_info->balance_pause_req, 0);
2178	atomic_set(&fs_info->balance_cancel_req, 0);
2179	fs_info->balance_ctl = NULL;
2180	init_waitqueue_head(&fs_info->balance_wait_q);
2181}
2182
2183static void btrfs_init_btree_inode(struct btrfs_fs_info *fs_info,
2184				   struct btrfs_root *tree_root)
2185{
2186	fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
2187	set_nlink(fs_info->btree_inode, 1);
2188	/*
2189	 * we set the i_size on the btree inode to the max possible int.
2190	 * the real end of the address space is determined by all of
2191	 * the devices in the system
2192	 */
2193	fs_info->btree_inode->i_size = OFFSET_MAX;
2194	fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
2195
2196	RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
2197	extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
2198			     fs_info->btree_inode->i_mapping);
2199	BTRFS_I(fs_info->btree_inode)->io_tree.track_uptodate = 0;
2200	extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
2201
2202	BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
2203
2204	BTRFS_I(fs_info->btree_inode)->root = tree_root;
2205	memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
2206	       sizeof(struct btrfs_key));
2207	set_bit(BTRFS_INODE_DUMMY,
2208		&BTRFS_I(fs_info->btree_inode)->runtime_flags);
2209	btrfs_insert_inode_hash(fs_info->btree_inode);
2210}
2211
2212static void btrfs_init_dev_replace_locks(struct btrfs_fs_info *fs_info)
2213{
2214	fs_info->dev_replace.lock_owner = 0;
2215	atomic_set(&fs_info->dev_replace.nesting_level, 0);
2216	mutex_init(&fs_info->dev_replace.lock_finishing_cancel_unmount);
2217	mutex_init(&fs_info->dev_replace.lock_management_lock);
2218	mutex_init(&fs_info->dev_replace.lock);
2219	init_waitqueue_head(&fs_info->replace_wait);
2220}
2221
2222static void btrfs_init_qgroup(struct btrfs_fs_info *fs_info)
2223{
2224	spin_lock_init(&fs_info->qgroup_lock);
2225	mutex_init(&fs_info->qgroup_ioctl_lock);
2226	fs_info->qgroup_tree = RB_ROOT;
2227	fs_info->qgroup_op_tree = RB_ROOT;
2228	INIT_LIST_HEAD(&fs_info->dirty_qgroups);
2229	fs_info->qgroup_seq = 1;
2230	fs_info->quota_enabled = 0;
2231	fs_info->pending_quota_state = 0;
2232	fs_info->qgroup_ulist = NULL;
2233	mutex_init(&fs_info->qgroup_rescan_lock);
2234}
2235
2236static int btrfs_init_workqueues(struct btrfs_fs_info *fs_info,
2237		struct btrfs_fs_devices *fs_devices)
2238{
2239	int max_active = fs_info->thread_pool_size;
2240	unsigned int flags = WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_UNBOUND;
2241
2242	fs_info->workers =
2243		btrfs_alloc_workqueue("worker", flags | WQ_HIGHPRI,
2244				      max_active, 16);
2245
2246	fs_info->delalloc_workers =
2247		btrfs_alloc_workqueue("delalloc", flags, max_active, 2);
2248
2249	fs_info->flush_workers =
2250		btrfs_alloc_workqueue("flush_delalloc", flags, max_active, 0);
2251
2252	fs_info->caching_workers =
2253		btrfs_alloc_workqueue("cache", flags, max_active, 0);
2254
2255	/*
2256	 * a higher idle thresh on the submit workers makes it much more
2257	 * likely that bios will be send down in a sane order to the
2258	 * devices
2259	 */
2260	fs_info->submit_workers =
2261		btrfs_alloc_workqueue("submit", flags,
2262				      min_t(u64, fs_devices->num_devices,
2263					    max_active), 64);
2264
2265	fs_info->fixup_workers =
2266		btrfs_alloc_workqueue("fixup", flags, 1, 0);
2267
2268	/*
2269	 * endios are largely parallel and should have a very
2270	 * low idle thresh
2271	 */
2272	fs_info->endio_workers =
2273		btrfs_alloc_workqueue("endio", flags, max_active, 4);
2274	fs_info->endio_meta_workers =
2275		btrfs_alloc_workqueue("endio-meta", flags, max_active, 4);
2276	fs_info->endio_meta_write_workers =
2277		btrfs_alloc_workqueue("endio-meta-write", flags, max_active, 2);
2278	fs_info->endio_raid56_workers =
2279		btrfs_alloc_workqueue("endio-raid56", flags, max_active, 4);
2280	fs_info->endio_repair_workers =
2281		btrfs_alloc_workqueue("endio-repair", flags, 1, 0);
2282	fs_info->rmw_workers =
2283		btrfs_alloc_workqueue("rmw", flags, max_active, 2);
2284	fs_info->endio_write_workers =
2285		btrfs_alloc_workqueue("endio-write", flags, max_active, 2);
2286	fs_info->endio_freespace_worker =
2287		btrfs_alloc_workqueue("freespace-write", flags, max_active, 0);
2288	fs_info->delayed_workers =
2289		btrfs_alloc_workqueue("delayed-meta", flags, max_active, 0);
2290	fs_info->readahead_workers =
2291		btrfs_alloc_workqueue("readahead", flags, max_active, 2);
2292	fs_info->qgroup_rescan_workers =
2293		btrfs_alloc_workqueue("qgroup-rescan", flags, 1, 0);
2294	fs_info->extent_workers =
2295		btrfs_alloc_workqueue("extent-refs", flags,
2296				      min_t(u64, fs_devices->num_devices,
2297					    max_active), 8);
2298
2299	if (!(fs_info->workers && fs_info->delalloc_workers &&
2300	      fs_info->submit_workers && fs_info->flush_workers &&
2301	      fs_info->endio_workers && fs_info->endio_meta_workers &&
2302	      fs_info->endio_meta_write_workers &&
2303	      fs_info->endio_repair_workers &&
2304	      fs_info->endio_write_workers && fs_info->endio_raid56_workers &&
2305	      fs_info->endio_freespace_worker && fs_info->rmw_workers &&
2306	      fs_info->caching_workers && fs_info->readahead_workers &&
2307	      fs_info->fixup_workers && fs_info->delayed_workers &&
2308	      fs_info->extent_workers &&
2309	      fs_info->qgroup_rescan_workers)) {
2310		return -ENOMEM;
2311	}
2312
2313	return 0;
2314}
2315
2316static int btrfs_replay_log(struct btrfs_fs_info *fs_info,
2317			    struct btrfs_fs_devices *fs_devices)
2318{
2319	int ret;
2320	struct btrfs_root *tree_root = fs_info->tree_root;
2321	struct btrfs_root *log_tree_root;
2322	struct btrfs_super_block *disk_super = fs_info->super_copy;
2323	u64 bytenr = btrfs_super_log_root(disk_super);
2324
2325	if (fs_devices->rw_devices == 0) {
2326		printk(KERN_WARNING "BTRFS: log replay required "
2327		       "on RO media\n");
2328		return -EIO;
2329	}
2330
2331	log_tree_root = btrfs_alloc_root(fs_info);
2332	if (!log_tree_root)
2333		return -ENOMEM;
2334
2335	__setup_root(tree_root->nodesize, tree_root->sectorsize,
2336			tree_root->stripesize, log_tree_root, fs_info,
2337			BTRFS_TREE_LOG_OBJECTID);
2338
2339	log_tree_root->node = read_tree_block(tree_root, bytenr,
2340			fs_info->generation + 1);
2341	if (!log_tree_root->node ||
2342	    !extent_buffer_uptodate(log_tree_root->node)) {
2343		printk(KERN_ERR "BTRFS: failed to read log tree\n");
2344		free_extent_buffer(log_tree_root->node);
2345		kfree(log_tree_root);
2346		return -EIO;
2347	}
2348	/* returns with log_tree_root freed on success */
2349	ret = btrfs_recover_log_trees(log_tree_root);
2350	if (ret) {
2351		btrfs_error(tree_root->fs_info, ret,
2352			    "Failed to recover log tree");
2353		free_extent_buffer(log_tree_root->node);
2354		kfree(log_tree_root);
2355		return ret;
2356	}
2357
2358	if (fs_info->sb->s_flags & MS_RDONLY) {
2359		ret = btrfs_commit_super(tree_root);
2360		if (ret)
2361			return ret;
2362	}
2363
2364	return 0;
2365}
2366
2367static int btrfs_read_roots(struct btrfs_fs_info *fs_info,
2368			    struct btrfs_root *tree_root)
2369{
2370	struct btrfs_root *root;
2371	struct btrfs_key location;
2372	int ret;
2373
2374	location.objectid = BTRFS_EXTENT_TREE_OBJECTID;
2375	location.type = BTRFS_ROOT_ITEM_KEY;
2376	location.offset = 0;
2377
2378	root = btrfs_read_tree_root(tree_root, &location);
2379	if (IS_ERR(root))
2380		return PTR_ERR(root);
2381	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2382	fs_info->extent_root = root;
2383
2384	location.objectid = BTRFS_DEV_TREE_OBJECTID;
2385	root = btrfs_read_tree_root(tree_root, &location);
2386	if (IS_ERR(root))
2387		return PTR_ERR(root);
2388	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2389	fs_info->dev_root = root;
2390	btrfs_init_devices_late(fs_info);
2391
2392	location.objectid = BTRFS_CSUM_TREE_OBJECTID;
2393	root = btrfs_read_tree_root(tree_root, &location);
2394	if (IS_ERR(root))
2395		return PTR_ERR(root);
2396	set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2397	fs_info->csum_root = root;
2398
2399	location.objectid = BTRFS_QUOTA_TREE_OBJECTID;
2400	root = btrfs_read_tree_root(tree_root, &location);
2401	if (!IS_ERR(root)) {
2402		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2403		fs_info->quota_enabled = 1;
2404		fs_info->pending_quota_state = 1;
2405		fs_info->quota_root = root;
2406	}
2407
2408	location.objectid = BTRFS_UUID_TREE_OBJECTID;
2409	root = btrfs_read_tree_root(tree_root, &location);
2410	if (IS_ERR(root)) {
2411		ret = PTR_ERR(root);
2412		if (ret != -ENOENT)
2413			return ret;
2414	} else {
2415		set_bit(BTRFS_ROOT_TRACK_DIRTY, &root->state);
2416		fs_info->uuid_root = root;
2417	}
2418
2419	return 0;
2420}
2421
2422int open_ctree(struct super_block *sb,
2423	       struct btrfs_fs_devices *fs_devices,
2424	       char *options)
2425{
2426	u32 sectorsize;
2427	u32 nodesize;
2428	u32 stripesize;
2429	u64 generation;
2430	u64 features;
2431	struct btrfs_key location;
2432	struct buffer_head *bh;
2433	struct btrfs_super_block *disk_super;
2434	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2435	struct btrfs_root *tree_root;
2436	struct btrfs_root *chunk_root;
2437	int ret;
2438	int err = -EINVAL;
2439	int num_backups_tried = 0;
2440	int backup_index = 0;
2441	int max_active;
2442
2443	tree_root = fs_info->tree_root = btrfs_alloc_root(fs_info);
2444	chunk_root = fs_info->chunk_root = btrfs_alloc_root(fs_info);
2445	if (!tree_root || !chunk_root) {
2446		err = -ENOMEM;
2447		goto fail;
2448	}
2449
2450	ret = init_srcu_struct(&fs_info->subvol_srcu);
2451	if (ret) {
2452		err = ret;
2453		goto fail;
2454	}
2455
2456	ret = setup_bdi(fs_info, &fs_info->bdi);
2457	if (ret) {
2458		err = ret;
2459		goto fail_srcu;
2460	}
2461
2462	ret = percpu_counter_init(&fs_info->dirty_metadata_bytes, 0, GFP_KERNEL);
2463	if (ret) {
2464		err = ret;
2465		goto fail_bdi;
2466	}
2467	fs_info->dirty_metadata_batch = PAGE_CACHE_SIZE *
2468					(1 + ilog2(nr_cpu_ids));
2469
2470	ret = percpu_counter_init(&fs_info->delalloc_bytes, 0, GFP_KERNEL);
2471	if (ret) {
2472		err = ret;
2473		goto fail_dirty_metadata_bytes;
2474	}
2475
2476	ret = percpu_counter_init(&fs_info->bio_counter, 0, GFP_KERNEL);
2477	if (ret) {
2478		err = ret;
2479		goto fail_delalloc_bytes;
2480	}
2481
2482	fs_info->btree_inode = new_inode(sb);
2483	if (!fs_info->btree_inode) {
2484		err = -ENOMEM;
2485		goto fail_bio_counter;
2486	}
2487
2488	mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
2489
2490	INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
2491	INIT_RADIX_TREE(&fs_info->buffer_radix, GFP_ATOMIC);
2492	INIT_LIST_HEAD(&fs_info->trans_list);
2493	INIT_LIST_HEAD(&fs_info->dead_roots);
2494	INIT_LIST_HEAD(&fs_info->delayed_iputs);
2495	INIT_LIST_HEAD(&fs_info->delalloc_roots);
2496	INIT_LIST_HEAD(&fs_info->caching_block_groups);
2497	spin_lock_init(&fs_info->delalloc_root_lock);
2498	spin_lock_init(&fs_info->trans_lock);
2499	spin_lock_init(&fs_info->fs_roots_radix_lock);
2500	spin_lock_init(&fs_info->delayed_iput_lock);
2501	spin_lock_init(&fs_info->defrag_inodes_lock);
2502	spin_lock_init(&fs_info->free_chunk_lock);
2503	spin_lock_init(&fs_info->tree_mod_seq_lock);
2504	spin_lock_init(&fs_info->super_lock);
2505	spin_lock_init(&fs_info->qgroup_op_lock);
2506	spin_lock_init(&fs_info->buffer_lock);
2507	spin_lock_init(&fs_info->unused_bgs_lock);
2508	rwlock_init(&fs_info->tree_mod_log_lock);
2509	mutex_init(&fs_info->unused_bg_unpin_mutex);
2510	mutex_init(&fs_info->reloc_mutex);
2511	mutex_init(&fs_info->delalloc_root_mutex);
2512	mutex_init(&fs_info->cleaner_delayed_iput_mutex);
2513	seqlock_init(&fs_info->profiles_lock);
2514
2515	init_completion(&fs_info->kobj_unregister);
2516	INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
2517	INIT_LIST_HEAD(&fs_info->space_info);
2518	INIT_LIST_HEAD(&fs_info->tree_mod_seq_list);
2519	INIT_LIST_HEAD(&fs_info->unused_bgs);
2520	btrfs_mapping_init(&fs_info->mapping_tree);
2521	btrfs_init_block_rsv(&fs_info->global_block_rsv,
2522			     BTRFS_BLOCK_RSV_GLOBAL);
2523	btrfs_init_block_rsv(&fs_info->delalloc_block_rsv,
2524			     BTRFS_BLOCK_RSV_DELALLOC);
2525	btrfs_init_block_rsv(&fs_info->trans_block_rsv, BTRFS_BLOCK_RSV_TRANS);
2526	btrfs_init_block_rsv(&fs_info->chunk_block_rsv, BTRFS_BLOCK_RSV_CHUNK);
2527	btrfs_init_block_rsv(&fs_info->empty_block_rsv, BTRFS_BLOCK_RSV_EMPTY);
2528	btrfs_init_block_rsv(&fs_info->delayed_block_rsv,
2529			     BTRFS_BLOCK_RSV_DELOPS);
2530	atomic_set(&fs_info->nr_async_submits, 0);
2531	atomic_set(&fs_info->async_delalloc_pages, 0);
2532	atomic_set(&fs_info->async_submit_draining, 0);
2533	atomic_set(&fs_info->nr_async_bios, 0);
2534	atomic_set(&fs_info->defrag_running, 0);
2535	atomic_set(&fs_info->qgroup_op_seq, 0);
2536	atomic64_set(&fs_info->tree_mod_seq, 0);
2537	fs_info->sb = sb;
2538	fs_info->max_inline = BTRFS_DEFAULT_MAX_INLINE;
2539	fs_info->metadata_ratio = 0;
2540	fs_info->defrag_inodes = RB_ROOT;
2541	fs_info->free_chunk_space = 0;
2542	fs_info->tree_mod_log = RB_ROOT;
2543	fs_info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
2544	fs_info->avg_delayed_ref_runtime = NSEC_PER_SEC >> 6; /* div by 64 */
2545	/* readahead state */
2546	INIT_RADIX_TREE(&fs_info->reada_tree, GFP_NOFS & ~__GFP_WAIT);
2547	spin_lock_init(&fs_info->reada_lock);
2548
2549	fs_info->thread_pool_size = min_t(unsigned long,
2550					  num_online_cpus() + 2, 8);
2551
2552	INIT_LIST_HEAD(&fs_info->ordered_roots);
2553	spin_lock_init(&fs_info->ordered_root_lock);
2554	fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
2555					GFP_NOFS);
2556	if (!fs_info->delayed_root) {
2557		err = -ENOMEM;
2558		goto fail_iput;
2559	}
2560	btrfs_init_delayed_root(fs_info->delayed_root);
2561
2562	btrfs_init_scrub(fs_info);
2563#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2564	fs_info->check_integrity_print_mask = 0;
2565#endif
2566	btrfs_init_balance(fs_info);
2567	btrfs_init_async_reclaim_work(&fs_info->async_reclaim_work);
2568
2569	sb->s_blocksize = 4096;
2570	sb->s_blocksize_bits = blksize_bits(4096);
2571	sb->s_bdi = &fs_info->bdi;
2572
2573	btrfs_init_btree_inode(fs_info, tree_root);
2574
2575	spin_lock_init(&fs_info->block_group_cache_lock);
2576	fs_info->block_group_cache_tree = RB_ROOT;
2577	fs_info->first_logical_byte = (u64)-1;
2578
2579	extent_io_tree_init(&fs_info->freed_extents[0],
2580			     fs_info->btree_inode->i_mapping);
2581	extent_io_tree_init(&fs_info->freed_extents[1],
2582			     fs_info->btree_inode->i_mapping);
2583	fs_info->pinned_extents = &fs_info->freed_extents[0];
2584	fs_info->do_barriers = 1;
2585
2586
2587	mutex_init(&fs_info->ordered_operations_mutex);
2588	mutex_init(&fs_info->ordered_extent_flush_mutex);
2589	mutex_init(&fs_info->tree_log_mutex);
2590	mutex_init(&fs_info->chunk_mutex);
2591	mutex_init(&fs_info->transaction_kthread_mutex);
2592	mutex_init(&fs_info->cleaner_mutex);
2593	mutex_init(&fs_info->volume_mutex);
2594	mutex_init(&fs_info->ro_block_group_mutex);
2595	init_rwsem(&fs_info->commit_root_sem);
2596	init_rwsem(&fs_info->cleanup_work_sem);
2597	init_rwsem(&fs_info->subvol_sem);
2598	sema_init(&fs_info->uuid_tree_rescan_sem, 1);
2599
2600	btrfs_init_dev_replace_locks(fs_info);
2601	btrfs_init_qgroup(fs_info);
2602
2603	btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
2604	btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
2605
2606	init_waitqueue_head(&fs_info->transaction_throttle);
2607	init_waitqueue_head(&fs_info->transaction_wait);
2608	init_waitqueue_head(&fs_info->transaction_blocked_wait);
2609	init_waitqueue_head(&fs_info->async_submit_wait);
2610
2611	INIT_LIST_HEAD(&fs_info->pinned_chunks);
2612
2613	ret = btrfs_alloc_stripe_hash_table(fs_info);
2614	if (ret) {
2615		err = ret;
2616		goto fail_alloc;
2617	}
2618
2619	__setup_root(4096, 4096, 4096, tree_root,
2620		     fs_info, BTRFS_ROOT_TREE_OBJECTID);
2621
2622	invalidate_bdev(fs_devices->latest_bdev);
2623
2624	/*
2625	 * Read super block and check the signature bytes only
2626	 */
2627	bh = btrfs_read_dev_super(fs_devices->latest_bdev);
2628	if (!bh) {
2629		err = -EINVAL;
2630		goto fail_alloc;
2631	}
2632
2633	/*
2634	 * We want to check superblock checksum, the type is stored inside.
2635	 * Pass the whole disk block of size BTRFS_SUPER_INFO_SIZE (4k).
2636	 */
2637	if (btrfs_check_super_csum(bh->b_data)) {
2638		printk(KERN_ERR "BTRFS: superblock checksum mismatch\n");
2639		err = -EINVAL;
2640		brelse(bh);
2641		goto fail_alloc;
2642	}
2643
2644	/*
2645	 * super_copy is zeroed at allocation time and we never touch the
2646	 * following bytes up to INFO_SIZE, the checksum is calculated from
2647	 * the whole block of INFO_SIZE
2648	 */
2649	memcpy(fs_info->super_copy, bh->b_data, sizeof(*fs_info->super_copy));
2650	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2651	       sizeof(*fs_info->super_for_commit));
2652	brelse(bh);
2653
2654	memcpy(fs_info->fsid, fs_info->super_copy->fsid, BTRFS_FSID_SIZE);
2655
2656	ret = btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
2657	if (ret) {
2658		printk(KERN_ERR "BTRFS: superblock contains fatal errors\n");
2659		err = -EINVAL;
2660		goto fail_alloc;
2661	}
2662
2663	disk_super = fs_info->super_copy;
2664	if (!btrfs_super_root(disk_super))
2665		goto fail_alloc;
2666
2667	/* check FS state, whether FS is broken. */
2668	if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_ERROR)
2669		set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
2670
2671	/*
2672	 * run through our array of backup supers and setup
2673	 * our ring pointer to the oldest one
2674	 */
2675	generation = btrfs_super_generation(disk_super);
2676	find_oldest_super_backup(fs_info, generation);
2677
2678	/*
2679	 * In the long term, we'll store the compression type in the super
2680	 * block, and it'll be used for per file compression control.
2681	 */
2682	fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
2683
2684	ret = btrfs_parse_options(tree_root, options);
2685	if (ret) {
2686		err = ret;
2687		goto fail_alloc;
2688	}
2689
2690	features = btrfs_super_incompat_flags(disk_super) &
2691		~BTRFS_FEATURE_INCOMPAT_SUPP;
2692	if (features) {
2693		printk(KERN_ERR "BTRFS: couldn't mount because of "
2694		       "unsupported optional features (%Lx).\n",
2695		       features);
2696		err = -EINVAL;
2697		goto fail_alloc;
2698	}
2699
2700	/*
2701	 * Leafsize and nodesize were always equal, this is only a sanity check.
2702	 */
2703	if (le32_to_cpu(disk_super->__unused_leafsize) !=
2704	    btrfs_super_nodesize(disk_super)) {
2705		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2706		       "blocksizes don't match.  node %d leaf %d\n",
2707		       btrfs_super_nodesize(disk_super),
2708		       le32_to_cpu(disk_super->__unused_leafsize));
2709		err = -EINVAL;
2710		goto fail_alloc;
2711	}
2712	if (btrfs_super_nodesize(disk_super) > BTRFS_MAX_METADATA_BLOCKSIZE) {
2713		printk(KERN_ERR "BTRFS: couldn't mount because metadata "
2714		       "blocksize (%d) was too large\n",
2715		       btrfs_super_nodesize(disk_super));
2716		err = -EINVAL;
2717		goto fail_alloc;
2718	}
2719
2720	features = btrfs_super_incompat_flags(disk_super);
2721	features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
2722	if (tree_root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
2723		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
2724
2725	if (features & BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA)
2726		printk(KERN_INFO "BTRFS: has skinny extents\n");
2727
2728	/*
2729	 * flag our filesystem as having big metadata blocks if
2730	 * they are bigger than the page size
2731	 */
2732	if (btrfs_super_nodesize(disk_super) > PAGE_CACHE_SIZE) {
2733		if (!(features & BTRFS_FEATURE_INCOMPAT_BIG_METADATA))
2734			printk(KERN_INFO "BTRFS: flagging fs with big metadata feature\n");
2735		features |= BTRFS_FEATURE_INCOMPAT_BIG_METADATA;
2736	}
2737
2738	nodesize = btrfs_super_nodesize(disk_super);
2739	sectorsize = btrfs_super_sectorsize(disk_super);
2740	stripesize = btrfs_super_stripesize(disk_super);
2741	fs_info->dirty_metadata_batch = nodesize * (1 + ilog2(nr_cpu_ids));
2742	fs_info->delalloc_batch = sectorsize * 512 * (1 + ilog2(nr_cpu_ids));
2743
2744	/*
2745	 * mixed block groups end up with duplicate but slightly offset
2746	 * extent buffers for the same range.  It leads to corruptions
2747	 */
2748	if ((features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) &&
2749	    (sectorsize != nodesize)) {
2750		printk(KERN_ERR "BTRFS: unequal leaf/node/sector sizes "
2751				"are not allowed for mixed block groups on %s\n",
2752				sb->s_id);
2753		goto fail_alloc;
2754	}
2755
2756	/*
2757	 * Needn't use the lock because there is no other task which will
2758	 * update the flag.
2759	 */
2760	btrfs_set_super_incompat_flags(disk_super, features);
2761
2762	features = btrfs_super_compat_ro_flags(disk_super) &
2763		~BTRFS_FEATURE_COMPAT_RO_SUPP;
2764	if (!(sb->s_flags & MS_RDONLY) && features) {
2765		printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
2766		       "unsupported option features (%Lx).\n",
2767		       features);
2768		err = -EINVAL;
2769		goto fail_alloc;
2770	}
2771
2772	max_active = fs_info->thread_pool_size;
2773
2774	ret = btrfs_init_workqueues(fs_info, fs_devices);
2775	if (ret) {
2776		err = ret;
2777		goto fail_sb_buffer;
2778	}
2779
2780	fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
2781	fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
2782				    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
2783
2784	tree_root->nodesize = nodesize;
2785	tree_root->sectorsize = sectorsize;
2786	tree_root->stripesize = stripesize;
2787
2788	sb->s_blocksize = sectorsize;
2789	sb->s_blocksize_bits = blksize_bits(sectorsize);
2790
2791	if (btrfs_super_magic(disk_super) != BTRFS_MAGIC) {
2792		printk(KERN_ERR "BTRFS: valid FS not found on %s\n", sb->s_id);
2793		goto fail_sb_buffer;
2794	}
2795
2796	if (sectorsize != PAGE_SIZE) {
2797		printk(KERN_ERR "BTRFS: incompatible sector size (%lu) "
2798		       "found on %s\n", (unsigned long)sectorsize, sb->s_id);
2799		goto fail_sb_buffer;
2800	}
2801
2802	mutex_lock(&fs_info->chunk_mutex);
2803	ret = btrfs_read_sys_array(tree_root);
2804	mutex_unlock(&fs_info->chunk_mutex);
2805	if (ret) {
2806		printk(KERN_ERR "BTRFS: failed to read the system "
2807		       "array on %s\n", sb->s_id);
2808		goto fail_sb_buffer;
2809	}
2810
2811	generation = btrfs_super_chunk_root_generation(disk_super);
2812
2813	__setup_root(nodesize, sectorsize, stripesize, chunk_root,
2814		     fs_info, BTRFS_CHUNK_TREE_OBJECTID);
2815
2816	chunk_root->node = read_tree_block(chunk_root,
2817					   btrfs_super_chunk_root(disk_super),
2818					   generation);
2819	if (!chunk_root->node ||
2820	    !test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
2821		printk(KERN_ERR "BTRFS: failed to read chunk root on %s\n",
2822		       sb->s_id);
2823		goto fail_tree_roots;
2824	}
2825	btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
2826	chunk_root->commit_root = btrfs_root_node(chunk_root);
2827
2828	read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
2829	   btrfs_header_chunk_tree_uuid(chunk_root->node), BTRFS_UUID_SIZE);
2830
2831	ret = btrfs_read_chunk_tree(chunk_root);
2832	if (ret) {
2833		printk(KERN_ERR "BTRFS: failed to read chunk tree on %s\n",
2834		       sb->s_id);
2835		goto fail_tree_roots;
2836	}
2837
2838	/*
2839	 * keep the device that is marked to be the target device for the
2840	 * dev_replace procedure
2841	 */
2842	btrfs_close_extra_devices(fs_devices, 0);
2843
2844	if (!fs_devices->latest_bdev) {
2845		printk(KERN_ERR "BTRFS: failed to read devices on %s\n",
2846		       sb->s_id);
2847		goto fail_tree_roots;
2848	}
2849
2850retry_root_backup:
2851	generation = btrfs_super_generation(disk_super);
2852
2853	tree_root->node = read_tree_block(tree_root,
2854					  btrfs_super_root(disk_super),
2855					  generation);
2856	if (!tree_root->node ||
2857	    !test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
2858		printk(KERN_WARNING "BTRFS: failed to read tree root on %s\n",
2859		       sb->s_id);
2860
2861		goto recovery_tree_root;
2862	}
2863
2864	btrfs_set_root_node(&tree_root->root_item, tree_root->node);
2865	tree_root->commit_root = btrfs_root_node(tree_root);
2866	btrfs_set_root_refs(&tree_root->root_item, 1);
2867
2868	mutex_lock(&tree_root->objectid_mutex);
2869	ret = btrfs_find_highest_objectid(tree_root,
2870					&tree_root->highest_objectid);
2871	if (ret) {
2872		mutex_unlock(&tree_root->objectid_mutex);
2873		goto recovery_tree_root;
2874	}
2875
2876	ASSERT(tree_root->highest_objectid <= BTRFS_LAST_FREE_OBJECTID);
2877
2878	mutex_unlock(&tree_root->objectid_mutex);
2879
2880	ret = btrfs_read_roots(fs_info, tree_root);
2881	if (ret)
2882		goto recovery_tree_root;
2883
2884	fs_info->generation = generation;
2885	fs_info->last_trans_committed = generation;
2886
2887	ret = btrfs_recover_balance(fs_info);
2888	if (ret) {
2889		printk(KERN_ERR "BTRFS: failed to recover balance\n");
2890		goto fail_block_groups;
2891	}
2892
2893	ret = btrfs_init_dev_stats(fs_info);
2894	if (ret) {
2895		printk(KERN_ERR "BTRFS: failed to init dev_stats: %d\n",
2896		       ret);
2897		goto fail_block_groups;
2898	}
2899
2900	ret = btrfs_init_dev_replace(fs_info);
2901	if (ret) {
2902		pr_err("BTRFS: failed to init dev_replace: %d\n", ret);
2903		goto fail_block_groups;
2904	}
2905
2906	btrfs_close_extra_devices(fs_devices, 1);
2907
2908	ret = btrfs_sysfs_add_one(fs_info);
2909	if (ret) {
2910		pr_err("BTRFS: failed to init sysfs interface: %d\n", ret);
2911		goto fail_block_groups;
2912	}
2913
2914	ret = btrfs_init_space_info(fs_info);
2915	if (ret) {
2916		printk(KERN_ERR "BTRFS: Failed to initial space info: %d\n", ret);
2917		goto fail_sysfs;
2918	}
2919
2920	ret = btrfs_read_block_groups(fs_info->extent_root);
2921	if (ret) {
2922		printk(KERN_ERR "BTRFS: Failed to read block groups: %d\n", ret);
2923		goto fail_sysfs;
2924	}
2925	fs_info->num_tolerated_disk_barrier_failures =
2926		btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
2927	if (fs_info->fs_devices->missing_devices >
2928	     fs_info->num_tolerated_disk_barrier_failures &&
2929	    !(sb->s_flags & MS_RDONLY)) {
2930		printk(KERN_WARNING "BTRFS: "
2931			"too many missing devices, writeable mount is not allowed\n");
2932		goto fail_sysfs;
2933	}
2934
2935	fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2936					       "btrfs-cleaner");
2937	if (IS_ERR(fs_info->cleaner_kthread))
2938		goto fail_sysfs;
2939
2940	fs_info->transaction_kthread = kthread_run(transaction_kthread,
2941						   tree_root,
2942						   "btrfs-transaction");
2943	if (IS_ERR(fs_info->transaction_kthread))
2944		goto fail_cleaner;
2945
2946	if (!btrfs_test_opt(tree_root, SSD) &&
2947	    !btrfs_test_opt(tree_root, NOSSD) &&
2948	    !fs_info->fs_devices->rotating) {
2949		printk(KERN_INFO "BTRFS: detected SSD devices, enabling SSD "
2950		       "mode\n");
2951		btrfs_set_opt(fs_info->mount_opt, SSD);
2952	}
2953
2954	/*
2955	 * Mount does not set all options immediatelly, we can do it now and do
2956	 * not have to wait for transaction commit
2957	 */
2958	btrfs_apply_pending_changes(fs_info);
2959
2960#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2961	if (btrfs_test_opt(tree_root, CHECK_INTEGRITY)) {
2962		ret = btrfsic_mount(tree_root, fs_devices,
2963				    btrfs_test_opt(tree_root,
2964					CHECK_INTEGRITY_INCLUDING_EXTENT_DATA) ?
2965				    1 : 0,
2966				    fs_info->check_integrity_print_mask);
2967		if (ret)
2968			printk(KERN_WARNING "BTRFS: failed to initialize"
2969			       " integrity check module %s\n", sb->s_id);
2970	}
2971#endif
2972	ret = btrfs_read_qgroup_config(fs_info);
2973	if (ret)
2974		goto fail_trans_kthread;
2975
2976	/* do not make disk changes in broken FS */
2977	if (btrfs_super_log_root(disk_super) != 0) {
2978		ret = btrfs_replay_log(fs_info, fs_devices);
2979		if (ret) {
2980			err = ret;
2981			goto fail_qgroup;
2982		}
2983	}
2984
2985	ret = btrfs_find_orphan_roots(tree_root);
2986	if (ret)
2987		goto fail_qgroup;
2988
2989	if (!(sb->s_flags & MS_RDONLY)) {
2990		ret = btrfs_cleanup_fs_roots(fs_info);
2991		if (ret)
2992			goto fail_qgroup;
2993
2994		mutex_lock(&fs_info->cleaner_mutex);
2995		ret = btrfs_recover_relocation(tree_root);
2996		mutex_unlock(&fs_info->cleaner_mutex);
2997		if (ret < 0) {
2998			printk(KERN_WARNING
2999			       "BTRFS: failed to recover relocation\n");
3000			err = -EINVAL;
3001			goto fail_qgroup;
3002		}
3003	}
3004
3005	location.objectid = BTRFS_FS_TREE_OBJECTID;
3006	location.type = BTRFS_ROOT_ITEM_KEY;
3007	location.offset = 0;
3008
3009	fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
3010	if (IS_ERR(fs_info->fs_root)) {
3011		err = PTR_ERR(fs_info->fs_root);
3012		goto fail_qgroup;
3013	}
3014
3015	if (sb->s_flags & MS_RDONLY)
3016		return 0;
3017
3018	down_read(&fs_info->cleanup_work_sem);
3019	if ((ret = btrfs_orphan_cleanup(fs_info->fs_root)) ||
3020	    (ret = btrfs_orphan_cleanup(fs_info->tree_root))) {
3021		up_read(&fs_info->cleanup_work_sem);
3022		close_ctree(tree_root);
3023		return ret;
3024	}
3025	up_read(&fs_info->cleanup_work_sem);
3026
3027	ret = btrfs_resume_balance_async(fs_info);
3028	if (ret) {
3029		printk(KERN_WARNING "BTRFS: failed to resume balance\n");
3030		close_ctree(tree_root);
3031		return ret;
3032	}
3033
3034	ret = btrfs_resume_dev_replace_async(fs_info);
3035	if (ret) {
3036		pr_warn("BTRFS: failed to resume dev_replace\n");
3037		close_ctree(tree_root);
3038		return ret;
3039	}
3040
3041	btrfs_qgroup_rescan_resume(fs_info);
3042
3043	if (!fs_info->uuid_root) {
3044		pr_info("BTRFS: creating UUID tree\n");
3045		ret = btrfs_create_uuid_tree(fs_info);
3046		if (ret) {
3047			pr_warn("BTRFS: failed to create the UUID tree %d\n",
3048				ret);
3049			close_ctree(tree_root);
3050			return ret;
3051		}
3052	} else if (btrfs_test_opt(tree_root, RESCAN_UUID_TREE) ||
3053		   fs_info->generation !=
3054				btrfs_super_uuid_tree_generation(disk_super)) {
3055		pr_info("BTRFS: checking UUID tree\n");
3056		ret = btrfs_check_uuid_tree(fs_info);
3057		if (ret) {
3058			pr_warn("BTRFS: failed to check the UUID tree %d\n",
3059				ret);
3060			close_ctree(tree_root);
3061			return ret;
3062		}
3063	} else {
3064		fs_info->update_uuid_tree_gen = 1;
3065	}
3066
3067	fs_info->open = 1;
3068
3069	return 0;
3070
3071fail_qgroup:
3072	btrfs_free_qgroup_config(fs_info);
3073fail_trans_kthread:
3074	kthread_stop(fs_info->transaction_kthread);
3075	btrfs_cleanup_transaction(fs_info->tree_root);
3076	btrfs_free_fs_roots(fs_info);
3077fail_cleaner:
3078	kthread_stop(fs_info->cleaner_kthread);
3079
3080	/*
3081	 * make sure we're done with the btree inode before we stop our
3082	 * kthreads
3083	 */
3084	filemap_write_and_wait(fs_info->btree_inode->i_mapping);
3085
3086fail_sysfs:
3087	btrfs_sysfs_remove_one(fs_info);
3088
3089fail_block_groups:
3090	btrfs_put_block_group_cache(fs_info);
3091	btrfs_free_block_groups(fs_info);
3092
3093fail_tree_roots:
3094	free_root_pointers(fs_info, 1);
3095	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3096
3097fail_sb_buffer:
3098	btrfs_stop_all_workers(fs_info);
3099fail_alloc:
3100fail_iput:
3101	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3102
3103	iput(fs_info->btree_inode);
3104fail_bio_counter:
3105	percpu_counter_destroy(&fs_info->bio_counter);
3106fail_delalloc_bytes:
3107	percpu_counter_destroy(&fs_info->delalloc_bytes);
3108fail_dirty_metadata_bytes:
3109	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3110fail_bdi:
3111	bdi_destroy(&fs_info->bdi);
3112fail_srcu:
3113	cleanup_srcu_struct(&fs_info->subvol_srcu);
3114fail:
3115	btrfs_free_stripe_hash_table(fs_info);
3116	btrfs_close_devices(fs_info->fs_devices);
3117	return err;
3118
3119recovery_tree_root:
3120	if (!btrfs_test_opt(tree_root, RECOVERY))
3121		goto fail_tree_roots;
3122
3123	free_root_pointers(fs_info, 0);
3124
3125	/* don't use the log in recovery mode, it won't be valid */
3126	btrfs_set_super_log_root(disk_super, 0);
3127
3128	/* we can't trust the free space cache either */
3129	btrfs_set_opt(fs_info->mount_opt, CLEAR_CACHE);
3130
3131	ret = next_root_backup(fs_info, fs_info->super_copy,
3132			       &num_backups_tried, &backup_index);
3133	if (ret == -1)
3134		goto fail_block_groups;
3135	goto retry_root_backup;
3136}
3137
3138static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
3139{
3140	if (uptodate) {
3141		set_buffer_uptodate(bh);
3142	} else {
3143		struct btrfs_device *device = (struct btrfs_device *)
3144			bh->b_private;
3145
3146		printk_ratelimited_in_rcu(KERN_WARNING "BTRFS: lost page write due to "
3147					  "I/O error on %s\n",
3148					  rcu_str_deref(device->name));
3149		/* note, we dont' set_buffer_write_io_error because we have
3150		 * our own ways of dealing with the IO errors
3151		 */
3152		clear_buffer_uptodate(bh);
3153		btrfs_dev_stat_inc_and_print(device, BTRFS_DEV_STAT_WRITE_ERRS);
3154	}
3155	unlock_buffer(bh);
3156	put_bh(bh);
3157}
3158
3159struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
3160{
3161	struct buffer_head *bh;
3162	struct buffer_head *latest = NULL;
3163	struct btrfs_super_block *super;
3164	int i;
3165	u64 transid = 0;
3166	u64 bytenr;
3167
3168	/* we would like to check all the supers, but that would make
3169	 * a btrfs mount succeed after a mkfs from a different FS.
3170	 * So, we need to add a special mount option to scan for
3171	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
3172	 */
3173	for (i = 0; i < 1; i++) {
3174		bytenr = btrfs_sb_offset(i);
3175		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3176					i_size_read(bdev->bd_inode))
3177			break;
3178		bh = __bread(bdev, bytenr / 4096,
3179					BTRFS_SUPER_INFO_SIZE);
3180		if (!bh)
3181			continue;
3182
3183		super = (struct btrfs_super_block *)bh->b_data;
3184		if (btrfs_super_bytenr(super) != bytenr ||
3185		    btrfs_super_magic(super) != BTRFS_MAGIC) {
3186			brelse(bh);
3187			continue;
3188		}
3189
3190		if (!latest || btrfs_super_generation(super) > transid) {
3191			brelse(latest);
3192			latest = bh;
3193			transid = btrfs_super_generation(super);
3194		} else {
3195			brelse(bh);
3196		}
3197	}
3198	return latest;
3199}
3200
3201/*
3202 * this should be called twice, once with wait == 0 and
3203 * once with wait == 1.  When wait == 0 is done, all the buffer heads
3204 * we write are pinned.
3205 *
3206 * They are released when wait == 1 is done.
3207 * max_mirrors must be the same for both runs, and it indicates how
3208 * many supers on this one device should be written.
3209 *
3210 * max_mirrors == 0 means to write them all.
3211 */
3212static int write_dev_supers(struct btrfs_device *device,
3213			    struct btrfs_super_block *sb,
3214			    int do_barriers, int wait, int max_mirrors)
3215{
3216	struct buffer_head *bh;
3217	int i;
3218	int ret;
3219	int errors = 0;
3220	u32 crc;
3221	u64 bytenr;
3222
3223	if (max_mirrors == 0)
3224		max_mirrors = BTRFS_SUPER_MIRROR_MAX;
3225
3226	for (i = 0; i < max_mirrors; i++) {
3227		bytenr = btrfs_sb_offset(i);
3228		if (bytenr + BTRFS_SUPER_INFO_SIZE >=
3229		    device->commit_total_bytes)
3230			break;
3231
3232		if (wait) {
3233			bh = __find_get_block(device->bdev, bytenr / 4096,
3234					      BTRFS_SUPER_INFO_SIZE);
3235			if (!bh) {
3236				errors++;
3237				continue;
3238			}
3239			wait_on_buffer(bh);
3240			if (!buffer_uptodate(bh))
3241				errors++;
3242
3243			/* drop our reference */
3244			brelse(bh);
3245
3246			/* drop the reference from the wait == 0 run */
3247			brelse(bh);
3248			continue;
3249		} else {
3250			btrfs_set_super_bytenr(sb, bytenr);
3251
3252			crc = ~(u32)0;
3253			crc = btrfs_csum_data((char *)sb +
3254					      BTRFS_CSUM_SIZE, crc,
3255					      BTRFS_SUPER_INFO_SIZE -
3256					      BTRFS_CSUM_SIZE);
3257			btrfs_csum_final(crc, sb->csum);
3258
3259			/*
3260			 * one reference for us, and we leave it for the
3261			 * caller
3262			 */
3263			bh = __getblk(device->bdev, bytenr / 4096,
3264				      BTRFS_SUPER_INFO_SIZE);
3265			if (!bh) {
3266				printk(KERN_ERR "BTRFS: couldn't get super "
3267				       "buffer head for bytenr %Lu\n", bytenr);
3268				errors++;
3269				continue;
3270			}
3271
3272			memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
3273
3274			/* one reference for submit_bh */
3275			get_bh(bh);
3276
3277			set_buffer_uptodate(bh);
3278			lock_buffer(bh);
3279			bh->b_end_io = btrfs_end_buffer_write_sync;
3280			bh->b_private = device;
3281		}
3282
3283		/*
3284		 * we fua the first super.  The others we allow
3285		 * to go down lazy.
3286		 */
3287		if (i == 0)
3288			ret = btrfsic_submit_bh(WRITE_FUA, bh);
3289		else
3290			ret = btrfsic_submit_bh(WRITE_SYNC, bh);
3291		if (ret)
3292			errors++;
3293	}
3294	return errors < i ? 0 : -1;
3295}
3296
3297/*
3298 * endio for the write_dev_flush, this will wake anyone waiting
3299 * for the barrier when it is done
3300 */
3301static void btrfs_end_empty_barrier(struct bio *bio, int err)
3302{
3303	if (err) {
3304		if (err == -EOPNOTSUPP)
3305			set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
3306		clear_bit(BIO_UPTODATE, &bio->bi_flags);
3307	}
3308	if (bio->bi_private)
3309		complete(bio->bi_private);
3310	bio_put(bio);
3311}
3312
3313/*
3314 * trigger flushes for one the devices.  If you pass wait == 0, the flushes are
3315 * sent down.  With wait == 1, it waits for the previous flush.
3316 *
3317 * any device where the flush fails with eopnotsupp are flagged as not-barrier
3318 * capable
3319 */
3320static int write_dev_flush(struct btrfs_device *device, int wait)
3321{
3322	struct bio *bio;
3323	int ret = 0;
3324
3325	if (device->nobarriers)
3326		return 0;
3327
3328	if (wait) {
3329		bio = device->flush_bio;
3330		if (!bio)
3331			return 0;
3332
3333		wait_for_completion(&device->flush_wait);
3334
3335		if (bio_flagged(bio, BIO_EOPNOTSUPP)) {
3336			printk_in_rcu("BTRFS: disabling barriers on dev %s\n",
3337				      rcu_str_deref(device->name));
3338			device->nobarriers = 1;
3339		} else if (!bio_flagged(bio, BIO_UPTODATE)) {
3340			ret = -EIO;
3341			btrfs_dev_stat_inc_and_print(device,
3342				BTRFS_DEV_STAT_FLUSH_ERRS);
3343		}
3344
3345		/* drop the reference from the wait == 0 run */
3346		bio_put(bio);
3347		device->flush_bio = NULL;
3348
3349		return ret;
3350	}
3351
3352	/*
3353	 * one reference for us, and we leave it for the
3354	 * caller
3355	 */
3356	device->flush_bio = NULL;
3357	bio = btrfs_io_bio_alloc(GFP_NOFS, 0);
3358	if (!bio)
3359		return -ENOMEM;
3360
3361	bio->bi_end_io = btrfs_end_empty_barrier;
3362	bio->bi_bdev = device->bdev;
3363	init_completion(&device->flush_wait);
3364	bio->bi_private = &device->flush_wait;
3365	device->flush_bio = bio;
3366
3367	bio_get(bio);
3368	btrfsic_submit_bio(WRITE_FLUSH, bio);
3369
3370	return 0;
3371}
3372
3373/*
3374 * send an empty flush down to each device in parallel,
3375 * then wait for them
3376 */
3377static int barrier_all_devices(struct btrfs_fs_info *info)
3378{
3379	struct list_head *head;
3380	struct btrfs_device *dev;
3381	int errors_send = 0;
3382	int errors_wait = 0;
3383	int ret;
3384
3385	/* send down all the barriers */
3386	head = &info->fs_devices->devices;
3387	list_for_each_entry_rcu(dev, head, dev_list) {
3388		if (dev->missing)
3389			continue;
3390		if (!dev->bdev) {
3391			errors_send++;
3392			continue;
3393		}
3394		if (!dev->in_fs_metadata || !dev->writeable)
3395			continue;
3396
3397		ret = write_dev_flush(dev, 0);
3398		if (ret)
3399			errors_send++;
3400	}
3401
3402	/* wait for all the barriers */
3403	list_for_each_entry_rcu(dev, head, dev_list) {
3404		if (dev->missing)
3405			continue;
3406		if (!dev->bdev) {
3407			errors_wait++;
3408			continue;
3409		}
3410		if (!dev->in_fs_metadata || !dev->writeable)
3411			continue;
3412
3413		ret = write_dev_flush(dev, 1);
3414		if (ret)
3415			errors_wait++;
3416	}
3417	if (errors_send > info->num_tolerated_disk_barrier_failures ||
3418	    errors_wait > info->num_tolerated_disk_barrier_failures)
3419		return -EIO;
3420	return 0;
3421}
3422
3423int btrfs_calc_num_tolerated_disk_barrier_failures(
3424	struct btrfs_fs_info *fs_info)
3425{
3426	struct btrfs_ioctl_space_info space;
3427	struct btrfs_space_info *sinfo;
3428	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3429		       BTRFS_BLOCK_GROUP_SYSTEM,
3430		       BTRFS_BLOCK_GROUP_METADATA,
3431		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3432	int num_types = 4;
3433	int i;
3434	int c;
3435	int num_tolerated_disk_barrier_failures =
3436		(int)fs_info->fs_devices->num_devices;
3437
3438	for (i = 0; i < num_types; i++) {
3439		struct btrfs_space_info *tmp;
3440
3441		sinfo = NULL;
3442		rcu_read_lock();
3443		list_for_each_entry_rcu(tmp, &fs_info->space_info, list) {
3444			if (tmp->flags == types[i]) {
3445				sinfo = tmp;
3446				break;
3447			}
3448		}
3449		rcu_read_unlock();
3450
3451		if (!sinfo)
3452			continue;
3453
3454		down_read(&sinfo->groups_sem);
3455		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3456			if (!list_empty(&sinfo->block_groups[c])) {
3457				u64 flags;
3458
3459				btrfs_get_block_group_info(
3460					&sinfo->block_groups[c], &space);
3461				if (space.total_bytes == 0 ||
3462				    space.used_bytes == 0)
3463					continue;
3464				flags = space.flags;
3465				/*
3466				 * return
3467				 * 0: if dup, single or RAID0 is configured for
3468				 *    any of metadata, system or data, else
3469				 * 1: if RAID5 is configured, or if RAID1 or
3470				 *    RAID10 is configured and only two mirrors
3471				 *    are used, else
3472				 * 2: if RAID6 is configured, else
3473				 * num_mirrors - 1: if RAID1 or RAID10 is
3474				 *                  configured and more than
3475				 *                  2 mirrors are used.
3476				 */
3477				if (num_tolerated_disk_barrier_failures > 0 &&
3478				    ((flags & (BTRFS_BLOCK_GROUP_DUP |
3479					       BTRFS_BLOCK_GROUP_RAID0)) ||
3480				     ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK)
3481				      == 0)))
3482					num_tolerated_disk_barrier_failures = 0;
3483				else if (num_tolerated_disk_barrier_failures > 1) {
3484					if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
3485					    BTRFS_BLOCK_GROUP_RAID5 |
3486					    BTRFS_BLOCK_GROUP_RAID10)) {
3487						num_tolerated_disk_barrier_failures = 1;
3488					} else if (flags &
3489						   BTRFS_BLOCK_GROUP_RAID6) {
3490						num_tolerated_disk_barrier_failures = 2;
3491					}
3492				}
3493			}
3494		}
3495		up_read(&sinfo->groups_sem);
3496	}
3497
3498	return num_tolerated_disk_barrier_failures;
3499}
3500
3501static int write_all_supers(struct btrfs_root *root, int max_mirrors)
3502{
3503	struct list_head *head;
3504	struct btrfs_device *dev;
3505	struct btrfs_super_block *sb;
3506	struct btrfs_dev_item *dev_item;
3507	int ret;
3508	int do_barriers;
3509	int max_errors;
3510	int total_errors = 0;
3511	u64 flags;
3512
3513	do_barriers = !btrfs_test_opt(root, NOBARRIER);
3514	backup_super_roots(root->fs_info);
3515
3516	sb = root->fs_info->super_for_commit;
3517	dev_item = &sb->dev_item;
3518
3519	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3520	head = &root->fs_info->fs_devices->devices;
3521	max_errors = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
3522
3523	if (do_barriers) {
3524		ret = barrier_all_devices(root->fs_info);
3525		if (ret) {
3526			mutex_unlock(
3527				&root->fs_info->fs_devices->device_list_mutex);
3528			btrfs_error(root->fs_info, ret,
3529				    "errors while submitting device barriers.");
3530			return ret;
3531		}
3532	}
3533
3534	list_for_each_entry_rcu(dev, head, dev_list) {
3535		if (!dev->bdev) {
3536			total_errors++;
3537			continue;
3538		}
3539		if (!dev->in_fs_metadata || !dev->writeable)
3540			continue;
3541
3542		btrfs_set_stack_device_generation(dev_item, 0);
3543		btrfs_set_stack_device_type(dev_item, dev->type);
3544		btrfs_set_stack_device_id(dev_item, dev->devid);
3545		btrfs_set_stack_device_total_bytes(dev_item,
3546						   dev->commit_total_bytes);
3547		btrfs_set_stack_device_bytes_used(dev_item,
3548						  dev->commit_bytes_used);
3549		btrfs_set_stack_device_io_align(dev_item, dev->io_align);
3550		btrfs_set_stack_device_io_width(dev_item, dev->io_width);
3551		btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
3552		memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
3553		memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
3554
3555		flags = btrfs_super_flags(sb);
3556		btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
3557
3558		ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
3559		if (ret)
3560			total_errors++;
3561	}
3562	if (total_errors > max_errors) {
3563		btrfs_err(root->fs_info, "%d errors while writing supers",
3564		       total_errors);
3565		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3566
3567		/* FUA is masked off if unsupported and can't be the reason */
3568		btrfs_error(root->fs_info, -EIO,
3569			    "%d errors while writing supers", total_errors);
3570		return -EIO;
3571	}
3572
3573	total_errors = 0;
3574	list_for_each_entry_rcu(dev, head, dev_list) {
3575		if (!dev->bdev)
3576			continue;
3577		if (!dev->in_fs_metadata || !dev->writeable)
3578			continue;
3579
3580		ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
3581		if (ret)
3582			total_errors++;
3583	}
3584	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3585	if (total_errors > max_errors) {
3586		btrfs_error(root->fs_info, -EIO,
3587			    "%d errors while writing supers", total_errors);
3588		return -EIO;
3589	}
3590	return 0;
3591}
3592
3593int write_ctree_super(struct btrfs_trans_handle *trans,
3594		      struct btrfs_root *root, int max_mirrors)
3595{
3596	return write_all_supers(root, max_mirrors);
3597}
3598
3599/* Drop a fs root from the radix tree and free it. */
3600void btrfs_drop_and_free_fs_root(struct btrfs_fs_info *fs_info,
3601				  struct btrfs_root *root)
3602{
3603	spin_lock(&fs_info->fs_roots_radix_lock);
3604	radix_tree_delete(&fs_info->fs_roots_radix,
3605			  (unsigned long)root->root_key.objectid);
3606	spin_unlock(&fs_info->fs_roots_radix_lock);
3607
3608	if (btrfs_root_refs(&root->root_item) == 0)
3609		synchronize_srcu(&fs_info->subvol_srcu);
3610
3611	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3612		btrfs_free_log(NULL, root);
3613
3614	if (root->free_ino_pinned)
3615		__btrfs_remove_free_space_cache(root->free_ino_pinned);
3616	if (root->free_ino_ctl)
3617		__btrfs_remove_free_space_cache(root->free_ino_ctl);
3618	free_fs_root(root);
3619}
3620
3621static void free_fs_root(struct btrfs_root *root)
3622{
3623	iput(root->ino_cache_inode);
3624	WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
3625	btrfs_free_block_rsv(root, root->orphan_block_rsv);
3626	root->orphan_block_rsv = NULL;
3627	if (root->anon_dev)
3628		free_anon_bdev(root->anon_dev);
3629	if (root->subv_writers)
3630		btrfs_free_subvolume_writers(root->subv_writers);
3631	free_extent_buffer(root->node);
3632	free_extent_buffer(root->commit_root);
3633	kfree(root->free_ino_ctl);
3634	kfree(root->free_ino_pinned);
3635	kfree(root->name);
3636	btrfs_put_fs_root(root);
3637}
3638
3639void btrfs_free_fs_root(struct btrfs_root *root)
3640{
3641	free_fs_root(root);
3642}
3643
3644int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
3645{
3646	u64 root_objectid = 0;
3647	struct btrfs_root *gang[8];
3648	int i = 0;
3649	int err = 0;
3650	unsigned int ret = 0;
3651	int index;
3652
3653	while (1) {
3654		index = srcu_read_lock(&fs_info->subvol_srcu);
3655		ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
3656					     (void **)gang, root_objectid,
3657					     ARRAY_SIZE(gang));
3658		if (!ret) {
3659			srcu_read_unlock(&fs_info->subvol_srcu, index);
3660			break;
3661		}
3662		root_objectid = gang[ret - 1]->root_key.objectid + 1;
3663
3664		for (i = 0; i < ret; i++) {
3665			/* Avoid to grab roots in dead_roots */
3666			if (btrfs_root_refs(&gang[i]->root_item) == 0) {
3667				gang[i] = NULL;
3668				continue;
3669			}
3670			/* grab all the search result for later use */
3671			gang[i] = btrfs_grab_fs_root(gang[i]);
3672		}
3673		srcu_read_unlock(&fs_info->subvol_srcu, index);
3674
3675		for (i = 0; i < ret; i++) {
3676			if (!gang[i])
3677				continue;
3678			root_objectid = gang[i]->root_key.objectid;
3679			err = btrfs_orphan_cleanup(gang[i]);
3680			if (err)
3681				break;
3682			btrfs_put_fs_root(gang[i]);
3683		}
3684		root_objectid++;
3685	}
3686
3687	/* release the uncleaned roots due to error */
3688	for (; i < ret; i++) {
3689		if (gang[i])
3690			btrfs_put_fs_root(gang[i]);
3691	}
3692	return err;
3693}
3694
3695int btrfs_commit_super(struct btrfs_root *root)
3696{
3697	struct btrfs_trans_handle *trans;
3698
3699	mutex_lock(&root->fs_info->cleaner_mutex);
3700	btrfs_run_delayed_iputs(root);
3701	mutex_unlock(&root->fs_info->cleaner_mutex);
3702	wake_up_process(root->fs_info->cleaner_kthread);
3703
3704	/* wait until ongoing cleanup work done */
3705	down_write(&root->fs_info->cleanup_work_sem);
3706	up_write(&root->fs_info->cleanup_work_sem);
3707
3708	trans = btrfs_join_transaction(root);
3709	if (IS_ERR(trans))
3710		return PTR_ERR(trans);
3711	return btrfs_commit_transaction(trans, root);
3712}
3713
3714void close_ctree(struct btrfs_root *root)
3715{
3716	struct btrfs_fs_info *fs_info = root->fs_info;
3717	int ret;
3718
3719	fs_info->closing = 1;
3720	smp_mb();
3721
3722	/* wait for the uuid_scan task to finish */
3723	down(&fs_info->uuid_tree_rescan_sem);
3724	/* avoid complains from lockdep et al., set sem back to initial state */
3725	up(&fs_info->uuid_tree_rescan_sem);
3726
3727	/* pause restriper - we want to resume on mount */
3728	btrfs_pause_balance(fs_info);
3729
3730	btrfs_dev_replace_suspend_for_unmount(fs_info);
3731
3732	btrfs_scrub_cancel(fs_info);
3733
3734	/* wait for any defraggers to finish */
3735	wait_event(fs_info->transaction_wait,
3736		   (atomic_read(&fs_info->defrag_running) == 0));
3737
3738	/* clear out the rbtree of defraggable inodes */
3739	btrfs_cleanup_defrag_inodes(fs_info);
3740
3741	cancel_work_sync(&fs_info->async_reclaim_work);
3742
3743	if (!(fs_info->sb->s_flags & MS_RDONLY)) {
3744		ret = btrfs_commit_super(root);
3745		if (ret)
3746			btrfs_err(fs_info, "commit super ret %d", ret);
3747	}
3748
3749	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
3750		btrfs_error_commit_super(root);
3751
3752	kthread_stop(fs_info->transaction_kthread);
3753	kthread_stop(fs_info->cleaner_kthread);
3754
3755	fs_info->closing = 2;
3756	smp_mb();
3757
3758	btrfs_free_qgroup_config(fs_info);
3759
3760	if (percpu_counter_sum(&fs_info->delalloc_bytes)) {
3761		btrfs_info(fs_info, "at unmount delalloc count %lld",
3762		       percpu_counter_sum(&fs_info->delalloc_bytes));
3763	}
3764
3765	btrfs_sysfs_remove_one(fs_info);
3766
3767	btrfs_free_fs_roots(fs_info);
3768
3769	btrfs_put_block_group_cache(fs_info);
3770
3771	btrfs_free_block_groups(fs_info);
3772
3773	/*
3774	 * we must make sure there is not any read request to
3775	 * submit after we stopping all workers.
3776	 */
3777	invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
3778	btrfs_stop_all_workers(fs_info);
3779
3780	fs_info->open = 0;
3781	free_root_pointers(fs_info, 1);
3782
3783	iput(fs_info->btree_inode);
3784
3785#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3786	if (btrfs_test_opt(root, CHECK_INTEGRITY))
3787		btrfsic_unmount(root, fs_info->fs_devices);
3788#endif
3789
3790	btrfs_close_devices(fs_info->fs_devices);
3791	btrfs_mapping_tree_free(&fs_info->mapping_tree);
3792
3793	percpu_counter_destroy(&fs_info->dirty_metadata_bytes);
3794	percpu_counter_destroy(&fs_info->delalloc_bytes);
3795	percpu_counter_destroy(&fs_info->bio_counter);
3796	bdi_destroy(&fs_info->bdi);
3797	cleanup_srcu_struct(&fs_info->subvol_srcu);
3798
3799	btrfs_free_stripe_hash_table(fs_info);
3800
3801	__btrfs_free_block_rsv(root->orphan_block_rsv);
3802	root->orphan_block_rsv = NULL;
3803
3804	lock_chunks(root);
3805	while (!list_empty(&fs_info->pinned_chunks)) {
3806		struct extent_map *em;
3807
3808		em = list_first_entry(&fs_info->pinned_chunks,
3809				      struct extent_map, list);
3810		list_del_init(&em->list);
3811		free_extent_map(em);
3812	}
3813	unlock_chunks(root);
3814}
3815
3816int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid,
3817			  int atomic)
3818{
3819	int ret;
3820	struct inode *btree_inode = buf->pages[0]->mapping->host;
3821
3822	ret = extent_buffer_uptodate(buf);
3823	if (!ret)
3824		return ret;
3825
3826	ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
3827				    parent_transid, atomic);
3828	if (ret == -EAGAIN)
3829		return ret;
3830	return !ret;
3831}
3832
3833int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
3834{
3835	return set_extent_buffer_uptodate(buf);
3836}
3837
3838void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
3839{
3840	struct btrfs_root *root;
3841	u64 transid = btrfs_header_generation(buf);
3842	int was_dirty;
3843
3844#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3845	/*
3846	 * This is a fast path so only do this check if we have sanity tests
3847	 * enabled.  Normal people shouldn't be marking dummy buffers as dirty
3848	 * outside of the sanity tests.
3849	 */
3850	if (unlikely(test_bit(EXTENT_BUFFER_DUMMY, &buf->bflags)))
3851		return;
3852#endif
3853	root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3854	btrfs_assert_tree_locked(buf);
3855	if (transid != root->fs_info->generation)
3856		WARN(1, KERN_CRIT "btrfs transid mismatch buffer %llu, "
3857		       "found %llu running %llu\n",
3858			buf->start, transid, root->fs_info->generation);
3859	was_dirty = set_extent_buffer_dirty(buf);
3860	if (!was_dirty)
3861		__percpu_counter_add(&root->fs_info->dirty_metadata_bytes,
3862				     buf->len,
3863				     root->fs_info->dirty_metadata_batch);
3864#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
3865	if (btrfs_header_level(buf) == 0 && check_leaf(root, buf)) {
3866		btrfs_print_leaf(root, buf);
3867		ASSERT(0);
3868	}
3869#endif
3870}
3871
3872static void __btrfs_btree_balance_dirty(struct btrfs_root *root,
3873					int flush_delayed)
3874{
3875	/*
3876	 * looks as though older kernels can get into trouble with
3877	 * this code, they end up stuck in balance_dirty_pages forever
3878	 */
3879	int ret;
3880
3881	if (current->flags & PF_MEMALLOC)
3882		return;
3883
3884	if (flush_delayed)
3885		btrfs_balance_delayed_items(root);
3886
3887	ret = percpu_counter_compare(&root->fs_info->dirty_metadata_bytes,
3888				     BTRFS_DIRTY_METADATA_THRESH);
3889	if (ret > 0) {
3890		balance_dirty_pages_ratelimited(
3891				   root->fs_info->btree_inode->i_mapping);
3892	}
3893	return;
3894}
3895
3896void btrfs_btree_balance_dirty(struct btrfs_root *root)
3897{
3898	__btrfs_btree_balance_dirty(root, 1);
3899}
3900
3901void btrfs_btree_balance_dirty_nodelay(struct btrfs_root *root)
3902{
3903	__btrfs_btree_balance_dirty(root, 0);
3904}
3905
3906int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
3907{
3908	struct btrfs_root *root = BTRFS_I(buf->pages[0]->mapping->host)->root;
3909	return btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
3910}
3911
3912static int btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
3913			      int read_only)
3914{
3915	struct btrfs_super_block *sb = fs_info->super_copy;
3916	int ret = 0;
3917
3918	if (btrfs_super_root_level(sb) >= BTRFS_MAX_LEVEL) {
3919		printk(KERN_ERR "BTRFS: tree_root level too big: %d >= %d\n",
3920				btrfs_super_root_level(sb), BTRFS_MAX_LEVEL);
3921		ret = -EINVAL;
3922	}
3923	if (btrfs_super_chunk_root_level(sb) >= BTRFS_MAX_LEVEL) {
3924		printk(KERN_ERR "BTRFS: chunk_root level too big: %d >= %d\n",
3925				btrfs_super_chunk_root_level(sb), BTRFS_MAX_LEVEL);
3926		ret = -EINVAL;
3927	}
3928	if (btrfs_super_log_root_level(sb) >= BTRFS_MAX_LEVEL) {
3929		printk(KERN_ERR "BTRFS: log_root level too big: %d >= %d\n",
3930				btrfs_super_log_root_level(sb), BTRFS_MAX_LEVEL);
3931		ret = -EINVAL;
3932	}
3933
3934	/*
3935	 * The common minimum, we don't know if we can trust the nodesize/sectorsize
3936	 * items yet, they'll be verified later. Issue just a warning.
3937	 */
3938	if (!IS_ALIGNED(btrfs_super_root(sb), 4096))
3939		printk(KERN_WARNING "BTRFS: tree_root block unaligned: %llu\n",
3940				btrfs_super_root(sb));
3941	if (!IS_ALIGNED(btrfs_super_chunk_root(sb), 4096))
3942		printk(KERN_WARNING "BTRFS: chunk_root block unaligned: %llu\n",
3943				btrfs_super_chunk_root(sb));
3944	if (!IS_ALIGNED(btrfs_super_log_root(sb), 4096))
3945		printk(KERN_WARNING "BTRFS: log_root block unaligned: %llu\n",
3946				btrfs_super_log_root(sb));
3947
3948	/*
3949	 * Check the lower bound, the alignment and other constraints are
3950	 * checked later.
3951	 */
3952	if (btrfs_super_nodesize(sb) < 4096) {
3953		printk(KERN_ERR "BTRFS: nodesize too small: %u < 4096\n",
3954				btrfs_super_nodesize(sb));
3955		ret = -EINVAL;
3956	}
3957	if (btrfs_super_sectorsize(sb) < 4096) {
3958		printk(KERN_ERR "BTRFS: sectorsize too small: %u < 4096\n",
3959				btrfs_super_sectorsize(sb));
3960		ret = -EINVAL;
3961	}
3962
3963	if (memcmp(fs_info->fsid, sb->dev_item.fsid, BTRFS_UUID_SIZE) != 0) {
3964		printk(KERN_ERR "BTRFS: dev_item UUID does not match fsid: %pU != %pU\n",
3965				fs_info->fsid, sb->dev_item.fsid);
3966		ret = -EINVAL;
3967	}
3968
3969	/*
3970	 * Hint to catch really bogus numbers, bitflips or so, more exact checks are
3971	 * done later
3972	 */
3973	if (btrfs_super_num_devices(sb) > (1UL << 31))
3974		printk(KERN_WARNING "BTRFS: suspicious number of devices: %llu\n",
3975				btrfs_super_num_devices(sb));
3976	if (btrfs_super_num_devices(sb) == 0) {
3977		printk(KERN_ERR "BTRFS: number of devices is 0\n");
3978		ret = -EINVAL;
3979	}
3980
3981	if (btrfs_super_bytenr(sb) != BTRFS_SUPER_INFO_OFFSET) {
3982		printk(KERN_ERR "BTRFS: super offset mismatch %llu != %u\n",
3983				btrfs_super_bytenr(sb), BTRFS_SUPER_INFO_OFFSET);
3984		ret = -EINVAL;
3985	}
3986
3987	/*
3988	 * Obvious sys_chunk_array corruptions, it must hold at least one key
3989	 * and one chunk
3990	 */
3991	if (btrfs_super_sys_array_size(sb) > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) {
3992		printk(KERN_ERR "BTRFS: system chunk array too big %u > %u\n",
3993				btrfs_super_sys_array_size(sb),
3994				BTRFS_SYSTEM_CHUNK_ARRAY_SIZE);
3995		ret = -EINVAL;
3996	}
3997	if (btrfs_super_sys_array_size(sb) < sizeof(struct btrfs_disk_key)
3998			+ sizeof(struct btrfs_chunk)) {
3999		printk(KERN_ERR "BTRFS: system chunk array too small %u < %zu\n",
4000				btrfs_super_sys_array_size(sb),
4001				sizeof(struct btrfs_disk_key)
4002				+ sizeof(struct btrfs_chunk));
4003		ret = -EINVAL;
4004	}
4005
4006	/*
4007	 * The generation is a global counter, we'll trust it more than the others
4008	 * but it's still possible that it's the one that's wrong.
4009	 */
4010	if (btrfs_super_generation(sb) < btrfs_super_chunk_root_generation(sb))
4011		printk(KERN_WARNING
4012			"BTRFS: suspicious: generation < chunk_root_generation: %llu < %llu\n",
4013			btrfs_super_generation(sb), btrfs_super_chunk_root_generation(sb));
4014	if (btrfs_super_generation(sb) < btrfs_super_cache_generation(sb)
4015	    && btrfs_super_cache_generation(sb) != (u64)-1)
4016		printk(KERN_WARNING
4017			"BTRFS: suspicious: generation < cache_generation: %llu < %llu\n",
4018			btrfs_super_generation(sb), btrfs_super_cache_generation(sb));
4019
4020	return ret;
4021}
4022
4023static void btrfs_error_commit_super(struct btrfs_root *root)
4024{
4025	mutex_lock(&root->fs_info->cleaner_mutex);
4026	btrfs_run_delayed_iputs(root);
4027	mutex_unlock(&root->fs_info->cleaner_mutex);
4028
4029	down_write(&root->fs_info->cleanup_work_sem);
4030	up_write(&root->fs_info->cleanup_work_sem);
4031
4032	/* cleanup FS via transaction */
4033	btrfs_cleanup_transaction(root);
4034}
4035
4036static void btrfs_destroy_ordered_extents(struct btrfs_root *root)
4037{
4038	struct btrfs_ordered_extent *ordered;
4039
4040	spin_lock(&root->ordered_extent_lock);
4041	/*
4042	 * This will just short circuit the ordered completion stuff which will
4043	 * make sure the ordered extent gets properly cleaned up.
4044	 */
4045	list_for_each_entry(ordered, &root->ordered_extents,
4046			    root_extent_list)
4047		set_bit(BTRFS_ORDERED_IOERR, &ordered->flags);
4048	spin_unlock(&root->ordered_extent_lock);
4049}
4050
4051static void btrfs_destroy_all_ordered_extents(struct btrfs_fs_info *fs_info)
4052{
4053	struct btrfs_root *root;
4054	struct list_head splice;
4055
4056	INIT_LIST_HEAD(&splice);
4057
4058	spin_lock(&fs_info->ordered_root_lock);
4059	list_splice_init(&fs_info->ordered_roots, &splice);
4060	while (!list_empty(&splice)) {
4061		root = list_first_entry(&splice, struct btrfs_root,
4062					ordered_root);
4063		list_move_tail(&root->ordered_root,
4064			       &fs_info->ordered_roots);
4065
4066		spin_unlock(&fs_info->ordered_root_lock);
4067		btrfs_destroy_ordered_extents(root);
4068
4069		cond_resched();
4070		spin_lock(&fs_info->ordered_root_lock);
4071	}
4072	spin_unlock(&fs_info->ordered_root_lock);
4073}
4074
4075static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
4076				      struct btrfs_root *root)
4077{
4078	struct rb_node *node;
4079	struct btrfs_delayed_ref_root *delayed_refs;
4080	struct btrfs_delayed_ref_node *ref;
4081	int ret = 0;
4082
4083	delayed_refs = &trans->delayed_refs;
4084
4085	spin_lock(&delayed_refs->lock);
4086	if (atomic_read(&delayed_refs->num_entries) == 0) {
4087		spin_unlock(&delayed_refs->lock);
4088		btrfs_info(root->fs_info, "delayed_refs has NO entry");
4089		return ret;
4090	}
4091
4092	while ((node = rb_first(&delayed_refs->href_root)) != NULL) {
4093		struct btrfs_delayed_ref_head *head;
4094		bool pin_bytes = false;
4095
4096		head = rb_entry(node, struct btrfs_delayed_ref_head,
4097				href_node);
4098		if (!mutex_trylock(&head->mutex)) {
4099			atomic_inc(&head->node.refs);
4100			spin_unlock(&delayed_refs->lock);
4101
4102			mutex_lock(&head->mutex);
4103			mutex_unlock(&head->mutex);
4104			btrfs_put_delayed_ref(&head->node);
4105			spin_lock(&delayed_refs->lock);
4106			continue;
4107		}
4108		spin_lock(&head->lock);
4109		while ((node = rb_first(&head->ref_root)) != NULL) {
4110			ref = rb_entry(node, struct btrfs_delayed_ref_node,
4111				       rb_node);
4112			ref->in_tree = 0;
4113			rb_erase(&ref->rb_node, &head->ref_root);
4114			atomic_dec(&delayed_refs->num_entries);
4115			btrfs_put_delayed_ref(ref);
4116		}
4117		if (head->must_insert_reserved)
4118			pin_bytes = true;
4119		btrfs_free_delayed_extent_op(head->extent_op);
4120		delayed_refs->num_heads--;
4121		if (head->processing == 0)
4122			delayed_refs->num_heads_ready--;
4123		atomic_dec(&delayed_refs->num_entries);
4124		head->node.in_tree = 0;
4125		rb_erase(&head->href_node, &delayed_refs->href_root);
4126		spin_unlock(&head->lock);
4127		spin_unlock(&delayed_refs->lock);
4128		mutex_unlock(&head->mutex);
4129
4130		if (pin_bytes)
4131			btrfs_pin_extent(root, head->node.bytenr,
4132					 head->node.num_bytes, 1);
4133		btrfs_put_delayed_ref(&head->node);
4134		cond_resched();
4135		spin_lock(&delayed_refs->lock);
4136	}
4137
4138	spin_unlock(&delayed_refs->lock);
4139
4140	return ret;
4141}
4142
4143static void btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
4144{
4145	struct btrfs_inode *btrfs_inode;
4146	struct list_head splice;
4147
4148	INIT_LIST_HEAD(&splice);
4149
4150	spin_lock(&root->delalloc_lock);
4151	list_splice_init(&root->delalloc_inodes, &splice);
4152
4153	while (!list_empty(&splice)) {
4154		btrfs_inode = list_first_entry(&splice, struct btrfs_inode,
4155					       delalloc_inodes);
4156
4157		list_del_init(&btrfs_inode->delalloc_inodes);
4158		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
4159			  &btrfs_inode->runtime_flags);
4160		spin_unlock(&root->delalloc_lock);
4161
4162		btrfs_invalidate_inodes(btrfs_inode->root);
4163
4164		spin_lock(&root->delalloc_lock);
4165	}
4166
4167	spin_unlock(&root->delalloc_lock);
4168}
4169
4170static void btrfs_destroy_all_delalloc_inodes(struct btrfs_fs_info *fs_info)
4171{
4172	struct btrfs_root *root;
4173	struct list_head splice;
4174
4175	INIT_LIST_HEAD(&splice);
4176
4177	spin_lock(&fs_info->delalloc_root_lock);
4178	list_splice_init(&fs_info->delalloc_roots, &splice);
4179	while (!list_empty(&splice)) {
4180		root = list_first_entry(&splice, struct btrfs_root,
4181					 delalloc_root);
4182		list_del_init(&root->delalloc_root);
4183		root = btrfs_grab_fs_root(root);
4184		BUG_ON(!root);
4185		spin_unlock(&fs_info->delalloc_root_lock);
4186
4187		btrfs_destroy_delalloc_inodes(root);
4188		btrfs_put_fs_root(root);
4189
4190		spin_lock(&fs_info->delalloc_root_lock);
4191	}
4192	spin_unlock(&fs_info->delalloc_root_lock);
4193}
4194
4195static int btrfs_destroy_marked_extents(struct btrfs_root *root,
4196					struct extent_io_tree *dirty_pages,
4197					int mark)
4198{
4199	int ret;
4200	struct extent_buffer *eb;
4201	u64 start = 0;
4202	u64 end;
4203
4204	while (1) {
4205		ret = find_first_extent_bit(dirty_pages, start, &start, &end,
4206					    mark, NULL);
4207		if (ret)
4208			break;
4209
4210		clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
4211		while (start <= end) {
4212			eb = btrfs_find_tree_block(root->fs_info, start);
4213			start += root->nodesize;
4214			if (!eb)
4215				continue;
4216			wait_on_extent_buffer_writeback(eb);
4217
4218			if (test_and_clear_bit(EXTENT_BUFFER_DIRTY,
4219					       &eb->bflags))
4220				clear_extent_buffer_dirty(eb);
4221			free_extent_buffer_stale(eb);
4222		}
4223	}
4224
4225	return ret;
4226}
4227
4228static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
4229				       struct extent_io_tree *pinned_extents)
4230{
4231	struct extent_io_tree *unpin;
4232	u64 start;
4233	u64 end;
4234	int ret;
4235	bool loop = true;
4236
4237	unpin = pinned_extents;
4238again:
4239	while (1) {
4240		ret = find_first_extent_bit(unpin, 0, &start, &end,
4241					    EXTENT_DIRTY, NULL);
4242		if (ret)
4243			break;
4244
4245		clear_extent_dirty(unpin, start, end, GFP_NOFS);
4246		btrfs_error_unpin_extent_range(root, start, end);
4247		cond_resched();
4248	}
4249
4250	if (loop) {
4251		if (unpin == &root->fs_info->freed_extents[0])
4252			unpin = &root->fs_info->freed_extents[1];
4253		else
4254			unpin = &root->fs_info->freed_extents[0];
4255		loop = false;
4256		goto again;
4257	}
4258
4259	return 0;
4260}
4261
4262static void btrfs_free_pending_ordered(struct btrfs_transaction *cur_trans,
4263				       struct btrfs_fs_info *fs_info)
4264{
4265	struct btrfs_ordered_extent *ordered;
4266
4267	spin_lock(&fs_info->trans_lock);
4268	while (!list_empty(&cur_trans->pending_ordered)) {
4269		ordered = list_first_entry(&cur_trans->pending_ordered,
4270					   struct btrfs_ordered_extent,
4271					   trans_list);
4272		list_del_init(&ordered->trans_list);
4273		spin_unlock(&fs_info->trans_lock);
4274
4275		btrfs_put_ordered_extent(ordered);
4276		spin_lock(&fs_info->trans_lock);
4277	}
4278	spin_unlock(&fs_info->trans_lock);
4279}
4280
4281void btrfs_cleanup_one_transaction(struct btrfs_transaction *cur_trans,
4282				   struct btrfs_root *root)
4283{
4284	btrfs_destroy_delayed_refs(cur_trans, root);
4285
4286	cur_trans->state = TRANS_STATE_COMMIT_START;
4287	wake_up(&root->fs_info->transaction_blocked_wait);
4288
4289	cur_trans->state = TRANS_STATE_UNBLOCKED;
4290	wake_up(&root->fs_info->transaction_wait);
4291
4292	btrfs_free_pending_ordered(cur_trans, root->fs_info);
4293	btrfs_destroy_delayed_inodes(root);
4294	btrfs_assert_delayed_root_empty(root);
4295
4296	btrfs_destroy_marked_extents(root, &cur_trans->dirty_pages,
4297				     EXTENT_DIRTY);
4298	btrfs_destroy_pinned_extent(root,
4299				    root->fs_info->pinned_extents);
4300
4301	cur_trans->state =TRANS_STATE_COMPLETED;
4302	wake_up(&cur_trans->commit_wait);
4303
4304	/*
4305	memset(cur_trans, 0, sizeof(*cur_trans));
4306	kmem_cache_free(btrfs_transaction_cachep, cur_trans);
4307	*/
4308}
4309
4310static int btrfs_cleanup_transaction(struct btrfs_root *root)
4311{
4312	struct btrfs_transaction *t;
4313
4314	mutex_lock(&root->fs_info->transaction_kthread_mutex);
4315
4316	spin_lock(&root->fs_info->trans_lock);
4317	while (!list_empty(&root->fs_info->trans_list)) {
4318		t = list_first_entry(&root->fs_info->trans_list,
4319				     struct btrfs_transaction, list);
4320		if (t->state >= TRANS_STATE_COMMIT_START) {
4321			atomic_inc(&t->use_count);
4322			spin_unlock(&root->fs_info->trans_lock);
4323			btrfs_wait_for_commit(root, t->transid);
4324			btrfs_put_transaction(t);
4325			spin_lock(&root->fs_info->trans_lock);
4326			continue;
4327		}
4328		if (t == root->fs_info->running_transaction) {
4329			t->state = TRANS_STATE_COMMIT_DOING;
4330			spin_unlock(&root->fs_info->trans_lock);
4331			/*
4332			 * We wait for 0 num_writers since we don't hold a trans
4333			 * handle open currently for this transaction.
4334			 */
4335			wait_event(t->writer_wait,
4336				   atomic_read(&t->num_writers) == 0);
4337		} else {
4338			spin_unlock(&root->fs_info->trans_lock);
4339		}
4340		btrfs_cleanup_one_transaction(t, root);
4341
4342		spin_lock(&root->fs_info->trans_lock);
4343		if (t == root->fs_info->running_transaction)
4344			root->fs_info->running_transaction = NULL;
4345		list_del_init(&t->list);
4346		spin_unlock(&root->fs_info->trans_lock);
4347
4348		btrfs_put_transaction(t);
4349		trace_btrfs_transaction_commit(root);
4350		spin_lock(&root->fs_info->trans_lock);
4351	}
4352	spin_unlock(&root->fs_info->trans_lock);
4353	btrfs_destroy_all_ordered_extents(root->fs_info);
4354	btrfs_destroy_delayed_inodes(root);
4355	btrfs_assert_delayed_root_empty(root);
4356	btrfs_destroy_pinned_extent(root, root->fs_info->pinned_extents);
4357	btrfs_destroy_all_delalloc_inodes(root->fs_info);
4358	mutex_unlock(&root->fs_info->transaction_kthread_mutex);
4359
4360	return 0;
4361}
4362
4363static const struct extent_io_ops btree_extent_io_ops = {
4364	.readpage_end_io_hook = btree_readpage_end_io_hook,
4365	.readpage_io_failed_hook = btree_io_failed_hook,
4366	.submit_bio_hook = btree_submit_bio_hook,
4367	/* note we're sharing with inode.c for the merge bio hook */
4368	.merge_bio_hook = btrfs_merge_bio_hook,
4369};
4370