1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/kernel.h>
20#include <linux/bio.h>
21#include <linux/buffer_head.h>
22#include <linux/file.h>
23#include <linux/fs.h>
24#include <linux/pagemap.h>
25#include <linux/highmem.h>
26#include <linux/time.h>
27#include <linux/init.h>
28#include <linux/string.h>
29#include <linux/backing-dev.h>
30#include <linux/mpage.h>
31#include <linux/swap.h>
32#include <linux/writeback.h>
33#include <linux/statfs.h>
34#include <linux/compat.h>
35#include <linux/bit_spinlock.h>
36#include <linux/xattr.h>
37#include <linux/posix_acl.h>
38#include <linux/falloc.h>
39#include <linux/slab.h>
40#include <linux/ratelimit.h>
41#include <linux/mount.h>
42#include <linux/btrfs.h>
43#include <linux/blkdev.h>
44#include <linux/posix_acl_xattr.h>
45#include <linux/uio.h>
46#include "ctree.h"
47#include "disk-io.h"
48#include "transaction.h"
49#include "btrfs_inode.h"
50#include "print-tree.h"
51#include "ordered-data.h"
52#include "xattr.h"
53#include "tree-log.h"
54#include "volumes.h"
55#include "compression.h"
56#include "locking.h"
57#include "free-space-cache.h"
58#include "inode-map.h"
59#include "backref.h"
60#include "hash.h"
61#include "props.h"
62#include "qgroup.h"
63
64struct btrfs_iget_args {
65	struct btrfs_key *location;
66	struct btrfs_root *root;
67};
68
69static const struct inode_operations btrfs_dir_inode_operations;
70static const struct inode_operations btrfs_symlink_inode_operations;
71static const struct inode_operations btrfs_dir_ro_inode_operations;
72static const struct inode_operations btrfs_special_inode_operations;
73static const struct inode_operations btrfs_file_inode_operations;
74static const struct address_space_operations btrfs_aops;
75static const struct address_space_operations btrfs_symlink_aops;
76static const struct file_operations btrfs_dir_file_operations;
77static struct extent_io_ops btrfs_extent_io_ops;
78
79static struct kmem_cache *btrfs_inode_cachep;
80static struct kmem_cache *btrfs_delalloc_work_cachep;
81struct kmem_cache *btrfs_trans_handle_cachep;
82struct kmem_cache *btrfs_transaction_cachep;
83struct kmem_cache *btrfs_path_cachep;
84struct kmem_cache *btrfs_free_space_cachep;
85
86#define S_SHIFT 12
87static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
88	[S_IFREG >> S_SHIFT]	= BTRFS_FT_REG_FILE,
89	[S_IFDIR >> S_SHIFT]	= BTRFS_FT_DIR,
90	[S_IFCHR >> S_SHIFT]	= BTRFS_FT_CHRDEV,
91	[S_IFBLK >> S_SHIFT]	= BTRFS_FT_BLKDEV,
92	[S_IFIFO >> S_SHIFT]	= BTRFS_FT_FIFO,
93	[S_IFSOCK >> S_SHIFT]	= BTRFS_FT_SOCK,
94	[S_IFLNK >> S_SHIFT]	= BTRFS_FT_SYMLINK,
95};
96
97static int btrfs_setsize(struct inode *inode, struct iattr *attr);
98static int btrfs_truncate(struct inode *inode);
99static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
100static noinline int cow_file_range(struct inode *inode,
101				   struct page *locked_page,
102				   u64 start, u64 end, int *page_started,
103				   unsigned long *nr_written, int unlock);
104static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
105					   u64 len, u64 orig_start,
106					   u64 block_start, u64 block_len,
107					   u64 orig_block_len, u64 ram_bytes,
108					   int type);
109
110static int btrfs_dirty_inode(struct inode *inode);
111
112#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
113void btrfs_test_inode_set_ops(struct inode *inode)
114{
115	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
116}
117#endif
118
119static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
120				     struct inode *inode,  struct inode *dir,
121				     const struct qstr *qstr)
122{
123	int err;
124
125	err = btrfs_init_acl(trans, inode, dir);
126	if (!err)
127		err = btrfs_xattr_security_init(trans, inode, dir, qstr);
128	return err;
129}
130
131/*
132 * this does all the hard work for inserting an inline extent into
133 * the btree.  The caller should have done a btrfs_drop_extents so that
134 * no overlapping inline items exist in the btree
135 */
136static int insert_inline_extent(struct btrfs_trans_handle *trans,
137				struct btrfs_path *path, int extent_inserted,
138				struct btrfs_root *root, struct inode *inode,
139				u64 start, size_t size, size_t compressed_size,
140				int compress_type,
141				struct page **compressed_pages)
142{
143	struct extent_buffer *leaf;
144	struct page *page = NULL;
145	char *kaddr;
146	unsigned long ptr;
147	struct btrfs_file_extent_item *ei;
148	int err = 0;
149	int ret;
150	size_t cur_size = size;
151	unsigned long offset;
152
153	if (compressed_size && compressed_pages)
154		cur_size = compressed_size;
155
156	inode_add_bytes(inode, size);
157
158	if (!extent_inserted) {
159		struct btrfs_key key;
160		size_t datasize;
161
162		key.objectid = btrfs_ino(inode);
163		key.offset = start;
164		key.type = BTRFS_EXTENT_DATA_KEY;
165
166		datasize = btrfs_file_extent_calc_inline_size(cur_size);
167		path->leave_spinning = 1;
168		ret = btrfs_insert_empty_item(trans, root, path, &key,
169					      datasize);
170		if (ret) {
171			err = ret;
172			goto fail;
173		}
174	}
175	leaf = path->nodes[0];
176	ei = btrfs_item_ptr(leaf, path->slots[0],
177			    struct btrfs_file_extent_item);
178	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
179	btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
180	btrfs_set_file_extent_encryption(leaf, ei, 0);
181	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
182	btrfs_set_file_extent_ram_bytes(leaf, ei, size);
183	ptr = btrfs_file_extent_inline_start(ei);
184
185	if (compress_type != BTRFS_COMPRESS_NONE) {
186		struct page *cpage;
187		int i = 0;
188		while (compressed_size > 0) {
189			cpage = compressed_pages[i];
190			cur_size = min_t(unsigned long, compressed_size,
191				       PAGE_CACHE_SIZE);
192
193			kaddr = kmap_atomic(cpage);
194			write_extent_buffer(leaf, kaddr, ptr, cur_size);
195			kunmap_atomic(kaddr);
196
197			i++;
198			ptr += cur_size;
199			compressed_size -= cur_size;
200		}
201		btrfs_set_file_extent_compression(leaf, ei,
202						  compress_type);
203	} else {
204		page = find_get_page(inode->i_mapping,
205				     start >> PAGE_CACHE_SHIFT);
206		btrfs_set_file_extent_compression(leaf, ei, 0);
207		kaddr = kmap_atomic(page);
208		offset = start & (PAGE_CACHE_SIZE - 1);
209		write_extent_buffer(leaf, kaddr + offset, ptr, size);
210		kunmap_atomic(kaddr);
211		page_cache_release(page);
212	}
213	btrfs_mark_buffer_dirty(leaf);
214	btrfs_release_path(path);
215
216	/*
217	 * we're an inline extent, so nobody can
218	 * extend the file past i_size without locking
219	 * a page we already have locked.
220	 *
221	 * We must do any isize and inode updates
222	 * before we unlock the pages.  Otherwise we
223	 * could end up racing with unlink.
224	 */
225	BTRFS_I(inode)->disk_i_size = inode->i_size;
226	ret = btrfs_update_inode(trans, root, inode);
227
228	return ret;
229fail:
230	return err;
231}
232
233
234/*
235 * conditionally insert an inline extent into the file.  This
236 * does the checks required to make sure the data is small enough
237 * to fit as an inline extent.
238 */
239static noinline int cow_file_range_inline(struct btrfs_root *root,
240					  struct inode *inode, u64 start,
241					  u64 end, size_t compressed_size,
242					  int compress_type,
243					  struct page **compressed_pages)
244{
245	struct btrfs_trans_handle *trans;
246	u64 isize = i_size_read(inode);
247	u64 actual_end = min(end + 1, isize);
248	u64 inline_len = actual_end - start;
249	u64 aligned_end = ALIGN(end, root->sectorsize);
250	u64 data_len = inline_len;
251	int ret;
252	struct btrfs_path *path;
253	int extent_inserted = 0;
254	u32 extent_item_size;
255
256	if (compressed_size)
257		data_len = compressed_size;
258
259	if (start > 0 ||
260	    actual_end > PAGE_CACHE_SIZE ||
261	    data_len > BTRFS_MAX_INLINE_DATA_SIZE(root) ||
262	    (!compressed_size &&
263	    (actual_end & (root->sectorsize - 1)) == 0) ||
264	    end + 1 < isize ||
265	    data_len > root->fs_info->max_inline) {
266		return 1;
267	}
268
269	path = btrfs_alloc_path();
270	if (!path)
271		return -ENOMEM;
272
273	trans = btrfs_join_transaction(root);
274	if (IS_ERR(trans)) {
275		btrfs_free_path(path);
276		return PTR_ERR(trans);
277	}
278	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
279
280	if (compressed_size && compressed_pages)
281		extent_item_size = btrfs_file_extent_calc_inline_size(
282		   compressed_size);
283	else
284		extent_item_size = btrfs_file_extent_calc_inline_size(
285		    inline_len);
286
287	ret = __btrfs_drop_extents(trans, root, inode, path,
288				   start, aligned_end, NULL,
289				   1, 1, extent_item_size, &extent_inserted);
290	if (ret) {
291		btrfs_abort_transaction(trans, root, ret);
292		goto out;
293	}
294
295	if (isize > actual_end)
296		inline_len = min_t(u64, isize, actual_end);
297	ret = insert_inline_extent(trans, path, extent_inserted,
298				   root, inode, start,
299				   inline_len, compressed_size,
300				   compress_type, compressed_pages);
301	if (ret && ret != -ENOSPC) {
302		btrfs_abort_transaction(trans, root, ret);
303		goto out;
304	} else if (ret == -ENOSPC) {
305		ret = 1;
306		goto out;
307	}
308
309	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
310	btrfs_delalloc_release_metadata(inode, end + 1 - start);
311	btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
312out:
313	btrfs_free_path(path);
314	btrfs_end_transaction(trans, root);
315	return ret;
316}
317
318struct async_extent {
319	u64 start;
320	u64 ram_size;
321	u64 compressed_size;
322	struct page **pages;
323	unsigned long nr_pages;
324	int compress_type;
325	struct list_head list;
326};
327
328struct async_cow {
329	struct inode *inode;
330	struct btrfs_root *root;
331	struct page *locked_page;
332	u64 start;
333	u64 end;
334	struct list_head extents;
335	struct btrfs_work work;
336};
337
338static noinline int add_async_extent(struct async_cow *cow,
339				     u64 start, u64 ram_size,
340				     u64 compressed_size,
341				     struct page **pages,
342				     unsigned long nr_pages,
343				     int compress_type)
344{
345	struct async_extent *async_extent;
346
347	async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
348	BUG_ON(!async_extent); /* -ENOMEM */
349	async_extent->start = start;
350	async_extent->ram_size = ram_size;
351	async_extent->compressed_size = compressed_size;
352	async_extent->pages = pages;
353	async_extent->nr_pages = nr_pages;
354	async_extent->compress_type = compress_type;
355	list_add_tail(&async_extent->list, &cow->extents);
356	return 0;
357}
358
359static inline int inode_need_compress(struct inode *inode)
360{
361	struct btrfs_root *root = BTRFS_I(inode)->root;
362
363	/* force compress */
364	if (btrfs_test_opt(root, FORCE_COMPRESS))
365		return 1;
366	/* bad compression ratios */
367	if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
368		return 0;
369	if (btrfs_test_opt(root, COMPRESS) ||
370	    BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS ||
371	    BTRFS_I(inode)->force_compress)
372		return 1;
373	return 0;
374}
375
376/*
377 * we create compressed extents in two phases.  The first
378 * phase compresses a range of pages that have already been
379 * locked (both pages and state bits are locked).
380 *
381 * This is done inside an ordered work queue, and the compression
382 * is spread across many cpus.  The actual IO submission is step
383 * two, and the ordered work queue takes care of making sure that
384 * happens in the same order things were put onto the queue by
385 * writepages and friends.
386 *
387 * If this code finds it can't get good compression, it puts an
388 * entry onto the work queue to write the uncompressed bytes.  This
389 * makes sure that both compressed inodes and uncompressed inodes
390 * are written in the same order that the flusher thread sent them
391 * down.
392 */
393static noinline void compress_file_range(struct inode *inode,
394					struct page *locked_page,
395					u64 start, u64 end,
396					struct async_cow *async_cow,
397					int *num_added)
398{
399	struct btrfs_root *root = BTRFS_I(inode)->root;
400	u64 num_bytes;
401	u64 blocksize = root->sectorsize;
402	u64 actual_end;
403	u64 isize = i_size_read(inode);
404	int ret = 0;
405	struct page **pages = NULL;
406	unsigned long nr_pages;
407	unsigned long nr_pages_ret = 0;
408	unsigned long total_compressed = 0;
409	unsigned long total_in = 0;
410	unsigned long max_compressed = 128 * 1024;
411	unsigned long max_uncompressed = 128 * 1024;
412	int i;
413	int will_compress;
414	int compress_type = root->fs_info->compress_type;
415	int redirty = 0;
416
417	/* if this is a small write inside eof, kick off a defrag */
418	if ((end - start + 1) < 16 * 1024 &&
419	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
420		btrfs_add_inode_defrag(NULL, inode);
421
422	actual_end = min_t(u64, isize, end + 1);
423again:
424	will_compress = 0;
425	nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
426	nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
427
428	/*
429	 * we don't want to send crud past the end of i_size through
430	 * compression, that's just a waste of CPU time.  So, if the
431	 * end of the file is before the start of our current
432	 * requested range of bytes, we bail out to the uncompressed
433	 * cleanup code that can deal with all of this.
434	 *
435	 * It isn't really the fastest way to fix things, but this is a
436	 * very uncommon corner.
437	 */
438	if (actual_end <= start)
439		goto cleanup_and_bail_uncompressed;
440
441	total_compressed = actual_end - start;
442
443	/*
444	 * skip compression for a small file range(<=blocksize) that
445	 * isn't an inline extent, since it dosen't save disk space at all.
446	 */
447	if (total_compressed <= blocksize &&
448	   (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
449		goto cleanup_and_bail_uncompressed;
450
451	/* we want to make sure that amount of ram required to uncompress
452	 * an extent is reasonable, so we limit the total size in ram
453	 * of a compressed extent to 128k.  This is a crucial number
454	 * because it also controls how easily we can spread reads across
455	 * cpus for decompression.
456	 *
457	 * We also want to make sure the amount of IO required to do
458	 * a random read is reasonably small, so we limit the size of
459	 * a compressed extent to 128k.
460	 */
461	total_compressed = min(total_compressed, max_uncompressed);
462	num_bytes = ALIGN(end - start + 1, blocksize);
463	num_bytes = max(blocksize,  num_bytes);
464	total_in = 0;
465	ret = 0;
466
467	/*
468	 * we do compression for mount -o compress and when the
469	 * inode has not been flagged as nocompress.  This flag can
470	 * change at any time if we discover bad compression ratios.
471	 */
472	if (inode_need_compress(inode)) {
473		WARN_ON(pages);
474		pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
475		if (!pages) {
476			/* just bail out to the uncompressed code */
477			goto cont;
478		}
479
480		if (BTRFS_I(inode)->force_compress)
481			compress_type = BTRFS_I(inode)->force_compress;
482
483		/*
484		 * we need to call clear_page_dirty_for_io on each
485		 * page in the range.  Otherwise applications with the file
486		 * mmap'd can wander in and change the page contents while
487		 * we are compressing them.
488		 *
489		 * If the compression fails for any reason, we set the pages
490		 * dirty again later on.
491		 */
492		extent_range_clear_dirty_for_io(inode, start, end);
493		redirty = 1;
494		ret = btrfs_compress_pages(compress_type,
495					   inode->i_mapping, start,
496					   total_compressed, pages,
497					   nr_pages, &nr_pages_ret,
498					   &total_in,
499					   &total_compressed,
500					   max_compressed);
501
502		if (!ret) {
503			unsigned long offset = total_compressed &
504				(PAGE_CACHE_SIZE - 1);
505			struct page *page = pages[nr_pages_ret - 1];
506			char *kaddr;
507
508			/* zero the tail end of the last page, we might be
509			 * sending it down to disk
510			 */
511			if (offset) {
512				kaddr = kmap_atomic(page);
513				memset(kaddr + offset, 0,
514				       PAGE_CACHE_SIZE - offset);
515				kunmap_atomic(kaddr);
516			}
517			will_compress = 1;
518		}
519	}
520cont:
521	if (start == 0) {
522		/* lets try to make an inline extent */
523		if (ret || total_in < (actual_end - start)) {
524			/* we didn't compress the entire range, try
525			 * to make an uncompressed inline extent.
526			 */
527			ret = cow_file_range_inline(root, inode, start, end,
528						    0, 0, NULL);
529		} else {
530			/* try making a compressed inline extent */
531			ret = cow_file_range_inline(root, inode, start, end,
532						    total_compressed,
533						    compress_type, pages);
534		}
535		if (ret <= 0) {
536			unsigned long clear_flags = EXTENT_DELALLOC |
537				EXTENT_DEFRAG;
538			unsigned long page_error_op;
539
540			clear_flags |= (ret < 0) ? EXTENT_DO_ACCOUNTING : 0;
541			page_error_op = ret < 0 ? PAGE_SET_ERROR : 0;
542
543			/*
544			 * inline extent creation worked or returned error,
545			 * we don't need to create any more async work items.
546			 * Unlock and free up our temp pages.
547			 */
548			extent_clear_unlock_delalloc(inode, start, end, NULL,
549						     clear_flags, PAGE_UNLOCK |
550						     PAGE_CLEAR_DIRTY |
551						     PAGE_SET_WRITEBACK |
552						     page_error_op |
553						     PAGE_END_WRITEBACK);
554			goto free_pages_out;
555		}
556	}
557
558	if (will_compress) {
559		/*
560		 * we aren't doing an inline extent round the compressed size
561		 * up to a block size boundary so the allocator does sane
562		 * things
563		 */
564		total_compressed = ALIGN(total_compressed, blocksize);
565
566		/*
567		 * one last check to make sure the compression is really a
568		 * win, compare the page count read with the blocks on disk
569		 */
570		total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
571		if (total_compressed >= total_in) {
572			will_compress = 0;
573		} else {
574			num_bytes = total_in;
575		}
576	}
577	if (!will_compress && pages) {
578		/*
579		 * the compression code ran but failed to make things smaller,
580		 * free any pages it allocated and our page pointer array
581		 */
582		for (i = 0; i < nr_pages_ret; i++) {
583			WARN_ON(pages[i]->mapping);
584			page_cache_release(pages[i]);
585		}
586		kfree(pages);
587		pages = NULL;
588		total_compressed = 0;
589		nr_pages_ret = 0;
590
591		/* flag the file so we don't compress in the future */
592		if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
593		    !(BTRFS_I(inode)->force_compress)) {
594			BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
595		}
596	}
597	if (will_compress) {
598		*num_added += 1;
599
600		/* the async work queues will take care of doing actual
601		 * allocation on disk for these compressed pages,
602		 * and will submit them to the elevator.
603		 */
604		add_async_extent(async_cow, start, num_bytes,
605				 total_compressed, pages, nr_pages_ret,
606				 compress_type);
607
608		if (start + num_bytes < end) {
609			start += num_bytes;
610			pages = NULL;
611			cond_resched();
612			goto again;
613		}
614	} else {
615cleanup_and_bail_uncompressed:
616		/*
617		 * No compression, but we still need to write the pages in
618		 * the file we've been given so far.  redirty the locked
619		 * page if it corresponds to our extent and set things up
620		 * for the async work queue to run cow_file_range to do
621		 * the normal delalloc dance
622		 */
623		if (page_offset(locked_page) >= start &&
624		    page_offset(locked_page) <= end) {
625			__set_page_dirty_nobuffers(locked_page);
626			/* unlocked later on in the async handlers */
627		}
628		if (redirty)
629			extent_range_redirty_for_io(inode, start, end);
630		add_async_extent(async_cow, start, end - start + 1,
631				 0, NULL, 0, BTRFS_COMPRESS_NONE);
632		*num_added += 1;
633	}
634
635	return;
636
637free_pages_out:
638	for (i = 0; i < nr_pages_ret; i++) {
639		WARN_ON(pages[i]->mapping);
640		page_cache_release(pages[i]);
641	}
642	kfree(pages);
643}
644
645static void free_async_extent_pages(struct async_extent *async_extent)
646{
647	int i;
648
649	if (!async_extent->pages)
650		return;
651
652	for (i = 0; i < async_extent->nr_pages; i++) {
653		WARN_ON(async_extent->pages[i]->mapping);
654		page_cache_release(async_extent->pages[i]);
655	}
656	kfree(async_extent->pages);
657	async_extent->nr_pages = 0;
658	async_extent->pages = NULL;
659}
660
661/*
662 * phase two of compressed writeback.  This is the ordered portion
663 * of the code, which only gets called in the order the work was
664 * queued.  We walk all the async extents created by compress_file_range
665 * and send them down to the disk.
666 */
667static noinline void submit_compressed_extents(struct inode *inode,
668					      struct async_cow *async_cow)
669{
670	struct async_extent *async_extent;
671	u64 alloc_hint = 0;
672	struct btrfs_key ins;
673	struct extent_map *em;
674	struct btrfs_root *root = BTRFS_I(inode)->root;
675	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
676	struct extent_io_tree *io_tree;
677	int ret = 0;
678
679again:
680	while (!list_empty(&async_cow->extents)) {
681		async_extent = list_entry(async_cow->extents.next,
682					  struct async_extent, list);
683		list_del(&async_extent->list);
684
685		io_tree = &BTRFS_I(inode)->io_tree;
686
687retry:
688		/* did the compression code fall back to uncompressed IO? */
689		if (!async_extent->pages) {
690			int page_started = 0;
691			unsigned long nr_written = 0;
692
693			lock_extent(io_tree, async_extent->start,
694					 async_extent->start +
695					 async_extent->ram_size - 1);
696
697			/* allocate blocks */
698			ret = cow_file_range(inode, async_cow->locked_page,
699					     async_extent->start,
700					     async_extent->start +
701					     async_extent->ram_size - 1,
702					     &page_started, &nr_written, 0);
703
704			/* JDM XXX */
705
706			/*
707			 * if page_started, cow_file_range inserted an
708			 * inline extent and took care of all the unlocking
709			 * and IO for us.  Otherwise, we need to submit
710			 * all those pages down to the drive.
711			 */
712			if (!page_started && !ret)
713				extent_write_locked_range(io_tree,
714						  inode, async_extent->start,
715						  async_extent->start +
716						  async_extent->ram_size - 1,
717						  btrfs_get_extent,
718						  WB_SYNC_ALL);
719			else if (ret)
720				unlock_page(async_cow->locked_page);
721			kfree(async_extent);
722			cond_resched();
723			continue;
724		}
725
726		lock_extent(io_tree, async_extent->start,
727			    async_extent->start + async_extent->ram_size - 1);
728
729		ret = btrfs_reserve_extent(root,
730					   async_extent->compressed_size,
731					   async_extent->compressed_size,
732					   0, alloc_hint, &ins, 1, 1);
733		if (ret) {
734			free_async_extent_pages(async_extent);
735
736			if (ret == -ENOSPC) {
737				unlock_extent(io_tree, async_extent->start,
738					      async_extent->start +
739					      async_extent->ram_size - 1);
740
741				/*
742				 * we need to redirty the pages if we decide to
743				 * fallback to uncompressed IO, otherwise we
744				 * will not submit these pages down to lower
745				 * layers.
746				 */
747				extent_range_redirty_for_io(inode,
748						async_extent->start,
749						async_extent->start +
750						async_extent->ram_size - 1);
751
752				goto retry;
753			}
754			goto out_free;
755		}
756		/*
757		 * here we're doing allocation and writeback of the
758		 * compressed pages
759		 */
760		btrfs_drop_extent_cache(inode, async_extent->start,
761					async_extent->start +
762					async_extent->ram_size - 1, 0);
763
764		em = alloc_extent_map();
765		if (!em) {
766			ret = -ENOMEM;
767			goto out_free_reserve;
768		}
769		em->start = async_extent->start;
770		em->len = async_extent->ram_size;
771		em->orig_start = em->start;
772		em->mod_start = em->start;
773		em->mod_len = em->len;
774
775		em->block_start = ins.objectid;
776		em->block_len = ins.offset;
777		em->orig_block_len = ins.offset;
778		em->ram_bytes = async_extent->ram_size;
779		em->bdev = root->fs_info->fs_devices->latest_bdev;
780		em->compress_type = async_extent->compress_type;
781		set_bit(EXTENT_FLAG_PINNED, &em->flags);
782		set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
783		em->generation = -1;
784
785		while (1) {
786			write_lock(&em_tree->lock);
787			ret = add_extent_mapping(em_tree, em, 1);
788			write_unlock(&em_tree->lock);
789			if (ret != -EEXIST) {
790				free_extent_map(em);
791				break;
792			}
793			btrfs_drop_extent_cache(inode, async_extent->start,
794						async_extent->start +
795						async_extent->ram_size - 1, 0);
796		}
797
798		if (ret)
799			goto out_free_reserve;
800
801		ret = btrfs_add_ordered_extent_compress(inode,
802						async_extent->start,
803						ins.objectid,
804						async_extent->ram_size,
805						ins.offset,
806						BTRFS_ORDERED_COMPRESSED,
807						async_extent->compress_type);
808		if (ret) {
809			btrfs_drop_extent_cache(inode, async_extent->start,
810						async_extent->start +
811						async_extent->ram_size - 1, 0);
812			goto out_free_reserve;
813		}
814
815		/*
816		 * clear dirty, set writeback and unlock the pages.
817		 */
818		extent_clear_unlock_delalloc(inode, async_extent->start,
819				async_extent->start +
820				async_extent->ram_size - 1,
821				NULL, EXTENT_LOCKED | EXTENT_DELALLOC,
822				PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
823				PAGE_SET_WRITEBACK);
824		ret = btrfs_submit_compressed_write(inode,
825				    async_extent->start,
826				    async_extent->ram_size,
827				    ins.objectid,
828				    ins.offset, async_extent->pages,
829				    async_extent->nr_pages);
830		if (ret) {
831			struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
832			struct page *p = async_extent->pages[0];
833			const u64 start = async_extent->start;
834			const u64 end = start + async_extent->ram_size - 1;
835
836			p->mapping = inode->i_mapping;
837			tree->ops->writepage_end_io_hook(p, start, end,
838							 NULL, 0);
839			p->mapping = NULL;
840			extent_clear_unlock_delalloc(inode, start, end, NULL, 0,
841						     PAGE_END_WRITEBACK |
842						     PAGE_SET_ERROR);
843			free_async_extent_pages(async_extent);
844		}
845		alloc_hint = ins.objectid + ins.offset;
846		kfree(async_extent);
847		cond_resched();
848	}
849	return;
850out_free_reserve:
851	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
852out_free:
853	extent_clear_unlock_delalloc(inode, async_extent->start,
854				     async_extent->start +
855				     async_extent->ram_size - 1,
856				     NULL, EXTENT_LOCKED | EXTENT_DELALLOC |
857				     EXTENT_DEFRAG | EXTENT_DO_ACCOUNTING,
858				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
859				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK |
860				     PAGE_SET_ERROR);
861	free_async_extent_pages(async_extent);
862	kfree(async_extent);
863	goto again;
864}
865
866static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
867				      u64 num_bytes)
868{
869	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
870	struct extent_map *em;
871	u64 alloc_hint = 0;
872
873	read_lock(&em_tree->lock);
874	em = search_extent_mapping(em_tree, start, num_bytes);
875	if (em) {
876		/*
877		 * if block start isn't an actual block number then find the
878		 * first block in this inode and use that as a hint.  If that
879		 * block is also bogus then just don't worry about it.
880		 */
881		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
882			free_extent_map(em);
883			em = search_extent_mapping(em_tree, 0, 0);
884			if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
885				alloc_hint = em->block_start;
886			if (em)
887				free_extent_map(em);
888		} else {
889			alloc_hint = em->block_start;
890			free_extent_map(em);
891		}
892	}
893	read_unlock(&em_tree->lock);
894
895	return alloc_hint;
896}
897
898/*
899 * when extent_io.c finds a delayed allocation range in the file,
900 * the call backs end up in this code.  The basic idea is to
901 * allocate extents on disk for the range, and create ordered data structs
902 * in ram to track those extents.
903 *
904 * locked_page is the page that writepage had locked already.  We use
905 * it to make sure we don't do extra locks or unlocks.
906 *
907 * *page_started is set to one if we unlock locked_page and do everything
908 * required to start IO on it.  It may be clean and already done with
909 * IO when we return.
910 */
911static noinline int cow_file_range(struct inode *inode,
912				   struct page *locked_page,
913				   u64 start, u64 end, int *page_started,
914				   unsigned long *nr_written,
915				   int unlock)
916{
917	struct btrfs_root *root = BTRFS_I(inode)->root;
918	u64 alloc_hint = 0;
919	u64 num_bytes;
920	unsigned long ram_size;
921	u64 disk_num_bytes;
922	u64 cur_alloc_size;
923	u64 blocksize = root->sectorsize;
924	struct btrfs_key ins;
925	struct extent_map *em;
926	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
927	int ret = 0;
928
929	if (btrfs_is_free_space_inode(inode)) {
930		WARN_ON_ONCE(1);
931		ret = -EINVAL;
932		goto out_unlock;
933	}
934
935	num_bytes = ALIGN(end - start + 1, blocksize);
936	num_bytes = max(blocksize,  num_bytes);
937	disk_num_bytes = num_bytes;
938
939	/* if this is a small write inside eof, kick off defrag */
940	if (num_bytes < 64 * 1024 &&
941	    (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
942		btrfs_add_inode_defrag(NULL, inode);
943
944	if (start == 0) {
945		/* lets try to make an inline extent */
946		ret = cow_file_range_inline(root, inode, start, end, 0, 0,
947					    NULL);
948		if (ret == 0) {
949			extent_clear_unlock_delalloc(inode, start, end, NULL,
950				     EXTENT_LOCKED | EXTENT_DELALLOC |
951				     EXTENT_DEFRAG, PAGE_UNLOCK |
952				     PAGE_CLEAR_DIRTY | PAGE_SET_WRITEBACK |
953				     PAGE_END_WRITEBACK);
954
955			*nr_written = *nr_written +
956			     (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
957			*page_started = 1;
958			goto out;
959		} else if (ret < 0) {
960			goto out_unlock;
961		}
962	}
963
964	BUG_ON(disk_num_bytes >
965	       btrfs_super_total_bytes(root->fs_info->super_copy));
966
967	alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
968	btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
969
970	while (disk_num_bytes > 0) {
971		unsigned long op;
972
973		cur_alloc_size = disk_num_bytes;
974		ret = btrfs_reserve_extent(root, cur_alloc_size,
975					   root->sectorsize, 0, alloc_hint,
976					   &ins, 1, 1);
977		if (ret < 0)
978			goto out_unlock;
979
980		em = alloc_extent_map();
981		if (!em) {
982			ret = -ENOMEM;
983			goto out_reserve;
984		}
985		em->start = start;
986		em->orig_start = em->start;
987		ram_size = ins.offset;
988		em->len = ins.offset;
989		em->mod_start = em->start;
990		em->mod_len = em->len;
991
992		em->block_start = ins.objectid;
993		em->block_len = ins.offset;
994		em->orig_block_len = ins.offset;
995		em->ram_bytes = ram_size;
996		em->bdev = root->fs_info->fs_devices->latest_bdev;
997		set_bit(EXTENT_FLAG_PINNED, &em->flags);
998		em->generation = -1;
999
1000		while (1) {
1001			write_lock(&em_tree->lock);
1002			ret = add_extent_mapping(em_tree, em, 1);
1003			write_unlock(&em_tree->lock);
1004			if (ret != -EEXIST) {
1005				free_extent_map(em);
1006				break;
1007			}
1008			btrfs_drop_extent_cache(inode, start,
1009						start + ram_size - 1, 0);
1010		}
1011		if (ret)
1012			goto out_reserve;
1013
1014		cur_alloc_size = ins.offset;
1015		ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
1016					       ram_size, cur_alloc_size, 0);
1017		if (ret)
1018			goto out_drop_extent_cache;
1019
1020		if (root->root_key.objectid ==
1021		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1022			ret = btrfs_reloc_clone_csums(inode, start,
1023						      cur_alloc_size);
1024			if (ret)
1025				goto out_drop_extent_cache;
1026		}
1027
1028		if (disk_num_bytes < cur_alloc_size)
1029			break;
1030
1031		/* we're not doing compressed IO, don't unlock the first
1032		 * page (which the caller expects to stay locked), don't
1033		 * clear any dirty bits and don't set any writeback bits
1034		 *
1035		 * Do set the Private2 bit so we know this page was properly
1036		 * setup for writepage
1037		 */
1038		op = unlock ? PAGE_UNLOCK : 0;
1039		op |= PAGE_SET_PRIVATE2;
1040
1041		extent_clear_unlock_delalloc(inode, start,
1042					     start + ram_size - 1, locked_page,
1043					     EXTENT_LOCKED | EXTENT_DELALLOC,
1044					     op);
1045		disk_num_bytes -= cur_alloc_size;
1046		num_bytes -= cur_alloc_size;
1047		alloc_hint = ins.objectid + ins.offset;
1048		start += cur_alloc_size;
1049	}
1050out:
1051	return ret;
1052
1053out_drop_extent_cache:
1054	btrfs_drop_extent_cache(inode, start, start + ram_size - 1, 0);
1055out_reserve:
1056	btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
1057out_unlock:
1058	extent_clear_unlock_delalloc(inode, start, end, locked_page,
1059				     EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
1060				     EXTENT_DELALLOC | EXTENT_DEFRAG,
1061				     PAGE_UNLOCK | PAGE_CLEAR_DIRTY |
1062				     PAGE_SET_WRITEBACK | PAGE_END_WRITEBACK);
1063	goto out;
1064}
1065
1066/*
1067 * work queue call back to started compression on a file and pages
1068 */
1069static noinline void async_cow_start(struct btrfs_work *work)
1070{
1071	struct async_cow *async_cow;
1072	int num_added = 0;
1073	async_cow = container_of(work, struct async_cow, work);
1074
1075	compress_file_range(async_cow->inode, async_cow->locked_page,
1076			    async_cow->start, async_cow->end, async_cow,
1077			    &num_added);
1078	if (num_added == 0) {
1079		btrfs_add_delayed_iput(async_cow->inode);
1080		async_cow->inode = NULL;
1081	}
1082}
1083
1084/*
1085 * work queue call back to submit previously compressed pages
1086 */
1087static noinline void async_cow_submit(struct btrfs_work *work)
1088{
1089	struct async_cow *async_cow;
1090	struct btrfs_root *root;
1091	unsigned long nr_pages;
1092
1093	async_cow = container_of(work, struct async_cow, work);
1094
1095	root = async_cow->root;
1096	nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1097		PAGE_CACHE_SHIFT;
1098
1099	if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1100	    5 * 1024 * 1024 &&
1101	    waitqueue_active(&root->fs_info->async_submit_wait))
1102		wake_up(&root->fs_info->async_submit_wait);
1103
1104	if (async_cow->inode)
1105		submit_compressed_extents(async_cow->inode, async_cow);
1106}
1107
1108static noinline void async_cow_free(struct btrfs_work *work)
1109{
1110	struct async_cow *async_cow;
1111	async_cow = container_of(work, struct async_cow, work);
1112	if (async_cow->inode)
1113		btrfs_add_delayed_iput(async_cow->inode);
1114	kfree(async_cow);
1115}
1116
1117static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1118				u64 start, u64 end, int *page_started,
1119				unsigned long *nr_written)
1120{
1121	struct async_cow *async_cow;
1122	struct btrfs_root *root = BTRFS_I(inode)->root;
1123	unsigned long nr_pages;
1124	u64 cur_end;
1125	int limit = 10 * 1024 * 1024;
1126
1127	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1128			 1, 0, NULL, GFP_NOFS);
1129	while (start < end) {
1130		async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1131		BUG_ON(!async_cow); /* -ENOMEM */
1132		async_cow->inode = igrab(inode);
1133		async_cow->root = root;
1134		async_cow->locked_page = locked_page;
1135		async_cow->start = start;
1136
1137		if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS &&
1138		    !btrfs_test_opt(root, FORCE_COMPRESS))
1139			cur_end = end;
1140		else
1141			cur_end = min(end, start + 512 * 1024 - 1);
1142
1143		async_cow->end = cur_end;
1144		INIT_LIST_HEAD(&async_cow->extents);
1145
1146		btrfs_init_work(&async_cow->work,
1147				btrfs_delalloc_helper,
1148				async_cow_start, async_cow_submit,
1149				async_cow_free);
1150
1151		nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1152			PAGE_CACHE_SHIFT;
1153		atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1154
1155		btrfs_queue_work(root->fs_info->delalloc_workers,
1156				 &async_cow->work);
1157
1158		if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1159			wait_event(root->fs_info->async_submit_wait,
1160			   (atomic_read(&root->fs_info->async_delalloc_pages) <
1161			    limit));
1162		}
1163
1164		while (atomic_read(&root->fs_info->async_submit_draining) &&
1165		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1166			wait_event(root->fs_info->async_submit_wait,
1167			  (atomic_read(&root->fs_info->async_delalloc_pages) ==
1168			   0));
1169		}
1170
1171		*nr_written += nr_pages;
1172		start = cur_end + 1;
1173	}
1174	*page_started = 1;
1175	return 0;
1176}
1177
1178static noinline int csum_exist_in_range(struct btrfs_root *root,
1179					u64 bytenr, u64 num_bytes)
1180{
1181	int ret;
1182	struct btrfs_ordered_sum *sums;
1183	LIST_HEAD(list);
1184
1185	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1186				       bytenr + num_bytes - 1, &list, 0);
1187	if (ret == 0 && list_empty(&list))
1188		return 0;
1189
1190	while (!list_empty(&list)) {
1191		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1192		list_del(&sums->list);
1193		kfree(sums);
1194	}
1195	return 1;
1196}
1197
1198/*
1199 * when nowcow writeback call back.  This checks for snapshots or COW copies
1200 * of the extents that exist in the file, and COWs the file as required.
1201 *
1202 * If no cow copies or snapshots exist, we write directly to the existing
1203 * blocks on disk
1204 */
1205static noinline int run_delalloc_nocow(struct inode *inode,
1206				       struct page *locked_page,
1207			      u64 start, u64 end, int *page_started, int force,
1208			      unsigned long *nr_written)
1209{
1210	struct btrfs_root *root = BTRFS_I(inode)->root;
1211	struct btrfs_trans_handle *trans;
1212	struct extent_buffer *leaf;
1213	struct btrfs_path *path;
1214	struct btrfs_file_extent_item *fi;
1215	struct btrfs_key found_key;
1216	u64 cow_start;
1217	u64 cur_offset;
1218	u64 extent_end;
1219	u64 extent_offset;
1220	u64 disk_bytenr;
1221	u64 num_bytes;
1222	u64 disk_num_bytes;
1223	u64 ram_bytes;
1224	int extent_type;
1225	int ret, err;
1226	int type;
1227	int nocow;
1228	int check_prev = 1;
1229	bool nolock;
1230	u64 ino = btrfs_ino(inode);
1231
1232	path = btrfs_alloc_path();
1233	if (!path) {
1234		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1235					     EXTENT_LOCKED | EXTENT_DELALLOC |
1236					     EXTENT_DO_ACCOUNTING |
1237					     EXTENT_DEFRAG, PAGE_UNLOCK |
1238					     PAGE_CLEAR_DIRTY |
1239					     PAGE_SET_WRITEBACK |
1240					     PAGE_END_WRITEBACK);
1241		return -ENOMEM;
1242	}
1243
1244	nolock = btrfs_is_free_space_inode(inode);
1245
1246	if (nolock)
1247		trans = btrfs_join_transaction_nolock(root);
1248	else
1249		trans = btrfs_join_transaction(root);
1250
1251	if (IS_ERR(trans)) {
1252		extent_clear_unlock_delalloc(inode, start, end, locked_page,
1253					     EXTENT_LOCKED | EXTENT_DELALLOC |
1254					     EXTENT_DO_ACCOUNTING |
1255					     EXTENT_DEFRAG, PAGE_UNLOCK |
1256					     PAGE_CLEAR_DIRTY |
1257					     PAGE_SET_WRITEBACK |
1258					     PAGE_END_WRITEBACK);
1259		btrfs_free_path(path);
1260		return PTR_ERR(trans);
1261	}
1262
1263	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1264
1265	cow_start = (u64)-1;
1266	cur_offset = start;
1267	while (1) {
1268		ret = btrfs_lookup_file_extent(trans, root, path, ino,
1269					       cur_offset, 0);
1270		if (ret < 0)
1271			goto error;
1272		if (ret > 0 && path->slots[0] > 0 && check_prev) {
1273			leaf = path->nodes[0];
1274			btrfs_item_key_to_cpu(leaf, &found_key,
1275					      path->slots[0] - 1);
1276			if (found_key.objectid == ino &&
1277			    found_key.type == BTRFS_EXTENT_DATA_KEY)
1278				path->slots[0]--;
1279		}
1280		check_prev = 0;
1281next_slot:
1282		leaf = path->nodes[0];
1283		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1284			ret = btrfs_next_leaf(root, path);
1285			if (ret < 0)
1286				goto error;
1287			if (ret > 0)
1288				break;
1289			leaf = path->nodes[0];
1290		}
1291
1292		nocow = 0;
1293		disk_bytenr = 0;
1294		num_bytes = 0;
1295		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1296
1297		if (found_key.objectid > ino)
1298			break;
1299		if (WARN_ON_ONCE(found_key.objectid < ino) ||
1300		    found_key.type < BTRFS_EXTENT_DATA_KEY) {
1301			path->slots[0]++;
1302			goto next_slot;
1303		}
1304		if (found_key.type > BTRFS_EXTENT_DATA_KEY ||
1305		    found_key.offset > end)
1306			break;
1307
1308		if (found_key.offset > cur_offset) {
1309			extent_end = found_key.offset;
1310			extent_type = 0;
1311			goto out_check;
1312		}
1313
1314		fi = btrfs_item_ptr(leaf, path->slots[0],
1315				    struct btrfs_file_extent_item);
1316		extent_type = btrfs_file_extent_type(leaf, fi);
1317
1318		ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1319		if (extent_type == BTRFS_FILE_EXTENT_REG ||
1320		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1321			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1322			extent_offset = btrfs_file_extent_offset(leaf, fi);
1323			extent_end = found_key.offset +
1324				btrfs_file_extent_num_bytes(leaf, fi);
1325			disk_num_bytes =
1326				btrfs_file_extent_disk_num_bytes(leaf, fi);
1327			if (extent_end <= start) {
1328				path->slots[0]++;
1329				goto next_slot;
1330			}
1331			if (disk_bytenr == 0)
1332				goto out_check;
1333			if (btrfs_file_extent_compression(leaf, fi) ||
1334			    btrfs_file_extent_encryption(leaf, fi) ||
1335			    btrfs_file_extent_other_encoding(leaf, fi))
1336				goto out_check;
1337			if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1338				goto out_check;
1339			if (btrfs_extent_readonly(root, disk_bytenr))
1340				goto out_check;
1341			if (btrfs_cross_ref_exist(trans, root, ino,
1342						  found_key.offset -
1343						  extent_offset, disk_bytenr))
1344				goto out_check;
1345			disk_bytenr += extent_offset;
1346			disk_bytenr += cur_offset - found_key.offset;
1347			num_bytes = min(end + 1, extent_end) - cur_offset;
1348			/*
1349			 * if there are pending snapshots for this root,
1350			 * we fall into common COW way.
1351			 */
1352			if (!nolock) {
1353				err = btrfs_start_write_no_snapshoting(root);
1354				if (!err)
1355					goto out_check;
1356			}
1357			/*
1358			 * force cow if csum exists in the range.
1359			 * this ensure that csum for a given extent are
1360			 * either valid or do not exist.
1361			 */
1362			if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1363				goto out_check;
1364			nocow = 1;
1365		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1366			extent_end = found_key.offset +
1367				btrfs_file_extent_inline_len(leaf,
1368						     path->slots[0], fi);
1369			extent_end = ALIGN(extent_end, root->sectorsize);
1370		} else {
1371			BUG_ON(1);
1372		}
1373out_check:
1374		if (extent_end <= start) {
1375			path->slots[0]++;
1376			if (!nolock && nocow)
1377				btrfs_end_write_no_snapshoting(root);
1378			goto next_slot;
1379		}
1380		if (!nocow) {
1381			if (cow_start == (u64)-1)
1382				cow_start = cur_offset;
1383			cur_offset = extent_end;
1384			if (cur_offset > end)
1385				break;
1386			path->slots[0]++;
1387			goto next_slot;
1388		}
1389
1390		btrfs_release_path(path);
1391		if (cow_start != (u64)-1) {
1392			ret = cow_file_range(inode, locked_page,
1393					     cow_start, found_key.offset - 1,
1394					     page_started, nr_written, 1);
1395			if (ret) {
1396				if (!nolock && nocow)
1397					btrfs_end_write_no_snapshoting(root);
1398				goto error;
1399			}
1400			cow_start = (u64)-1;
1401		}
1402
1403		if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1404			struct extent_map *em;
1405			struct extent_map_tree *em_tree;
1406			em_tree = &BTRFS_I(inode)->extent_tree;
1407			em = alloc_extent_map();
1408			BUG_ON(!em); /* -ENOMEM */
1409			em->start = cur_offset;
1410			em->orig_start = found_key.offset - extent_offset;
1411			em->len = num_bytes;
1412			em->block_len = num_bytes;
1413			em->block_start = disk_bytenr;
1414			em->orig_block_len = disk_num_bytes;
1415			em->ram_bytes = ram_bytes;
1416			em->bdev = root->fs_info->fs_devices->latest_bdev;
1417			em->mod_start = em->start;
1418			em->mod_len = em->len;
1419			set_bit(EXTENT_FLAG_PINNED, &em->flags);
1420			set_bit(EXTENT_FLAG_FILLING, &em->flags);
1421			em->generation = -1;
1422			while (1) {
1423				write_lock(&em_tree->lock);
1424				ret = add_extent_mapping(em_tree, em, 1);
1425				write_unlock(&em_tree->lock);
1426				if (ret != -EEXIST) {
1427					free_extent_map(em);
1428					break;
1429				}
1430				btrfs_drop_extent_cache(inode, em->start,
1431						em->start + em->len - 1, 0);
1432			}
1433			type = BTRFS_ORDERED_PREALLOC;
1434		} else {
1435			type = BTRFS_ORDERED_NOCOW;
1436		}
1437
1438		ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1439					       num_bytes, num_bytes, type);
1440		BUG_ON(ret); /* -ENOMEM */
1441
1442		if (root->root_key.objectid ==
1443		    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1444			ret = btrfs_reloc_clone_csums(inode, cur_offset,
1445						      num_bytes);
1446			if (ret) {
1447				if (!nolock && nocow)
1448					btrfs_end_write_no_snapshoting(root);
1449				goto error;
1450			}
1451		}
1452
1453		extent_clear_unlock_delalloc(inode, cur_offset,
1454					     cur_offset + num_bytes - 1,
1455					     locked_page, EXTENT_LOCKED |
1456					     EXTENT_DELALLOC, PAGE_UNLOCK |
1457					     PAGE_SET_PRIVATE2);
1458		if (!nolock && nocow)
1459			btrfs_end_write_no_snapshoting(root);
1460		cur_offset = extent_end;
1461		if (cur_offset > end)
1462			break;
1463	}
1464	btrfs_release_path(path);
1465
1466	if (cur_offset <= end && cow_start == (u64)-1) {
1467		cow_start = cur_offset;
1468		cur_offset = end;
1469	}
1470
1471	if (cow_start != (u64)-1) {
1472		ret = cow_file_range(inode, locked_page, cow_start, end,
1473				     page_started, nr_written, 1);
1474		if (ret)
1475			goto error;
1476	}
1477
1478error:
1479	err = btrfs_end_transaction(trans, root);
1480	if (!ret)
1481		ret = err;
1482
1483	if (ret && cur_offset < end)
1484		extent_clear_unlock_delalloc(inode, cur_offset, end,
1485					     locked_page, EXTENT_LOCKED |
1486					     EXTENT_DELALLOC | EXTENT_DEFRAG |
1487					     EXTENT_DO_ACCOUNTING, PAGE_UNLOCK |
1488					     PAGE_CLEAR_DIRTY |
1489					     PAGE_SET_WRITEBACK |
1490					     PAGE_END_WRITEBACK);
1491	btrfs_free_path(path);
1492	return ret;
1493}
1494
1495static inline int need_force_cow(struct inode *inode, u64 start, u64 end)
1496{
1497
1498	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
1499	    !(BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC))
1500		return 0;
1501
1502	/*
1503	 * @defrag_bytes is a hint value, no spinlock held here,
1504	 * if is not zero, it means the file is defragging.
1505	 * Force cow if given extent needs to be defragged.
1506	 */
1507	if (BTRFS_I(inode)->defrag_bytes &&
1508	    test_range_bit(&BTRFS_I(inode)->io_tree, start, end,
1509			   EXTENT_DEFRAG, 0, NULL))
1510		return 1;
1511
1512	return 0;
1513}
1514
1515/*
1516 * extent_io.c call back to do delayed allocation processing
1517 */
1518static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1519			      u64 start, u64 end, int *page_started,
1520			      unsigned long *nr_written)
1521{
1522	int ret;
1523	int force_cow = need_force_cow(inode, start, end);
1524
1525	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW && !force_cow) {
1526		ret = run_delalloc_nocow(inode, locked_page, start, end,
1527					 page_started, 1, nr_written);
1528	} else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC && !force_cow) {
1529		ret = run_delalloc_nocow(inode, locked_page, start, end,
1530					 page_started, 0, nr_written);
1531	} else if (!inode_need_compress(inode)) {
1532		ret = cow_file_range(inode, locked_page, start, end,
1533				      page_started, nr_written, 1);
1534	} else {
1535		set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1536			&BTRFS_I(inode)->runtime_flags);
1537		ret = cow_file_range_async(inode, locked_page, start, end,
1538					   page_started, nr_written);
1539	}
1540	return ret;
1541}
1542
1543static void btrfs_split_extent_hook(struct inode *inode,
1544				    struct extent_state *orig, u64 split)
1545{
1546	u64 size;
1547
1548	/* not delalloc, ignore it */
1549	if (!(orig->state & EXTENT_DELALLOC))
1550		return;
1551
1552	size = orig->end - orig->start + 1;
1553	if (size > BTRFS_MAX_EXTENT_SIZE) {
1554		u64 num_extents;
1555		u64 new_size;
1556
1557		/*
1558		 * See the explanation in btrfs_merge_extent_hook, the same
1559		 * applies here, just in reverse.
1560		 */
1561		new_size = orig->end - split + 1;
1562		num_extents = div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1563					BTRFS_MAX_EXTENT_SIZE);
1564		new_size = split - orig->start;
1565		num_extents += div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1566					BTRFS_MAX_EXTENT_SIZE);
1567		if (div64_u64(size + BTRFS_MAX_EXTENT_SIZE - 1,
1568			      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1569			return;
1570	}
1571
1572	spin_lock(&BTRFS_I(inode)->lock);
1573	BTRFS_I(inode)->outstanding_extents++;
1574	spin_unlock(&BTRFS_I(inode)->lock);
1575}
1576
1577/*
1578 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1579 * extents so we can keep track of new extents that are just merged onto old
1580 * extents, such as when we are doing sequential writes, so we can properly
1581 * account for the metadata space we'll need.
1582 */
1583static void btrfs_merge_extent_hook(struct inode *inode,
1584				    struct extent_state *new,
1585				    struct extent_state *other)
1586{
1587	u64 new_size, old_size;
1588	u64 num_extents;
1589
1590	/* not delalloc, ignore it */
1591	if (!(other->state & EXTENT_DELALLOC))
1592		return;
1593
1594	if (new->start > other->start)
1595		new_size = new->end - other->start + 1;
1596	else
1597		new_size = other->end - new->start + 1;
1598
1599	/* we're not bigger than the max, unreserve the space and go */
1600	if (new_size <= BTRFS_MAX_EXTENT_SIZE) {
1601		spin_lock(&BTRFS_I(inode)->lock);
1602		BTRFS_I(inode)->outstanding_extents--;
1603		spin_unlock(&BTRFS_I(inode)->lock);
1604		return;
1605	}
1606
1607	/*
1608	 * We have to add up either side to figure out how many extents were
1609	 * accounted for before we merged into one big extent.  If the number of
1610	 * extents we accounted for is <= the amount we need for the new range
1611	 * then we can return, otherwise drop.  Think of it like this
1612	 *
1613	 * [ 4k][MAX_SIZE]
1614	 *
1615	 * So we've grown the extent by a MAX_SIZE extent, this would mean we
1616	 * need 2 outstanding extents, on one side we have 1 and the other side
1617	 * we have 1 so they are == and we can return.  But in this case
1618	 *
1619	 * [MAX_SIZE+4k][MAX_SIZE+4k]
1620	 *
1621	 * Each range on their own accounts for 2 extents, but merged together
1622	 * they are only 3 extents worth of accounting, so we need to drop in
1623	 * this case.
1624	 */
1625	old_size = other->end - other->start + 1;
1626	num_extents = div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1627				BTRFS_MAX_EXTENT_SIZE);
1628	old_size = new->end - new->start + 1;
1629	num_extents += div64_u64(old_size + BTRFS_MAX_EXTENT_SIZE - 1,
1630				 BTRFS_MAX_EXTENT_SIZE);
1631
1632	if (div64_u64(new_size + BTRFS_MAX_EXTENT_SIZE - 1,
1633		      BTRFS_MAX_EXTENT_SIZE) >= num_extents)
1634		return;
1635
1636	spin_lock(&BTRFS_I(inode)->lock);
1637	BTRFS_I(inode)->outstanding_extents--;
1638	spin_unlock(&BTRFS_I(inode)->lock);
1639}
1640
1641static void btrfs_add_delalloc_inodes(struct btrfs_root *root,
1642				      struct inode *inode)
1643{
1644	spin_lock(&root->delalloc_lock);
1645	if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1646		list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1647			      &root->delalloc_inodes);
1648		set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1649			&BTRFS_I(inode)->runtime_flags);
1650		root->nr_delalloc_inodes++;
1651		if (root->nr_delalloc_inodes == 1) {
1652			spin_lock(&root->fs_info->delalloc_root_lock);
1653			BUG_ON(!list_empty(&root->delalloc_root));
1654			list_add_tail(&root->delalloc_root,
1655				      &root->fs_info->delalloc_roots);
1656			spin_unlock(&root->fs_info->delalloc_root_lock);
1657		}
1658	}
1659	spin_unlock(&root->delalloc_lock);
1660}
1661
1662static void btrfs_del_delalloc_inode(struct btrfs_root *root,
1663				     struct inode *inode)
1664{
1665	spin_lock(&root->delalloc_lock);
1666	if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1667		list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1668		clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1669			  &BTRFS_I(inode)->runtime_flags);
1670		root->nr_delalloc_inodes--;
1671		if (!root->nr_delalloc_inodes) {
1672			spin_lock(&root->fs_info->delalloc_root_lock);
1673			BUG_ON(list_empty(&root->delalloc_root));
1674			list_del_init(&root->delalloc_root);
1675			spin_unlock(&root->fs_info->delalloc_root_lock);
1676		}
1677	}
1678	spin_unlock(&root->delalloc_lock);
1679}
1680
1681/*
1682 * extent_io.c set_bit_hook, used to track delayed allocation
1683 * bytes in this file, and to maintain the list of inodes that
1684 * have pending delalloc work to be done.
1685 */
1686static void btrfs_set_bit_hook(struct inode *inode,
1687			       struct extent_state *state, unsigned *bits)
1688{
1689
1690	if ((*bits & EXTENT_DEFRAG) && !(*bits & EXTENT_DELALLOC))
1691		WARN_ON(1);
1692	/*
1693	 * set_bit and clear bit hooks normally require _irqsave/restore
1694	 * but in this case, we are only testing for the DELALLOC
1695	 * bit, which is only set or cleared with irqs on
1696	 */
1697	if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1698		struct btrfs_root *root = BTRFS_I(inode)->root;
1699		u64 len = state->end + 1 - state->start;
1700		bool do_list = !btrfs_is_free_space_inode(inode);
1701
1702		if (*bits & EXTENT_FIRST_DELALLOC) {
1703			*bits &= ~EXTENT_FIRST_DELALLOC;
1704		} else {
1705			spin_lock(&BTRFS_I(inode)->lock);
1706			BTRFS_I(inode)->outstanding_extents++;
1707			spin_unlock(&BTRFS_I(inode)->lock);
1708		}
1709
1710		/* For sanity tests */
1711		if (btrfs_test_is_dummy_root(root))
1712			return;
1713
1714		__percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1715				     root->fs_info->delalloc_batch);
1716		spin_lock(&BTRFS_I(inode)->lock);
1717		BTRFS_I(inode)->delalloc_bytes += len;
1718		if (*bits & EXTENT_DEFRAG)
1719			BTRFS_I(inode)->defrag_bytes += len;
1720		if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1721					 &BTRFS_I(inode)->runtime_flags))
1722			btrfs_add_delalloc_inodes(root, inode);
1723		spin_unlock(&BTRFS_I(inode)->lock);
1724	}
1725}
1726
1727/*
1728 * extent_io.c clear_bit_hook, see set_bit_hook for why
1729 */
1730static void btrfs_clear_bit_hook(struct inode *inode,
1731				 struct extent_state *state,
1732				 unsigned *bits)
1733{
1734	u64 len = state->end + 1 - state->start;
1735	u64 num_extents = div64_u64(len + BTRFS_MAX_EXTENT_SIZE -1,
1736				    BTRFS_MAX_EXTENT_SIZE);
1737
1738	spin_lock(&BTRFS_I(inode)->lock);
1739	if ((state->state & EXTENT_DEFRAG) && (*bits & EXTENT_DEFRAG))
1740		BTRFS_I(inode)->defrag_bytes -= len;
1741	spin_unlock(&BTRFS_I(inode)->lock);
1742
1743	/*
1744	 * set_bit and clear bit hooks normally require _irqsave/restore
1745	 * but in this case, we are only testing for the DELALLOC
1746	 * bit, which is only set or cleared with irqs on
1747	 */
1748	if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1749		struct btrfs_root *root = BTRFS_I(inode)->root;
1750		bool do_list = !btrfs_is_free_space_inode(inode);
1751
1752		if (*bits & EXTENT_FIRST_DELALLOC) {
1753			*bits &= ~EXTENT_FIRST_DELALLOC;
1754		} else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1755			spin_lock(&BTRFS_I(inode)->lock);
1756			BTRFS_I(inode)->outstanding_extents -= num_extents;
1757			spin_unlock(&BTRFS_I(inode)->lock);
1758		}
1759
1760		/*
1761		 * We don't reserve metadata space for space cache inodes so we
1762		 * don't need to call dellalloc_release_metadata if there is an
1763		 * error.
1764		 */
1765		if (*bits & EXTENT_DO_ACCOUNTING &&
1766		    root != root->fs_info->tree_root)
1767			btrfs_delalloc_release_metadata(inode, len);
1768
1769		/* For sanity tests. */
1770		if (btrfs_test_is_dummy_root(root))
1771			return;
1772
1773		if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1774		    && do_list && !(state->state & EXTENT_NORESERVE))
1775			btrfs_free_reserved_data_space(inode, len);
1776
1777		__percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1778				     root->fs_info->delalloc_batch);
1779		spin_lock(&BTRFS_I(inode)->lock);
1780		BTRFS_I(inode)->delalloc_bytes -= len;
1781		if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1782		    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1783			     &BTRFS_I(inode)->runtime_flags))
1784			btrfs_del_delalloc_inode(root, inode);
1785		spin_unlock(&BTRFS_I(inode)->lock);
1786	}
1787}
1788
1789/*
1790 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1791 * we don't create bios that span stripes or chunks
1792 */
1793int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1794			 size_t size, struct bio *bio,
1795			 unsigned long bio_flags)
1796{
1797	struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1798	u64 logical = (u64)bio->bi_iter.bi_sector << 9;
1799	u64 length = 0;
1800	u64 map_length;
1801	int ret;
1802
1803	if (bio_flags & EXTENT_BIO_COMPRESSED)
1804		return 0;
1805
1806	length = bio->bi_iter.bi_size;
1807	map_length = length;
1808	ret = btrfs_map_block(root->fs_info, rw, logical,
1809			      &map_length, NULL, 0);
1810	/* Will always return 0 with map_multi == NULL */
1811	BUG_ON(ret < 0);
1812	if (map_length < length + size)
1813		return 1;
1814	return 0;
1815}
1816
1817/*
1818 * in order to insert checksums into the metadata in large chunks,
1819 * we wait until bio submission time.   All the pages in the bio are
1820 * checksummed and sums are attached onto the ordered extent record.
1821 *
1822 * At IO completion time the cums attached on the ordered extent record
1823 * are inserted into the btree
1824 */
1825static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1826				    struct bio *bio, int mirror_num,
1827				    unsigned long bio_flags,
1828				    u64 bio_offset)
1829{
1830	struct btrfs_root *root = BTRFS_I(inode)->root;
1831	int ret = 0;
1832
1833	ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1834	BUG_ON(ret); /* -ENOMEM */
1835	return 0;
1836}
1837
1838/*
1839 * in order to insert checksums into the metadata in large chunks,
1840 * we wait until bio submission time.   All the pages in the bio are
1841 * checksummed and sums are attached onto the ordered extent record.
1842 *
1843 * At IO completion time the cums attached on the ordered extent record
1844 * are inserted into the btree
1845 */
1846static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1847			  int mirror_num, unsigned long bio_flags,
1848			  u64 bio_offset)
1849{
1850	struct btrfs_root *root = BTRFS_I(inode)->root;
1851	int ret;
1852
1853	ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1854	if (ret)
1855		bio_endio(bio, ret);
1856	return ret;
1857}
1858
1859/*
1860 * extent_io.c submission hook. This does the right thing for csum calculation
1861 * on write, or reading the csums from the tree before a read
1862 */
1863static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1864			  int mirror_num, unsigned long bio_flags,
1865			  u64 bio_offset)
1866{
1867	struct btrfs_root *root = BTRFS_I(inode)->root;
1868	int ret = 0;
1869	int skip_sum;
1870	int metadata = 0;
1871	int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1872
1873	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1874
1875	if (btrfs_is_free_space_inode(inode))
1876		metadata = 2;
1877
1878	if (!(rw & REQ_WRITE)) {
1879		ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1880		if (ret)
1881			goto out;
1882
1883		if (bio_flags & EXTENT_BIO_COMPRESSED) {
1884			ret = btrfs_submit_compressed_read(inode, bio,
1885							   mirror_num,
1886							   bio_flags);
1887			goto out;
1888		} else if (!skip_sum) {
1889			ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1890			if (ret)
1891				goto out;
1892		}
1893		goto mapit;
1894	} else if (async && !skip_sum) {
1895		/* csum items have already been cloned */
1896		if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1897			goto mapit;
1898		/* we're doing a write, do the async checksumming */
1899		ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1900				   inode, rw, bio, mirror_num,
1901				   bio_flags, bio_offset,
1902				   __btrfs_submit_bio_start,
1903				   __btrfs_submit_bio_done);
1904		goto out;
1905	} else if (!skip_sum) {
1906		ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1907		if (ret)
1908			goto out;
1909	}
1910
1911mapit:
1912	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1913
1914out:
1915	if (ret < 0)
1916		bio_endio(bio, ret);
1917	return ret;
1918}
1919
1920/*
1921 * given a list of ordered sums record them in the inode.  This happens
1922 * at IO completion time based on sums calculated at bio submission time.
1923 */
1924static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1925			     struct inode *inode, u64 file_offset,
1926			     struct list_head *list)
1927{
1928	struct btrfs_ordered_sum *sum;
1929
1930	list_for_each_entry(sum, list, list) {
1931		trans->adding_csums = 1;
1932		btrfs_csum_file_blocks(trans,
1933		       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1934		trans->adding_csums = 0;
1935	}
1936	return 0;
1937}
1938
1939int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1940			      struct extent_state **cached_state)
1941{
1942	WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1943	return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1944				   cached_state, GFP_NOFS);
1945}
1946
1947/* see btrfs_writepage_start_hook for details on why this is required */
1948struct btrfs_writepage_fixup {
1949	struct page *page;
1950	struct btrfs_work work;
1951};
1952
1953static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1954{
1955	struct btrfs_writepage_fixup *fixup;
1956	struct btrfs_ordered_extent *ordered;
1957	struct extent_state *cached_state = NULL;
1958	struct page *page;
1959	struct inode *inode;
1960	u64 page_start;
1961	u64 page_end;
1962	int ret;
1963
1964	fixup = container_of(work, struct btrfs_writepage_fixup, work);
1965	page = fixup->page;
1966again:
1967	lock_page(page);
1968	if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1969		ClearPageChecked(page);
1970		goto out_page;
1971	}
1972
1973	inode = page->mapping->host;
1974	page_start = page_offset(page);
1975	page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1976
1977	lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1978			 &cached_state);
1979
1980	/* already ordered? We're done */
1981	if (PagePrivate2(page))
1982		goto out;
1983
1984	ordered = btrfs_lookup_ordered_extent(inode, page_start);
1985	if (ordered) {
1986		unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1987				     page_end, &cached_state, GFP_NOFS);
1988		unlock_page(page);
1989		btrfs_start_ordered_extent(inode, ordered, 1);
1990		btrfs_put_ordered_extent(ordered);
1991		goto again;
1992	}
1993
1994	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1995	if (ret) {
1996		mapping_set_error(page->mapping, ret);
1997		end_extent_writepage(page, ret, page_start, page_end);
1998		ClearPageChecked(page);
1999		goto out;
2000	 }
2001
2002	btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
2003	ClearPageChecked(page);
2004	set_page_dirty(page);
2005out:
2006	unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
2007			     &cached_state, GFP_NOFS);
2008out_page:
2009	unlock_page(page);
2010	page_cache_release(page);
2011	kfree(fixup);
2012}
2013
2014/*
2015 * There are a few paths in the higher layers of the kernel that directly
2016 * set the page dirty bit without asking the filesystem if it is a
2017 * good idea.  This causes problems because we want to make sure COW
2018 * properly happens and the data=ordered rules are followed.
2019 *
2020 * In our case any range that doesn't have the ORDERED bit set
2021 * hasn't been properly setup for IO.  We kick off an async process
2022 * to fix it up.  The async helper will wait for ordered extents, set
2023 * the delalloc bit and make it safe to write the page.
2024 */
2025static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
2026{
2027	struct inode *inode = page->mapping->host;
2028	struct btrfs_writepage_fixup *fixup;
2029	struct btrfs_root *root = BTRFS_I(inode)->root;
2030
2031	/* this page is properly in the ordered list */
2032	if (TestClearPagePrivate2(page))
2033		return 0;
2034
2035	if (PageChecked(page))
2036		return -EAGAIN;
2037
2038	fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
2039	if (!fixup)
2040		return -EAGAIN;
2041
2042	SetPageChecked(page);
2043	page_cache_get(page);
2044	btrfs_init_work(&fixup->work, btrfs_fixup_helper,
2045			btrfs_writepage_fixup_worker, NULL, NULL);
2046	fixup->page = page;
2047	btrfs_queue_work(root->fs_info->fixup_workers, &fixup->work);
2048	return -EBUSY;
2049}
2050
2051static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
2052				       struct inode *inode, u64 file_pos,
2053				       u64 disk_bytenr, u64 disk_num_bytes,
2054				       u64 num_bytes, u64 ram_bytes,
2055				       u8 compression, u8 encryption,
2056				       u16 other_encoding, int extent_type)
2057{
2058	struct btrfs_root *root = BTRFS_I(inode)->root;
2059	struct btrfs_file_extent_item *fi;
2060	struct btrfs_path *path;
2061	struct extent_buffer *leaf;
2062	struct btrfs_key ins;
2063	int extent_inserted = 0;
2064	int ret;
2065
2066	path = btrfs_alloc_path();
2067	if (!path)
2068		return -ENOMEM;
2069
2070	/*
2071	 * we may be replacing one extent in the tree with another.
2072	 * The new extent is pinned in the extent map, and we don't want
2073	 * to drop it from the cache until it is completely in the btree.
2074	 *
2075	 * So, tell btrfs_drop_extents to leave this extent in the cache.
2076	 * the caller is expected to unpin it and allow it to be merged
2077	 * with the others.
2078	 */
2079	ret = __btrfs_drop_extents(trans, root, inode, path, file_pos,
2080				   file_pos + num_bytes, NULL, 0,
2081				   1, sizeof(*fi), &extent_inserted);
2082	if (ret)
2083		goto out;
2084
2085	if (!extent_inserted) {
2086		ins.objectid = btrfs_ino(inode);
2087		ins.offset = file_pos;
2088		ins.type = BTRFS_EXTENT_DATA_KEY;
2089
2090		path->leave_spinning = 1;
2091		ret = btrfs_insert_empty_item(trans, root, path, &ins,
2092					      sizeof(*fi));
2093		if (ret)
2094			goto out;
2095	}
2096	leaf = path->nodes[0];
2097	fi = btrfs_item_ptr(leaf, path->slots[0],
2098			    struct btrfs_file_extent_item);
2099	btrfs_set_file_extent_generation(leaf, fi, trans->transid);
2100	btrfs_set_file_extent_type(leaf, fi, extent_type);
2101	btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
2102	btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
2103	btrfs_set_file_extent_offset(leaf, fi, 0);
2104	btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
2105	btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
2106	btrfs_set_file_extent_compression(leaf, fi, compression);
2107	btrfs_set_file_extent_encryption(leaf, fi, encryption);
2108	btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
2109
2110	btrfs_mark_buffer_dirty(leaf);
2111	btrfs_release_path(path);
2112
2113	inode_add_bytes(inode, num_bytes);
2114
2115	ins.objectid = disk_bytenr;
2116	ins.offset = disk_num_bytes;
2117	ins.type = BTRFS_EXTENT_ITEM_KEY;
2118	ret = btrfs_alloc_reserved_file_extent(trans, root,
2119					root->root_key.objectid,
2120					btrfs_ino(inode), file_pos, &ins);
2121out:
2122	btrfs_free_path(path);
2123
2124	return ret;
2125}
2126
2127/* snapshot-aware defrag */
2128struct sa_defrag_extent_backref {
2129	struct rb_node node;
2130	struct old_sa_defrag_extent *old;
2131	u64 root_id;
2132	u64 inum;
2133	u64 file_pos;
2134	u64 extent_offset;
2135	u64 num_bytes;
2136	u64 generation;
2137};
2138
2139struct old_sa_defrag_extent {
2140	struct list_head list;
2141	struct new_sa_defrag_extent *new;
2142
2143	u64 extent_offset;
2144	u64 bytenr;
2145	u64 offset;
2146	u64 len;
2147	int count;
2148};
2149
2150struct new_sa_defrag_extent {
2151	struct rb_root root;
2152	struct list_head head;
2153	struct btrfs_path *path;
2154	struct inode *inode;
2155	u64 file_pos;
2156	u64 len;
2157	u64 bytenr;
2158	u64 disk_len;
2159	u8 compress_type;
2160};
2161
2162static int backref_comp(struct sa_defrag_extent_backref *b1,
2163			struct sa_defrag_extent_backref *b2)
2164{
2165	if (b1->root_id < b2->root_id)
2166		return -1;
2167	else if (b1->root_id > b2->root_id)
2168		return 1;
2169
2170	if (b1->inum < b2->inum)
2171		return -1;
2172	else if (b1->inum > b2->inum)
2173		return 1;
2174
2175	if (b1->file_pos < b2->file_pos)
2176		return -1;
2177	else if (b1->file_pos > b2->file_pos)
2178		return 1;
2179
2180	/*
2181	 * [------------------------------] ===> (a range of space)
2182	 *     |<--->|   |<---->| =============> (fs/file tree A)
2183	 * |<---------------------------->| ===> (fs/file tree B)
2184	 *
2185	 * A range of space can refer to two file extents in one tree while
2186	 * refer to only one file extent in another tree.
2187	 *
2188	 * So we may process a disk offset more than one time(two extents in A)
2189	 * and locate at the same extent(one extent in B), then insert two same
2190	 * backrefs(both refer to the extent in B).
2191	 */
2192	return 0;
2193}
2194
2195static void backref_insert(struct rb_root *root,
2196			   struct sa_defrag_extent_backref *backref)
2197{
2198	struct rb_node **p = &root->rb_node;
2199	struct rb_node *parent = NULL;
2200	struct sa_defrag_extent_backref *entry;
2201	int ret;
2202
2203	while (*p) {
2204		parent = *p;
2205		entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2206
2207		ret = backref_comp(backref, entry);
2208		if (ret < 0)
2209			p = &(*p)->rb_left;
2210		else
2211			p = &(*p)->rb_right;
2212	}
2213
2214	rb_link_node(&backref->node, parent, p);
2215	rb_insert_color(&backref->node, root);
2216}
2217
2218/*
2219 * Note the backref might has changed, and in this case we just return 0.
2220 */
2221static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2222				       void *ctx)
2223{
2224	struct btrfs_file_extent_item *extent;
2225	struct btrfs_fs_info *fs_info;
2226	struct old_sa_defrag_extent *old = ctx;
2227	struct new_sa_defrag_extent *new = old->new;
2228	struct btrfs_path *path = new->path;
2229	struct btrfs_key key;
2230	struct btrfs_root *root;
2231	struct sa_defrag_extent_backref *backref;
2232	struct extent_buffer *leaf;
2233	struct inode *inode = new->inode;
2234	int slot;
2235	int ret;
2236	u64 extent_offset;
2237	u64 num_bytes;
2238
2239	if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2240	    inum == btrfs_ino(inode))
2241		return 0;
2242
2243	key.objectid = root_id;
2244	key.type = BTRFS_ROOT_ITEM_KEY;
2245	key.offset = (u64)-1;
2246
2247	fs_info = BTRFS_I(inode)->root->fs_info;
2248	root = btrfs_read_fs_root_no_name(fs_info, &key);
2249	if (IS_ERR(root)) {
2250		if (PTR_ERR(root) == -ENOENT)
2251			return 0;
2252		WARN_ON(1);
2253		pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2254			 inum, offset, root_id);
2255		return PTR_ERR(root);
2256	}
2257
2258	key.objectid = inum;
2259	key.type = BTRFS_EXTENT_DATA_KEY;
2260	if (offset > (u64)-1 << 32)
2261		key.offset = 0;
2262	else
2263		key.offset = offset;
2264
2265	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2266	if (WARN_ON(ret < 0))
2267		return ret;
2268	ret = 0;
2269
2270	while (1) {
2271		cond_resched();
2272
2273		leaf = path->nodes[0];
2274		slot = path->slots[0];
2275
2276		if (slot >= btrfs_header_nritems(leaf)) {
2277			ret = btrfs_next_leaf(root, path);
2278			if (ret < 0) {
2279				goto out;
2280			} else if (ret > 0) {
2281				ret = 0;
2282				goto out;
2283			}
2284			continue;
2285		}
2286
2287		path->slots[0]++;
2288
2289		btrfs_item_key_to_cpu(leaf, &key, slot);
2290
2291		if (key.objectid > inum)
2292			goto out;
2293
2294		if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2295			continue;
2296
2297		extent = btrfs_item_ptr(leaf, slot,
2298					struct btrfs_file_extent_item);
2299
2300		if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2301			continue;
2302
2303		/*
2304		 * 'offset' refers to the exact key.offset,
2305		 * NOT the 'offset' field in btrfs_extent_data_ref, ie.
2306		 * (key.offset - extent_offset).
2307		 */
2308		if (key.offset != offset)
2309			continue;
2310
2311		extent_offset = btrfs_file_extent_offset(leaf, extent);
2312		num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2313
2314		if (extent_offset >= old->extent_offset + old->offset +
2315		    old->len || extent_offset + num_bytes <=
2316		    old->extent_offset + old->offset)
2317			continue;
2318		break;
2319	}
2320
2321	backref = kmalloc(sizeof(*backref), GFP_NOFS);
2322	if (!backref) {
2323		ret = -ENOENT;
2324		goto out;
2325	}
2326
2327	backref->root_id = root_id;
2328	backref->inum = inum;
2329	backref->file_pos = offset;
2330	backref->num_bytes = num_bytes;
2331	backref->extent_offset = extent_offset;
2332	backref->generation = btrfs_file_extent_generation(leaf, extent);
2333	backref->old = old;
2334	backref_insert(&new->root, backref);
2335	old->count++;
2336out:
2337	btrfs_release_path(path);
2338	WARN_ON(ret);
2339	return ret;
2340}
2341
2342static noinline bool record_extent_backrefs(struct btrfs_path *path,
2343				   struct new_sa_defrag_extent *new)
2344{
2345	struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2346	struct old_sa_defrag_extent *old, *tmp;
2347	int ret;
2348
2349	new->path = path;
2350
2351	list_for_each_entry_safe(old, tmp, &new->head, list) {
2352		ret = iterate_inodes_from_logical(old->bytenr +
2353						  old->extent_offset, fs_info,
2354						  path, record_one_backref,
2355						  old);
2356		if (ret < 0 && ret != -ENOENT)
2357			return false;
2358
2359		/* no backref to be processed for this extent */
2360		if (!old->count) {
2361			list_del(&old->list);
2362			kfree(old);
2363		}
2364	}
2365
2366	if (list_empty(&new->head))
2367		return false;
2368
2369	return true;
2370}
2371
2372static int relink_is_mergable(struct extent_buffer *leaf,
2373			      struct btrfs_file_extent_item *fi,
2374			      struct new_sa_defrag_extent *new)
2375{
2376	if (btrfs_file_extent_disk_bytenr(leaf, fi) != new->bytenr)
2377		return 0;
2378
2379	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2380		return 0;
2381
2382	if (btrfs_file_extent_compression(leaf, fi) != new->compress_type)
2383		return 0;
2384
2385	if (btrfs_file_extent_encryption(leaf, fi) ||
2386	    btrfs_file_extent_other_encoding(leaf, fi))
2387		return 0;
2388
2389	return 1;
2390}
2391
2392/*
2393 * Note the backref might has changed, and in this case we just return 0.
2394 */
2395static noinline int relink_extent_backref(struct btrfs_path *path,
2396				 struct sa_defrag_extent_backref *prev,
2397				 struct sa_defrag_extent_backref *backref)
2398{
2399	struct btrfs_file_extent_item *extent;
2400	struct btrfs_file_extent_item *item;
2401	struct btrfs_ordered_extent *ordered;
2402	struct btrfs_trans_handle *trans;
2403	struct btrfs_fs_info *fs_info;
2404	struct btrfs_root *root;
2405	struct btrfs_key key;
2406	struct extent_buffer *leaf;
2407	struct old_sa_defrag_extent *old = backref->old;
2408	struct new_sa_defrag_extent *new = old->new;
2409	struct inode *src_inode = new->inode;
2410	struct inode *inode;
2411	struct extent_state *cached = NULL;
2412	int ret = 0;
2413	u64 start;
2414	u64 len;
2415	u64 lock_start;
2416	u64 lock_end;
2417	bool merge = false;
2418	int index;
2419
2420	if (prev && prev->root_id == backref->root_id &&
2421	    prev->inum == backref->inum &&
2422	    prev->file_pos + prev->num_bytes == backref->file_pos)
2423		merge = true;
2424
2425	/* step 1: get root */
2426	key.objectid = backref->root_id;
2427	key.type = BTRFS_ROOT_ITEM_KEY;
2428	key.offset = (u64)-1;
2429
2430	fs_info = BTRFS_I(src_inode)->root->fs_info;
2431	index = srcu_read_lock(&fs_info->subvol_srcu);
2432
2433	root = btrfs_read_fs_root_no_name(fs_info, &key);
2434	if (IS_ERR(root)) {
2435		srcu_read_unlock(&fs_info->subvol_srcu, index);
2436		if (PTR_ERR(root) == -ENOENT)
2437			return 0;
2438		return PTR_ERR(root);
2439	}
2440
2441	if (btrfs_root_readonly(root)) {
2442		srcu_read_unlock(&fs_info->subvol_srcu, index);
2443		return 0;
2444	}
2445
2446	/* step 2: get inode */
2447	key.objectid = backref->inum;
2448	key.type = BTRFS_INODE_ITEM_KEY;
2449	key.offset = 0;
2450
2451	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2452	if (IS_ERR(inode)) {
2453		srcu_read_unlock(&fs_info->subvol_srcu, index);
2454		return 0;
2455	}
2456
2457	srcu_read_unlock(&fs_info->subvol_srcu, index);
2458
2459	/* step 3: relink backref */
2460	lock_start = backref->file_pos;
2461	lock_end = backref->file_pos + backref->num_bytes - 1;
2462	lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2463			 0, &cached);
2464
2465	ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2466	if (ordered) {
2467		btrfs_put_ordered_extent(ordered);
2468		goto out_unlock;
2469	}
2470
2471	trans = btrfs_join_transaction(root);
2472	if (IS_ERR(trans)) {
2473		ret = PTR_ERR(trans);
2474		goto out_unlock;
2475	}
2476
2477	key.objectid = backref->inum;
2478	key.type = BTRFS_EXTENT_DATA_KEY;
2479	key.offset = backref->file_pos;
2480
2481	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2482	if (ret < 0) {
2483		goto out_free_path;
2484	} else if (ret > 0) {
2485		ret = 0;
2486		goto out_free_path;
2487	}
2488
2489	extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2490				struct btrfs_file_extent_item);
2491
2492	if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2493	    backref->generation)
2494		goto out_free_path;
2495
2496	btrfs_release_path(path);
2497
2498	start = backref->file_pos;
2499	if (backref->extent_offset < old->extent_offset + old->offset)
2500		start += old->extent_offset + old->offset -
2501			 backref->extent_offset;
2502
2503	len = min(backref->extent_offset + backref->num_bytes,
2504		  old->extent_offset + old->offset + old->len);
2505	len -= max(backref->extent_offset, old->extent_offset + old->offset);
2506
2507	ret = btrfs_drop_extents(trans, root, inode, start,
2508				 start + len, 1);
2509	if (ret)
2510		goto out_free_path;
2511again:
2512	key.objectid = btrfs_ino(inode);
2513	key.type = BTRFS_EXTENT_DATA_KEY;
2514	key.offset = start;
2515
2516	path->leave_spinning = 1;
2517	if (merge) {
2518		struct btrfs_file_extent_item *fi;
2519		u64 extent_len;
2520		struct btrfs_key found_key;
2521
2522		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2523		if (ret < 0)
2524			goto out_free_path;
2525
2526		path->slots[0]--;
2527		leaf = path->nodes[0];
2528		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2529
2530		fi = btrfs_item_ptr(leaf, path->slots[0],
2531				    struct btrfs_file_extent_item);
2532		extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2533
2534		if (extent_len + found_key.offset == start &&
2535		    relink_is_mergable(leaf, fi, new)) {
2536			btrfs_set_file_extent_num_bytes(leaf, fi,
2537							extent_len + len);
2538			btrfs_mark_buffer_dirty(leaf);
2539			inode_add_bytes(inode, len);
2540
2541			ret = 1;
2542			goto out_free_path;
2543		} else {
2544			merge = false;
2545			btrfs_release_path(path);
2546			goto again;
2547		}
2548	}
2549
2550	ret = btrfs_insert_empty_item(trans, root, path, &key,
2551					sizeof(*extent));
2552	if (ret) {
2553		btrfs_abort_transaction(trans, root, ret);
2554		goto out_free_path;
2555	}
2556
2557	leaf = path->nodes[0];
2558	item = btrfs_item_ptr(leaf, path->slots[0],
2559				struct btrfs_file_extent_item);
2560	btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2561	btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2562	btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2563	btrfs_set_file_extent_num_bytes(leaf, item, len);
2564	btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2565	btrfs_set_file_extent_generation(leaf, item, trans->transid);
2566	btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2567	btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2568	btrfs_set_file_extent_encryption(leaf, item, 0);
2569	btrfs_set_file_extent_other_encoding(leaf, item, 0);
2570
2571	btrfs_mark_buffer_dirty(leaf);
2572	inode_add_bytes(inode, len);
2573	btrfs_release_path(path);
2574
2575	ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2576			new->disk_len, 0,
2577			backref->root_id, backref->inum,
2578			new->file_pos, 0);	/* start - extent_offset */
2579	if (ret) {
2580		btrfs_abort_transaction(trans, root, ret);
2581		goto out_free_path;
2582	}
2583
2584	ret = 1;
2585out_free_path:
2586	btrfs_release_path(path);
2587	path->leave_spinning = 0;
2588	btrfs_end_transaction(trans, root);
2589out_unlock:
2590	unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2591			     &cached, GFP_NOFS);
2592	iput(inode);
2593	return ret;
2594}
2595
2596static void free_sa_defrag_extent(struct new_sa_defrag_extent *new)
2597{
2598	struct old_sa_defrag_extent *old, *tmp;
2599
2600	if (!new)
2601		return;
2602
2603	list_for_each_entry_safe(old, tmp, &new->head, list) {
2604		list_del(&old->list);
2605		kfree(old);
2606	}
2607	kfree(new);
2608}
2609
2610static void relink_file_extents(struct new_sa_defrag_extent *new)
2611{
2612	struct btrfs_path *path;
2613	struct sa_defrag_extent_backref *backref;
2614	struct sa_defrag_extent_backref *prev = NULL;
2615	struct inode *inode;
2616	struct btrfs_root *root;
2617	struct rb_node *node;
2618	int ret;
2619
2620	inode = new->inode;
2621	root = BTRFS_I(inode)->root;
2622
2623	path = btrfs_alloc_path();
2624	if (!path)
2625		return;
2626
2627	if (!record_extent_backrefs(path, new)) {
2628		btrfs_free_path(path);
2629		goto out;
2630	}
2631	btrfs_release_path(path);
2632
2633	while (1) {
2634		node = rb_first(&new->root);
2635		if (!node)
2636			break;
2637		rb_erase(node, &new->root);
2638
2639		backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2640
2641		ret = relink_extent_backref(path, prev, backref);
2642		WARN_ON(ret < 0);
2643
2644		kfree(prev);
2645
2646		if (ret == 1)
2647			prev = backref;
2648		else
2649			prev = NULL;
2650		cond_resched();
2651	}
2652	kfree(prev);
2653
2654	btrfs_free_path(path);
2655out:
2656	free_sa_defrag_extent(new);
2657
2658	atomic_dec(&root->fs_info->defrag_running);
2659	wake_up(&root->fs_info->transaction_wait);
2660}
2661
2662static struct new_sa_defrag_extent *
2663record_old_file_extents(struct inode *inode,
2664			struct btrfs_ordered_extent *ordered)
2665{
2666	struct btrfs_root *root = BTRFS_I(inode)->root;
2667	struct btrfs_path *path;
2668	struct btrfs_key key;
2669	struct old_sa_defrag_extent *old;
2670	struct new_sa_defrag_extent *new;
2671	int ret;
2672
2673	new = kmalloc(sizeof(*new), GFP_NOFS);
2674	if (!new)
2675		return NULL;
2676
2677	new->inode = inode;
2678	new->file_pos = ordered->file_offset;
2679	new->len = ordered->len;
2680	new->bytenr = ordered->start;
2681	new->disk_len = ordered->disk_len;
2682	new->compress_type = ordered->compress_type;
2683	new->root = RB_ROOT;
2684	INIT_LIST_HEAD(&new->head);
2685
2686	path = btrfs_alloc_path();
2687	if (!path)
2688		goto out_kfree;
2689
2690	key.objectid = btrfs_ino(inode);
2691	key.type = BTRFS_EXTENT_DATA_KEY;
2692	key.offset = new->file_pos;
2693
2694	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2695	if (ret < 0)
2696		goto out_free_path;
2697	if (ret > 0 && path->slots[0] > 0)
2698		path->slots[0]--;
2699
2700	/* find out all the old extents for the file range */
2701	while (1) {
2702		struct btrfs_file_extent_item *extent;
2703		struct extent_buffer *l;
2704		int slot;
2705		u64 num_bytes;
2706		u64 offset;
2707		u64 end;
2708		u64 disk_bytenr;
2709		u64 extent_offset;
2710
2711		l = path->nodes[0];
2712		slot = path->slots[0];
2713
2714		if (slot >= btrfs_header_nritems(l)) {
2715			ret = btrfs_next_leaf(root, path);
2716			if (ret < 0)
2717				goto out_free_path;
2718			else if (ret > 0)
2719				break;
2720			continue;
2721		}
2722
2723		btrfs_item_key_to_cpu(l, &key, slot);
2724
2725		if (key.objectid != btrfs_ino(inode))
2726			break;
2727		if (key.type != BTRFS_EXTENT_DATA_KEY)
2728			break;
2729		if (key.offset >= new->file_pos + new->len)
2730			break;
2731
2732		extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2733
2734		num_bytes = btrfs_file_extent_num_bytes(l, extent);
2735		if (key.offset + num_bytes < new->file_pos)
2736			goto next;
2737
2738		disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2739		if (!disk_bytenr)
2740			goto next;
2741
2742		extent_offset = btrfs_file_extent_offset(l, extent);
2743
2744		old = kmalloc(sizeof(*old), GFP_NOFS);
2745		if (!old)
2746			goto out_free_path;
2747
2748		offset = max(new->file_pos, key.offset);
2749		end = min(new->file_pos + new->len, key.offset + num_bytes);
2750
2751		old->bytenr = disk_bytenr;
2752		old->extent_offset = extent_offset;
2753		old->offset = offset - key.offset;
2754		old->len = end - offset;
2755		old->new = new;
2756		old->count = 0;
2757		list_add_tail(&old->list, &new->head);
2758next:
2759		path->slots[0]++;
2760		cond_resched();
2761	}
2762
2763	btrfs_free_path(path);
2764	atomic_inc(&root->fs_info->defrag_running);
2765
2766	return new;
2767
2768out_free_path:
2769	btrfs_free_path(path);
2770out_kfree:
2771	free_sa_defrag_extent(new);
2772	return NULL;
2773}
2774
2775static void btrfs_release_delalloc_bytes(struct btrfs_root *root,
2776					 u64 start, u64 len)
2777{
2778	struct btrfs_block_group_cache *cache;
2779
2780	cache = btrfs_lookup_block_group(root->fs_info, start);
2781	ASSERT(cache);
2782
2783	spin_lock(&cache->lock);
2784	cache->delalloc_bytes -= len;
2785	spin_unlock(&cache->lock);
2786
2787	btrfs_put_block_group(cache);
2788}
2789
2790/* as ordered data IO finishes, this gets called so we can finish
2791 * an ordered extent if the range of bytes in the file it covers are
2792 * fully written.
2793 */
2794static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2795{
2796	struct inode *inode = ordered_extent->inode;
2797	struct btrfs_root *root = BTRFS_I(inode)->root;
2798	struct btrfs_trans_handle *trans = NULL;
2799	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2800	struct extent_state *cached_state = NULL;
2801	struct new_sa_defrag_extent *new = NULL;
2802	int compress_type = 0;
2803	int ret = 0;
2804	u64 logical_len = ordered_extent->len;
2805	bool nolock;
2806	bool truncated = false;
2807
2808	nolock = btrfs_is_free_space_inode(inode);
2809
2810	if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2811		ret = -EIO;
2812		goto out;
2813	}
2814
2815	btrfs_free_io_failure_record(inode, ordered_extent->file_offset,
2816				     ordered_extent->file_offset +
2817				     ordered_extent->len - 1);
2818
2819	if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered_extent->flags)) {
2820		truncated = true;
2821		logical_len = ordered_extent->truncated_len;
2822		/* Truncated the entire extent, don't bother adding */
2823		if (!logical_len)
2824			goto out;
2825	}
2826
2827	if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2828		BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2829		btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2830		if (nolock)
2831			trans = btrfs_join_transaction_nolock(root);
2832		else
2833			trans = btrfs_join_transaction(root);
2834		if (IS_ERR(trans)) {
2835			ret = PTR_ERR(trans);
2836			trans = NULL;
2837			goto out;
2838		}
2839		trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2840		ret = btrfs_update_inode_fallback(trans, root, inode);
2841		if (ret) /* -ENOMEM or corruption */
2842			btrfs_abort_transaction(trans, root, ret);
2843		goto out;
2844	}
2845
2846	lock_extent_bits(io_tree, ordered_extent->file_offset,
2847			 ordered_extent->file_offset + ordered_extent->len - 1,
2848			 0, &cached_state);
2849
2850	ret = test_range_bit(io_tree, ordered_extent->file_offset,
2851			ordered_extent->file_offset + ordered_extent->len - 1,
2852			EXTENT_DEFRAG, 1, cached_state);
2853	if (ret) {
2854		u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2855		if (0 && last_snapshot >= BTRFS_I(inode)->generation)
2856			/* the inode is shared */
2857			new = record_old_file_extents(inode, ordered_extent);
2858
2859		clear_extent_bit(io_tree, ordered_extent->file_offset,
2860			ordered_extent->file_offset + ordered_extent->len - 1,
2861			EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2862	}
2863
2864	if (nolock)
2865		trans = btrfs_join_transaction_nolock(root);
2866	else
2867		trans = btrfs_join_transaction(root);
2868	if (IS_ERR(trans)) {
2869		ret = PTR_ERR(trans);
2870		trans = NULL;
2871		goto out_unlock;
2872	}
2873
2874	trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2875
2876	if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2877		compress_type = ordered_extent->compress_type;
2878	if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2879		BUG_ON(compress_type);
2880		ret = btrfs_mark_extent_written(trans, inode,
2881						ordered_extent->file_offset,
2882						ordered_extent->file_offset +
2883						logical_len);
2884	} else {
2885		BUG_ON(root == root->fs_info->tree_root);
2886		ret = insert_reserved_file_extent(trans, inode,
2887						ordered_extent->file_offset,
2888						ordered_extent->start,
2889						ordered_extent->disk_len,
2890						logical_len, logical_len,
2891						compress_type, 0, 0,
2892						BTRFS_FILE_EXTENT_REG);
2893		if (!ret)
2894			btrfs_release_delalloc_bytes(root,
2895						     ordered_extent->start,
2896						     ordered_extent->disk_len);
2897	}
2898	unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2899			   ordered_extent->file_offset, ordered_extent->len,
2900			   trans->transid);
2901	if (ret < 0) {
2902		btrfs_abort_transaction(trans, root, ret);
2903		goto out_unlock;
2904	}
2905
2906	add_pending_csums(trans, inode, ordered_extent->file_offset,
2907			  &ordered_extent->list);
2908
2909	btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2910	ret = btrfs_update_inode_fallback(trans, root, inode);
2911	if (ret) { /* -ENOMEM or corruption */
2912		btrfs_abort_transaction(trans, root, ret);
2913		goto out_unlock;
2914	}
2915	ret = 0;
2916out_unlock:
2917	unlock_extent_cached(io_tree, ordered_extent->file_offset,
2918			     ordered_extent->file_offset +
2919			     ordered_extent->len - 1, &cached_state, GFP_NOFS);
2920out:
2921	if (root != root->fs_info->tree_root)
2922		btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2923	if (trans)
2924		btrfs_end_transaction(trans, root);
2925
2926	if (ret || truncated) {
2927		u64 start, end;
2928
2929		if (truncated)
2930			start = ordered_extent->file_offset + logical_len;
2931		else
2932			start = ordered_extent->file_offset;
2933		end = ordered_extent->file_offset + ordered_extent->len - 1;
2934		clear_extent_uptodate(io_tree, start, end, NULL, GFP_NOFS);
2935
2936		/* Drop the cache for the part of the extent we didn't write. */
2937		btrfs_drop_extent_cache(inode, start, end, 0);
2938
2939		/*
2940		 * If the ordered extent had an IOERR or something else went
2941		 * wrong we need to return the space for this ordered extent
2942		 * back to the allocator.  We only free the extent in the
2943		 * truncated case if we didn't write out the extent at all.
2944		 */
2945		if ((ret || !logical_len) &&
2946		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2947		    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2948			btrfs_free_reserved_extent(root, ordered_extent->start,
2949						   ordered_extent->disk_len, 1);
2950	}
2951
2952
2953	/*
2954	 * This needs to be done to make sure anybody waiting knows we are done
2955	 * updating everything for this ordered extent.
2956	 */
2957	btrfs_remove_ordered_extent(inode, ordered_extent);
2958
2959	/* for snapshot-aware defrag */
2960	if (new) {
2961		if (ret) {
2962			free_sa_defrag_extent(new);
2963			atomic_dec(&root->fs_info->defrag_running);
2964		} else {
2965			relink_file_extents(new);
2966		}
2967	}
2968
2969	/* once for us */
2970	btrfs_put_ordered_extent(ordered_extent);
2971	/* once for the tree */
2972	btrfs_put_ordered_extent(ordered_extent);
2973
2974	return ret;
2975}
2976
2977static void finish_ordered_fn(struct btrfs_work *work)
2978{
2979	struct btrfs_ordered_extent *ordered_extent;
2980	ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2981	btrfs_finish_ordered_io(ordered_extent);
2982}
2983
2984static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2985				struct extent_state *state, int uptodate)
2986{
2987	struct inode *inode = page->mapping->host;
2988	struct btrfs_root *root = BTRFS_I(inode)->root;
2989	struct btrfs_ordered_extent *ordered_extent = NULL;
2990	struct btrfs_workqueue *wq;
2991	btrfs_work_func_t func;
2992
2993	trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2994
2995	ClearPagePrivate2(page);
2996	if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2997					    end - start + 1, uptodate))
2998		return 0;
2999
3000	if (btrfs_is_free_space_inode(inode)) {
3001		wq = root->fs_info->endio_freespace_worker;
3002		func = btrfs_freespace_write_helper;
3003	} else {
3004		wq = root->fs_info->endio_write_workers;
3005		func = btrfs_endio_write_helper;
3006	}
3007
3008	btrfs_init_work(&ordered_extent->work, func, finish_ordered_fn, NULL,
3009			NULL);
3010	btrfs_queue_work(wq, &ordered_extent->work);
3011
3012	return 0;
3013}
3014
3015static int __readpage_endio_check(struct inode *inode,
3016				  struct btrfs_io_bio *io_bio,
3017				  int icsum, struct page *page,
3018				  int pgoff, u64 start, size_t len)
3019{
3020	char *kaddr;
3021	u32 csum_expected;
3022	u32 csum = ~(u32)0;
3023	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
3024				      DEFAULT_RATELIMIT_BURST);
3025
3026	csum_expected = *(((u32 *)io_bio->csum) + icsum);
3027
3028	kaddr = kmap_atomic(page);
3029	csum = btrfs_csum_data(kaddr + pgoff, csum,  len);
3030	btrfs_csum_final(csum, (char *)&csum);
3031	if (csum != csum_expected)
3032		goto zeroit;
3033
3034	kunmap_atomic(kaddr);
3035	return 0;
3036zeroit:
3037	if (__ratelimit(&_rs))
3038		btrfs_warn(BTRFS_I(inode)->root->fs_info,
3039			   "csum failed ino %llu off %llu csum %u expected csum %u",
3040			   btrfs_ino(inode), start, csum, csum_expected);
3041	memset(kaddr + pgoff, 1, len);
3042	flush_dcache_page(page);
3043	kunmap_atomic(kaddr);
3044	if (csum_expected == 0)
3045		return 0;
3046	return -EIO;
3047}
3048
3049/*
3050 * when reads are done, we need to check csums to verify the data is correct
3051 * if there's a match, we allow the bio to finish.  If not, the code in
3052 * extent_io.c will try to find good copies for us.
3053 */
3054static int btrfs_readpage_end_io_hook(struct btrfs_io_bio *io_bio,
3055				      u64 phy_offset, struct page *page,
3056				      u64 start, u64 end, int mirror)
3057{
3058	size_t offset = start - page_offset(page);
3059	struct inode *inode = page->mapping->host;
3060	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3061	struct btrfs_root *root = BTRFS_I(inode)->root;
3062
3063	if (PageChecked(page)) {
3064		ClearPageChecked(page);
3065		return 0;
3066	}
3067
3068	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
3069		return 0;
3070
3071	if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
3072	    test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
3073		clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
3074				  GFP_NOFS);
3075		return 0;
3076	}
3077
3078	phy_offset >>= inode->i_sb->s_blocksize_bits;
3079	return __readpage_endio_check(inode, io_bio, phy_offset, page, offset,
3080				      start, (size_t)(end - start + 1));
3081}
3082
3083void btrfs_add_delayed_iput(struct inode *inode)
3084{
3085	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
3086	struct btrfs_inode *binode = BTRFS_I(inode);
3087
3088	if (atomic_add_unless(&inode->i_count, -1, 1))
3089		return;
3090
3091	spin_lock(&fs_info->delayed_iput_lock);
3092	if (binode->delayed_iput_count == 0) {
3093		ASSERT(list_empty(&binode->delayed_iput));
3094		list_add_tail(&binode->delayed_iput, &fs_info->delayed_iputs);
3095	} else {
3096		binode->delayed_iput_count++;
3097	}
3098	spin_unlock(&fs_info->delayed_iput_lock);
3099}
3100
3101void btrfs_run_delayed_iputs(struct btrfs_root *root)
3102{
3103	struct btrfs_fs_info *fs_info = root->fs_info;
3104
3105	spin_lock(&fs_info->delayed_iput_lock);
3106	while (!list_empty(&fs_info->delayed_iputs)) {
3107		struct btrfs_inode *inode;
3108
3109		inode = list_first_entry(&fs_info->delayed_iputs,
3110				struct btrfs_inode, delayed_iput);
3111		if (inode->delayed_iput_count) {
3112			inode->delayed_iput_count--;
3113			list_move_tail(&inode->delayed_iput,
3114					&fs_info->delayed_iputs);
3115		} else {
3116			list_del_init(&inode->delayed_iput);
3117		}
3118		spin_unlock(&fs_info->delayed_iput_lock);
3119		iput(&inode->vfs_inode);
3120		spin_lock(&fs_info->delayed_iput_lock);
3121	}
3122	spin_unlock(&fs_info->delayed_iput_lock);
3123}
3124
3125/*
3126 * This is called in transaction commit time. If there are no orphan
3127 * files in the subvolume, it removes orphan item and frees block_rsv
3128 * structure.
3129 */
3130void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3131			      struct btrfs_root *root)
3132{
3133	struct btrfs_block_rsv *block_rsv;
3134	int ret;
3135
3136	if (atomic_read(&root->orphan_inodes) ||
3137	    root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
3138		return;
3139
3140	spin_lock(&root->orphan_lock);
3141	if (atomic_read(&root->orphan_inodes)) {
3142		spin_unlock(&root->orphan_lock);
3143		return;
3144	}
3145
3146	if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
3147		spin_unlock(&root->orphan_lock);
3148		return;
3149	}
3150
3151	block_rsv = root->orphan_block_rsv;
3152	root->orphan_block_rsv = NULL;
3153	spin_unlock(&root->orphan_lock);
3154
3155	if (test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state) &&
3156	    btrfs_root_refs(&root->root_item) > 0) {
3157		ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
3158					    root->root_key.objectid);
3159		if (ret)
3160			btrfs_abort_transaction(trans, root, ret);
3161		else
3162			clear_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
3163				  &root->state);
3164	}
3165
3166	if (block_rsv) {
3167		WARN_ON(block_rsv->size > 0);
3168		btrfs_free_block_rsv(root, block_rsv);
3169	}
3170}
3171
3172/*
3173 * This creates an orphan entry for the given inode in case something goes
3174 * wrong in the middle of an unlink/truncate.
3175 *
3176 * NOTE: caller of this function should reserve 5 units of metadata for
3177 *	 this function.
3178 */
3179int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
3180{
3181	struct btrfs_root *root = BTRFS_I(inode)->root;
3182	struct btrfs_block_rsv *block_rsv = NULL;
3183	int reserve = 0;
3184	int insert = 0;
3185	int ret;
3186
3187	if (!root->orphan_block_rsv) {
3188		block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
3189		if (!block_rsv)
3190			return -ENOMEM;
3191	}
3192
3193	spin_lock(&root->orphan_lock);
3194	if (!root->orphan_block_rsv) {
3195		root->orphan_block_rsv = block_rsv;
3196	} else if (block_rsv) {
3197		btrfs_free_block_rsv(root, block_rsv);
3198		block_rsv = NULL;
3199	}
3200
3201	if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3202			      &BTRFS_I(inode)->runtime_flags)) {
3203#if 0
3204		/*
3205		 * For proper ENOSPC handling, we should do orphan
3206		 * cleanup when mounting. But this introduces backward
3207		 * compatibility issue.
3208		 */
3209		if (!xchg(&root->orphan_item_inserted, 1))
3210			insert = 2;
3211		else
3212			insert = 1;
3213#endif
3214		insert = 1;
3215		atomic_inc(&root->orphan_inodes);
3216	}
3217
3218	if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3219			      &BTRFS_I(inode)->runtime_flags))
3220		reserve = 1;
3221	spin_unlock(&root->orphan_lock);
3222
3223	/* grab metadata reservation from transaction handle */
3224	if (reserve) {
3225		ret = btrfs_orphan_reserve_metadata(trans, inode);
3226		BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3227	}
3228
3229	/* insert an orphan item to track this unlinked/truncated file */
3230	if (insert >= 1) {
3231		ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3232		if (ret) {
3233			atomic_dec(&root->orphan_inodes);
3234			if (reserve) {
3235				clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3236					  &BTRFS_I(inode)->runtime_flags);
3237				btrfs_orphan_release_metadata(inode);
3238			}
3239			if (ret != -EEXIST) {
3240				clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3241					  &BTRFS_I(inode)->runtime_flags);
3242				btrfs_abort_transaction(trans, root, ret);
3243				return ret;
3244			}
3245		}
3246		ret = 0;
3247	}
3248
3249	/* insert an orphan item to track subvolume contains orphan files */
3250	if (insert >= 2) {
3251		ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3252					       root->root_key.objectid);
3253		if (ret && ret != -EEXIST) {
3254			btrfs_abort_transaction(trans, root, ret);
3255			return ret;
3256		}
3257	}
3258	return 0;
3259}
3260
3261/*
3262 * We have done the truncate/delete so we can go ahead and remove the orphan
3263 * item for this particular inode.
3264 */
3265static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3266			    struct inode *inode)
3267{
3268	struct btrfs_root *root = BTRFS_I(inode)->root;
3269	int delete_item = 0;
3270	int release_rsv = 0;
3271	int ret = 0;
3272
3273	spin_lock(&root->orphan_lock);
3274	if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3275			       &BTRFS_I(inode)->runtime_flags))
3276		delete_item = 1;
3277
3278	if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3279			       &BTRFS_I(inode)->runtime_flags))
3280		release_rsv = 1;
3281	spin_unlock(&root->orphan_lock);
3282
3283	if (delete_item) {
3284		atomic_dec(&root->orphan_inodes);
3285		if (trans)
3286			ret = btrfs_del_orphan_item(trans, root,
3287						    btrfs_ino(inode));
3288	}
3289
3290	if (release_rsv)
3291		btrfs_orphan_release_metadata(inode);
3292
3293	return ret;
3294}
3295
3296/*
3297 * this cleans up any orphans that may be left on the list from the last use
3298 * of this root.
3299 */
3300int btrfs_orphan_cleanup(struct btrfs_root *root)
3301{
3302	struct btrfs_path *path;
3303	struct extent_buffer *leaf;
3304	struct btrfs_key key, found_key;
3305	struct btrfs_trans_handle *trans;
3306	struct inode *inode;
3307	u64 last_objectid = 0;
3308	int ret = 0, nr_unlink = 0, nr_truncate = 0;
3309
3310	if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3311		return 0;
3312
3313	path = btrfs_alloc_path();
3314	if (!path) {
3315		ret = -ENOMEM;
3316		goto out;
3317	}
3318	path->reada = -1;
3319
3320	key.objectid = BTRFS_ORPHAN_OBJECTID;
3321	key.type = BTRFS_ORPHAN_ITEM_KEY;
3322	key.offset = (u64)-1;
3323
3324	while (1) {
3325		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3326		if (ret < 0)
3327			goto out;
3328
3329		/*
3330		 * if ret == 0 means we found what we were searching for, which
3331		 * is weird, but possible, so only screw with path if we didn't
3332		 * find the key and see if we have stuff that matches
3333		 */
3334		if (ret > 0) {
3335			ret = 0;
3336			if (path->slots[0] == 0)
3337				break;
3338			path->slots[0]--;
3339		}
3340
3341		/* pull out the item */
3342		leaf = path->nodes[0];
3343		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3344
3345		/* make sure the item matches what we want */
3346		if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3347			break;
3348		if (found_key.type != BTRFS_ORPHAN_ITEM_KEY)
3349			break;
3350
3351		/* release the path since we're done with it */
3352		btrfs_release_path(path);
3353
3354		/*
3355		 * this is where we are basically btrfs_lookup, without the
3356		 * crossing root thing.  we store the inode number in the
3357		 * offset of the orphan item.
3358		 */
3359
3360		if (found_key.offset == last_objectid) {
3361			btrfs_err(root->fs_info,
3362				"Error removing orphan entry, stopping orphan cleanup");
3363			ret = -EINVAL;
3364			goto out;
3365		}
3366
3367		last_objectid = found_key.offset;
3368
3369		found_key.objectid = found_key.offset;
3370		found_key.type = BTRFS_INODE_ITEM_KEY;
3371		found_key.offset = 0;
3372		inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3373		ret = PTR_ERR_OR_ZERO(inode);
3374		if (ret && ret != -ESTALE)
3375			goto out;
3376
3377		if (ret == -ESTALE && root == root->fs_info->tree_root) {
3378			struct btrfs_root *dead_root;
3379			struct btrfs_fs_info *fs_info = root->fs_info;
3380			int is_dead_root = 0;
3381
3382			/*
3383			 * this is an orphan in the tree root. Currently these
3384			 * could come from 2 sources:
3385			 *  a) a snapshot deletion in progress
3386			 *  b) a free space cache inode
3387			 * We need to distinguish those two, as the snapshot
3388			 * orphan must not get deleted.
3389			 * find_dead_roots already ran before us, so if this
3390			 * is a snapshot deletion, we should find the root
3391			 * in the dead_roots list
3392			 */
3393			spin_lock(&fs_info->trans_lock);
3394			list_for_each_entry(dead_root, &fs_info->dead_roots,
3395					    root_list) {
3396				if (dead_root->root_key.objectid ==
3397				    found_key.objectid) {
3398					is_dead_root = 1;
3399					break;
3400				}
3401			}
3402			spin_unlock(&fs_info->trans_lock);
3403			if (is_dead_root) {
3404				/* prevent this orphan from being found again */
3405				key.offset = found_key.objectid - 1;
3406				continue;
3407			}
3408		}
3409		/*
3410		 * Inode is already gone but the orphan item is still there,
3411		 * kill the orphan item.
3412		 */
3413		if (ret == -ESTALE) {
3414			trans = btrfs_start_transaction(root, 1);
3415			if (IS_ERR(trans)) {
3416				ret = PTR_ERR(trans);
3417				goto out;
3418			}
3419			btrfs_debug(root->fs_info, "auto deleting %Lu",
3420				found_key.objectid);
3421			ret = btrfs_del_orphan_item(trans, root,
3422						    found_key.objectid);
3423			btrfs_end_transaction(trans, root);
3424			if (ret)
3425				goto out;
3426			continue;
3427		}
3428
3429		/*
3430		 * add this inode to the orphan list so btrfs_orphan_del does
3431		 * the proper thing when we hit it
3432		 */
3433		set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3434			&BTRFS_I(inode)->runtime_flags);
3435		atomic_inc(&root->orphan_inodes);
3436
3437		/* if we have links, this was a truncate, lets do that */
3438		if (inode->i_nlink) {
3439			if (WARN_ON(!S_ISREG(inode->i_mode))) {
3440				iput(inode);
3441				continue;
3442			}
3443			nr_truncate++;
3444
3445			/* 1 for the orphan item deletion. */
3446			trans = btrfs_start_transaction(root, 1);
3447			if (IS_ERR(trans)) {
3448				iput(inode);
3449				ret = PTR_ERR(trans);
3450				goto out;
3451			}
3452			ret = btrfs_orphan_add(trans, inode);
3453			btrfs_end_transaction(trans, root);
3454			if (ret) {
3455				iput(inode);
3456				goto out;
3457			}
3458
3459			ret = btrfs_truncate(inode);
3460			if (ret)
3461				btrfs_orphan_del(NULL, inode);
3462		} else {
3463			nr_unlink++;
3464		}
3465
3466		/* this will do delete_inode and everything for us */
3467		iput(inode);
3468		if (ret)
3469			goto out;
3470	}
3471	/* release the path since we're done with it */
3472	btrfs_release_path(path);
3473
3474	root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3475
3476	if (root->orphan_block_rsv)
3477		btrfs_block_rsv_release(root, root->orphan_block_rsv,
3478					(u64)-1);
3479
3480	if (root->orphan_block_rsv ||
3481	    test_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &root->state)) {
3482		trans = btrfs_join_transaction(root);
3483		if (!IS_ERR(trans))
3484			btrfs_end_transaction(trans, root);
3485	}
3486
3487	if (nr_unlink)
3488		btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3489	if (nr_truncate)
3490		btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3491
3492out:
3493	if (ret)
3494		btrfs_err(root->fs_info,
3495			"could not do orphan cleanup %d", ret);
3496	btrfs_free_path(path);
3497	return ret;
3498}
3499
3500/*
3501 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3502 * don't find any xattrs, we know there can't be any acls.
3503 *
3504 * slot is the slot the inode is in, objectid is the objectid of the inode
3505 */
3506static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3507					  int slot, u64 objectid,
3508					  int *first_xattr_slot)
3509{
3510	u32 nritems = btrfs_header_nritems(leaf);
3511	struct btrfs_key found_key;
3512	static u64 xattr_access = 0;
3513	static u64 xattr_default = 0;
3514	int scanned = 0;
3515
3516	if (!xattr_access) {
3517		xattr_access = btrfs_name_hash(POSIX_ACL_XATTR_ACCESS,
3518					strlen(POSIX_ACL_XATTR_ACCESS));
3519		xattr_default = btrfs_name_hash(POSIX_ACL_XATTR_DEFAULT,
3520					strlen(POSIX_ACL_XATTR_DEFAULT));
3521	}
3522
3523	slot++;
3524	*first_xattr_slot = -1;
3525	while (slot < nritems) {
3526		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3527
3528		/* we found a different objectid, there must not be acls */
3529		if (found_key.objectid != objectid)
3530			return 0;
3531
3532		/* we found an xattr, assume we've got an acl */
3533		if (found_key.type == BTRFS_XATTR_ITEM_KEY) {
3534			if (*first_xattr_slot == -1)
3535				*first_xattr_slot = slot;
3536			if (found_key.offset == xattr_access ||
3537			    found_key.offset == xattr_default)
3538				return 1;
3539		}
3540
3541		/*
3542		 * we found a key greater than an xattr key, there can't
3543		 * be any acls later on
3544		 */
3545		if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3546			return 0;
3547
3548		slot++;
3549		scanned++;
3550
3551		/*
3552		 * it goes inode, inode backrefs, xattrs, extents,
3553		 * so if there are a ton of hard links to an inode there can
3554		 * be a lot of backrefs.  Don't waste time searching too hard,
3555		 * this is just an optimization
3556		 */
3557		if (scanned >= 8)
3558			break;
3559	}
3560	/* we hit the end of the leaf before we found an xattr or
3561	 * something larger than an xattr.  We have to assume the inode
3562	 * has acls
3563	 */
3564	if (*first_xattr_slot == -1)
3565		*first_xattr_slot = slot;
3566	return 1;
3567}
3568
3569/*
3570 * read an inode from the btree into the in-memory inode
3571 */
3572static void btrfs_read_locked_inode(struct inode *inode)
3573{
3574	struct btrfs_path *path;
3575	struct extent_buffer *leaf;
3576	struct btrfs_inode_item *inode_item;
3577	struct btrfs_root *root = BTRFS_I(inode)->root;
3578	struct btrfs_key location;
3579	unsigned long ptr;
3580	int maybe_acls;
3581	u32 rdev;
3582	int ret;
3583	bool filled = false;
3584	int first_xattr_slot;
3585
3586	ret = btrfs_fill_inode(inode, &rdev);
3587	if (!ret)
3588		filled = true;
3589
3590	path = btrfs_alloc_path();
3591	if (!path)
3592		goto make_bad;
3593
3594	memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3595
3596	ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3597	if (ret)
3598		goto make_bad;
3599
3600	leaf = path->nodes[0];
3601
3602	if (filled)
3603		goto cache_index;
3604
3605	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3606				    struct btrfs_inode_item);
3607	inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3608	set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3609	i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3610	i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3611	btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3612
3613	inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->atime);
3614	inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->atime);
3615
3616	inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->mtime);
3617	inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->mtime);
3618
3619	inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, &inode_item->ctime);
3620	inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, &inode_item->ctime);
3621
3622	BTRFS_I(inode)->i_otime.tv_sec =
3623		btrfs_timespec_sec(leaf, &inode_item->otime);
3624	BTRFS_I(inode)->i_otime.tv_nsec =
3625		btrfs_timespec_nsec(leaf, &inode_item->otime);
3626
3627	inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3628	BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3629	BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3630
3631	inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3632	inode->i_generation = BTRFS_I(inode)->generation;
3633	inode->i_rdev = 0;
3634	rdev = btrfs_inode_rdev(leaf, inode_item);
3635
3636	BTRFS_I(inode)->index_cnt = (u64)-1;
3637	BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3638
3639cache_index:
3640	/*
3641	 * If we were modified in the current generation and evicted from memory
3642	 * and then re-read we need to do a full sync since we don't have any
3643	 * idea about which extents were modified before we were evicted from
3644	 * cache.
3645	 *
3646	 * This is required for both inode re-read from disk and delayed inode
3647	 * in delayed_nodes_tree.
3648	 */
3649	if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3650		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3651			&BTRFS_I(inode)->runtime_flags);
3652
3653	path->slots[0]++;
3654	if (inode->i_nlink != 1 ||
3655	    path->slots[0] >= btrfs_header_nritems(leaf))
3656		goto cache_acl;
3657
3658	btrfs_item_key_to_cpu(leaf, &location, path->slots[0]);
3659	if (location.objectid != btrfs_ino(inode))
3660		goto cache_acl;
3661
3662	ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
3663	if (location.type == BTRFS_INODE_REF_KEY) {
3664		struct btrfs_inode_ref *ref;
3665
3666		ref = (struct btrfs_inode_ref *)ptr;
3667		BTRFS_I(inode)->dir_index = btrfs_inode_ref_index(leaf, ref);
3668	} else if (location.type == BTRFS_INODE_EXTREF_KEY) {
3669		struct btrfs_inode_extref *extref;
3670
3671		extref = (struct btrfs_inode_extref *)ptr;
3672		BTRFS_I(inode)->dir_index = btrfs_inode_extref_index(leaf,
3673								     extref);
3674	}
3675cache_acl:
3676	/*
3677	 * try to precache a NULL acl entry for files that don't have
3678	 * any xattrs or acls
3679	 */
3680	maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3681					   btrfs_ino(inode), &first_xattr_slot);
3682	if (first_xattr_slot != -1) {
3683		path->slots[0] = first_xattr_slot;
3684		ret = btrfs_load_inode_props(inode, path);
3685		if (ret)
3686			btrfs_err(root->fs_info,
3687				  "error loading props for ino %llu (root %llu): %d",
3688				  btrfs_ino(inode),
3689				  root->root_key.objectid, ret);
3690	}
3691	btrfs_free_path(path);
3692
3693	if (!maybe_acls)
3694		cache_no_acl(inode);
3695
3696	switch (inode->i_mode & S_IFMT) {
3697	case S_IFREG:
3698		inode->i_mapping->a_ops = &btrfs_aops;
3699		BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3700		inode->i_fop = &btrfs_file_operations;
3701		inode->i_op = &btrfs_file_inode_operations;
3702		break;
3703	case S_IFDIR:
3704		inode->i_fop = &btrfs_dir_file_operations;
3705		if (root == root->fs_info->tree_root)
3706			inode->i_op = &btrfs_dir_ro_inode_operations;
3707		else
3708			inode->i_op = &btrfs_dir_inode_operations;
3709		break;
3710	case S_IFLNK:
3711		inode->i_op = &btrfs_symlink_inode_operations;
3712		inode->i_mapping->a_ops = &btrfs_symlink_aops;
3713		break;
3714	default:
3715		inode->i_op = &btrfs_special_inode_operations;
3716		init_special_inode(inode, inode->i_mode, rdev);
3717		break;
3718	}
3719
3720	btrfs_update_iflags(inode);
3721	return;
3722
3723make_bad:
3724	btrfs_free_path(path);
3725	make_bad_inode(inode);
3726}
3727
3728/*
3729 * given a leaf and an inode, copy the inode fields into the leaf
3730 */
3731static void fill_inode_item(struct btrfs_trans_handle *trans,
3732			    struct extent_buffer *leaf,
3733			    struct btrfs_inode_item *item,
3734			    struct inode *inode)
3735{
3736	struct btrfs_map_token token;
3737
3738	btrfs_init_map_token(&token);
3739
3740	btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3741	btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3742	btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3743				   &token);
3744	btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3745	btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3746
3747	btrfs_set_token_timespec_sec(leaf, &item->atime,
3748				     inode->i_atime.tv_sec, &token);
3749	btrfs_set_token_timespec_nsec(leaf, &item->atime,
3750				      inode->i_atime.tv_nsec, &token);
3751
3752	btrfs_set_token_timespec_sec(leaf, &item->mtime,
3753				     inode->i_mtime.tv_sec, &token);
3754	btrfs_set_token_timespec_nsec(leaf, &item->mtime,
3755				      inode->i_mtime.tv_nsec, &token);
3756
3757	btrfs_set_token_timespec_sec(leaf, &item->ctime,
3758				     inode->i_ctime.tv_sec, &token);
3759	btrfs_set_token_timespec_nsec(leaf, &item->ctime,
3760				      inode->i_ctime.tv_nsec, &token);
3761
3762	btrfs_set_token_timespec_sec(leaf, &item->otime,
3763				     BTRFS_I(inode)->i_otime.tv_sec, &token);
3764	btrfs_set_token_timespec_nsec(leaf, &item->otime,
3765				      BTRFS_I(inode)->i_otime.tv_nsec, &token);
3766
3767	btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3768				     &token);
3769	btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3770					 &token);
3771	btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3772	btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3773	btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3774	btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3775	btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3776}
3777
3778/*
3779 * copy everything in the in-memory inode into the btree.
3780 */
3781static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3782				struct btrfs_root *root, struct inode *inode)
3783{
3784	struct btrfs_inode_item *inode_item;
3785	struct btrfs_path *path;
3786	struct extent_buffer *leaf;
3787	int ret;
3788
3789	path = btrfs_alloc_path();
3790	if (!path)
3791		return -ENOMEM;
3792
3793	path->leave_spinning = 1;
3794	ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3795				 1);
3796	if (ret) {
3797		if (ret > 0)
3798			ret = -ENOENT;
3799		goto failed;
3800	}
3801
3802	leaf = path->nodes[0];
3803	inode_item = btrfs_item_ptr(leaf, path->slots[0],
3804				    struct btrfs_inode_item);
3805
3806	fill_inode_item(trans, leaf, inode_item, inode);
3807	btrfs_mark_buffer_dirty(leaf);
3808	btrfs_set_inode_last_trans(trans, inode);
3809	ret = 0;
3810failed:
3811	btrfs_free_path(path);
3812	return ret;
3813}
3814
3815/*
3816 * copy everything in the in-memory inode into the btree.
3817 */
3818noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3819				struct btrfs_root *root, struct inode *inode)
3820{
3821	int ret;
3822
3823	/*
3824	 * If the inode is a free space inode, we can deadlock during commit
3825	 * if we put it into the delayed code.
3826	 *
3827	 * The data relocation inode should also be directly updated
3828	 * without delay
3829	 */
3830	if (!btrfs_is_free_space_inode(inode)
3831	    && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
3832	    && !root->fs_info->log_root_recovering) {
3833		btrfs_update_root_times(trans, root);
3834
3835		ret = btrfs_delayed_update_inode(trans, root, inode);
3836		if (!ret)
3837			btrfs_set_inode_last_trans(trans, inode);
3838		return ret;
3839	}
3840
3841	return btrfs_update_inode_item(trans, root, inode);
3842}
3843
3844noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3845					 struct btrfs_root *root,
3846					 struct inode *inode)
3847{
3848	int ret;
3849
3850	ret = btrfs_update_inode(trans, root, inode);
3851	if (ret == -ENOSPC)
3852		return btrfs_update_inode_item(trans, root, inode);
3853	return ret;
3854}
3855
3856/*
3857 * unlink helper that gets used here in inode.c and in the tree logging
3858 * recovery code.  It remove a link in a directory with a given name, and
3859 * also drops the back refs in the inode to the directory
3860 */
3861static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3862				struct btrfs_root *root,
3863				struct inode *dir, struct inode *inode,
3864				const char *name, int name_len)
3865{
3866	struct btrfs_path *path;
3867	int ret = 0;
3868	struct extent_buffer *leaf;
3869	struct btrfs_dir_item *di;
3870	struct btrfs_key key;
3871	u64 index;
3872	u64 ino = btrfs_ino(inode);
3873	u64 dir_ino = btrfs_ino(dir);
3874
3875	path = btrfs_alloc_path();
3876	if (!path) {
3877		ret = -ENOMEM;
3878		goto out;
3879	}
3880
3881	path->leave_spinning = 1;
3882	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3883				    name, name_len, -1);
3884	if (IS_ERR(di)) {
3885		ret = PTR_ERR(di);
3886		goto err;
3887	}
3888	if (!di) {
3889		ret = -ENOENT;
3890		goto err;
3891	}
3892	leaf = path->nodes[0];
3893	btrfs_dir_item_key_to_cpu(leaf, di, &key);
3894	ret = btrfs_delete_one_dir_name(trans, root, path, di);
3895	if (ret)
3896		goto err;
3897	btrfs_release_path(path);
3898
3899	/*
3900	 * If we don't have dir index, we have to get it by looking up
3901	 * the inode ref, since we get the inode ref, remove it directly,
3902	 * it is unnecessary to do delayed deletion.
3903	 *
3904	 * But if we have dir index, needn't search inode ref to get it.
3905	 * Since the inode ref is close to the inode item, it is better
3906	 * that we delay to delete it, and just do this deletion when
3907	 * we update the inode item.
3908	 */
3909	if (BTRFS_I(inode)->dir_index) {
3910		ret = btrfs_delayed_delete_inode_ref(inode);
3911		if (!ret) {
3912			index = BTRFS_I(inode)->dir_index;
3913			goto skip_backref;
3914		}
3915	}
3916
3917	ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3918				  dir_ino, &index);
3919	if (ret) {
3920		btrfs_info(root->fs_info,
3921			"failed to delete reference to %.*s, inode %llu parent %llu",
3922			name_len, name, ino, dir_ino);
3923		btrfs_abort_transaction(trans, root, ret);
3924		goto err;
3925	}
3926skip_backref:
3927	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3928	if (ret) {
3929		btrfs_abort_transaction(trans, root, ret);
3930		goto err;
3931	}
3932
3933	ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3934					 inode, dir_ino);
3935	if (ret != 0 && ret != -ENOENT) {
3936		btrfs_abort_transaction(trans, root, ret);
3937		goto err;
3938	}
3939
3940	ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3941					   dir, index);
3942	if (ret == -ENOENT)
3943		ret = 0;
3944	else if (ret)
3945		btrfs_abort_transaction(trans, root, ret);
3946err:
3947	btrfs_free_path(path);
3948	if (ret)
3949		goto out;
3950
3951	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3952	inode_inc_iversion(inode);
3953	inode_inc_iversion(dir);
3954	inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3955	ret = btrfs_update_inode(trans, root, dir);
3956out:
3957	return ret;
3958}
3959
3960int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3961		       struct btrfs_root *root,
3962		       struct inode *dir, struct inode *inode,
3963		       const char *name, int name_len)
3964{
3965	int ret;
3966	ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3967	if (!ret) {
3968		drop_nlink(inode);
3969		ret = btrfs_update_inode(trans, root, inode);
3970	}
3971	return ret;
3972}
3973
3974/*
3975 * helper to start transaction for unlink and rmdir.
3976 *
3977 * unlink and rmdir are special in btrfs, they do not always free space, so
3978 * if we cannot make our reservations the normal way try and see if there is
3979 * plenty of slack room in the global reserve to migrate, otherwise we cannot
3980 * allow the unlink to occur.
3981 */
3982static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir)
3983{
3984	struct btrfs_trans_handle *trans;
3985	struct btrfs_root *root = BTRFS_I(dir)->root;
3986	int ret;
3987
3988	/*
3989	 * 1 for the possible orphan item
3990	 * 1 for the dir item
3991	 * 1 for the dir index
3992	 * 1 for the inode ref
3993	 * 1 for the inode
3994	 */
3995	trans = btrfs_start_transaction(root, 5);
3996	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3997		return trans;
3998
3999	if (PTR_ERR(trans) == -ENOSPC) {
4000		u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
4001
4002		trans = btrfs_start_transaction(root, 0);
4003		if (IS_ERR(trans))
4004			return trans;
4005		ret = btrfs_cond_migrate_bytes(root->fs_info,
4006					       &root->fs_info->trans_block_rsv,
4007					       num_bytes, 5);
4008		if (ret) {
4009			btrfs_end_transaction(trans, root);
4010			return ERR_PTR(ret);
4011		}
4012		trans->block_rsv = &root->fs_info->trans_block_rsv;
4013		trans->bytes_reserved = num_bytes;
4014	}
4015	return trans;
4016}
4017
4018static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
4019{
4020	struct btrfs_root *root = BTRFS_I(dir)->root;
4021	struct btrfs_trans_handle *trans;
4022	struct inode *inode = d_inode(dentry);
4023	int ret;
4024
4025	trans = __unlink_start_trans(dir);
4026	if (IS_ERR(trans))
4027		return PTR_ERR(trans);
4028
4029	btrfs_record_unlink_dir(trans, dir, d_inode(dentry), 0);
4030
4031	ret = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4032				 dentry->d_name.name, dentry->d_name.len);
4033	if (ret)
4034		goto out;
4035
4036	if (inode->i_nlink == 0) {
4037		ret = btrfs_orphan_add(trans, inode);
4038		if (ret)
4039			goto out;
4040	}
4041
4042out:
4043	btrfs_end_transaction(trans, root);
4044	btrfs_btree_balance_dirty(root);
4045	return ret;
4046}
4047
4048int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
4049			struct btrfs_root *root,
4050			struct inode *dir, u64 objectid,
4051			const char *name, int name_len)
4052{
4053	struct btrfs_path *path;
4054	struct extent_buffer *leaf;
4055	struct btrfs_dir_item *di;
4056	struct btrfs_key key;
4057	u64 index;
4058	int ret;
4059	u64 dir_ino = btrfs_ino(dir);
4060
4061	path = btrfs_alloc_path();
4062	if (!path)
4063		return -ENOMEM;
4064
4065	di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
4066				   name, name_len, -1);
4067	if (IS_ERR_OR_NULL(di)) {
4068		if (!di)
4069			ret = -ENOENT;
4070		else
4071			ret = PTR_ERR(di);
4072		goto out;
4073	}
4074
4075	leaf = path->nodes[0];
4076	btrfs_dir_item_key_to_cpu(leaf, di, &key);
4077	WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
4078	ret = btrfs_delete_one_dir_name(trans, root, path, di);
4079	if (ret) {
4080		btrfs_abort_transaction(trans, root, ret);
4081		goto out;
4082	}
4083	btrfs_release_path(path);
4084
4085	ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
4086				 objectid, root->root_key.objectid,
4087				 dir_ino, &index, name, name_len);
4088	if (ret < 0) {
4089		if (ret != -ENOENT) {
4090			btrfs_abort_transaction(trans, root, ret);
4091			goto out;
4092		}
4093		di = btrfs_search_dir_index_item(root, path, dir_ino,
4094						 name, name_len);
4095		if (IS_ERR_OR_NULL(di)) {
4096			if (!di)
4097				ret = -ENOENT;
4098			else
4099				ret = PTR_ERR(di);
4100			btrfs_abort_transaction(trans, root, ret);
4101			goto out;
4102		}
4103
4104		leaf = path->nodes[0];
4105		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4106		btrfs_release_path(path);
4107		index = key.offset;
4108	}
4109	btrfs_release_path(path);
4110
4111	ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
4112	if (ret) {
4113		btrfs_abort_transaction(trans, root, ret);
4114		goto out;
4115	}
4116
4117	btrfs_i_size_write(dir, dir->i_size - name_len * 2);
4118	inode_inc_iversion(dir);
4119	dir->i_mtime = dir->i_ctime = CURRENT_TIME;
4120	ret = btrfs_update_inode_fallback(trans, root, dir);
4121	if (ret)
4122		btrfs_abort_transaction(trans, root, ret);
4123out:
4124	btrfs_free_path(path);
4125	return ret;
4126}
4127
4128static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
4129{
4130	struct inode *inode = d_inode(dentry);
4131	int err = 0;
4132	struct btrfs_root *root = BTRFS_I(dir)->root;
4133	struct btrfs_trans_handle *trans;
4134
4135	if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
4136		return -ENOTEMPTY;
4137	if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
4138		return -EPERM;
4139
4140	trans = __unlink_start_trans(dir);
4141	if (IS_ERR(trans))
4142		return PTR_ERR(trans);
4143
4144	if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4145		err = btrfs_unlink_subvol(trans, root, dir,
4146					  BTRFS_I(inode)->location.objectid,
4147					  dentry->d_name.name,
4148					  dentry->d_name.len);
4149		goto out;
4150	}
4151
4152	err = btrfs_orphan_add(trans, inode);
4153	if (err)
4154		goto out;
4155
4156	/* now the directory is empty */
4157	err = btrfs_unlink_inode(trans, root, dir, d_inode(dentry),
4158				 dentry->d_name.name, dentry->d_name.len);
4159	if (!err)
4160		btrfs_i_size_write(inode, 0);
4161out:
4162	btrfs_end_transaction(trans, root);
4163	btrfs_btree_balance_dirty(root);
4164
4165	return err;
4166}
4167
4168static int truncate_space_check(struct btrfs_trans_handle *trans,
4169				struct btrfs_root *root,
4170				u64 bytes_deleted)
4171{
4172	int ret;
4173
4174	bytes_deleted = btrfs_csum_bytes_to_leaves(root, bytes_deleted);
4175	ret = btrfs_block_rsv_add(root, &root->fs_info->trans_block_rsv,
4176				  bytes_deleted, BTRFS_RESERVE_NO_FLUSH);
4177	if (!ret)
4178		trans->bytes_reserved += bytes_deleted;
4179	return ret;
4180
4181}
4182
4183static int truncate_inline_extent(struct inode *inode,
4184				  struct btrfs_path *path,
4185				  struct btrfs_key *found_key,
4186				  const u64 item_end,
4187				  const u64 new_size)
4188{
4189	struct extent_buffer *leaf = path->nodes[0];
4190	int slot = path->slots[0];
4191	struct btrfs_file_extent_item *fi;
4192	u32 size = (u32)(new_size - found_key->offset);
4193	struct btrfs_root *root = BTRFS_I(inode)->root;
4194
4195	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
4196
4197	if (btrfs_file_extent_compression(leaf, fi) != BTRFS_COMPRESS_NONE) {
4198		loff_t offset = new_size;
4199		loff_t page_end = ALIGN(offset, PAGE_CACHE_SIZE);
4200
4201		/*
4202		 * Zero out the remaining of the last page of our inline extent,
4203		 * instead of directly truncating our inline extent here - that
4204		 * would be much more complex (decompressing all the data, then
4205		 * compressing the truncated data, which might be bigger than
4206		 * the size of the inline extent, resize the extent, etc).
4207		 * We release the path because to get the page we might need to
4208		 * read the extent item from disk (data not in the page cache).
4209		 */
4210		btrfs_release_path(path);
4211		return btrfs_truncate_page(inode, offset, page_end - offset, 0);
4212	}
4213
4214	btrfs_set_file_extent_ram_bytes(leaf, fi, size);
4215	size = btrfs_file_extent_calc_inline_size(size);
4216	btrfs_truncate_item(root, path, size, 1);
4217
4218	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4219		inode_sub_bytes(inode, item_end + 1 - new_size);
4220
4221	return 0;
4222}
4223
4224/*
4225 * this can truncate away extent items, csum items and directory items.
4226 * It starts at a high offset and removes keys until it can't find
4227 * any higher than new_size
4228 *
4229 * csum items that cross the new i_size are truncated to the new size
4230 * as well.
4231 *
4232 * min_type is the minimum key type to truncate down to.  If set to 0, this
4233 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4234 */
4235int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4236			       struct btrfs_root *root,
4237			       struct inode *inode,
4238			       u64 new_size, u32 min_type)
4239{
4240	struct btrfs_path *path;
4241	struct extent_buffer *leaf;
4242	struct btrfs_file_extent_item *fi;
4243	struct btrfs_key key;
4244	struct btrfs_key found_key;
4245	u64 extent_start = 0;
4246	u64 extent_num_bytes = 0;
4247	u64 extent_offset = 0;
4248	u64 item_end = 0;
4249	u64 last_size = (u64)-1;
4250	u32 found_type = (u8)-1;
4251	int found_extent;
4252	int del_item;
4253	int pending_del_nr = 0;
4254	int pending_del_slot = 0;
4255	int extent_type = -1;
4256	int ret;
4257	int err = 0;
4258	u64 ino = btrfs_ino(inode);
4259	u64 bytes_deleted = 0;
4260	bool be_nice = 0;
4261	bool should_throttle = 0;
4262	bool should_end = 0;
4263
4264	BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4265
4266	/*
4267	 * for non-free space inodes and ref cows, we want to back off from
4268	 * time to time
4269	 */
4270	if (!btrfs_is_free_space_inode(inode) &&
4271	    test_bit(BTRFS_ROOT_REF_COWS, &root->state))
4272		be_nice = 1;
4273
4274	path = btrfs_alloc_path();
4275	if (!path)
4276		return -ENOMEM;
4277	path->reada = -1;
4278
4279	/*
4280	 * We want to drop from the next block forward in case this new size is
4281	 * not block aligned since we will be keeping the last block of the
4282	 * extent just the way it is.
4283	 */
4284	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4285	    root == root->fs_info->tree_root)
4286		btrfs_drop_extent_cache(inode, ALIGN(new_size,
4287					root->sectorsize), (u64)-1, 0);
4288
4289	/*
4290	 * This function is also used to drop the items in the log tree before
4291	 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4292	 * it is used to drop the loged items. So we shouldn't kill the delayed
4293	 * items.
4294	 */
4295	if (min_type == 0 && root == BTRFS_I(inode)->root)
4296		btrfs_kill_delayed_inode_items(inode);
4297
4298	key.objectid = ino;
4299	key.offset = (u64)-1;
4300	key.type = (u8)-1;
4301
4302search_again:
4303	/*
4304	 * with a 16K leaf size and 128MB extents, you can actually queue
4305	 * up a huge file in a single leaf.  Most of the time that
4306	 * bytes_deleted is > 0, it will be huge by the time we get here
4307	 */
4308	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4309		if (btrfs_should_end_transaction(trans, root)) {
4310			err = -EAGAIN;
4311			goto error;
4312		}
4313	}
4314
4315
4316	path->leave_spinning = 1;
4317	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4318	if (ret < 0) {
4319		err = ret;
4320		goto out;
4321	}
4322
4323	if (ret > 0) {
4324		/* there are no items in the tree for us to truncate, we're
4325		 * done
4326		 */
4327		if (path->slots[0] == 0)
4328			goto out;
4329		path->slots[0]--;
4330	}
4331
4332	while (1) {
4333		fi = NULL;
4334		leaf = path->nodes[0];
4335		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4336		found_type = found_key.type;
4337
4338		if (found_key.objectid != ino)
4339			break;
4340
4341		if (found_type < min_type)
4342			break;
4343
4344		item_end = found_key.offset;
4345		if (found_type == BTRFS_EXTENT_DATA_KEY) {
4346			fi = btrfs_item_ptr(leaf, path->slots[0],
4347					    struct btrfs_file_extent_item);
4348			extent_type = btrfs_file_extent_type(leaf, fi);
4349			if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4350				item_end +=
4351				    btrfs_file_extent_num_bytes(leaf, fi);
4352			} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4353				item_end += btrfs_file_extent_inline_len(leaf,
4354							 path->slots[0], fi);
4355			}
4356			item_end--;
4357		}
4358		if (found_type > min_type) {
4359			del_item = 1;
4360		} else {
4361			if (item_end < new_size)
4362				break;
4363			if (found_key.offset >= new_size)
4364				del_item = 1;
4365			else
4366				del_item = 0;
4367		}
4368		found_extent = 0;
4369		/* FIXME, shrink the extent if the ref count is only 1 */
4370		if (found_type != BTRFS_EXTENT_DATA_KEY)
4371			goto delete;
4372
4373		if (del_item)
4374			last_size = found_key.offset;
4375		else
4376			last_size = new_size;
4377
4378		if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4379			u64 num_dec;
4380			extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4381			if (!del_item) {
4382				u64 orig_num_bytes =
4383					btrfs_file_extent_num_bytes(leaf, fi);
4384				extent_num_bytes = ALIGN(new_size -
4385						found_key.offset,
4386						root->sectorsize);
4387				btrfs_set_file_extent_num_bytes(leaf, fi,
4388							 extent_num_bytes);
4389				num_dec = (orig_num_bytes -
4390					   extent_num_bytes);
4391				if (test_bit(BTRFS_ROOT_REF_COWS,
4392					     &root->state) &&
4393				    extent_start != 0)
4394					inode_sub_bytes(inode, num_dec);
4395				btrfs_mark_buffer_dirty(leaf);
4396			} else {
4397				extent_num_bytes =
4398					btrfs_file_extent_disk_num_bytes(leaf,
4399									 fi);
4400				extent_offset = found_key.offset -
4401					btrfs_file_extent_offset(leaf, fi);
4402
4403				/* FIXME blocksize != 4096 */
4404				num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4405				if (extent_start != 0) {
4406					found_extent = 1;
4407					if (test_bit(BTRFS_ROOT_REF_COWS,
4408						     &root->state))
4409						inode_sub_bytes(inode, num_dec);
4410				}
4411			}
4412		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4413			/*
4414			 * we can't truncate inline items that have had
4415			 * special encodings
4416			 */
4417			if (!del_item &&
4418			    btrfs_file_extent_encryption(leaf, fi) == 0 &&
4419			    btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4420
4421				/*
4422				 * Need to release path in order to truncate a
4423				 * compressed extent. So delete any accumulated
4424				 * extent items so far.
4425				 */
4426				if (btrfs_file_extent_compression(leaf, fi) !=
4427				    BTRFS_COMPRESS_NONE && pending_del_nr) {
4428					err = btrfs_del_items(trans, root, path,
4429							      pending_del_slot,
4430							      pending_del_nr);
4431					if (err) {
4432						btrfs_abort_transaction(trans,
4433									root,
4434									err);
4435						goto error;
4436					}
4437					pending_del_nr = 0;
4438				}
4439
4440				err = truncate_inline_extent(inode, path,
4441							     &found_key,
4442							     item_end,
4443							     new_size);
4444				if (err) {
4445					btrfs_abort_transaction(trans,
4446								root, err);
4447					goto error;
4448				}
4449			} else if (test_bit(BTRFS_ROOT_REF_COWS,
4450					    &root->state)) {
4451				inode_sub_bytes(inode, item_end + 1 - new_size);
4452			}
4453		}
4454delete:
4455		if (del_item) {
4456			if (!pending_del_nr) {
4457				/* no pending yet, add ourselves */
4458				pending_del_slot = path->slots[0];
4459				pending_del_nr = 1;
4460			} else if (pending_del_nr &&
4461				   path->slots[0] + 1 == pending_del_slot) {
4462				/* hop on the pending chunk */
4463				pending_del_nr++;
4464				pending_del_slot = path->slots[0];
4465			} else {
4466				BUG();
4467			}
4468		} else {
4469			break;
4470		}
4471		should_throttle = 0;
4472
4473		if (found_extent &&
4474		    (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
4475		     root == root->fs_info->tree_root)) {
4476			btrfs_set_path_blocking(path);
4477			bytes_deleted += extent_num_bytes;
4478			ret = btrfs_free_extent(trans, root, extent_start,
4479						extent_num_bytes, 0,
4480						btrfs_header_owner(leaf),
4481						ino, extent_offset, 0);
4482			BUG_ON(ret);
4483			if (btrfs_should_throttle_delayed_refs(trans, root))
4484				btrfs_async_run_delayed_refs(root,
4485					trans->delayed_ref_updates * 2, 0);
4486			if (be_nice) {
4487				if (truncate_space_check(trans, root,
4488							 extent_num_bytes)) {
4489					should_end = 1;
4490				}
4491				if (btrfs_should_throttle_delayed_refs(trans,
4492								       root)) {
4493					should_throttle = 1;
4494				}
4495			}
4496		}
4497
4498		if (found_type == BTRFS_INODE_ITEM_KEY)
4499			break;
4500
4501		if (path->slots[0] == 0 ||
4502		    path->slots[0] != pending_del_slot ||
4503		    should_throttle || should_end) {
4504			if (pending_del_nr) {
4505				ret = btrfs_del_items(trans, root, path,
4506						pending_del_slot,
4507						pending_del_nr);
4508				if (ret) {
4509					btrfs_abort_transaction(trans,
4510								root, ret);
4511					goto error;
4512				}
4513				pending_del_nr = 0;
4514			}
4515			btrfs_release_path(path);
4516			if (should_throttle) {
4517				unsigned long updates = trans->delayed_ref_updates;
4518				if (updates) {
4519					trans->delayed_ref_updates = 0;
4520					ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4521					if (ret && !err)
4522						err = ret;
4523				}
4524			}
4525			/*
4526			 * if we failed to refill our space rsv, bail out
4527			 * and let the transaction restart
4528			 */
4529			if (should_end) {
4530				err = -EAGAIN;
4531				goto error;
4532			}
4533			goto search_again;
4534		} else {
4535			path->slots[0]--;
4536		}
4537	}
4538out:
4539	if (pending_del_nr) {
4540		ret = btrfs_del_items(trans, root, path, pending_del_slot,
4541				      pending_del_nr);
4542		if (ret)
4543			btrfs_abort_transaction(trans, root, ret);
4544	}
4545error:
4546	if (last_size != (u64)-1 &&
4547	    root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
4548		btrfs_ordered_update_i_size(inode, last_size, NULL);
4549
4550	btrfs_free_path(path);
4551
4552	if (be_nice && bytes_deleted > 32 * 1024 * 1024) {
4553		unsigned long updates = trans->delayed_ref_updates;
4554		if (updates) {
4555			trans->delayed_ref_updates = 0;
4556			ret = btrfs_run_delayed_refs(trans, root, updates * 2);
4557			if (ret && !err)
4558				err = ret;
4559		}
4560	}
4561	return err;
4562}
4563
4564/*
4565 * btrfs_truncate_page - read, zero a chunk and write a page
4566 * @inode - inode that we're zeroing
4567 * @from - the offset to start zeroing
4568 * @len - the length to zero, 0 to zero the entire range respective to the
4569 *	offset
4570 * @front - zero up to the offset instead of from the offset on
4571 *
4572 * This will find the page for the "from" offset and cow the page and zero the
4573 * part we want to zero.  This is used with truncate and hole punching.
4574 */
4575int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4576			int front)
4577{
4578	struct address_space *mapping = inode->i_mapping;
4579	struct btrfs_root *root = BTRFS_I(inode)->root;
4580	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4581	struct btrfs_ordered_extent *ordered;
4582	struct extent_state *cached_state = NULL;
4583	char *kaddr;
4584	u32 blocksize = root->sectorsize;
4585	pgoff_t index = from >> PAGE_CACHE_SHIFT;
4586	unsigned offset = from & (PAGE_CACHE_SIZE-1);
4587	struct page *page;
4588	gfp_t mask = btrfs_alloc_write_mask(mapping);
4589	int ret = 0;
4590	u64 page_start;
4591	u64 page_end;
4592
4593	if ((offset & (blocksize - 1)) == 0 &&
4594	    (!len || ((len & (blocksize - 1)) == 0)))
4595		goto out;
4596	ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4597	if (ret)
4598		goto out;
4599
4600again:
4601	page = find_or_create_page(mapping, index, mask);
4602	if (!page) {
4603		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4604		ret = -ENOMEM;
4605		goto out;
4606	}
4607
4608	page_start = page_offset(page);
4609	page_end = page_start + PAGE_CACHE_SIZE - 1;
4610
4611	if (!PageUptodate(page)) {
4612		ret = btrfs_readpage(NULL, page);
4613		lock_page(page);
4614		if (page->mapping != mapping) {
4615			unlock_page(page);
4616			page_cache_release(page);
4617			goto again;
4618		}
4619		if (!PageUptodate(page)) {
4620			ret = -EIO;
4621			goto out_unlock;
4622		}
4623	}
4624	wait_on_page_writeback(page);
4625
4626	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4627	set_page_extent_mapped(page);
4628
4629	ordered = btrfs_lookup_ordered_extent(inode, page_start);
4630	if (ordered) {
4631		unlock_extent_cached(io_tree, page_start, page_end,
4632				     &cached_state, GFP_NOFS);
4633		unlock_page(page);
4634		page_cache_release(page);
4635		btrfs_start_ordered_extent(inode, ordered, 1);
4636		btrfs_put_ordered_extent(ordered);
4637		goto again;
4638	}
4639
4640	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4641			  EXTENT_DIRTY | EXTENT_DELALLOC |
4642			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4643			  0, 0, &cached_state, GFP_NOFS);
4644
4645	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4646					&cached_state);
4647	if (ret) {
4648		unlock_extent_cached(io_tree, page_start, page_end,
4649				     &cached_state, GFP_NOFS);
4650		goto out_unlock;
4651	}
4652
4653	if (offset != PAGE_CACHE_SIZE) {
4654		if (!len)
4655			len = PAGE_CACHE_SIZE - offset;
4656		kaddr = kmap(page);
4657		if (front)
4658			memset(kaddr, 0, offset);
4659		else
4660			memset(kaddr + offset, 0, len);
4661		flush_dcache_page(page);
4662		kunmap(page);
4663	}
4664	ClearPageChecked(page);
4665	set_page_dirty(page);
4666	unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4667			     GFP_NOFS);
4668
4669out_unlock:
4670	if (ret)
4671		btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4672	unlock_page(page);
4673	page_cache_release(page);
4674out:
4675	return ret;
4676}
4677
4678static int maybe_insert_hole(struct btrfs_root *root, struct inode *inode,
4679			     u64 offset, u64 len)
4680{
4681	struct btrfs_trans_handle *trans;
4682	int ret;
4683
4684	/*
4685	 * Still need to make sure the inode looks like it's been updated so
4686	 * that any holes get logged if we fsync.
4687	 */
4688	if (btrfs_fs_incompat(root->fs_info, NO_HOLES)) {
4689		BTRFS_I(inode)->last_trans = root->fs_info->generation;
4690		BTRFS_I(inode)->last_sub_trans = root->log_transid;
4691		BTRFS_I(inode)->last_log_commit = root->last_log_commit;
4692		return 0;
4693	}
4694
4695	/*
4696	 * 1 - for the one we're dropping
4697	 * 1 - for the one we're adding
4698	 * 1 - for updating the inode.
4699	 */
4700	trans = btrfs_start_transaction(root, 3);
4701	if (IS_ERR(trans))
4702		return PTR_ERR(trans);
4703
4704	ret = btrfs_drop_extents(trans, root, inode, offset, offset + len, 1);
4705	if (ret) {
4706		btrfs_abort_transaction(trans, root, ret);
4707		btrfs_end_transaction(trans, root);
4708		return ret;
4709	}
4710
4711	ret = btrfs_insert_file_extent(trans, root, btrfs_ino(inode), offset,
4712				       0, 0, len, 0, len, 0, 0, 0);
4713	if (ret)
4714		btrfs_abort_transaction(trans, root, ret);
4715	else
4716		btrfs_update_inode(trans, root, inode);
4717	btrfs_end_transaction(trans, root);
4718	return ret;
4719}
4720
4721/*
4722 * This function puts in dummy file extents for the area we're creating a hole
4723 * for.  So if we are truncating this file to a larger size we need to insert
4724 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4725 * the range between oldsize and size
4726 */
4727int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4728{
4729	struct btrfs_root *root = BTRFS_I(inode)->root;
4730	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4731	struct extent_map *em = NULL;
4732	struct extent_state *cached_state = NULL;
4733	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4734	u64 hole_start = ALIGN(oldsize, root->sectorsize);
4735	u64 block_end = ALIGN(size, root->sectorsize);
4736	u64 last_byte;
4737	u64 cur_offset;
4738	u64 hole_size;
4739	int err = 0;
4740
4741	/*
4742	 * If our size started in the middle of a page we need to zero out the
4743	 * rest of the page before we expand the i_size, otherwise we could
4744	 * expose stale data.
4745	 */
4746	err = btrfs_truncate_page(inode, oldsize, 0, 0);
4747	if (err)
4748		return err;
4749
4750	if (size <= hole_start)
4751		return 0;
4752
4753	while (1) {
4754		struct btrfs_ordered_extent *ordered;
4755
4756		lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4757				 &cached_state);
4758		ordered = btrfs_lookup_ordered_range(inode, hole_start,
4759						     block_end - hole_start);
4760		if (!ordered)
4761			break;
4762		unlock_extent_cached(io_tree, hole_start, block_end - 1,
4763				     &cached_state, GFP_NOFS);
4764		btrfs_start_ordered_extent(inode, ordered, 1);
4765		btrfs_put_ordered_extent(ordered);
4766	}
4767
4768	cur_offset = hole_start;
4769	while (1) {
4770		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4771				block_end - cur_offset, 0);
4772		if (IS_ERR(em)) {
4773			err = PTR_ERR(em);
4774			em = NULL;
4775			break;
4776		}
4777		last_byte = min(extent_map_end(em), block_end);
4778		last_byte = ALIGN(last_byte , root->sectorsize);
4779		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4780			struct extent_map *hole_em;
4781			hole_size = last_byte - cur_offset;
4782
4783			err = maybe_insert_hole(root, inode, cur_offset,
4784						hole_size);
4785			if (err)
4786				break;
4787			btrfs_drop_extent_cache(inode, cur_offset,
4788						cur_offset + hole_size - 1, 0);
4789			hole_em = alloc_extent_map();
4790			if (!hole_em) {
4791				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4792					&BTRFS_I(inode)->runtime_flags);
4793				goto next;
4794			}
4795			hole_em->start = cur_offset;
4796			hole_em->len = hole_size;
4797			hole_em->orig_start = cur_offset;
4798
4799			hole_em->block_start = EXTENT_MAP_HOLE;
4800			hole_em->block_len = 0;
4801			hole_em->orig_block_len = 0;
4802			hole_em->ram_bytes = hole_size;
4803			hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4804			hole_em->compress_type = BTRFS_COMPRESS_NONE;
4805			hole_em->generation = root->fs_info->generation;
4806
4807			while (1) {
4808				write_lock(&em_tree->lock);
4809				err = add_extent_mapping(em_tree, hole_em, 1);
4810				write_unlock(&em_tree->lock);
4811				if (err != -EEXIST)
4812					break;
4813				btrfs_drop_extent_cache(inode, cur_offset,
4814							cur_offset +
4815							hole_size - 1, 0);
4816			}
4817			free_extent_map(hole_em);
4818		}
4819next:
4820		free_extent_map(em);
4821		em = NULL;
4822		cur_offset = last_byte;
4823		if (cur_offset >= block_end)
4824			break;
4825	}
4826	free_extent_map(em);
4827	unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4828			     GFP_NOFS);
4829	return err;
4830}
4831
4832static int wait_snapshoting_atomic_t(atomic_t *a)
4833{
4834	schedule();
4835	return 0;
4836}
4837
4838static void wait_for_snapshot_creation(struct btrfs_root *root)
4839{
4840	while (true) {
4841		int ret;
4842
4843		ret = btrfs_start_write_no_snapshoting(root);
4844		if (ret)
4845			break;
4846		wait_on_atomic_t(&root->will_be_snapshoted,
4847				 wait_snapshoting_atomic_t,
4848				 TASK_UNINTERRUPTIBLE);
4849	}
4850}
4851
4852static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4853{
4854	struct btrfs_root *root = BTRFS_I(inode)->root;
4855	struct btrfs_trans_handle *trans;
4856	loff_t oldsize = i_size_read(inode);
4857	loff_t newsize = attr->ia_size;
4858	int mask = attr->ia_valid;
4859	int ret;
4860
4861	/*
4862	 * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4863	 * special case where we need to update the times despite not having
4864	 * these flags set.  For all other operations the VFS set these flags
4865	 * explicitly if it wants a timestamp update.
4866	 */
4867	if (newsize != oldsize) {
4868		inode_inc_iversion(inode);
4869		if (!(mask & (ATTR_CTIME | ATTR_MTIME)))
4870			inode->i_ctime = inode->i_mtime =
4871				current_fs_time(inode->i_sb);
4872	}
4873
4874	if (newsize > oldsize) {
4875		truncate_pagecache(inode, newsize);
4876		/*
4877		 * Don't do an expanding truncate while snapshoting is ongoing.
4878		 * This is to ensure the snapshot captures a fully consistent
4879		 * state of this file - if the snapshot captures this expanding
4880		 * truncation, it must capture all writes that happened before
4881		 * this truncation.
4882		 */
4883		wait_for_snapshot_creation(root);
4884		ret = btrfs_cont_expand(inode, oldsize, newsize);
4885		if (ret) {
4886			btrfs_end_write_no_snapshoting(root);
4887			return ret;
4888		}
4889
4890		trans = btrfs_start_transaction(root, 1);
4891		if (IS_ERR(trans)) {
4892			btrfs_end_write_no_snapshoting(root);
4893			return PTR_ERR(trans);
4894		}
4895
4896		i_size_write(inode, newsize);
4897		btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4898		ret = btrfs_update_inode(trans, root, inode);
4899		btrfs_end_write_no_snapshoting(root);
4900		btrfs_end_transaction(trans, root);
4901	} else {
4902
4903		/*
4904		 * We're truncating a file that used to have good data down to
4905		 * zero. Make sure it gets into the ordered flush list so that
4906		 * any new writes get down to disk quickly.
4907		 */
4908		if (newsize == 0)
4909			set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4910				&BTRFS_I(inode)->runtime_flags);
4911
4912		/*
4913		 * 1 for the orphan item we're going to add
4914		 * 1 for the orphan item deletion.
4915		 */
4916		trans = btrfs_start_transaction(root, 2);
4917		if (IS_ERR(trans))
4918			return PTR_ERR(trans);
4919
4920		/*
4921		 * We need to do this in case we fail at _any_ point during the
4922		 * actual truncate.  Once we do the truncate_setsize we could
4923		 * invalidate pages which forces any outstanding ordered io to
4924		 * be instantly completed which will give us extents that need
4925		 * to be truncated.  If we fail to get an orphan inode down we
4926		 * could have left over extents that were never meant to live,
4927		 * so we need to garuntee from this point on that everything
4928		 * will be consistent.
4929		 */
4930		ret = btrfs_orphan_add(trans, inode);
4931		btrfs_end_transaction(trans, root);
4932		if (ret)
4933			return ret;
4934
4935		/* we don't support swapfiles, so vmtruncate shouldn't fail */
4936		truncate_setsize(inode, newsize);
4937
4938		/* Disable nonlocked read DIO to avoid the end less truncate */
4939		btrfs_inode_block_unlocked_dio(inode);
4940		inode_dio_wait(inode);
4941		btrfs_inode_resume_unlocked_dio(inode);
4942
4943		ret = btrfs_truncate(inode);
4944		if (ret && inode->i_nlink) {
4945			int err;
4946
4947			/*
4948			 * failed to truncate, disk_i_size is only adjusted down
4949			 * as we remove extents, so it should represent the true
4950			 * size of the inode, so reset the in memory size and
4951			 * delete our orphan entry.
4952			 */
4953			trans = btrfs_join_transaction(root);
4954			if (IS_ERR(trans)) {
4955				btrfs_orphan_del(NULL, inode);
4956				return ret;
4957			}
4958			i_size_write(inode, BTRFS_I(inode)->disk_i_size);
4959			err = btrfs_orphan_del(trans, inode);
4960			if (err)
4961				btrfs_abort_transaction(trans, root, err);
4962			btrfs_end_transaction(trans, root);
4963		}
4964	}
4965
4966	return ret;
4967}
4968
4969static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4970{
4971	struct inode *inode = d_inode(dentry);
4972	struct btrfs_root *root = BTRFS_I(inode)->root;
4973	int err;
4974
4975	if (btrfs_root_readonly(root))
4976		return -EROFS;
4977
4978	err = inode_change_ok(inode, attr);
4979	if (err)
4980		return err;
4981
4982	if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4983		err = btrfs_setsize(inode, attr);
4984		if (err)
4985			return err;
4986	}
4987
4988	if (attr->ia_valid) {
4989		setattr_copy(inode, attr);
4990		inode_inc_iversion(inode);
4991		err = btrfs_dirty_inode(inode);
4992
4993		if (!err && attr->ia_valid & ATTR_MODE)
4994			err = posix_acl_chmod(inode, inode->i_mode);
4995	}
4996
4997	return err;
4998}
4999
5000/*
5001 * While truncating the inode pages during eviction, we get the VFS calling
5002 * btrfs_invalidatepage() against each page of the inode. This is slow because
5003 * the calls to btrfs_invalidatepage() result in a huge amount of calls to
5004 * lock_extent_bits() and clear_extent_bit(), which keep merging and splitting
5005 * extent_state structures over and over, wasting lots of time.
5006 *
5007 * Therefore if the inode is being evicted, let btrfs_invalidatepage() skip all
5008 * those expensive operations on a per page basis and do only the ordered io
5009 * finishing, while we release here the extent_map and extent_state structures,
5010 * without the excessive merging and splitting.
5011 */
5012static void evict_inode_truncate_pages(struct inode *inode)
5013{
5014	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
5015	struct extent_map_tree *map_tree = &BTRFS_I(inode)->extent_tree;
5016	struct rb_node *node;
5017
5018	ASSERT(inode->i_state & I_FREEING);
5019	truncate_inode_pages_final(&inode->i_data);
5020
5021	write_lock(&map_tree->lock);
5022	while (!RB_EMPTY_ROOT(&map_tree->map)) {
5023		struct extent_map *em;
5024
5025		node = rb_first(&map_tree->map);
5026		em = rb_entry(node, struct extent_map, rb_node);
5027		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
5028		clear_bit(EXTENT_FLAG_LOGGING, &em->flags);
5029		remove_extent_mapping(map_tree, em);
5030		free_extent_map(em);
5031		if (need_resched()) {
5032			write_unlock(&map_tree->lock);
5033			cond_resched();
5034			write_lock(&map_tree->lock);
5035		}
5036	}
5037	write_unlock(&map_tree->lock);
5038
5039	spin_lock(&io_tree->lock);
5040	while (!RB_EMPTY_ROOT(&io_tree->state)) {
5041		struct extent_state *state;
5042		struct extent_state *cached_state = NULL;
5043
5044		node = rb_first(&io_tree->state);
5045		state = rb_entry(node, struct extent_state, rb_node);
5046		atomic_inc(&state->refs);
5047		spin_unlock(&io_tree->lock);
5048
5049		lock_extent_bits(io_tree, state->start, state->end,
5050				 0, &cached_state);
5051		clear_extent_bit(io_tree, state->start, state->end,
5052				 EXTENT_LOCKED | EXTENT_DIRTY |
5053				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
5054				 EXTENT_DEFRAG, 1, 1,
5055				 &cached_state, GFP_NOFS);
5056		free_extent_state(state);
5057
5058		cond_resched();
5059		spin_lock(&io_tree->lock);
5060	}
5061	spin_unlock(&io_tree->lock);
5062}
5063
5064void btrfs_evict_inode(struct inode *inode)
5065{
5066	struct btrfs_trans_handle *trans;
5067	struct btrfs_root *root = BTRFS_I(inode)->root;
5068	struct btrfs_block_rsv *rsv, *global_rsv;
5069	int steal_from_global = 0;
5070	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
5071	int ret;
5072
5073	trace_btrfs_inode_evict(inode);
5074
5075	evict_inode_truncate_pages(inode);
5076
5077	if (inode->i_nlink &&
5078	    ((btrfs_root_refs(&root->root_item) != 0 &&
5079	      root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID) ||
5080	     btrfs_is_free_space_inode(inode)))
5081		goto no_delete;
5082
5083	if (is_bad_inode(inode)) {
5084		btrfs_orphan_del(NULL, inode);
5085		goto no_delete;
5086	}
5087	/* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
5088	if (!special_file(inode->i_mode))
5089		btrfs_wait_ordered_range(inode, 0, (u64)-1);
5090
5091	btrfs_free_io_failure_record(inode, 0, (u64)-1);
5092
5093	if (root->fs_info->log_root_recovering) {
5094		BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
5095				 &BTRFS_I(inode)->runtime_flags));
5096		goto no_delete;
5097	}
5098
5099	if (inode->i_nlink > 0) {
5100		BUG_ON(btrfs_root_refs(&root->root_item) != 0 &&
5101		       root->root_key.objectid != BTRFS_ROOT_TREE_OBJECTID);
5102		goto no_delete;
5103	}
5104
5105	ret = btrfs_commit_inode_delayed_inode(inode);
5106	if (ret) {
5107		btrfs_orphan_del(NULL, inode);
5108		goto no_delete;
5109	}
5110
5111	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
5112	if (!rsv) {
5113		btrfs_orphan_del(NULL, inode);
5114		goto no_delete;
5115	}
5116	rsv->size = min_size;
5117	rsv->failfast = 1;
5118	global_rsv = &root->fs_info->global_block_rsv;
5119
5120	btrfs_i_size_write(inode, 0);
5121
5122	/*
5123	 * This is a bit simpler than btrfs_truncate since we've already
5124	 * reserved our space for our orphan item in the unlink, so we just
5125	 * need to reserve some slack space in case we add bytes and update
5126	 * inode item when doing the truncate.
5127	 */
5128	while (1) {
5129		ret = btrfs_block_rsv_refill(root, rsv, min_size,
5130					     BTRFS_RESERVE_FLUSH_LIMIT);
5131
5132		/*
5133		 * Try and steal from the global reserve since we will
5134		 * likely not use this space anyway, we want to try as
5135		 * hard as possible to get this to work.
5136		 */
5137		if (ret)
5138			steal_from_global++;
5139		else
5140			steal_from_global = 0;
5141		ret = 0;
5142
5143		/*
5144		 * steal_from_global == 0: we reserved stuff, hooray!
5145		 * steal_from_global == 1: we didn't reserve stuff, boo!
5146		 * steal_from_global == 2: we've committed, still not a lot of
5147		 * room but maybe we'll have room in the global reserve this
5148		 * time.
5149		 * steal_from_global == 3: abandon all hope!
5150		 */
5151		if (steal_from_global > 2) {
5152			btrfs_warn(root->fs_info,
5153				"Could not get space for a delete, will truncate on mount %d",
5154				ret);
5155			btrfs_orphan_del(NULL, inode);
5156			btrfs_free_block_rsv(root, rsv);
5157			goto no_delete;
5158		}
5159
5160		trans = btrfs_join_transaction(root);
5161		if (IS_ERR(trans)) {
5162			btrfs_orphan_del(NULL, inode);
5163			btrfs_free_block_rsv(root, rsv);
5164			goto no_delete;
5165		}
5166
5167		/*
5168		 * We can't just steal from the global reserve, we need tomake
5169		 * sure there is room to do it, if not we need to commit and try
5170		 * again.
5171		 */
5172		if (steal_from_global) {
5173			if (!btrfs_check_space_for_delayed_refs(trans, root))
5174				ret = btrfs_block_rsv_migrate(global_rsv, rsv,
5175							      min_size);
5176			else
5177				ret = -ENOSPC;
5178		}
5179
5180		/*
5181		 * Couldn't steal from the global reserve, we have too much
5182		 * pending stuff built up, commit the transaction and try it
5183		 * again.
5184		 */
5185		if (ret) {
5186			ret = btrfs_commit_transaction(trans, root);
5187			if (ret) {
5188				btrfs_orphan_del(NULL, inode);
5189				btrfs_free_block_rsv(root, rsv);
5190				goto no_delete;
5191			}
5192			continue;
5193		} else {
5194			steal_from_global = 0;
5195		}
5196
5197		trans->block_rsv = rsv;
5198
5199		ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
5200		if (ret != -ENOSPC && ret != -EAGAIN)
5201			break;
5202
5203		trans->block_rsv = &root->fs_info->trans_block_rsv;
5204		btrfs_end_transaction(trans, root);
5205		trans = NULL;
5206		btrfs_btree_balance_dirty(root);
5207	}
5208
5209	btrfs_free_block_rsv(root, rsv);
5210
5211	/*
5212	 * Errors here aren't a big deal, it just means we leave orphan items
5213	 * in the tree.  They will be cleaned up on the next mount.
5214	 */
5215	if (ret == 0) {
5216		trans->block_rsv = root->orphan_block_rsv;
5217		btrfs_orphan_del(trans, inode);
5218	} else {
5219		btrfs_orphan_del(NULL, inode);
5220	}
5221
5222	trans->block_rsv = &root->fs_info->trans_block_rsv;
5223	if (!(root == root->fs_info->tree_root ||
5224	      root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
5225		btrfs_return_ino(root, btrfs_ino(inode));
5226
5227	btrfs_end_transaction(trans, root);
5228	btrfs_btree_balance_dirty(root);
5229no_delete:
5230	btrfs_remove_delayed_node(inode);
5231	clear_inode(inode);
5232	return;
5233}
5234
5235/*
5236 * this returns the key found in the dir entry in the location pointer.
5237 * If no dir entries were found, location->objectid is 0.
5238 */
5239static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
5240			       struct btrfs_key *location)
5241{
5242	const char *name = dentry->d_name.name;
5243	int namelen = dentry->d_name.len;
5244	struct btrfs_dir_item *di;
5245	struct btrfs_path *path;
5246	struct btrfs_root *root = BTRFS_I(dir)->root;
5247	int ret = 0;
5248
5249	path = btrfs_alloc_path();
5250	if (!path)
5251		return -ENOMEM;
5252
5253	di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
5254				    namelen, 0);
5255	if (IS_ERR(di))
5256		ret = PTR_ERR(di);
5257
5258	if (IS_ERR_OR_NULL(di))
5259		goto out_err;
5260
5261	btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
5262out:
5263	btrfs_free_path(path);
5264	return ret;
5265out_err:
5266	location->objectid = 0;
5267	goto out;
5268}
5269
5270/*
5271 * when we hit a tree root in a directory, the btrfs part of the inode
5272 * needs to be changed to reflect the root directory of the tree root.  This
5273 * is kind of like crossing a mount point.
5274 */
5275static int fixup_tree_root_location(struct btrfs_root *root,
5276				    struct inode *dir,
5277				    struct dentry *dentry,
5278				    struct btrfs_key *location,
5279				    struct btrfs_root **sub_root)
5280{
5281	struct btrfs_path *path;
5282	struct btrfs_root *new_root;
5283	struct btrfs_root_ref *ref;
5284	struct extent_buffer *leaf;
5285	struct btrfs_key key;
5286	int ret;
5287	int err = 0;
5288
5289	path = btrfs_alloc_path();
5290	if (!path) {
5291		err = -ENOMEM;
5292		goto out;
5293	}
5294
5295	err = -ENOENT;
5296	key.objectid = BTRFS_I(dir)->root->root_key.objectid;
5297	key.type = BTRFS_ROOT_REF_KEY;
5298	key.offset = location->objectid;
5299
5300	ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, path,
5301				0, 0);
5302	if (ret) {
5303		if (ret < 0)
5304			err = ret;
5305		goto out;
5306	}
5307
5308	leaf = path->nodes[0];
5309	ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
5310	if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
5311	    btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
5312		goto out;
5313
5314	ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
5315				   (unsigned long)(ref + 1),
5316				   dentry->d_name.len);
5317	if (ret)
5318		goto out;
5319
5320	btrfs_release_path(path);
5321
5322	new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
5323	if (IS_ERR(new_root)) {
5324		err = PTR_ERR(new_root);
5325		goto out;
5326	}
5327
5328	*sub_root = new_root;
5329	location->objectid = btrfs_root_dirid(&new_root->root_item);
5330	location->type = BTRFS_INODE_ITEM_KEY;
5331	location->offset = 0;
5332	err = 0;
5333out:
5334	btrfs_free_path(path);
5335	return err;
5336}
5337
5338static void inode_tree_add(struct inode *inode)
5339{
5340	struct btrfs_root *root = BTRFS_I(inode)->root;
5341	struct btrfs_inode *entry;
5342	struct rb_node **p;
5343	struct rb_node *parent;
5344	struct rb_node *new = &BTRFS_I(inode)->rb_node;
5345	u64 ino = btrfs_ino(inode);
5346
5347	if (inode_unhashed(inode))
5348		return;
5349	parent = NULL;
5350	spin_lock(&root->inode_lock);
5351	p = &root->inode_tree.rb_node;
5352	while (*p) {
5353		parent = *p;
5354		entry = rb_entry(parent, struct btrfs_inode, rb_node);
5355
5356		if (ino < btrfs_ino(&entry->vfs_inode))
5357			p = &parent->rb_left;
5358		else if (ino > btrfs_ino(&entry->vfs_inode))
5359			p = &parent->rb_right;
5360		else {
5361			WARN_ON(!(entry->vfs_inode.i_state &
5362				  (I_WILL_FREE | I_FREEING)));
5363			rb_replace_node(parent, new, &root->inode_tree);
5364			RB_CLEAR_NODE(parent);
5365			spin_unlock(&root->inode_lock);
5366			return;
5367		}
5368	}
5369	rb_link_node(new, parent, p);
5370	rb_insert_color(new, &root->inode_tree);
5371	spin_unlock(&root->inode_lock);
5372}
5373
5374static void inode_tree_del(struct inode *inode)
5375{
5376	struct btrfs_root *root = BTRFS_I(inode)->root;
5377	int empty = 0;
5378
5379	spin_lock(&root->inode_lock);
5380	if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
5381		rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
5382		RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
5383		empty = RB_EMPTY_ROOT(&root->inode_tree);
5384	}
5385	spin_unlock(&root->inode_lock);
5386
5387	if (empty && btrfs_root_refs(&root->root_item) == 0) {
5388		synchronize_srcu(&root->fs_info->subvol_srcu);
5389		spin_lock(&root->inode_lock);
5390		empty = RB_EMPTY_ROOT(&root->inode_tree);
5391		spin_unlock(&root->inode_lock);
5392		if (empty)
5393			btrfs_add_dead_root(root);
5394	}
5395}
5396
5397void btrfs_invalidate_inodes(struct btrfs_root *root)
5398{
5399	struct rb_node *node;
5400	struct rb_node *prev;
5401	struct btrfs_inode *entry;
5402	struct inode *inode;
5403	u64 objectid = 0;
5404
5405	if (!test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
5406		WARN_ON(btrfs_root_refs(&root->root_item) != 0);
5407
5408	spin_lock(&root->inode_lock);
5409again:
5410	node = root->inode_tree.rb_node;
5411	prev = NULL;
5412	while (node) {
5413		prev = node;
5414		entry = rb_entry(node, struct btrfs_inode, rb_node);
5415
5416		if (objectid < btrfs_ino(&entry->vfs_inode))
5417			node = node->rb_left;
5418		else if (objectid > btrfs_ino(&entry->vfs_inode))
5419			node = node->rb_right;
5420		else
5421			break;
5422	}
5423	if (!node) {
5424		while (prev) {
5425			entry = rb_entry(prev, struct btrfs_inode, rb_node);
5426			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
5427				node = prev;
5428				break;
5429			}
5430			prev = rb_next(prev);
5431		}
5432	}
5433	while (node) {
5434		entry = rb_entry(node, struct btrfs_inode, rb_node);
5435		objectid = btrfs_ino(&entry->vfs_inode) + 1;
5436		inode = igrab(&entry->vfs_inode);
5437		if (inode) {
5438			spin_unlock(&root->inode_lock);
5439			if (atomic_read(&inode->i_count) > 1)
5440				d_prune_aliases(inode);
5441			/*
5442			 * btrfs_drop_inode will have it removed from
5443			 * the inode cache when its usage count
5444			 * hits zero.
5445			 */
5446			iput(inode);
5447			cond_resched();
5448			spin_lock(&root->inode_lock);
5449			goto again;
5450		}
5451
5452		if (cond_resched_lock(&root->inode_lock))
5453			goto again;
5454
5455		node = rb_next(node);
5456	}
5457	spin_unlock(&root->inode_lock);
5458}
5459
5460static int btrfs_init_locked_inode(struct inode *inode, void *p)
5461{
5462	struct btrfs_iget_args *args = p;
5463	inode->i_ino = args->location->objectid;
5464	memcpy(&BTRFS_I(inode)->location, args->location,
5465	       sizeof(*args->location));
5466	BTRFS_I(inode)->root = args->root;
5467	return 0;
5468}
5469
5470static int btrfs_find_actor(struct inode *inode, void *opaque)
5471{
5472	struct btrfs_iget_args *args = opaque;
5473	return args->location->objectid == BTRFS_I(inode)->location.objectid &&
5474		args->root == BTRFS_I(inode)->root;
5475}
5476
5477static struct inode *btrfs_iget_locked(struct super_block *s,
5478				       struct btrfs_key *location,
5479				       struct btrfs_root *root)
5480{
5481	struct inode *inode;
5482	struct btrfs_iget_args args;
5483	unsigned long hashval = btrfs_inode_hash(location->objectid, root);
5484
5485	args.location = location;
5486	args.root = root;
5487
5488	inode = iget5_locked(s, hashval, btrfs_find_actor,
5489			     btrfs_init_locked_inode,
5490			     (void *)&args);
5491	return inode;
5492}
5493
5494/* Get an inode object given its location and corresponding root.
5495 * Returns in *is_new if the inode was read from disk
5496 */
5497struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5498			 struct btrfs_root *root, int *new)
5499{
5500	struct inode *inode;
5501
5502	inode = btrfs_iget_locked(s, location, root);
5503	if (!inode)
5504		return ERR_PTR(-ENOMEM);
5505
5506	if (inode->i_state & I_NEW) {
5507		btrfs_read_locked_inode(inode);
5508		if (!is_bad_inode(inode)) {
5509			inode_tree_add(inode);
5510			unlock_new_inode(inode);
5511			if (new)
5512				*new = 1;
5513		} else {
5514			unlock_new_inode(inode);
5515			iput(inode);
5516			inode = ERR_PTR(-ESTALE);
5517		}
5518	}
5519
5520	return inode;
5521}
5522
5523static struct inode *new_simple_dir(struct super_block *s,
5524				    struct btrfs_key *key,
5525				    struct btrfs_root *root)
5526{
5527	struct inode *inode = new_inode(s);
5528
5529	if (!inode)
5530		return ERR_PTR(-ENOMEM);
5531
5532	BTRFS_I(inode)->root = root;
5533	memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5534	set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5535
5536	inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5537	inode->i_op = &btrfs_dir_ro_inode_operations;
5538	inode->i_fop = &simple_dir_operations;
5539	inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5540	inode->i_mtime = CURRENT_TIME;
5541	inode->i_atime = inode->i_mtime;
5542	inode->i_ctime = inode->i_mtime;
5543	BTRFS_I(inode)->i_otime = inode->i_mtime;
5544
5545	return inode;
5546}
5547
5548struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5549{
5550	struct inode *inode;
5551	struct btrfs_root *root = BTRFS_I(dir)->root;
5552	struct btrfs_root *sub_root = root;
5553	struct btrfs_key location;
5554	int index;
5555	int ret = 0;
5556
5557	if (dentry->d_name.len > BTRFS_NAME_LEN)
5558		return ERR_PTR(-ENAMETOOLONG);
5559
5560	ret = btrfs_inode_by_name(dir, dentry, &location);
5561	if (ret < 0)
5562		return ERR_PTR(ret);
5563
5564	if (location.objectid == 0)
5565		return ERR_PTR(-ENOENT);
5566
5567	if (location.type == BTRFS_INODE_ITEM_KEY) {
5568		inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5569		return inode;
5570	}
5571
5572	BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5573
5574	index = srcu_read_lock(&root->fs_info->subvol_srcu);
5575	ret = fixup_tree_root_location(root, dir, dentry,
5576				       &location, &sub_root);
5577	if (ret < 0) {
5578		if (ret != -ENOENT)
5579			inode = ERR_PTR(ret);
5580		else
5581			inode = new_simple_dir(dir->i_sb, &location, sub_root);
5582	} else {
5583		inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5584	}
5585	srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5586
5587	if (!IS_ERR(inode) && root != sub_root) {
5588		down_read(&root->fs_info->cleanup_work_sem);
5589		if (!(inode->i_sb->s_flags & MS_RDONLY))
5590			ret = btrfs_orphan_cleanup(sub_root);
5591		up_read(&root->fs_info->cleanup_work_sem);
5592		if (ret) {
5593			iput(inode);
5594			inode = ERR_PTR(ret);
5595		}
5596	}
5597
5598	return inode;
5599}
5600
5601static int btrfs_dentry_delete(const struct dentry *dentry)
5602{
5603	struct btrfs_root *root;
5604	struct inode *inode = d_inode(dentry);
5605
5606	if (!inode && !IS_ROOT(dentry))
5607		inode = d_inode(dentry->d_parent);
5608
5609	if (inode) {
5610		root = BTRFS_I(inode)->root;
5611		if (btrfs_root_refs(&root->root_item) == 0)
5612			return 1;
5613
5614		if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5615			return 1;
5616	}
5617	return 0;
5618}
5619
5620static void btrfs_dentry_release(struct dentry *dentry)
5621{
5622	kfree(dentry->d_fsdata);
5623}
5624
5625static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5626				   unsigned int flags)
5627{
5628	struct inode *inode;
5629
5630	inode = btrfs_lookup_dentry(dir, dentry);
5631	if (IS_ERR(inode)) {
5632		if (PTR_ERR(inode) == -ENOENT)
5633			inode = NULL;
5634		else
5635			return ERR_CAST(inode);
5636	}
5637
5638	return d_splice_alias(inode, dentry);
5639}
5640
5641unsigned char btrfs_filetype_table[] = {
5642	DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5643};
5644
5645static int btrfs_real_readdir(struct file *file, struct dir_context *ctx)
5646{
5647	struct inode *inode = file_inode(file);
5648	struct btrfs_root *root = BTRFS_I(inode)->root;
5649	struct btrfs_item *item;
5650	struct btrfs_dir_item *di;
5651	struct btrfs_key key;
5652	struct btrfs_key found_key;
5653	struct btrfs_path *path;
5654	struct list_head ins_list;
5655	struct list_head del_list;
5656	int ret;
5657	struct extent_buffer *leaf;
5658	int slot;
5659	unsigned char d_type;
5660	int over = 0;
5661	u32 di_cur;
5662	u32 di_total;
5663	u32 di_len;
5664	int key_type = BTRFS_DIR_INDEX_KEY;
5665	char tmp_name[32];
5666	char *name_ptr;
5667	int name_len;
5668	int is_curr = 0;	/* ctx->pos points to the current index? */
5669	bool emitted;
5670
5671	/* FIXME, use a real flag for deciding about the key type */
5672	if (root->fs_info->tree_root == root)
5673		key_type = BTRFS_DIR_ITEM_KEY;
5674
5675	if (!dir_emit_dots(file, ctx))
5676		return 0;
5677
5678	path = btrfs_alloc_path();
5679	if (!path)
5680		return -ENOMEM;
5681
5682	path->reada = 1;
5683
5684	if (key_type == BTRFS_DIR_INDEX_KEY) {
5685		INIT_LIST_HEAD(&ins_list);
5686		INIT_LIST_HEAD(&del_list);
5687		btrfs_get_delayed_items(inode, &ins_list, &del_list);
5688	}
5689
5690	key.type = key_type;
5691	key.offset = ctx->pos;
5692	key.objectid = btrfs_ino(inode);
5693
5694	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5695	if (ret < 0)
5696		goto err;
5697
5698	emitted = false;
5699	while (1) {
5700		leaf = path->nodes[0];
5701		slot = path->slots[0];
5702		if (slot >= btrfs_header_nritems(leaf)) {
5703			ret = btrfs_next_leaf(root, path);
5704			if (ret < 0)
5705				goto err;
5706			else if (ret > 0)
5707				break;
5708			continue;
5709		}
5710
5711		item = btrfs_item_nr(slot);
5712		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5713
5714		if (found_key.objectid != key.objectid)
5715			break;
5716		if (found_key.type != key_type)
5717			break;
5718		if (found_key.offset < ctx->pos)
5719			goto next;
5720		if (key_type == BTRFS_DIR_INDEX_KEY &&
5721		    btrfs_should_delete_dir_index(&del_list,
5722						  found_key.offset))
5723			goto next;
5724
5725		ctx->pos = found_key.offset;
5726		is_curr = 1;
5727
5728		di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5729		di_cur = 0;
5730		di_total = btrfs_item_size(leaf, item);
5731
5732		while (di_cur < di_total) {
5733			struct btrfs_key location;
5734
5735			if (verify_dir_item(root, leaf, di))
5736				break;
5737
5738			name_len = btrfs_dir_name_len(leaf, di);
5739			if (name_len <= sizeof(tmp_name)) {
5740				name_ptr = tmp_name;
5741			} else {
5742				name_ptr = kmalloc(name_len, GFP_NOFS);
5743				if (!name_ptr) {
5744					ret = -ENOMEM;
5745					goto err;
5746				}
5747			}
5748			read_extent_buffer(leaf, name_ptr,
5749					   (unsigned long)(di + 1), name_len);
5750
5751			d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5752			btrfs_dir_item_key_to_cpu(leaf, di, &location);
5753
5754
5755			/* is this a reference to our own snapshot? If so
5756			 * skip it.
5757			 *
5758			 * In contrast to old kernels, we insert the snapshot's
5759			 * dir item and dir index after it has been created, so
5760			 * we won't find a reference to our own snapshot. We
5761			 * still keep the following code for backward
5762			 * compatibility.
5763			 */
5764			if (location.type == BTRFS_ROOT_ITEM_KEY &&
5765			    location.objectid == root->root_key.objectid) {
5766				over = 0;
5767				goto skip;
5768			}
5769			over = !dir_emit(ctx, name_ptr, name_len,
5770				       location.objectid, d_type);
5771
5772skip:
5773			if (name_ptr != tmp_name)
5774				kfree(name_ptr);
5775
5776			if (over)
5777				goto nopos;
5778			emitted = true;
5779			di_len = btrfs_dir_name_len(leaf, di) +
5780				 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5781			di_cur += di_len;
5782			di = (struct btrfs_dir_item *)((char *)di + di_len);
5783		}
5784next:
5785		path->slots[0]++;
5786	}
5787
5788	if (key_type == BTRFS_DIR_INDEX_KEY) {
5789		if (is_curr)
5790			ctx->pos++;
5791		ret = btrfs_readdir_delayed_dir_index(ctx, &ins_list, &emitted);
5792		if (ret)
5793			goto nopos;
5794	}
5795
5796	/*
5797	 * If we haven't emitted any dir entry, we must not touch ctx->pos as
5798	 * it was was set to the termination value in previous call. We assume
5799	 * that "." and ".." were emitted if we reach this point and set the
5800	 * termination value as well for an empty directory.
5801	 */
5802	if (ctx->pos > 2 && !emitted)
5803		goto nopos;
5804
5805	/* Reached end of directory/root. Bump pos past the last item. */
5806	ctx->pos++;
5807
5808	/*
5809	 * Stop new entries from being returned after we return the last
5810	 * entry.
5811	 *
5812	 * New directory entries are assigned a strictly increasing
5813	 * offset.  This means that new entries created during readdir
5814	 * are *guaranteed* to be seen in the future by that readdir.
5815	 * This has broken buggy programs which operate on names as
5816	 * they're returned by readdir.  Until we re-use freed offsets
5817	 * we have this hack to stop new entries from being returned
5818	 * under the assumption that they'll never reach this huge
5819	 * offset.
5820	 *
5821	 * This is being careful not to overflow 32bit loff_t unless the
5822	 * last entry requires it because doing so has broken 32bit apps
5823	 * in the past.
5824	 */
5825	if (key_type == BTRFS_DIR_INDEX_KEY) {
5826		if (ctx->pos >= INT_MAX)
5827			ctx->pos = LLONG_MAX;
5828		else
5829			ctx->pos = INT_MAX;
5830	}
5831nopos:
5832	ret = 0;
5833err:
5834	if (key_type == BTRFS_DIR_INDEX_KEY)
5835		btrfs_put_delayed_items(&ins_list, &del_list);
5836	btrfs_free_path(path);
5837	return ret;
5838}
5839
5840int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5841{
5842	struct btrfs_root *root = BTRFS_I(inode)->root;
5843	struct btrfs_trans_handle *trans;
5844	int ret = 0;
5845	bool nolock = false;
5846
5847	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5848		return 0;
5849
5850	if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5851		nolock = true;
5852
5853	if (wbc->sync_mode == WB_SYNC_ALL) {
5854		if (nolock)
5855			trans = btrfs_join_transaction_nolock(root);
5856		else
5857			trans = btrfs_join_transaction(root);
5858		if (IS_ERR(trans))
5859			return PTR_ERR(trans);
5860		ret = btrfs_commit_transaction(trans, root);
5861	}
5862	return ret;
5863}
5864
5865/*
5866 * This is somewhat expensive, updating the tree every time the
5867 * inode changes.  But, it is most likely to find the inode in cache.
5868 * FIXME, needs more benchmarking...there are no reasons other than performance
5869 * to keep or drop this code.
5870 */
5871static int btrfs_dirty_inode(struct inode *inode)
5872{
5873	struct btrfs_root *root = BTRFS_I(inode)->root;
5874	struct btrfs_trans_handle *trans;
5875	int ret;
5876
5877	if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5878		return 0;
5879
5880	trans = btrfs_join_transaction(root);
5881	if (IS_ERR(trans))
5882		return PTR_ERR(trans);
5883
5884	ret = btrfs_update_inode(trans, root, inode);
5885	if (ret && ret == -ENOSPC) {
5886		/* whoops, lets try again with the full transaction */
5887		btrfs_end_transaction(trans, root);
5888		trans = btrfs_start_transaction(root, 1);
5889		if (IS_ERR(trans))
5890			return PTR_ERR(trans);
5891
5892		ret = btrfs_update_inode(trans, root, inode);
5893	}
5894	btrfs_end_transaction(trans, root);
5895	if (BTRFS_I(inode)->delayed_node)
5896		btrfs_balance_delayed_items(root);
5897
5898	return ret;
5899}
5900
5901/*
5902 * This is a copy of file_update_time.  We need this so we can return error on
5903 * ENOSPC for updating the inode in the case of file write and mmap writes.
5904 */
5905static int btrfs_update_time(struct inode *inode, struct timespec *now,
5906			     int flags)
5907{
5908	struct btrfs_root *root = BTRFS_I(inode)->root;
5909
5910	if (btrfs_root_readonly(root))
5911		return -EROFS;
5912
5913	if (flags & S_VERSION)
5914		inode_inc_iversion(inode);
5915	if (flags & S_CTIME)
5916		inode->i_ctime = *now;
5917	if (flags & S_MTIME)
5918		inode->i_mtime = *now;
5919	if (flags & S_ATIME)
5920		inode->i_atime = *now;
5921	return btrfs_dirty_inode(inode);
5922}
5923
5924/*
5925 * find the highest existing sequence number in a directory
5926 * and then set the in-memory index_cnt variable to reflect
5927 * free sequence numbers
5928 */
5929static int btrfs_set_inode_index_count(struct inode *inode)
5930{
5931	struct btrfs_root *root = BTRFS_I(inode)->root;
5932	struct btrfs_key key, found_key;
5933	struct btrfs_path *path;
5934	struct extent_buffer *leaf;
5935	int ret;
5936
5937	key.objectid = btrfs_ino(inode);
5938	key.type = BTRFS_DIR_INDEX_KEY;
5939	key.offset = (u64)-1;
5940
5941	path = btrfs_alloc_path();
5942	if (!path)
5943		return -ENOMEM;
5944
5945	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5946	if (ret < 0)
5947		goto out;
5948	/* FIXME: we should be able to handle this */
5949	if (ret == 0)
5950		goto out;
5951	ret = 0;
5952
5953	/*
5954	 * MAGIC NUMBER EXPLANATION:
5955	 * since we search a directory based on f_pos we have to start at 2
5956	 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5957	 * else has to start at 2
5958	 */
5959	if (path->slots[0] == 0) {
5960		BTRFS_I(inode)->index_cnt = 2;
5961		goto out;
5962	}
5963
5964	path->slots[0]--;
5965
5966	leaf = path->nodes[0];
5967	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5968
5969	if (found_key.objectid != btrfs_ino(inode) ||
5970	    found_key.type != BTRFS_DIR_INDEX_KEY) {
5971		BTRFS_I(inode)->index_cnt = 2;
5972		goto out;
5973	}
5974
5975	BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5976out:
5977	btrfs_free_path(path);
5978	return ret;
5979}
5980
5981/*
5982 * helper to find a free sequence number in a given directory.  This current
5983 * code is very simple, later versions will do smarter things in the btree
5984 */
5985int btrfs_set_inode_index(struct inode *dir, u64 *index)
5986{
5987	int ret = 0;
5988
5989	if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5990		ret = btrfs_inode_delayed_dir_index_count(dir);
5991		if (ret) {
5992			ret = btrfs_set_inode_index_count(dir);
5993			if (ret)
5994				return ret;
5995		}
5996	}
5997
5998	*index = BTRFS_I(dir)->index_cnt;
5999	BTRFS_I(dir)->index_cnt++;
6000
6001	return ret;
6002}
6003
6004static int btrfs_insert_inode_locked(struct inode *inode)
6005{
6006	struct btrfs_iget_args args;
6007	args.location = &BTRFS_I(inode)->location;
6008	args.root = BTRFS_I(inode)->root;
6009
6010	return insert_inode_locked4(inode,
6011		   btrfs_inode_hash(inode->i_ino, BTRFS_I(inode)->root),
6012		   btrfs_find_actor, &args);
6013}
6014
6015static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
6016				     struct btrfs_root *root,
6017				     struct inode *dir,
6018				     const char *name, int name_len,
6019				     u64 ref_objectid, u64 objectid,
6020				     umode_t mode, u64 *index)
6021{
6022	struct inode *inode;
6023	struct btrfs_inode_item *inode_item;
6024	struct btrfs_key *location;
6025	struct btrfs_path *path;
6026	struct btrfs_inode_ref *ref;
6027	struct btrfs_key key[2];
6028	u32 sizes[2];
6029	int nitems = name ? 2 : 1;
6030	unsigned long ptr;
6031	int ret;
6032
6033	path = btrfs_alloc_path();
6034	if (!path)
6035		return ERR_PTR(-ENOMEM);
6036
6037	inode = new_inode(root->fs_info->sb);
6038	if (!inode) {
6039		btrfs_free_path(path);
6040		return ERR_PTR(-ENOMEM);
6041	}
6042
6043	/*
6044	 * O_TMPFILE, set link count to 0, so that after this point,
6045	 * we fill in an inode item with the correct link count.
6046	 */
6047	if (!name)
6048		set_nlink(inode, 0);
6049
6050	/*
6051	 * we have to initialize this early, so we can reclaim the inode
6052	 * number if we fail afterwards in this function.
6053	 */
6054	inode->i_ino = objectid;
6055
6056	if (dir && name) {
6057		trace_btrfs_inode_request(dir);
6058
6059		ret = btrfs_set_inode_index(dir, index);
6060		if (ret) {
6061			btrfs_free_path(path);
6062			iput(inode);
6063			return ERR_PTR(ret);
6064		}
6065	} else if (dir) {
6066		*index = 0;
6067	}
6068	/*
6069	 * index_cnt is ignored for everything but a dir,
6070	 * btrfs_get_inode_index_count has an explanation for the magic
6071	 * number
6072	 */
6073	BTRFS_I(inode)->index_cnt = 2;
6074	BTRFS_I(inode)->dir_index = *index;
6075	BTRFS_I(inode)->root = root;
6076	BTRFS_I(inode)->generation = trans->transid;
6077	inode->i_generation = BTRFS_I(inode)->generation;
6078
6079	/*
6080	 * We could have gotten an inode number from somebody who was fsynced
6081	 * and then removed in this same transaction, so let's just set full
6082	 * sync since it will be a full sync anyway and this will blow away the
6083	 * old info in the log.
6084	 */
6085	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
6086
6087	key[0].objectid = objectid;
6088	key[0].type = BTRFS_INODE_ITEM_KEY;
6089	key[0].offset = 0;
6090
6091	sizes[0] = sizeof(struct btrfs_inode_item);
6092
6093	if (name) {
6094		/*
6095		 * Start new inodes with an inode_ref. This is slightly more
6096		 * efficient for small numbers of hard links since they will
6097		 * be packed into one item. Extended refs will kick in if we
6098		 * add more hard links than can fit in the ref item.
6099		 */
6100		key[1].objectid = objectid;
6101		key[1].type = BTRFS_INODE_REF_KEY;
6102		key[1].offset = ref_objectid;
6103
6104		sizes[1] = name_len + sizeof(*ref);
6105	}
6106
6107	location = &BTRFS_I(inode)->location;
6108	location->objectid = objectid;
6109	location->offset = 0;
6110	location->type = BTRFS_INODE_ITEM_KEY;
6111
6112	ret = btrfs_insert_inode_locked(inode);
6113	if (ret < 0)
6114		goto fail;
6115
6116	path->leave_spinning = 1;
6117	ret = btrfs_insert_empty_items(trans, root, path, key, sizes, nitems);
6118	if (ret != 0)
6119		goto fail_unlock;
6120
6121	inode_init_owner(inode, dir, mode);
6122	inode_set_bytes(inode, 0);
6123
6124	inode->i_mtime = CURRENT_TIME;
6125	inode->i_atime = inode->i_mtime;
6126	inode->i_ctime = inode->i_mtime;
6127	BTRFS_I(inode)->i_otime = inode->i_mtime;
6128
6129	inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
6130				  struct btrfs_inode_item);
6131	memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
6132			     sizeof(*inode_item));
6133	fill_inode_item(trans, path->nodes[0], inode_item, inode);
6134
6135	if (name) {
6136		ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
6137				     struct btrfs_inode_ref);
6138		btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
6139		btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
6140		ptr = (unsigned long)(ref + 1);
6141		write_extent_buffer(path->nodes[0], name, ptr, name_len);
6142	}
6143
6144	btrfs_mark_buffer_dirty(path->nodes[0]);
6145	btrfs_free_path(path);
6146
6147	btrfs_inherit_iflags(inode, dir);
6148
6149	if (S_ISREG(mode)) {
6150		if (btrfs_test_opt(root, NODATASUM))
6151			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
6152		if (btrfs_test_opt(root, NODATACOW))
6153			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
6154				BTRFS_INODE_NODATASUM;
6155	}
6156
6157	inode_tree_add(inode);
6158
6159	trace_btrfs_inode_new(inode);
6160	btrfs_set_inode_last_trans(trans, inode);
6161
6162	btrfs_update_root_times(trans, root);
6163
6164	ret = btrfs_inode_inherit_props(trans, inode, dir);
6165	if (ret)
6166		btrfs_err(root->fs_info,
6167			  "error inheriting props for ino %llu (root %llu): %d",
6168			  btrfs_ino(inode), root->root_key.objectid, ret);
6169
6170	return inode;
6171
6172fail_unlock:
6173	unlock_new_inode(inode);
6174fail:
6175	if (dir && name)
6176		BTRFS_I(dir)->index_cnt--;
6177	btrfs_free_path(path);
6178	iput(inode);
6179	return ERR_PTR(ret);
6180}
6181
6182static inline u8 btrfs_inode_type(struct inode *inode)
6183{
6184	return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
6185}
6186
6187/*
6188 * utility function to add 'inode' into 'parent_inode' with
6189 * a give name and a given sequence number.
6190 * if 'add_backref' is true, also insert a backref from the
6191 * inode to the parent directory.
6192 */
6193int btrfs_add_link(struct btrfs_trans_handle *trans,
6194		   struct inode *parent_inode, struct inode *inode,
6195		   const char *name, int name_len, int add_backref, u64 index)
6196{
6197	int ret = 0;
6198	struct btrfs_key key;
6199	struct btrfs_root *root = BTRFS_I(parent_inode)->root;
6200	u64 ino = btrfs_ino(inode);
6201	u64 parent_ino = btrfs_ino(parent_inode);
6202
6203	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6204		memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
6205	} else {
6206		key.objectid = ino;
6207		key.type = BTRFS_INODE_ITEM_KEY;
6208		key.offset = 0;
6209	}
6210
6211	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6212		ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
6213					 key.objectid, root->root_key.objectid,
6214					 parent_ino, index, name, name_len);
6215	} else if (add_backref) {
6216		ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
6217					     parent_ino, index);
6218	}
6219
6220	/* Nothing to clean up yet */
6221	if (ret)
6222		return ret;
6223
6224	ret = btrfs_insert_dir_item(trans, root, name, name_len,
6225				    parent_inode, &key,
6226				    btrfs_inode_type(inode), index);
6227	if (ret == -EEXIST || ret == -EOVERFLOW)
6228		goto fail_dir_item;
6229	else if (ret) {
6230		btrfs_abort_transaction(trans, root, ret);
6231		return ret;
6232	}
6233
6234	btrfs_i_size_write(parent_inode, parent_inode->i_size +
6235			   name_len * 2);
6236	inode_inc_iversion(parent_inode);
6237	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
6238	ret = btrfs_update_inode(trans, root, parent_inode);
6239	if (ret)
6240		btrfs_abort_transaction(trans, root, ret);
6241	return ret;
6242
6243fail_dir_item:
6244	if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
6245		u64 local_index;
6246		int err;
6247		err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
6248				 key.objectid, root->root_key.objectid,
6249				 parent_ino, &local_index, name, name_len);
6250
6251	} else if (add_backref) {
6252		u64 local_index;
6253		int err;
6254
6255		err = btrfs_del_inode_ref(trans, root, name, name_len,
6256					  ino, parent_ino, &local_index);
6257	}
6258	return ret;
6259}
6260
6261static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
6262			    struct inode *dir, struct dentry *dentry,
6263			    struct inode *inode, int backref, u64 index)
6264{
6265	int err = btrfs_add_link(trans, dir, inode,
6266				 dentry->d_name.name, dentry->d_name.len,
6267				 backref, index);
6268	if (err > 0)
6269		err = -EEXIST;
6270	return err;
6271}
6272
6273static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
6274			umode_t mode, dev_t rdev)
6275{
6276	struct btrfs_trans_handle *trans;
6277	struct btrfs_root *root = BTRFS_I(dir)->root;
6278	struct inode *inode = NULL;
6279	int err;
6280	int drop_inode = 0;
6281	u64 objectid;
6282	u64 index = 0;
6283
6284	if (!new_valid_dev(rdev))
6285		return -EINVAL;
6286
6287	/*
6288	 * 2 for inode item and ref
6289	 * 2 for dir items
6290	 * 1 for xattr if selinux is on
6291	 */
6292	trans = btrfs_start_transaction(root, 5);
6293	if (IS_ERR(trans))
6294		return PTR_ERR(trans);
6295
6296	err = btrfs_find_free_ino(root, &objectid);
6297	if (err)
6298		goto out_unlock;
6299
6300	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6301				dentry->d_name.len, btrfs_ino(dir), objectid,
6302				mode, &index);
6303	if (IS_ERR(inode)) {
6304		err = PTR_ERR(inode);
6305		goto out_unlock;
6306	}
6307
6308	/*
6309	* If the active LSM wants to access the inode during
6310	* d_instantiate it needs these. Smack checks to see
6311	* if the filesystem supports xattrs by looking at the
6312	* ops vector.
6313	*/
6314	inode->i_op = &btrfs_special_inode_operations;
6315	init_special_inode(inode, inode->i_mode, rdev);
6316
6317	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6318	if (err)
6319		goto out_unlock_inode;
6320
6321	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6322	if (err) {
6323		goto out_unlock_inode;
6324	} else {
6325		btrfs_update_inode(trans, root, inode);
6326		unlock_new_inode(inode);
6327		d_instantiate(dentry, inode);
6328	}
6329
6330out_unlock:
6331	btrfs_end_transaction(trans, root);
6332	btrfs_balance_delayed_items(root);
6333	btrfs_btree_balance_dirty(root);
6334	if (drop_inode) {
6335		inode_dec_link_count(inode);
6336		iput(inode);
6337	}
6338	return err;
6339
6340out_unlock_inode:
6341	drop_inode = 1;
6342	unlock_new_inode(inode);
6343	goto out_unlock;
6344
6345}
6346
6347static int btrfs_create(struct inode *dir, struct dentry *dentry,
6348			umode_t mode, bool excl)
6349{
6350	struct btrfs_trans_handle *trans;
6351	struct btrfs_root *root = BTRFS_I(dir)->root;
6352	struct inode *inode = NULL;
6353	int drop_inode_on_err = 0;
6354	int err;
6355	u64 objectid;
6356	u64 index = 0;
6357
6358	/*
6359	 * 2 for inode item and ref
6360	 * 2 for dir items
6361	 * 1 for xattr if selinux is on
6362	 */
6363	trans = btrfs_start_transaction(root, 5);
6364	if (IS_ERR(trans))
6365		return PTR_ERR(trans);
6366
6367	err = btrfs_find_free_ino(root, &objectid);
6368	if (err)
6369		goto out_unlock;
6370
6371	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6372				dentry->d_name.len, btrfs_ino(dir), objectid,
6373				mode, &index);
6374	if (IS_ERR(inode)) {
6375		err = PTR_ERR(inode);
6376		goto out_unlock;
6377	}
6378	drop_inode_on_err = 1;
6379	/*
6380	* If the active LSM wants to access the inode during
6381	* d_instantiate it needs these. Smack checks to see
6382	* if the filesystem supports xattrs by looking at the
6383	* ops vector.
6384	*/
6385	inode->i_fop = &btrfs_file_operations;
6386	inode->i_op = &btrfs_file_inode_operations;
6387	inode->i_mapping->a_ops = &btrfs_aops;
6388
6389	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6390	if (err)
6391		goto out_unlock_inode;
6392
6393	err = btrfs_update_inode(trans, root, inode);
6394	if (err)
6395		goto out_unlock_inode;
6396
6397	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
6398	if (err)
6399		goto out_unlock_inode;
6400
6401	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
6402	unlock_new_inode(inode);
6403	d_instantiate(dentry, inode);
6404
6405out_unlock:
6406	btrfs_end_transaction(trans, root);
6407	if (err && drop_inode_on_err) {
6408		inode_dec_link_count(inode);
6409		iput(inode);
6410	}
6411	btrfs_balance_delayed_items(root);
6412	btrfs_btree_balance_dirty(root);
6413	return err;
6414
6415out_unlock_inode:
6416	unlock_new_inode(inode);
6417	goto out_unlock;
6418
6419}
6420
6421static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
6422		      struct dentry *dentry)
6423{
6424	struct btrfs_trans_handle *trans = NULL;
6425	struct btrfs_root *root = BTRFS_I(dir)->root;
6426	struct inode *inode = d_inode(old_dentry);
6427	u64 index;
6428	int err;
6429	int drop_inode = 0;
6430
6431	/* do not allow sys_link's with other subvols of the same device */
6432	if (root->objectid != BTRFS_I(inode)->root->objectid)
6433		return -EXDEV;
6434
6435	if (inode->i_nlink >= BTRFS_LINK_MAX)
6436		return -EMLINK;
6437
6438	err = btrfs_set_inode_index(dir, &index);
6439	if (err)
6440		goto fail;
6441
6442	/*
6443	 * 2 items for inode and inode ref
6444	 * 2 items for dir items
6445	 * 1 item for parent inode
6446	 */
6447	trans = btrfs_start_transaction(root, 5);
6448	if (IS_ERR(trans)) {
6449		err = PTR_ERR(trans);
6450		trans = NULL;
6451		goto fail;
6452	}
6453
6454	/* There are several dir indexes for this inode, clear the cache. */
6455	BTRFS_I(inode)->dir_index = 0ULL;
6456	inc_nlink(inode);
6457	inode_inc_iversion(inode);
6458	inode->i_ctime = CURRENT_TIME;
6459	ihold(inode);
6460	set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
6461
6462	err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
6463
6464	if (err) {
6465		drop_inode = 1;
6466	} else {
6467		struct dentry *parent = dentry->d_parent;
6468		err = btrfs_update_inode(trans, root, inode);
6469		if (err)
6470			goto fail;
6471		if (inode->i_nlink == 1) {
6472			/*
6473			 * If new hard link count is 1, it's a file created
6474			 * with open(2) O_TMPFILE flag.
6475			 */
6476			err = btrfs_orphan_del(trans, inode);
6477			if (err)
6478				goto fail;
6479		}
6480		d_instantiate(dentry, inode);
6481		btrfs_log_new_name(trans, inode, NULL, parent);
6482	}
6483
6484	btrfs_balance_delayed_items(root);
6485fail:
6486	if (trans)
6487		btrfs_end_transaction(trans, root);
6488	if (drop_inode) {
6489		inode_dec_link_count(inode);
6490		iput(inode);
6491	}
6492	btrfs_btree_balance_dirty(root);
6493	return err;
6494}
6495
6496static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
6497{
6498	struct inode *inode = NULL;
6499	struct btrfs_trans_handle *trans;
6500	struct btrfs_root *root = BTRFS_I(dir)->root;
6501	int err = 0;
6502	int drop_on_err = 0;
6503	u64 objectid = 0;
6504	u64 index = 0;
6505
6506	/*
6507	 * 2 items for inode and ref
6508	 * 2 items for dir items
6509	 * 1 for xattr if selinux is on
6510	 */
6511	trans = btrfs_start_transaction(root, 5);
6512	if (IS_ERR(trans))
6513		return PTR_ERR(trans);
6514
6515	err = btrfs_find_free_ino(root, &objectid);
6516	if (err)
6517		goto out_fail;
6518
6519	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
6520				dentry->d_name.len, btrfs_ino(dir), objectid,
6521				S_IFDIR | mode, &index);
6522	if (IS_ERR(inode)) {
6523		err = PTR_ERR(inode);
6524		goto out_fail;
6525	}
6526
6527	drop_on_err = 1;
6528	/* these must be set before we unlock the inode */
6529	inode->i_op = &btrfs_dir_inode_operations;
6530	inode->i_fop = &btrfs_dir_file_operations;
6531
6532	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
6533	if (err)
6534		goto out_fail_inode;
6535
6536	btrfs_i_size_write(inode, 0);
6537	err = btrfs_update_inode(trans, root, inode);
6538	if (err)
6539		goto out_fail_inode;
6540
6541	err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
6542			     dentry->d_name.len, 0, index);
6543	if (err)
6544		goto out_fail_inode;
6545
6546	d_instantiate(dentry, inode);
6547	/*
6548	 * mkdir is special.  We're unlocking after we call d_instantiate
6549	 * to avoid a race with nfsd calling d_instantiate.
6550	 */
6551	unlock_new_inode(inode);
6552	drop_on_err = 0;
6553
6554out_fail:
6555	btrfs_end_transaction(trans, root);
6556	if (drop_on_err) {
6557		inode_dec_link_count(inode);
6558		iput(inode);
6559	}
6560	btrfs_balance_delayed_items(root);
6561	btrfs_btree_balance_dirty(root);
6562	return err;
6563
6564out_fail_inode:
6565	unlock_new_inode(inode);
6566	goto out_fail;
6567}
6568
6569/* Find next extent map of a given extent map, caller needs to ensure locks */
6570static struct extent_map *next_extent_map(struct extent_map *em)
6571{
6572	struct rb_node *next;
6573
6574	next = rb_next(&em->rb_node);
6575	if (!next)
6576		return NULL;
6577	return container_of(next, struct extent_map, rb_node);
6578}
6579
6580static struct extent_map *prev_extent_map(struct extent_map *em)
6581{
6582	struct rb_node *prev;
6583
6584	prev = rb_prev(&em->rb_node);
6585	if (!prev)
6586		return NULL;
6587	return container_of(prev, struct extent_map, rb_node);
6588}
6589
6590/* helper for btfs_get_extent.  Given an existing extent in the tree,
6591 * the existing extent is the nearest extent to map_start,
6592 * and an extent that you want to insert, deal with overlap and insert
6593 * the best fitted new extent into the tree.
6594 */
6595static int merge_extent_mapping(struct extent_map_tree *em_tree,
6596				struct extent_map *existing,
6597				struct extent_map *em,
6598				u64 map_start)
6599{
6600	struct extent_map *prev;
6601	struct extent_map *next;
6602	u64 start;
6603	u64 end;
6604	u64 start_diff;
6605
6606	BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
6607
6608	if (existing->start > map_start) {
6609		next = existing;
6610		prev = prev_extent_map(next);
6611	} else {
6612		prev = existing;
6613		next = next_extent_map(prev);
6614	}
6615
6616	start = prev ? extent_map_end(prev) : em->start;
6617	start = max_t(u64, start, em->start);
6618	end = next ? next->start : extent_map_end(em);
6619	end = min_t(u64, end, extent_map_end(em));
6620	start_diff = start - em->start;
6621	em->start = start;
6622	em->len = end - start;
6623	if (em->block_start < EXTENT_MAP_LAST_BYTE &&
6624	    !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
6625		em->block_start += start_diff;
6626		em->block_len -= start_diff;
6627	}
6628	return add_extent_mapping(em_tree, em, 0);
6629}
6630
6631static noinline int uncompress_inline(struct btrfs_path *path,
6632				      struct inode *inode, struct page *page,
6633				      size_t pg_offset, u64 extent_offset,
6634				      struct btrfs_file_extent_item *item)
6635{
6636	int ret;
6637	struct extent_buffer *leaf = path->nodes[0];
6638	char *tmp;
6639	size_t max_size;
6640	unsigned long inline_size;
6641	unsigned long ptr;
6642	int compress_type;
6643
6644	WARN_ON(pg_offset != 0);
6645	compress_type = btrfs_file_extent_compression(leaf, item);
6646	max_size = btrfs_file_extent_ram_bytes(leaf, item);
6647	inline_size = btrfs_file_extent_inline_item_len(leaf,
6648					btrfs_item_nr(path->slots[0]));
6649	tmp = kmalloc(inline_size, GFP_NOFS);
6650	if (!tmp)
6651		return -ENOMEM;
6652	ptr = btrfs_file_extent_inline_start(item);
6653
6654	read_extent_buffer(leaf, tmp, ptr, inline_size);
6655
6656	max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6657	ret = btrfs_decompress(compress_type, tmp, page,
6658			       extent_offset, inline_size, max_size);
6659	kfree(tmp);
6660	return ret;
6661}
6662
6663/*
6664 * a bit scary, this does extent mapping from logical file offset to the disk.
6665 * the ugly parts come from merging extents from the disk with the in-ram
6666 * representation.  This gets more complex because of the data=ordered code,
6667 * where the in-ram extents might be locked pending data=ordered completion.
6668 *
6669 * This also copies inline extents directly into the page.
6670 */
6671
6672struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6673				    size_t pg_offset, u64 start, u64 len,
6674				    int create)
6675{
6676	int ret;
6677	int err = 0;
6678	u64 extent_start = 0;
6679	u64 extent_end = 0;
6680	u64 objectid = btrfs_ino(inode);
6681	u32 found_type;
6682	struct btrfs_path *path = NULL;
6683	struct btrfs_root *root = BTRFS_I(inode)->root;
6684	struct btrfs_file_extent_item *item;
6685	struct extent_buffer *leaf;
6686	struct btrfs_key found_key;
6687	struct extent_map *em = NULL;
6688	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6689	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6690	struct btrfs_trans_handle *trans = NULL;
6691	const bool new_inline = !page || create;
6692
6693again:
6694	read_lock(&em_tree->lock);
6695	em = lookup_extent_mapping(em_tree, start, len);
6696	if (em)
6697		em->bdev = root->fs_info->fs_devices->latest_bdev;
6698	read_unlock(&em_tree->lock);
6699
6700	if (em) {
6701		if (em->start > start || em->start + em->len <= start)
6702			free_extent_map(em);
6703		else if (em->block_start == EXTENT_MAP_INLINE && page)
6704			free_extent_map(em);
6705		else
6706			goto out;
6707	}
6708	em = alloc_extent_map();
6709	if (!em) {
6710		err = -ENOMEM;
6711		goto out;
6712	}
6713	em->bdev = root->fs_info->fs_devices->latest_bdev;
6714	em->start = EXTENT_MAP_HOLE;
6715	em->orig_start = EXTENT_MAP_HOLE;
6716	em->len = (u64)-1;
6717	em->block_len = (u64)-1;
6718
6719	if (!path) {
6720		path = btrfs_alloc_path();
6721		if (!path) {
6722			err = -ENOMEM;
6723			goto out;
6724		}
6725		/*
6726		 * Chances are we'll be called again, so go ahead and do
6727		 * readahead
6728		 */
6729		path->reada = 1;
6730	}
6731
6732	ret = btrfs_lookup_file_extent(trans, root, path,
6733				       objectid, start, trans != NULL);
6734	if (ret < 0) {
6735		err = ret;
6736		goto out;
6737	}
6738
6739	if (ret != 0) {
6740		if (path->slots[0] == 0)
6741			goto not_found;
6742		path->slots[0]--;
6743	}
6744
6745	leaf = path->nodes[0];
6746	item = btrfs_item_ptr(leaf, path->slots[0],
6747			      struct btrfs_file_extent_item);
6748	/* are we inside the extent that was found? */
6749	btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6750	found_type = found_key.type;
6751	if (found_key.objectid != objectid ||
6752	    found_type != BTRFS_EXTENT_DATA_KEY) {
6753		/*
6754		 * If we backup past the first extent we want to move forward
6755		 * and see if there is an extent in front of us, otherwise we'll
6756		 * say there is a hole for our whole search range which can
6757		 * cause problems.
6758		 */
6759		extent_end = start;
6760		goto next;
6761	}
6762
6763	found_type = btrfs_file_extent_type(leaf, item);
6764	extent_start = found_key.offset;
6765	if (found_type == BTRFS_FILE_EXTENT_REG ||
6766	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6767		extent_end = extent_start +
6768		       btrfs_file_extent_num_bytes(leaf, item);
6769	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6770		size_t size;
6771		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6772		extent_end = ALIGN(extent_start + size, root->sectorsize);
6773	}
6774next:
6775	if (start >= extent_end) {
6776		path->slots[0]++;
6777		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6778			ret = btrfs_next_leaf(root, path);
6779			if (ret < 0) {
6780				err = ret;
6781				goto out;
6782			}
6783			if (ret > 0)
6784				goto not_found;
6785			leaf = path->nodes[0];
6786		}
6787		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6788		if (found_key.objectid != objectid ||
6789		    found_key.type != BTRFS_EXTENT_DATA_KEY)
6790			goto not_found;
6791		if (start + len <= found_key.offset)
6792			goto not_found;
6793		if (start > found_key.offset)
6794			goto next;
6795		em->start = start;
6796		em->orig_start = start;
6797		em->len = found_key.offset - start;
6798		goto not_found_em;
6799	}
6800
6801	btrfs_extent_item_to_extent_map(inode, path, item, new_inline, em);
6802
6803	if (found_type == BTRFS_FILE_EXTENT_REG ||
6804	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6805		goto insert;
6806	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6807		unsigned long ptr;
6808		char *map;
6809		size_t size;
6810		size_t extent_offset;
6811		size_t copy_size;
6812
6813		if (new_inline)
6814			goto out;
6815
6816		size = btrfs_file_extent_inline_len(leaf, path->slots[0], item);
6817		extent_offset = page_offset(page) + pg_offset - extent_start;
6818		copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6819				size - extent_offset);
6820		em->start = extent_start + extent_offset;
6821		em->len = ALIGN(copy_size, root->sectorsize);
6822		em->orig_block_len = em->len;
6823		em->orig_start = em->start;
6824		ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6825		if (create == 0 && !PageUptodate(page)) {
6826			if (btrfs_file_extent_compression(leaf, item) !=
6827			    BTRFS_COMPRESS_NONE) {
6828				ret = uncompress_inline(path, inode, page,
6829							pg_offset,
6830							extent_offset, item);
6831				if (ret) {
6832					err = ret;
6833					goto out;
6834				}
6835			} else {
6836				map = kmap(page);
6837				read_extent_buffer(leaf, map + pg_offset, ptr,
6838						   copy_size);
6839				if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6840					memset(map + pg_offset + copy_size, 0,
6841					       PAGE_CACHE_SIZE - pg_offset -
6842					       copy_size);
6843				}
6844				kunmap(page);
6845			}
6846			flush_dcache_page(page);
6847		} else if (create && PageUptodate(page)) {
6848			BUG();
6849			if (!trans) {
6850				kunmap(page);
6851				free_extent_map(em);
6852				em = NULL;
6853
6854				btrfs_release_path(path);
6855				trans = btrfs_join_transaction(root);
6856
6857				if (IS_ERR(trans))
6858					return ERR_CAST(trans);
6859				goto again;
6860			}
6861			map = kmap(page);
6862			write_extent_buffer(leaf, map + pg_offset, ptr,
6863					    copy_size);
6864			kunmap(page);
6865			btrfs_mark_buffer_dirty(leaf);
6866		}
6867		set_extent_uptodate(io_tree, em->start,
6868				    extent_map_end(em) - 1, NULL, GFP_NOFS);
6869		goto insert;
6870	}
6871not_found:
6872	em->start = start;
6873	em->orig_start = start;
6874	em->len = len;
6875not_found_em:
6876	em->block_start = EXTENT_MAP_HOLE;
6877	set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6878insert:
6879	btrfs_release_path(path);
6880	if (em->start > start || extent_map_end(em) <= start) {
6881		btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6882			em->start, em->len, start, len);
6883		err = -EIO;
6884		goto out;
6885	}
6886
6887	err = 0;
6888	write_lock(&em_tree->lock);
6889	ret = add_extent_mapping(em_tree, em, 0);
6890	/* it is possible that someone inserted the extent into the tree
6891	 * while we had the lock dropped.  It is also possible that
6892	 * an overlapping map exists in the tree
6893	 */
6894	if (ret == -EEXIST) {
6895		struct extent_map *existing;
6896
6897		ret = 0;
6898
6899		existing = search_extent_mapping(em_tree, start, len);
6900		/*
6901		 * existing will always be non-NULL, since there must be
6902		 * extent causing the -EEXIST.
6903		 */
6904		if (start >= extent_map_end(existing) ||
6905		    start <= existing->start) {
6906			/*
6907			 * The existing extent map is the one nearest to
6908			 * the [start, start + len) range which overlaps
6909			 */
6910			err = merge_extent_mapping(em_tree, existing,
6911						   em, start);
6912			free_extent_map(existing);
6913			if (err) {
6914				free_extent_map(em);
6915				em = NULL;
6916			}
6917		} else {
6918			free_extent_map(em);
6919			em = existing;
6920			err = 0;
6921		}
6922	}
6923	write_unlock(&em_tree->lock);
6924out:
6925
6926	trace_btrfs_get_extent(root, em);
6927
6928	if (path)
6929		btrfs_free_path(path);
6930	if (trans) {
6931		ret = btrfs_end_transaction(trans, root);
6932		if (!err)
6933			err = ret;
6934	}
6935	if (err) {
6936		free_extent_map(em);
6937		return ERR_PTR(err);
6938	}
6939	BUG_ON(!em); /* Error is always set */
6940	return em;
6941}
6942
6943struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6944					   size_t pg_offset, u64 start, u64 len,
6945					   int create)
6946{
6947	struct extent_map *em;
6948	struct extent_map *hole_em = NULL;
6949	u64 range_start = start;
6950	u64 end;
6951	u64 found;
6952	u64 found_end;
6953	int err = 0;
6954
6955	em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6956	if (IS_ERR(em))
6957		return em;
6958	if (em) {
6959		/*
6960		 * if our em maps to
6961		 * -  a hole or
6962		 * -  a pre-alloc extent,
6963		 * there might actually be delalloc bytes behind it.
6964		 */
6965		if (em->block_start != EXTENT_MAP_HOLE &&
6966		    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6967			return em;
6968		else
6969			hole_em = em;
6970	}
6971
6972	/* check to see if we've wrapped (len == -1 or similar) */
6973	end = start + len;
6974	if (end < start)
6975		end = (u64)-1;
6976	else
6977		end -= 1;
6978
6979	em = NULL;
6980
6981	/* ok, we didn't find anything, lets look for delalloc */
6982	found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6983				 end, len, EXTENT_DELALLOC, 1);
6984	found_end = range_start + found;
6985	if (found_end < range_start)
6986		found_end = (u64)-1;
6987
6988	/*
6989	 * we didn't find anything useful, return
6990	 * the original results from get_extent()
6991	 */
6992	if (range_start > end || found_end <= start) {
6993		em = hole_em;
6994		hole_em = NULL;
6995		goto out;
6996	}
6997
6998	/* adjust the range_start to make sure it doesn't
6999	 * go backwards from the start they passed in
7000	 */
7001	range_start = max(start, range_start);
7002	found = found_end - range_start;
7003
7004	if (found > 0) {
7005		u64 hole_start = start;
7006		u64 hole_len = len;
7007
7008		em = alloc_extent_map();
7009		if (!em) {
7010			err = -ENOMEM;
7011			goto out;
7012		}
7013		/*
7014		 * when btrfs_get_extent can't find anything it
7015		 * returns one huge hole
7016		 *
7017		 * make sure what it found really fits our range, and
7018		 * adjust to make sure it is based on the start from
7019		 * the caller
7020		 */
7021		if (hole_em) {
7022			u64 calc_end = extent_map_end(hole_em);
7023
7024			if (calc_end <= start || (hole_em->start > end)) {
7025				free_extent_map(hole_em);
7026				hole_em = NULL;
7027			} else {
7028				hole_start = max(hole_em->start, start);
7029				hole_len = calc_end - hole_start;
7030			}
7031		}
7032		em->bdev = NULL;
7033		if (hole_em && range_start > hole_start) {
7034			/* our hole starts before our delalloc, so we
7035			 * have to return just the parts of the hole
7036			 * that go until  the delalloc starts
7037			 */
7038			em->len = min(hole_len,
7039				      range_start - hole_start);
7040			em->start = hole_start;
7041			em->orig_start = hole_start;
7042			/*
7043			 * don't adjust block start at all,
7044			 * it is fixed at EXTENT_MAP_HOLE
7045			 */
7046			em->block_start = hole_em->block_start;
7047			em->block_len = hole_len;
7048			if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
7049				set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
7050		} else {
7051			em->start = range_start;
7052			em->len = found;
7053			em->orig_start = range_start;
7054			em->block_start = EXTENT_MAP_DELALLOC;
7055			em->block_len = found;
7056		}
7057	} else if (hole_em) {
7058		return hole_em;
7059	}
7060out:
7061
7062	free_extent_map(hole_em);
7063	if (err) {
7064		free_extent_map(em);
7065		return ERR_PTR(err);
7066	}
7067	return em;
7068}
7069
7070static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
7071						  u64 start, u64 len)
7072{
7073	struct btrfs_root *root = BTRFS_I(inode)->root;
7074	struct extent_map *em;
7075	struct btrfs_key ins;
7076	u64 alloc_hint;
7077	int ret;
7078
7079	alloc_hint = get_extent_allocation_hint(inode, start, len);
7080	ret = btrfs_reserve_extent(root, len, root->sectorsize, 0,
7081				   alloc_hint, &ins, 1, 1);
7082	if (ret)
7083		return ERR_PTR(ret);
7084
7085	em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
7086			      ins.offset, ins.offset, ins.offset, 0);
7087	if (IS_ERR(em)) {
7088		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7089		return em;
7090	}
7091
7092	ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
7093					   ins.offset, ins.offset, 0);
7094	if (ret) {
7095		btrfs_free_reserved_extent(root, ins.objectid, ins.offset, 1);
7096		free_extent_map(em);
7097		return ERR_PTR(ret);
7098	}
7099
7100	return em;
7101}
7102
7103/*
7104 * returns 1 when the nocow is safe, < 1 on error, 0 if the
7105 * block must be cow'd
7106 */
7107noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
7108			      u64 *orig_start, u64 *orig_block_len,
7109			      u64 *ram_bytes)
7110{
7111	struct btrfs_trans_handle *trans;
7112	struct btrfs_path *path;
7113	int ret;
7114	struct extent_buffer *leaf;
7115	struct btrfs_root *root = BTRFS_I(inode)->root;
7116	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7117	struct btrfs_file_extent_item *fi;
7118	struct btrfs_key key;
7119	u64 disk_bytenr;
7120	u64 backref_offset;
7121	u64 extent_end;
7122	u64 num_bytes;
7123	int slot;
7124	int found_type;
7125	bool nocow = (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW);
7126
7127	path = btrfs_alloc_path();
7128	if (!path)
7129		return -ENOMEM;
7130
7131	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(inode),
7132				       offset, 0);
7133	if (ret < 0)
7134		goto out;
7135
7136	slot = path->slots[0];
7137	if (ret == 1) {
7138		if (slot == 0) {
7139			/* can't find the item, must cow */
7140			ret = 0;
7141			goto out;
7142		}
7143		slot--;
7144	}
7145	ret = 0;
7146	leaf = path->nodes[0];
7147	btrfs_item_key_to_cpu(leaf, &key, slot);
7148	if (key.objectid != btrfs_ino(inode) ||
7149	    key.type != BTRFS_EXTENT_DATA_KEY) {
7150		/* not our file or wrong item type, must cow */
7151		goto out;
7152	}
7153
7154	if (key.offset > offset) {
7155		/* Wrong offset, must cow */
7156		goto out;
7157	}
7158
7159	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
7160	found_type = btrfs_file_extent_type(leaf, fi);
7161	if (found_type != BTRFS_FILE_EXTENT_REG &&
7162	    found_type != BTRFS_FILE_EXTENT_PREALLOC) {
7163		/* not a regular extent, must cow */
7164		goto out;
7165	}
7166
7167	if (!nocow && found_type == BTRFS_FILE_EXTENT_REG)
7168		goto out;
7169
7170	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
7171	if (extent_end <= offset)
7172		goto out;
7173
7174	disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
7175	if (disk_bytenr == 0)
7176		goto out;
7177
7178	if (btrfs_file_extent_compression(leaf, fi) ||
7179	    btrfs_file_extent_encryption(leaf, fi) ||
7180	    btrfs_file_extent_other_encoding(leaf, fi))
7181		goto out;
7182
7183	backref_offset = btrfs_file_extent_offset(leaf, fi);
7184
7185	if (orig_start) {
7186		*orig_start = key.offset - backref_offset;
7187		*orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
7188		*ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
7189	}
7190
7191	if (btrfs_extent_readonly(root, disk_bytenr))
7192		goto out;
7193
7194	num_bytes = min(offset + *len, extent_end) - offset;
7195	if (!nocow && found_type == BTRFS_FILE_EXTENT_PREALLOC) {
7196		u64 range_end;
7197
7198		range_end = round_up(offset + num_bytes, root->sectorsize) - 1;
7199		ret = test_range_bit(io_tree, offset, range_end,
7200				     EXTENT_DELALLOC, 0, NULL);
7201		if (ret) {
7202			ret = -EAGAIN;
7203			goto out;
7204		}
7205	}
7206
7207	btrfs_release_path(path);
7208
7209	/*
7210	 * look for other files referencing this extent, if we
7211	 * find any we must cow
7212	 */
7213	trans = btrfs_join_transaction(root);
7214	if (IS_ERR(trans)) {
7215		ret = 0;
7216		goto out;
7217	}
7218
7219	ret = btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
7220				    key.offset - backref_offset, disk_bytenr);
7221	btrfs_end_transaction(trans, root);
7222	if (ret) {
7223		ret = 0;
7224		goto out;
7225	}
7226
7227	/*
7228	 * adjust disk_bytenr and num_bytes to cover just the bytes
7229	 * in this extent we are about to write.  If there
7230	 * are any csums in that range we have to cow in order
7231	 * to keep the csums correct
7232	 */
7233	disk_bytenr += backref_offset;
7234	disk_bytenr += offset - key.offset;
7235	if (csum_exist_in_range(root, disk_bytenr, num_bytes))
7236				goto out;
7237	/*
7238	 * all of the above have passed, it is safe to overwrite this extent
7239	 * without cow
7240	 */
7241	*len = num_bytes;
7242	ret = 1;
7243out:
7244	btrfs_free_path(path);
7245	return ret;
7246}
7247
7248bool btrfs_page_exists_in_range(struct inode *inode, loff_t start, loff_t end)
7249{
7250	struct radix_tree_root *root = &inode->i_mapping->page_tree;
7251	int found = false;
7252	void **pagep = NULL;
7253	struct page *page = NULL;
7254	int start_idx;
7255	int end_idx;
7256
7257	start_idx = start >> PAGE_CACHE_SHIFT;
7258
7259	/*
7260	 * end is the last byte in the last page.  end == start is legal
7261	 */
7262	end_idx = end >> PAGE_CACHE_SHIFT;
7263
7264	rcu_read_lock();
7265
7266	/* Most of the code in this while loop is lifted from
7267	 * find_get_page.  It's been modified to begin searching from a
7268	 * page and return just the first page found in that range.  If the
7269	 * found idx is less than or equal to the end idx then we know that
7270	 * a page exists.  If no pages are found or if those pages are
7271	 * outside of the range then we're fine (yay!) */
7272	while (page == NULL &&
7273	       radix_tree_gang_lookup_slot(root, &pagep, NULL, start_idx, 1)) {
7274		page = radix_tree_deref_slot(pagep);
7275		if (unlikely(!page))
7276			break;
7277
7278		if (radix_tree_exception(page)) {
7279			if (radix_tree_deref_retry(page)) {
7280				page = NULL;
7281				continue;
7282			}
7283			/*
7284			 * Otherwise, shmem/tmpfs must be storing a swap entry
7285			 * here as an exceptional entry: so return it without
7286			 * attempting to raise page count.
7287			 */
7288			page = NULL;
7289			break; /* TODO: Is this relevant for this use case? */
7290		}
7291
7292		if (!page_cache_get_speculative(page)) {
7293			page = NULL;
7294			continue;
7295		}
7296
7297		/*
7298		 * Has the page moved?
7299		 * This is part of the lockless pagecache protocol. See
7300		 * include/linux/pagemap.h for details.
7301		 */
7302		if (unlikely(page != *pagep)) {
7303			page_cache_release(page);
7304			page = NULL;
7305		}
7306	}
7307
7308	if (page) {
7309		if (page->index <= end_idx)
7310			found = true;
7311		page_cache_release(page);
7312	}
7313
7314	rcu_read_unlock();
7315	return found;
7316}
7317
7318static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
7319			      struct extent_state **cached_state, int writing)
7320{
7321	struct btrfs_ordered_extent *ordered;
7322	int ret = 0;
7323
7324	while (1) {
7325		lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7326				 0, cached_state);
7327		/*
7328		 * We're concerned with the entire range that we're going to be
7329		 * doing DIO to, so we need to make sure theres no ordered
7330		 * extents in this range.
7331		 */
7332		ordered = btrfs_lookup_ordered_range(inode, lockstart,
7333						     lockend - lockstart + 1);
7334
7335		/*
7336		 * We need to make sure there are no buffered pages in this
7337		 * range either, we could have raced between the invalidate in
7338		 * generic_file_direct_write and locking the extent.  The
7339		 * invalidate needs to happen so that reads after a write do not
7340		 * get stale data.
7341		 */
7342		if (!ordered &&
7343		    (!writing ||
7344		     !btrfs_page_exists_in_range(inode, lockstart, lockend)))
7345			break;
7346
7347		unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7348				     cached_state, GFP_NOFS);
7349
7350		if (ordered) {
7351			btrfs_start_ordered_extent(inode, ordered, 1);
7352			btrfs_put_ordered_extent(ordered);
7353		} else {
7354			/* Screw you mmap */
7355			ret = btrfs_fdatawrite_range(inode, lockstart, lockend);
7356			if (ret)
7357				break;
7358			ret = filemap_fdatawait_range(inode->i_mapping,
7359						      lockstart,
7360						      lockend);
7361			if (ret)
7362				break;
7363
7364			/*
7365			 * If we found a page that couldn't be invalidated just
7366			 * fall back to buffered.
7367			 */
7368			ret = invalidate_inode_pages2_range(inode->i_mapping,
7369					lockstart >> PAGE_CACHE_SHIFT,
7370					lockend >> PAGE_CACHE_SHIFT);
7371			if (ret)
7372				break;
7373		}
7374
7375		cond_resched();
7376	}
7377
7378	return ret;
7379}
7380
7381static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
7382					   u64 len, u64 orig_start,
7383					   u64 block_start, u64 block_len,
7384					   u64 orig_block_len, u64 ram_bytes,
7385					   int type)
7386{
7387	struct extent_map_tree *em_tree;
7388	struct extent_map *em;
7389	struct btrfs_root *root = BTRFS_I(inode)->root;
7390	int ret;
7391
7392	em_tree = &BTRFS_I(inode)->extent_tree;
7393	em = alloc_extent_map();
7394	if (!em)
7395		return ERR_PTR(-ENOMEM);
7396
7397	em->start = start;
7398	em->orig_start = orig_start;
7399	em->mod_start = start;
7400	em->mod_len = len;
7401	em->len = len;
7402	em->block_len = block_len;
7403	em->block_start = block_start;
7404	em->bdev = root->fs_info->fs_devices->latest_bdev;
7405	em->orig_block_len = orig_block_len;
7406	em->ram_bytes = ram_bytes;
7407	em->generation = -1;
7408	set_bit(EXTENT_FLAG_PINNED, &em->flags);
7409	if (type == BTRFS_ORDERED_PREALLOC)
7410		set_bit(EXTENT_FLAG_FILLING, &em->flags);
7411
7412	do {
7413		btrfs_drop_extent_cache(inode, em->start,
7414				em->start + em->len - 1, 0);
7415		write_lock(&em_tree->lock);
7416		ret = add_extent_mapping(em_tree, em, 1);
7417		write_unlock(&em_tree->lock);
7418	} while (ret == -EEXIST);
7419
7420	if (ret) {
7421		free_extent_map(em);
7422		return ERR_PTR(ret);
7423	}
7424
7425	return em;
7426}
7427
7428
7429static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
7430				   struct buffer_head *bh_result, int create)
7431{
7432	struct extent_map *em;
7433	struct btrfs_root *root = BTRFS_I(inode)->root;
7434	struct extent_state *cached_state = NULL;
7435	u64 start = iblock << inode->i_blkbits;
7436	u64 lockstart, lockend;
7437	u64 len = bh_result->b_size;
7438	u64 *outstanding_extents = NULL;
7439	int unlock_bits = EXTENT_LOCKED;
7440	int ret = 0;
7441
7442	if (create)
7443		unlock_bits |= EXTENT_DIRTY;
7444	else
7445		len = min_t(u64, len, root->sectorsize);
7446
7447	lockstart = start;
7448	lockend = start + len - 1;
7449
7450	if (current->journal_info) {
7451		/*
7452		 * Need to pull our outstanding extents and set journal_info to NULL so
7453		 * that anything that needs to check if there's a transction doesn't get
7454		 * confused.
7455		 */
7456		outstanding_extents = current->journal_info;
7457		current->journal_info = NULL;
7458	}
7459
7460	/*
7461	 * If this errors out it's because we couldn't invalidate pagecache for
7462	 * this range and we need to fallback to buffered.
7463	 */
7464	if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
7465		return -ENOTBLK;
7466
7467	em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
7468	if (IS_ERR(em)) {
7469		ret = PTR_ERR(em);
7470		goto unlock_err;
7471	}
7472
7473	/*
7474	 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
7475	 * io.  INLINE is special, and we could probably kludge it in here, but
7476	 * it's still buffered so for safety lets just fall back to the generic
7477	 * buffered path.
7478	 *
7479	 * For COMPRESSED we _have_ to read the entire extent in so we can
7480	 * decompress it, so there will be buffering required no matter what we
7481	 * do, so go ahead and fallback to buffered.
7482	 *
7483	 * We return -ENOTBLK because thats what makes DIO go ahead and go back
7484	 * to buffered IO.  Don't blame me, this is the price we pay for using
7485	 * the generic code.
7486	 */
7487	if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
7488	    em->block_start == EXTENT_MAP_INLINE) {
7489		free_extent_map(em);
7490		ret = -ENOTBLK;
7491		goto unlock_err;
7492	}
7493
7494	/* Just a good old fashioned hole, return */
7495	if (!create && (em->block_start == EXTENT_MAP_HOLE ||
7496			test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
7497		free_extent_map(em);
7498		goto unlock_err;
7499	}
7500
7501	/*
7502	 * We don't allocate a new extent in the following cases
7503	 *
7504	 * 1) The inode is marked as NODATACOW.  In this case we'll just use the
7505	 * existing extent.
7506	 * 2) The extent is marked as PREALLOC.  We're good to go here and can
7507	 * just use the extent.
7508	 *
7509	 */
7510	if (!create) {
7511		len = min(len, em->len - (start - em->start));
7512		lockstart = start + len;
7513		goto unlock;
7514	}
7515
7516	if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
7517	    ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
7518	     em->block_start != EXTENT_MAP_HOLE)) {
7519		int type;
7520		u64 block_start, orig_start, orig_block_len, ram_bytes;
7521
7522		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7523			type = BTRFS_ORDERED_PREALLOC;
7524		else
7525			type = BTRFS_ORDERED_NOCOW;
7526		len = min(len, em->len - (start - em->start));
7527		block_start = em->block_start + (start - em->start);
7528
7529		if (can_nocow_extent(inode, start, &len, &orig_start,
7530				     &orig_block_len, &ram_bytes) == 1) {
7531			if (type == BTRFS_ORDERED_PREALLOC) {
7532				free_extent_map(em);
7533				em = create_pinned_em(inode, start, len,
7534						       orig_start,
7535						       block_start, len,
7536						       orig_block_len,
7537						       ram_bytes, type);
7538				if (IS_ERR(em)) {
7539					ret = PTR_ERR(em);
7540					goto unlock_err;
7541				}
7542			}
7543
7544			ret = btrfs_add_ordered_extent_dio(inode, start,
7545					   block_start, len, len, type);
7546			if (ret) {
7547				free_extent_map(em);
7548				goto unlock_err;
7549			}
7550			goto unlock;
7551		}
7552	}
7553
7554	/*
7555	 * this will cow the extent, reset the len in case we changed
7556	 * it above
7557	 */
7558	len = bh_result->b_size;
7559	free_extent_map(em);
7560	em = btrfs_new_extent_direct(inode, start, len);
7561	if (IS_ERR(em)) {
7562		ret = PTR_ERR(em);
7563		goto unlock_err;
7564	}
7565	len = min(len, em->len - (start - em->start));
7566unlock:
7567	bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
7568		inode->i_blkbits;
7569	bh_result->b_size = len;
7570	bh_result->b_bdev = em->bdev;
7571	set_buffer_mapped(bh_result);
7572	if (create) {
7573		if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
7574			set_buffer_new(bh_result);
7575
7576		/*
7577		 * Need to update the i_size under the extent lock so buffered
7578		 * readers will get the updated i_size when we unlock.
7579		 */
7580		if (start + len > i_size_read(inode))
7581			i_size_write(inode, start + len);
7582
7583		/*
7584		 * If we have an outstanding_extents count still set then we're
7585		 * within our reservation, otherwise we need to adjust our inode
7586		 * counter appropriately.
7587		 */
7588		if (*outstanding_extents) {
7589			(*outstanding_extents)--;
7590		} else {
7591			spin_lock(&BTRFS_I(inode)->lock);
7592			BTRFS_I(inode)->outstanding_extents++;
7593			spin_unlock(&BTRFS_I(inode)->lock);
7594		}
7595
7596		current->journal_info = outstanding_extents;
7597		btrfs_free_reserved_data_space(inode, len);
7598	}
7599
7600	/*
7601	 * In the case of write we need to clear and unlock the entire range,
7602	 * in the case of read we need to unlock only the end area that we
7603	 * aren't using if there is any left over space.
7604	 */
7605	if (lockstart < lockend) {
7606		clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
7607				 lockend, unlock_bits, 1, 0,
7608				 &cached_state, GFP_NOFS);
7609	} else {
7610		free_extent_state(cached_state);
7611	}
7612
7613	free_extent_map(em);
7614
7615	return 0;
7616
7617unlock_err:
7618	clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
7619			 unlock_bits, 1, 0, &cached_state, GFP_NOFS);
7620	if (outstanding_extents)
7621		current->journal_info = outstanding_extents;
7622	return ret;
7623}
7624
7625static inline int submit_dio_repair_bio(struct inode *inode, struct bio *bio,
7626					int rw, int mirror_num)
7627{
7628	struct btrfs_root *root = BTRFS_I(inode)->root;
7629	int ret;
7630
7631	BUG_ON(rw & REQ_WRITE);
7632
7633	bio_get(bio);
7634
7635	ret = btrfs_bio_wq_end_io(root->fs_info, bio,
7636				  BTRFS_WQ_ENDIO_DIO_REPAIR);
7637	if (ret)
7638		goto err;
7639
7640	ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
7641err:
7642	bio_put(bio);
7643	return ret;
7644}
7645
7646static int btrfs_check_dio_repairable(struct inode *inode,
7647				      struct bio *failed_bio,
7648				      struct io_failure_record *failrec,
7649				      int failed_mirror)
7650{
7651	int num_copies;
7652
7653	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
7654				      failrec->logical, failrec->len);
7655	if (num_copies == 1) {
7656		/*
7657		 * we only have a single copy of the data, so don't bother with
7658		 * all the retry and error correction code that follows. no
7659		 * matter what the error is, it is very likely to persist.
7660		 */
7661		pr_debug("Check DIO Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
7662			 num_copies, failrec->this_mirror, failed_mirror);
7663		return 0;
7664	}
7665
7666	failrec->failed_mirror = failed_mirror;
7667	failrec->this_mirror++;
7668	if (failrec->this_mirror == failed_mirror)
7669		failrec->this_mirror++;
7670
7671	if (failrec->this_mirror > num_copies) {
7672		pr_debug("Check DIO Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
7673			 num_copies, failrec->this_mirror, failed_mirror);
7674		return 0;
7675	}
7676
7677	return 1;
7678}
7679
7680static int dio_read_error(struct inode *inode, struct bio *failed_bio,
7681			  struct page *page, u64 start, u64 end,
7682			  int failed_mirror, bio_end_io_t *repair_endio,
7683			  void *repair_arg)
7684{
7685	struct io_failure_record *failrec;
7686	struct bio *bio;
7687	int isector;
7688	int read_mode;
7689	int ret;
7690
7691	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
7692
7693	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
7694	if (ret)
7695		return ret;
7696
7697	ret = btrfs_check_dio_repairable(inode, failed_bio, failrec,
7698					 failed_mirror);
7699	if (!ret) {
7700		free_io_failure(inode, failrec);
7701		return -EIO;
7702	}
7703
7704	if (failed_bio->bi_vcnt > 1)
7705		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
7706	else
7707		read_mode = READ_SYNC;
7708
7709	isector = start - btrfs_io_bio(failed_bio)->logical;
7710	isector >>= inode->i_sb->s_blocksize_bits;
7711	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
7712				      0, isector, repair_endio, repair_arg);
7713	if (!bio) {
7714		free_io_failure(inode, failrec);
7715		return -EIO;
7716	}
7717
7718	btrfs_debug(BTRFS_I(inode)->root->fs_info,
7719		    "Repair DIO Read Error: submitting new dio read[%#x] to this_mirror=%d, in_validation=%d\n",
7720		    read_mode, failrec->this_mirror, failrec->in_validation);
7721
7722	ret = submit_dio_repair_bio(inode, bio, read_mode,
7723				    failrec->this_mirror);
7724	if (ret) {
7725		free_io_failure(inode, failrec);
7726		bio_put(bio);
7727	}
7728
7729	return ret;
7730}
7731
7732struct btrfs_retry_complete {
7733	struct completion done;
7734	struct inode *inode;
7735	u64 start;
7736	int uptodate;
7737};
7738
7739static void btrfs_retry_endio_nocsum(struct bio *bio, int err)
7740{
7741	struct btrfs_retry_complete *done = bio->bi_private;
7742	struct bio_vec *bvec;
7743	int i;
7744
7745	if (err)
7746		goto end;
7747
7748	done->uptodate = 1;
7749	bio_for_each_segment_all(bvec, bio, i)
7750		clean_io_failure(done->inode, done->start, bvec->bv_page, 0);
7751end:
7752	complete(&done->done);
7753	bio_put(bio);
7754}
7755
7756static int __btrfs_correct_data_nocsum(struct inode *inode,
7757				       struct btrfs_io_bio *io_bio)
7758{
7759	struct bio_vec *bvec;
7760	struct btrfs_retry_complete done;
7761	u64 start;
7762	int i;
7763	int ret;
7764
7765	start = io_bio->logical;
7766	done.inode = inode;
7767
7768	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7769try_again:
7770		done.uptodate = 0;
7771		done.start = start;
7772		init_completion(&done.done);
7773
7774		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7775				     start + bvec->bv_len - 1,
7776				     io_bio->mirror_num,
7777				     btrfs_retry_endio_nocsum, &done);
7778		if (ret)
7779			return ret;
7780
7781		wait_for_completion(&done.done);
7782
7783		if (!done.uptodate) {
7784			/* We might have another mirror, so try again */
7785			goto try_again;
7786		}
7787
7788		start += bvec->bv_len;
7789	}
7790
7791	return 0;
7792}
7793
7794static void btrfs_retry_endio(struct bio *bio, int err)
7795{
7796	struct btrfs_retry_complete *done = bio->bi_private;
7797	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7798	struct bio_vec *bvec;
7799	int uptodate;
7800	int ret;
7801	int i;
7802
7803	if (err)
7804		goto end;
7805
7806	uptodate = 1;
7807	bio_for_each_segment_all(bvec, bio, i) {
7808		ret = __readpage_endio_check(done->inode, io_bio, i,
7809					     bvec->bv_page, 0,
7810					     done->start, bvec->bv_len);
7811		if (!ret)
7812			clean_io_failure(done->inode, done->start,
7813					 bvec->bv_page, 0);
7814		else
7815			uptodate = 0;
7816	}
7817
7818	done->uptodate = uptodate;
7819end:
7820	complete(&done->done);
7821	bio_put(bio);
7822}
7823
7824static int __btrfs_subio_endio_read(struct inode *inode,
7825				    struct btrfs_io_bio *io_bio, int err)
7826{
7827	struct bio_vec *bvec;
7828	struct btrfs_retry_complete done;
7829	u64 start;
7830	u64 offset = 0;
7831	int i;
7832	int ret;
7833
7834	err = 0;
7835	start = io_bio->logical;
7836	done.inode = inode;
7837
7838	bio_for_each_segment_all(bvec, &io_bio->bio, i) {
7839		ret = __readpage_endio_check(inode, io_bio, i, bvec->bv_page,
7840					     0, start, bvec->bv_len);
7841		if (likely(!ret))
7842			goto next;
7843try_again:
7844		done.uptodate = 0;
7845		done.start = start;
7846		init_completion(&done.done);
7847
7848		ret = dio_read_error(inode, &io_bio->bio, bvec->bv_page, start,
7849				     start + bvec->bv_len - 1,
7850				     io_bio->mirror_num,
7851				     btrfs_retry_endio, &done);
7852		if (ret) {
7853			err = ret;
7854			goto next;
7855		}
7856
7857		wait_for_completion(&done.done);
7858
7859		if (!done.uptodate) {
7860			/* We might have another mirror, so try again */
7861			goto try_again;
7862		}
7863next:
7864		offset += bvec->bv_len;
7865		start += bvec->bv_len;
7866	}
7867
7868	return err;
7869}
7870
7871static int btrfs_subio_endio_read(struct inode *inode,
7872				  struct btrfs_io_bio *io_bio, int err)
7873{
7874	bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7875
7876	if (skip_csum) {
7877		if (unlikely(err))
7878			return __btrfs_correct_data_nocsum(inode, io_bio);
7879		else
7880			return 0;
7881	} else {
7882		return __btrfs_subio_endio_read(inode, io_bio, err);
7883	}
7884}
7885
7886static void btrfs_endio_direct_read(struct bio *bio, int err)
7887{
7888	struct btrfs_dio_private *dip = bio->bi_private;
7889	struct inode *inode = dip->inode;
7890	struct bio *dio_bio;
7891	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
7892
7893	if (dip->flags & BTRFS_DIO_ORIG_BIO_SUBMITTED)
7894		err = btrfs_subio_endio_read(inode, io_bio, err);
7895
7896	unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
7897		      dip->logical_offset + dip->bytes - 1);
7898	dio_bio = dip->dio_bio;
7899
7900	kfree(dip);
7901
7902	/* If we had a csum failure make sure to clear the uptodate flag */
7903	if (err)
7904		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7905	dio_end_io(dio_bio, err);
7906
7907	if (io_bio->end_io)
7908		io_bio->end_io(io_bio, err);
7909	bio_put(bio);
7910}
7911
7912static void btrfs_endio_direct_write(struct bio *bio, int err)
7913{
7914	struct btrfs_dio_private *dip = bio->bi_private;
7915	struct inode *inode = dip->inode;
7916	struct btrfs_root *root = BTRFS_I(inode)->root;
7917	struct btrfs_ordered_extent *ordered = NULL;
7918	u64 ordered_offset = dip->logical_offset;
7919	u64 ordered_bytes = dip->bytes;
7920	struct bio *dio_bio;
7921	int ret;
7922
7923	if (err)
7924		goto out_done;
7925again:
7926	ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7927						   &ordered_offset,
7928						   ordered_bytes, !err);
7929	if (!ret)
7930		goto out_test;
7931
7932	btrfs_init_work(&ordered->work, btrfs_endio_write_helper,
7933			finish_ordered_fn, NULL, NULL);
7934	btrfs_queue_work(root->fs_info->endio_write_workers,
7935			 &ordered->work);
7936out_test:
7937	/*
7938	 * our bio might span multiple ordered extents.  If we haven't
7939	 * completed the accounting for the whole dio, go back and try again
7940	 */
7941	if (ordered_offset < dip->logical_offset + dip->bytes) {
7942		ordered_bytes = dip->logical_offset + dip->bytes -
7943			ordered_offset;
7944		ordered = NULL;
7945		goto again;
7946	}
7947out_done:
7948	dio_bio = dip->dio_bio;
7949
7950	kfree(dip);
7951
7952	/* If we had an error make sure to clear the uptodate flag */
7953	if (err)
7954		clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7955	dio_end_io(dio_bio, err);
7956	bio_put(bio);
7957}
7958
7959static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7960				    struct bio *bio, int mirror_num,
7961				    unsigned long bio_flags, u64 offset)
7962{
7963	int ret;
7964	struct btrfs_root *root = BTRFS_I(inode)->root;
7965	ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7966	BUG_ON(ret); /* -ENOMEM */
7967	return 0;
7968}
7969
7970static void btrfs_end_dio_bio(struct bio *bio, int err)
7971{
7972	struct btrfs_dio_private *dip = bio->bi_private;
7973
7974	if (err)
7975		btrfs_warn(BTRFS_I(dip->inode)->root->fs_info,
7976			   "direct IO failed ino %llu rw %lu sector %#Lx len %u err no %d",
7977			   btrfs_ino(dip->inode), bio->bi_rw,
7978			   (unsigned long long)bio->bi_iter.bi_sector,
7979			   bio->bi_iter.bi_size, err);
7980
7981	if (dip->subio_endio)
7982		err = dip->subio_endio(dip->inode, btrfs_io_bio(bio), err);
7983
7984	if (err) {
7985		dip->errors = 1;
7986
7987		/*
7988		 * before atomic variable goto zero, we must make sure
7989		 * dip->errors is perceived to be set.
7990		 */
7991		smp_mb__before_atomic();
7992	}
7993
7994	/* if there are more bios still pending for this dio, just exit */
7995	if (!atomic_dec_and_test(&dip->pending_bios))
7996		goto out;
7997
7998	if (dip->errors) {
7999		bio_io_error(dip->orig_bio);
8000	} else {
8001		set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
8002		bio_endio(dip->orig_bio, 0);
8003	}
8004out:
8005	bio_put(bio);
8006}
8007
8008static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
8009				       u64 first_sector, gfp_t gfp_flags)
8010{
8011	int nr_vecs = bio_get_nr_vecs(bdev);
8012	return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
8013}
8014
8015static inline int btrfs_lookup_and_bind_dio_csum(struct btrfs_root *root,
8016						 struct inode *inode,
8017						 struct btrfs_dio_private *dip,
8018						 struct bio *bio,
8019						 u64 file_offset)
8020{
8021	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
8022	struct btrfs_io_bio *orig_io_bio = btrfs_io_bio(dip->orig_bio);
8023	int ret;
8024
8025	/*
8026	 * We load all the csum data we need when we submit
8027	 * the first bio to reduce the csum tree search and
8028	 * contention.
8029	 */
8030	if (dip->logical_offset == file_offset) {
8031		ret = btrfs_lookup_bio_sums_dio(root, inode, dip->orig_bio,
8032						file_offset);
8033		if (ret)
8034			return ret;
8035	}
8036
8037	if (bio == dip->orig_bio)
8038		return 0;
8039
8040	file_offset -= dip->logical_offset;
8041	file_offset >>= inode->i_sb->s_blocksize_bits;
8042	io_bio->csum = (u8 *)(((u32 *)orig_io_bio->csum) + file_offset);
8043
8044	return 0;
8045}
8046
8047static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
8048					 int rw, u64 file_offset, int skip_sum,
8049					 int async_submit)
8050{
8051	struct btrfs_dio_private *dip = bio->bi_private;
8052	int write = rw & REQ_WRITE;
8053	struct btrfs_root *root = BTRFS_I(inode)->root;
8054	int ret;
8055
8056	if (async_submit)
8057		async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
8058
8059	bio_get(bio);
8060
8061	if (!write) {
8062		ret = btrfs_bio_wq_end_io(root->fs_info, bio,
8063				BTRFS_WQ_ENDIO_DATA);
8064		if (ret)
8065			goto err;
8066	}
8067
8068	if (skip_sum)
8069		goto map;
8070
8071	if (write && async_submit) {
8072		ret = btrfs_wq_submit_bio(root->fs_info,
8073				   inode, rw, bio, 0, 0,
8074				   file_offset,
8075				   __btrfs_submit_bio_start_direct_io,
8076				   __btrfs_submit_bio_done);
8077		goto err;
8078	} else if (write) {
8079		/*
8080		 * If we aren't doing async submit, calculate the csum of the
8081		 * bio now.
8082		 */
8083		ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
8084		if (ret)
8085			goto err;
8086	} else {
8087		ret = btrfs_lookup_and_bind_dio_csum(root, inode, dip, bio,
8088						     file_offset);
8089		if (ret)
8090			goto err;
8091	}
8092map:
8093	ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
8094err:
8095	bio_put(bio);
8096	return ret;
8097}
8098
8099static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
8100				    int skip_sum)
8101{
8102	struct inode *inode = dip->inode;
8103	struct btrfs_root *root = BTRFS_I(inode)->root;
8104	struct bio *bio;
8105	struct bio *orig_bio = dip->orig_bio;
8106	struct bio_vec *bvec = orig_bio->bi_io_vec;
8107	u64 start_sector = orig_bio->bi_iter.bi_sector;
8108	u64 file_offset = dip->logical_offset;
8109	u64 submit_len = 0;
8110	u64 map_length;
8111	int nr_pages = 0;
8112	int ret;
8113	int async_submit = 0;
8114
8115	map_length = orig_bio->bi_iter.bi_size;
8116	ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
8117			      &map_length, NULL, 0);
8118	if (ret)
8119		return -EIO;
8120
8121	if (map_length >= orig_bio->bi_iter.bi_size) {
8122		bio = orig_bio;
8123		dip->flags |= BTRFS_DIO_ORIG_BIO_SUBMITTED;
8124		goto submit;
8125	}
8126
8127	/* async crcs make it difficult to collect full stripe writes. */
8128	if (btrfs_get_alloc_profile(root, 1) & BTRFS_BLOCK_GROUP_RAID56_MASK)
8129		async_submit = 0;
8130	else
8131		async_submit = 1;
8132
8133	bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
8134	if (!bio)
8135		return -ENOMEM;
8136
8137	bio->bi_private = dip;
8138	bio->bi_end_io = btrfs_end_dio_bio;
8139	btrfs_io_bio(bio)->logical = file_offset;
8140	atomic_inc(&dip->pending_bios);
8141
8142	while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
8143		if (map_length < submit_len + bvec->bv_len ||
8144		    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
8145				 bvec->bv_offset) < bvec->bv_len) {
8146			/*
8147			 * inc the count before we submit the bio so
8148			 * we know the end IO handler won't happen before
8149			 * we inc the count. Otherwise, the dip might get freed
8150			 * before we're done setting it up
8151			 */
8152			atomic_inc(&dip->pending_bios);
8153			ret = __btrfs_submit_dio_bio(bio, inode, rw,
8154						     file_offset, skip_sum,
8155						     async_submit);
8156			if (ret) {
8157				bio_put(bio);
8158				atomic_dec(&dip->pending_bios);
8159				goto out_err;
8160			}
8161
8162			start_sector += submit_len >> 9;
8163			file_offset += submit_len;
8164
8165			submit_len = 0;
8166			nr_pages = 0;
8167
8168			bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
8169						  start_sector, GFP_NOFS);
8170			if (!bio)
8171				goto out_err;
8172			bio->bi_private = dip;
8173			bio->bi_end_io = btrfs_end_dio_bio;
8174			btrfs_io_bio(bio)->logical = file_offset;
8175
8176			map_length = orig_bio->bi_iter.bi_size;
8177			ret = btrfs_map_block(root->fs_info, rw,
8178					      start_sector << 9,
8179					      &map_length, NULL, 0);
8180			if (ret) {
8181				bio_put(bio);
8182				goto out_err;
8183			}
8184		} else {
8185			submit_len += bvec->bv_len;
8186			nr_pages++;
8187			bvec++;
8188		}
8189	}
8190
8191submit:
8192	ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
8193				     async_submit);
8194	if (!ret)
8195		return 0;
8196
8197	bio_put(bio);
8198out_err:
8199	dip->errors = 1;
8200	/*
8201	 * before atomic variable goto zero, we must
8202	 * make sure dip->errors is perceived to be set.
8203	 */
8204	smp_mb__before_atomic();
8205	if (atomic_dec_and_test(&dip->pending_bios))
8206		bio_io_error(dip->orig_bio);
8207
8208	/* bio_end_io() will handle error, so we needn't return it */
8209	return 0;
8210}
8211
8212static void btrfs_submit_direct(int rw, struct bio *dio_bio,
8213				struct inode *inode, loff_t file_offset)
8214{
8215	struct btrfs_root *root = BTRFS_I(inode)->root;
8216	struct btrfs_dio_private *dip;
8217	struct bio *io_bio;
8218	struct btrfs_io_bio *btrfs_bio;
8219	int skip_sum;
8220	int write = rw & REQ_WRITE;
8221	int ret = 0;
8222
8223	skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
8224
8225	io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
8226	if (!io_bio) {
8227		ret = -ENOMEM;
8228		goto free_ordered;
8229	}
8230
8231	dip = kzalloc(sizeof(*dip), GFP_NOFS);
8232	if (!dip) {
8233		ret = -ENOMEM;
8234		goto free_io_bio;
8235	}
8236
8237	dip->private = dio_bio->bi_private;
8238	dip->inode = inode;
8239	dip->logical_offset = file_offset;
8240	dip->bytes = dio_bio->bi_iter.bi_size;
8241	dip->disk_bytenr = (u64)dio_bio->bi_iter.bi_sector << 9;
8242	io_bio->bi_private = dip;
8243	dip->orig_bio = io_bio;
8244	dip->dio_bio = dio_bio;
8245	atomic_set(&dip->pending_bios, 0);
8246	btrfs_bio = btrfs_io_bio(io_bio);
8247	btrfs_bio->logical = file_offset;
8248
8249	if (write) {
8250		io_bio->bi_end_io = btrfs_endio_direct_write;
8251	} else {
8252		io_bio->bi_end_io = btrfs_endio_direct_read;
8253		dip->subio_endio = btrfs_subio_endio_read;
8254	}
8255
8256	ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
8257	if (!ret)
8258		return;
8259
8260	if (btrfs_bio->end_io)
8261		btrfs_bio->end_io(btrfs_bio, ret);
8262free_io_bio:
8263	bio_put(io_bio);
8264
8265free_ordered:
8266	/*
8267	 * If this is a write, we need to clean up the reserved space and kill
8268	 * the ordered extent.
8269	 */
8270	if (write) {
8271		struct btrfs_ordered_extent *ordered;
8272		ordered = btrfs_lookup_ordered_extent(inode, file_offset);
8273		if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
8274		    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
8275			btrfs_free_reserved_extent(root, ordered->start,
8276						   ordered->disk_len, 1);
8277		btrfs_put_ordered_extent(ordered);
8278		btrfs_put_ordered_extent(ordered);
8279	}
8280	bio_endio(dio_bio, ret);
8281}
8282
8283static ssize_t check_direct_IO(struct btrfs_root *root, struct kiocb *iocb,
8284			const struct iov_iter *iter, loff_t offset)
8285{
8286	int seg;
8287	int i;
8288	unsigned blocksize_mask = root->sectorsize - 1;
8289	ssize_t retval = -EINVAL;
8290
8291	if (offset & blocksize_mask)
8292		goto out;
8293
8294	if (iov_iter_alignment(iter) & blocksize_mask)
8295		goto out;
8296
8297	/* If this is a write we don't need to check anymore */
8298	if (iov_iter_rw(iter) == WRITE)
8299		return 0;
8300	/*
8301	 * Check to make sure we don't have duplicate iov_base's in this
8302	 * iovec, if so return EINVAL, otherwise we'll get csum errors
8303	 * when reading back.
8304	 */
8305	for (seg = 0; seg < iter->nr_segs; seg++) {
8306		for (i = seg + 1; i < iter->nr_segs; i++) {
8307			if (iter->iov[seg].iov_base == iter->iov[i].iov_base)
8308				goto out;
8309		}
8310	}
8311	retval = 0;
8312out:
8313	return retval;
8314}
8315
8316static ssize_t btrfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
8317			       loff_t offset)
8318{
8319	struct file *file = iocb->ki_filp;
8320	struct inode *inode = file->f_mapping->host;
8321	u64 outstanding_extents = 0;
8322	size_t count = 0;
8323	int flags = 0;
8324	bool wakeup = true;
8325	bool relock = false;
8326	ssize_t ret;
8327
8328	if (check_direct_IO(BTRFS_I(inode)->root, iocb, iter, offset))
8329		return 0;
8330
8331	inode_dio_begin(inode);
8332	smp_mb__after_atomic();
8333
8334	/*
8335	 * The generic stuff only does filemap_write_and_wait_range, which
8336	 * isn't enough if we've written compressed pages to this area, so
8337	 * we need to flush the dirty pages again to make absolutely sure
8338	 * that any outstanding dirty pages are on disk.
8339	 */
8340	count = iov_iter_count(iter);
8341	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
8342		     &BTRFS_I(inode)->runtime_flags))
8343		filemap_fdatawrite_range(inode->i_mapping, offset,
8344					 offset + count - 1);
8345
8346	if (iov_iter_rw(iter) == WRITE) {
8347		/*
8348		 * If the write DIO is beyond the EOF, we need update
8349		 * the isize, but it is protected by i_mutex. So we can
8350		 * not unlock the i_mutex at this case.
8351		 */
8352		if (offset + count <= inode->i_size) {
8353			mutex_unlock(&inode->i_mutex);
8354			relock = true;
8355		}
8356		ret = btrfs_delalloc_reserve_space(inode, count);
8357		if (ret)
8358			goto out;
8359		outstanding_extents = div64_u64(count +
8360						BTRFS_MAX_EXTENT_SIZE - 1,
8361						BTRFS_MAX_EXTENT_SIZE);
8362
8363		/*
8364		 * We need to know how many extents we reserved so that we can
8365		 * do the accounting properly if we go over the number we
8366		 * originally calculated.  Abuse current->journal_info for this.
8367		 */
8368		current->journal_info = &outstanding_extents;
8369	} else if (test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
8370				     &BTRFS_I(inode)->runtime_flags)) {
8371		inode_dio_end(inode);
8372		flags = DIO_LOCKING | DIO_SKIP_HOLES;
8373		wakeup = false;
8374	}
8375
8376	ret = __blockdev_direct_IO(iocb, inode,
8377				   BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
8378				   iter, offset, btrfs_get_blocks_direct, NULL,
8379				   btrfs_submit_direct, flags);
8380	if (iov_iter_rw(iter) == WRITE) {
8381		current->journal_info = NULL;
8382		if (ret < 0 && ret != -EIOCBQUEUED)
8383			btrfs_delalloc_release_space(inode, count);
8384		else if (ret >= 0 && (size_t)ret < count)
8385			btrfs_delalloc_release_space(inode,
8386						     count - (size_t)ret);
8387	}
8388out:
8389	if (wakeup)
8390		inode_dio_end(inode);
8391	if (relock)
8392		mutex_lock(&inode->i_mutex);
8393
8394	return ret;
8395}
8396
8397#define BTRFS_FIEMAP_FLAGS	(FIEMAP_FLAG_SYNC)
8398
8399static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
8400		__u64 start, __u64 len)
8401{
8402	int	ret;
8403
8404	ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
8405	if (ret)
8406		return ret;
8407
8408	return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
8409}
8410
8411int btrfs_readpage(struct file *file, struct page *page)
8412{
8413	struct extent_io_tree *tree;
8414	tree = &BTRFS_I(page->mapping->host)->io_tree;
8415	return extent_read_full_page(tree, page, btrfs_get_extent, 0);
8416}
8417
8418static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
8419{
8420	struct extent_io_tree *tree;
8421	struct inode *inode = page->mapping->host;
8422	int ret;
8423
8424	if (current->flags & PF_MEMALLOC) {
8425		redirty_page_for_writepage(wbc, page);
8426		unlock_page(page);
8427		return 0;
8428	}
8429
8430	/*
8431	 * If we are under memory pressure we will call this directly from the
8432	 * VM, we need to make sure we have the inode referenced for the ordered
8433	 * extent.  If not just return like we didn't do anything.
8434	 */
8435	if (!igrab(inode)) {
8436		redirty_page_for_writepage(wbc, page);
8437		return AOP_WRITEPAGE_ACTIVATE;
8438	}
8439	tree = &BTRFS_I(page->mapping->host)->io_tree;
8440	ret = extent_write_full_page(tree, page, btrfs_get_extent, wbc);
8441	btrfs_add_delayed_iput(inode);
8442	return ret;
8443}
8444
8445static int btrfs_writepages(struct address_space *mapping,
8446			    struct writeback_control *wbc)
8447{
8448	struct extent_io_tree *tree;
8449
8450	tree = &BTRFS_I(mapping->host)->io_tree;
8451	return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
8452}
8453
8454static int
8455btrfs_readpages(struct file *file, struct address_space *mapping,
8456		struct list_head *pages, unsigned nr_pages)
8457{
8458	struct extent_io_tree *tree;
8459	tree = &BTRFS_I(mapping->host)->io_tree;
8460	return extent_readpages(tree, mapping, pages, nr_pages,
8461				btrfs_get_extent);
8462}
8463static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8464{
8465	struct extent_io_tree *tree;
8466	struct extent_map_tree *map;
8467	int ret;
8468
8469	tree = &BTRFS_I(page->mapping->host)->io_tree;
8470	map = &BTRFS_I(page->mapping->host)->extent_tree;
8471	ret = try_release_extent_mapping(map, tree, page, gfp_flags);
8472	if (ret == 1) {
8473		ClearPagePrivate(page);
8474		set_page_private(page, 0);
8475		page_cache_release(page);
8476	}
8477	return ret;
8478}
8479
8480static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
8481{
8482	if (PageWriteback(page) || PageDirty(page))
8483		return 0;
8484	return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
8485}
8486
8487static void btrfs_invalidatepage(struct page *page, unsigned int offset,
8488				 unsigned int length)
8489{
8490	struct inode *inode = page->mapping->host;
8491	struct extent_io_tree *tree;
8492	struct btrfs_ordered_extent *ordered;
8493	struct extent_state *cached_state = NULL;
8494	u64 page_start = page_offset(page);
8495	u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
8496	int inode_evicting = inode->i_state & I_FREEING;
8497
8498	/*
8499	 * we have the page locked, so new writeback can't start,
8500	 * and the dirty bit won't be cleared while we are here.
8501	 *
8502	 * Wait for IO on this page so that we can safely clear
8503	 * the PagePrivate2 bit and do ordered accounting
8504	 */
8505	wait_on_page_writeback(page);
8506
8507	tree = &BTRFS_I(inode)->io_tree;
8508	if (offset) {
8509		btrfs_releasepage(page, GFP_NOFS);
8510		return;
8511	}
8512
8513	if (!inode_evicting)
8514		lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
8515	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8516	if (ordered) {
8517		/*
8518		 * IO on this page will never be started, so we need
8519		 * to account for any ordered extents now
8520		 */
8521		if (!inode_evicting)
8522			clear_extent_bit(tree, page_start, page_end,
8523					 EXTENT_DIRTY | EXTENT_DELALLOC |
8524					 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
8525					 EXTENT_DEFRAG, 1, 0, &cached_state,
8526					 GFP_NOFS);
8527		/*
8528		 * whoever cleared the private bit is responsible
8529		 * for the finish_ordered_io
8530		 */
8531		if (TestClearPagePrivate2(page)) {
8532			struct btrfs_ordered_inode_tree *tree;
8533			u64 new_len;
8534
8535			tree = &BTRFS_I(inode)->ordered_tree;
8536
8537			spin_lock_irq(&tree->lock);
8538			set_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags);
8539			new_len = page_start - ordered->file_offset;
8540			if (new_len < ordered->truncated_len)
8541				ordered->truncated_len = new_len;
8542			spin_unlock_irq(&tree->lock);
8543
8544			if (btrfs_dec_test_ordered_pending(inode, &ordered,
8545							   page_start,
8546							   PAGE_CACHE_SIZE, 1))
8547				btrfs_finish_ordered_io(ordered);
8548		}
8549		btrfs_put_ordered_extent(ordered);
8550		if (!inode_evicting) {
8551			cached_state = NULL;
8552			lock_extent_bits(tree, page_start, page_end, 0,
8553					 &cached_state);
8554		}
8555	}
8556
8557	if (!inode_evicting) {
8558		clear_extent_bit(tree, page_start, page_end,
8559				 EXTENT_LOCKED | EXTENT_DIRTY |
8560				 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
8561				 EXTENT_DEFRAG, 1, 1,
8562				 &cached_state, GFP_NOFS);
8563
8564		__btrfs_releasepage(page, GFP_NOFS);
8565	}
8566
8567	ClearPageChecked(page);
8568	if (PagePrivate(page)) {
8569		ClearPagePrivate(page);
8570		set_page_private(page, 0);
8571		page_cache_release(page);
8572	}
8573}
8574
8575/*
8576 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
8577 * called from a page fault handler when a page is first dirtied. Hence we must
8578 * be careful to check for EOF conditions here. We set the page up correctly
8579 * for a written page which means we get ENOSPC checking when writing into
8580 * holes and correct delalloc and unwritten extent mapping on filesystems that
8581 * support these features.
8582 *
8583 * We are not allowed to take the i_mutex here so we have to play games to
8584 * protect against truncate races as the page could now be beyond EOF.  Because
8585 * vmtruncate() writes the inode size before removing pages, once we have the
8586 * page lock we can determine safely if the page is beyond EOF. If it is not
8587 * beyond EOF, then the page is guaranteed safe against truncation until we
8588 * unlock the page.
8589 */
8590int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
8591{
8592	struct page *page = vmf->page;
8593	struct inode *inode = file_inode(vma->vm_file);
8594	struct btrfs_root *root = BTRFS_I(inode)->root;
8595	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
8596	struct btrfs_ordered_extent *ordered;
8597	struct extent_state *cached_state = NULL;
8598	char *kaddr;
8599	unsigned long zero_start;
8600	loff_t size;
8601	int ret;
8602	int reserved = 0;
8603	u64 page_start;
8604	u64 page_end;
8605
8606	sb_start_pagefault(inode->i_sb);
8607	ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
8608	if (!ret) {
8609		ret = file_update_time(vma->vm_file);
8610		reserved = 1;
8611	}
8612	if (ret) {
8613		if (ret == -ENOMEM)
8614			ret = VM_FAULT_OOM;
8615		else /* -ENOSPC, -EIO, etc */
8616			ret = VM_FAULT_SIGBUS;
8617		if (reserved)
8618			goto out;
8619		goto out_noreserve;
8620	}
8621
8622	ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
8623again:
8624	lock_page(page);
8625	size = i_size_read(inode);
8626	page_start = page_offset(page);
8627	page_end = page_start + PAGE_CACHE_SIZE - 1;
8628
8629	if ((page->mapping != inode->i_mapping) ||
8630	    (page_start >= size)) {
8631		/* page got truncated out from underneath us */
8632		goto out_unlock;
8633	}
8634	wait_on_page_writeback(page);
8635
8636	lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
8637	set_page_extent_mapped(page);
8638
8639	/*
8640	 * we can't set the delalloc bits if there are pending ordered
8641	 * extents.  Drop our locks and wait for them to finish
8642	 */
8643	ordered = btrfs_lookup_ordered_extent(inode, page_start);
8644	if (ordered) {
8645		unlock_extent_cached(io_tree, page_start, page_end,
8646				     &cached_state, GFP_NOFS);
8647		unlock_page(page);
8648		btrfs_start_ordered_extent(inode, ordered, 1);
8649		btrfs_put_ordered_extent(ordered);
8650		goto again;
8651	}
8652
8653	/*
8654	 * XXX - page_mkwrite gets called every time the page is dirtied, even
8655	 * if it was already dirty, so for space accounting reasons we need to
8656	 * clear any delalloc bits for the range we are fixing to save.  There
8657	 * is probably a better way to do this, but for now keep consistent with
8658	 * prepare_pages in the normal write path.
8659	 */
8660	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
8661			  EXTENT_DIRTY | EXTENT_DELALLOC |
8662			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
8663			  0, 0, &cached_state, GFP_NOFS);
8664
8665	ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
8666					&cached_state);
8667	if (ret) {
8668		unlock_extent_cached(io_tree, page_start, page_end,
8669				     &cached_state, GFP_NOFS);
8670		ret = VM_FAULT_SIGBUS;
8671		goto out_unlock;
8672	}
8673	ret = 0;
8674
8675	/* page is wholly or partially inside EOF */
8676	if (page_start + PAGE_CACHE_SIZE > size)
8677		zero_start = size & ~PAGE_CACHE_MASK;
8678	else
8679		zero_start = PAGE_CACHE_SIZE;
8680
8681	if (zero_start != PAGE_CACHE_SIZE) {
8682		kaddr = kmap(page);
8683		memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
8684		flush_dcache_page(page);
8685		kunmap(page);
8686	}
8687	ClearPageChecked(page);
8688	set_page_dirty(page);
8689	SetPageUptodate(page);
8690
8691	BTRFS_I(inode)->last_trans = root->fs_info->generation;
8692	BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
8693	BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
8694
8695	unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
8696
8697out_unlock:
8698	if (!ret) {
8699		sb_end_pagefault(inode->i_sb);
8700		return VM_FAULT_LOCKED;
8701	}
8702	unlock_page(page);
8703out:
8704	btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
8705out_noreserve:
8706	sb_end_pagefault(inode->i_sb);
8707	return ret;
8708}
8709
8710static int btrfs_truncate(struct inode *inode)
8711{
8712	struct btrfs_root *root = BTRFS_I(inode)->root;
8713	struct btrfs_block_rsv *rsv;
8714	int ret = 0;
8715	int err = 0;
8716	struct btrfs_trans_handle *trans;
8717	u64 mask = root->sectorsize - 1;
8718	u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
8719
8720	ret = btrfs_wait_ordered_range(inode, inode->i_size & (~mask),
8721				       (u64)-1);
8722	if (ret)
8723		return ret;
8724
8725	/*
8726	 * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
8727	 * 3 things going on here
8728	 *
8729	 * 1) We need to reserve space for our orphan item and the space to
8730	 * delete our orphan item.  Lord knows we don't want to have a dangling
8731	 * orphan item because we didn't reserve space to remove it.
8732	 *
8733	 * 2) We need to reserve space to update our inode.
8734	 *
8735	 * 3) We need to have something to cache all the space that is going to
8736	 * be free'd up by the truncate operation, but also have some slack
8737	 * space reserved in case it uses space during the truncate (thank you
8738	 * very much snapshotting).
8739	 *
8740	 * And we need these to all be seperate.  The fact is we can use alot of
8741	 * space doing the truncate, and we have no earthly idea how much space
8742	 * we will use, so we need the truncate reservation to be seperate so it
8743	 * doesn't end up using space reserved for updating the inode or
8744	 * removing the orphan item.  We also need to be able to stop the
8745	 * transaction and start a new one, which means we need to be able to
8746	 * update the inode several times, and we have no idea of knowing how
8747	 * many times that will be, so we can't just reserve 1 item for the
8748	 * entirety of the opration, so that has to be done seperately as well.
8749	 * Then there is the orphan item, which does indeed need to be held on
8750	 * to for the whole operation, and we need nobody to touch this reserved
8751	 * space except the orphan code.
8752	 *
8753	 * So that leaves us with
8754	 *
8755	 * 1) root->orphan_block_rsv - for the orphan deletion.
8756	 * 2) rsv - for the truncate reservation, which we will steal from the
8757	 * transaction reservation.
8758	 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
8759	 * updating the inode.
8760	 */
8761	rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
8762	if (!rsv)
8763		return -ENOMEM;
8764	rsv->size = min_size;
8765	rsv->failfast = 1;
8766
8767	/*
8768	 * 1 for the truncate slack space
8769	 * 1 for updating the inode.
8770	 */
8771	trans = btrfs_start_transaction(root, 2);
8772	if (IS_ERR(trans)) {
8773		err = PTR_ERR(trans);
8774		goto out;
8775	}
8776
8777	/* Migrate the slack space for the truncate to our reserve */
8778	ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
8779				      min_size);
8780	BUG_ON(ret);
8781
8782	/*
8783	 * So if we truncate and then write and fsync we normally would just
8784	 * write the extents that changed, which is a problem if we need to
8785	 * first truncate that entire inode.  So set this flag so we write out
8786	 * all of the extents in the inode to the sync log so we're completely
8787	 * safe.
8788	 */
8789	set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
8790	trans->block_rsv = rsv;
8791
8792	while (1) {
8793		ret = btrfs_truncate_inode_items(trans, root, inode,
8794						 inode->i_size,
8795						 BTRFS_EXTENT_DATA_KEY);
8796		if (ret != -ENOSPC && ret != -EAGAIN) {
8797			err = ret;
8798			break;
8799		}
8800
8801		trans->block_rsv = &root->fs_info->trans_block_rsv;
8802		ret = btrfs_update_inode(trans, root, inode);
8803		if (ret) {
8804			err = ret;
8805			break;
8806		}
8807
8808		btrfs_end_transaction(trans, root);
8809		btrfs_btree_balance_dirty(root);
8810
8811		trans = btrfs_start_transaction(root, 2);
8812		if (IS_ERR(trans)) {
8813			ret = err = PTR_ERR(trans);
8814			trans = NULL;
8815			break;
8816		}
8817
8818		ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
8819					      rsv, min_size);
8820		BUG_ON(ret);	/* shouldn't happen */
8821		trans->block_rsv = rsv;
8822	}
8823
8824	if (ret == 0 && inode->i_nlink > 0) {
8825		trans->block_rsv = root->orphan_block_rsv;
8826		ret = btrfs_orphan_del(trans, inode);
8827		if (ret)
8828			err = ret;
8829	}
8830
8831	if (trans) {
8832		trans->block_rsv = &root->fs_info->trans_block_rsv;
8833		ret = btrfs_update_inode(trans, root, inode);
8834		if (ret && !err)
8835			err = ret;
8836
8837		ret = btrfs_end_transaction(trans, root);
8838		btrfs_btree_balance_dirty(root);
8839	}
8840
8841out:
8842	btrfs_free_block_rsv(root, rsv);
8843
8844	if (ret && !err)
8845		err = ret;
8846
8847	return err;
8848}
8849
8850/*
8851 * create a new subvolume directory/inode (helper for the ioctl).
8852 */
8853int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
8854			     struct btrfs_root *new_root,
8855			     struct btrfs_root *parent_root,
8856			     u64 new_dirid)
8857{
8858	struct inode *inode;
8859	int err;
8860	u64 index = 0;
8861
8862	inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
8863				new_dirid, new_dirid,
8864				S_IFDIR | (~current_umask() & S_IRWXUGO),
8865				&index);
8866	if (IS_ERR(inode))
8867		return PTR_ERR(inode);
8868	inode->i_op = &btrfs_dir_inode_operations;
8869	inode->i_fop = &btrfs_dir_file_operations;
8870
8871	set_nlink(inode, 1);
8872	btrfs_i_size_write(inode, 0);
8873	unlock_new_inode(inode);
8874
8875	err = btrfs_subvol_inherit_props(trans, new_root, parent_root);
8876	if (err)
8877		btrfs_err(new_root->fs_info,
8878			  "error inheriting subvolume %llu properties: %d",
8879			  new_root->root_key.objectid, err);
8880
8881	err = btrfs_update_inode(trans, new_root, inode);
8882
8883	iput(inode);
8884	return err;
8885}
8886
8887struct inode *btrfs_alloc_inode(struct super_block *sb)
8888{
8889	struct btrfs_inode *ei;
8890	struct inode *inode;
8891
8892	ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
8893	if (!ei)
8894		return NULL;
8895
8896	ei->root = NULL;
8897	ei->generation = 0;
8898	ei->last_trans = 0;
8899	ei->last_sub_trans = 0;
8900	ei->logged_trans = 0;
8901	ei->delalloc_bytes = 0;
8902	ei->defrag_bytes = 0;
8903	ei->disk_i_size = 0;
8904	ei->flags = 0;
8905	ei->csum_bytes = 0;
8906	ei->index_cnt = (u64)-1;
8907	ei->dir_index = 0;
8908	ei->last_unlink_trans = 0;
8909	ei->last_log_commit = 0;
8910	ei->delayed_iput_count = 0;
8911
8912	spin_lock_init(&ei->lock);
8913	ei->outstanding_extents = 0;
8914	ei->reserved_extents = 0;
8915
8916	ei->runtime_flags = 0;
8917	ei->force_compress = BTRFS_COMPRESS_NONE;
8918
8919	ei->delayed_node = NULL;
8920
8921	ei->i_otime.tv_sec = 0;
8922	ei->i_otime.tv_nsec = 0;
8923
8924	inode = &ei->vfs_inode;
8925	extent_map_tree_init(&ei->extent_tree);
8926	extent_io_tree_init(&ei->io_tree, &inode->i_data);
8927	extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
8928	ei->io_tree.track_uptodate = 1;
8929	ei->io_failure_tree.track_uptodate = 1;
8930	atomic_set(&ei->sync_writers, 0);
8931	mutex_init(&ei->log_mutex);
8932	mutex_init(&ei->delalloc_mutex);
8933	btrfs_ordered_inode_tree_init(&ei->ordered_tree);
8934	INIT_LIST_HEAD(&ei->delalloc_inodes);
8935	INIT_LIST_HEAD(&ei->delayed_iput);
8936	RB_CLEAR_NODE(&ei->rb_node);
8937
8938	return inode;
8939}
8940
8941#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8942void btrfs_test_destroy_inode(struct inode *inode)
8943{
8944	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8945	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8946}
8947#endif
8948
8949static void btrfs_i_callback(struct rcu_head *head)
8950{
8951	struct inode *inode = container_of(head, struct inode, i_rcu);
8952	kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
8953}
8954
8955void btrfs_destroy_inode(struct inode *inode)
8956{
8957	struct btrfs_ordered_extent *ordered;
8958	struct btrfs_root *root = BTRFS_I(inode)->root;
8959
8960	WARN_ON(!hlist_empty(&inode->i_dentry));
8961	WARN_ON(inode->i_data.nrpages);
8962	WARN_ON(BTRFS_I(inode)->outstanding_extents);
8963	WARN_ON(BTRFS_I(inode)->reserved_extents);
8964	WARN_ON(BTRFS_I(inode)->delalloc_bytes);
8965	WARN_ON(BTRFS_I(inode)->csum_bytes);
8966	WARN_ON(BTRFS_I(inode)->defrag_bytes);
8967
8968	/*
8969	 * This can happen where we create an inode, but somebody else also
8970	 * created the same inode and we need to destroy the one we already
8971	 * created.
8972	 */
8973	if (!root)
8974		goto free;
8975
8976	if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
8977		     &BTRFS_I(inode)->runtime_flags)) {
8978		btrfs_info(root->fs_info, "inode %llu still on the orphan list",
8979			btrfs_ino(inode));
8980		atomic_dec(&root->orphan_inodes);
8981	}
8982
8983	while (1) {
8984		ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
8985		if (!ordered)
8986			break;
8987		else {
8988			btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
8989				ordered->file_offset, ordered->len);
8990			btrfs_remove_ordered_extent(inode, ordered);
8991			btrfs_put_ordered_extent(ordered);
8992			btrfs_put_ordered_extent(ordered);
8993		}
8994	}
8995	inode_tree_del(inode);
8996	btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8997free:
8998	call_rcu(&inode->i_rcu, btrfs_i_callback);
8999}
9000
9001int btrfs_drop_inode(struct inode *inode)
9002{
9003	struct btrfs_root *root = BTRFS_I(inode)->root;
9004
9005	if (root == NULL)
9006		return 1;
9007
9008	/* the snap/subvol tree is on deleting */
9009	if (btrfs_root_refs(&root->root_item) == 0)
9010		return 1;
9011	else
9012		return generic_drop_inode(inode);
9013}
9014
9015static void init_once(void *foo)
9016{
9017	struct btrfs_inode *ei = (struct btrfs_inode *) foo;
9018
9019	inode_init_once(&ei->vfs_inode);
9020}
9021
9022void btrfs_destroy_cachep(void)
9023{
9024	/*
9025	 * Make sure all delayed rcu free inodes are flushed before we
9026	 * destroy cache.
9027	 */
9028	rcu_barrier();
9029	if (btrfs_inode_cachep)
9030		kmem_cache_destroy(btrfs_inode_cachep);
9031	if (btrfs_trans_handle_cachep)
9032		kmem_cache_destroy(btrfs_trans_handle_cachep);
9033	if (btrfs_transaction_cachep)
9034		kmem_cache_destroy(btrfs_transaction_cachep);
9035	if (btrfs_path_cachep)
9036		kmem_cache_destroy(btrfs_path_cachep);
9037	if (btrfs_free_space_cachep)
9038		kmem_cache_destroy(btrfs_free_space_cachep);
9039	if (btrfs_delalloc_work_cachep)
9040		kmem_cache_destroy(btrfs_delalloc_work_cachep);
9041}
9042
9043int btrfs_init_cachep(void)
9044{
9045	btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
9046			sizeof(struct btrfs_inode), 0,
9047			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
9048	if (!btrfs_inode_cachep)
9049		goto fail;
9050
9051	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
9052			sizeof(struct btrfs_trans_handle), 0,
9053			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9054	if (!btrfs_trans_handle_cachep)
9055		goto fail;
9056
9057	btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
9058			sizeof(struct btrfs_transaction), 0,
9059			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9060	if (!btrfs_transaction_cachep)
9061		goto fail;
9062
9063	btrfs_path_cachep = kmem_cache_create("btrfs_path",
9064			sizeof(struct btrfs_path), 0,
9065			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9066	if (!btrfs_path_cachep)
9067		goto fail;
9068
9069	btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
9070			sizeof(struct btrfs_free_space), 0,
9071			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
9072	if (!btrfs_free_space_cachep)
9073		goto fail;
9074
9075	btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
9076			sizeof(struct btrfs_delalloc_work), 0,
9077			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
9078			NULL);
9079	if (!btrfs_delalloc_work_cachep)
9080		goto fail;
9081
9082	return 0;
9083fail:
9084	btrfs_destroy_cachep();
9085	return -ENOMEM;
9086}
9087
9088static int btrfs_getattr(struct vfsmount *mnt,
9089			 struct dentry *dentry, struct kstat *stat)
9090{
9091	u64 delalloc_bytes;
9092	struct inode *inode = d_inode(dentry);
9093	u32 blocksize = inode->i_sb->s_blocksize;
9094
9095	generic_fillattr(inode, stat);
9096	stat->dev = BTRFS_I(inode)->root->anon_dev;
9097	stat->blksize = PAGE_CACHE_SIZE;
9098
9099	spin_lock(&BTRFS_I(inode)->lock);
9100	delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
9101	spin_unlock(&BTRFS_I(inode)->lock);
9102	stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
9103			ALIGN(delalloc_bytes, blocksize)) >> 9;
9104	return 0;
9105}
9106
9107static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
9108			   struct inode *new_dir, struct dentry *new_dentry)
9109{
9110	struct btrfs_trans_handle *trans;
9111	struct btrfs_root *root = BTRFS_I(old_dir)->root;
9112	struct btrfs_root *dest = BTRFS_I(new_dir)->root;
9113	struct inode *new_inode = d_inode(new_dentry);
9114	struct inode *old_inode = d_inode(old_dentry);
9115	struct timespec ctime = CURRENT_TIME;
9116	u64 index = 0;
9117	u64 root_objectid;
9118	int ret;
9119	u64 old_ino = btrfs_ino(old_inode);
9120
9121	if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
9122		return -EPERM;
9123
9124	/* we only allow rename subvolume link between subvolumes */
9125	if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
9126		return -EXDEV;
9127
9128	if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
9129	    (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
9130		return -ENOTEMPTY;
9131
9132	if (S_ISDIR(old_inode->i_mode) && new_inode &&
9133	    new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
9134		return -ENOTEMPTY;
9135
9136
9137	/* check for collisions, even if the  name isn't there */
9138	ret = btrfs_check_dir_item_collision(dest, new_dir->i_ino,
9139			     new_dentry->d_name.name,
9140			     new_dentry->d_name.len);
9141
9142	if (ret) {
9143		if (ret == -EEXIST) {
9144			/* we shouldn't get
9145			 * eexist without a new_inode */
9146			if (WARN_ON(!new_inode)) {
9147				return ret;
9148			}
9149		} else {
9150			/* maybe -EOVERFLOW */
9151			return ret;
9152		}
9153	}
9154	ret = 0;
9155
9156	/*
9157	 * we're using rename to replace one file with another.  Start IO on it
9158	 * now so  we don't add too much work to the end of the transaction
9159	 */
9160	if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size)
9161		filemap_flush(old_inode->i_mapping);
9162
9163	/* close the racy window with snapshot create/destroy ioctl */
9164	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9165		down_read(&root->fs_info->subvol_sem);
9166	/*
9167	 * We want to reserve the absolute worst case amount of items.  So if
9168	 * both inodes are subvols and we need to unlink them then that would
9169	 * require 4 item modifications, but if they are both normal inodes it
9170	 * would require 5 item modifications, so we'll assume their normal
9171	 * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
9172	 * should cover the worst case number of items we'll modify.
9173	 */
9174	trans = btrfs_start_transaction(root, 11);
9175	if (IS_ERR(trans)) {
9176                ret = PTR_ERR(trans);
9177                goto out_notrans;
9178        }
9179
9180	if (dest != root)
9181		btrfs_record_root_in_trans(trans, dest);
9182
9183	ret = btrfs_set_inode_index(new_dir, &index);
9184	if (ret)
9185		goto out_fail;
9186
9187	BTRFS_I(old_inode)->dir_index = 0ULL;
9188	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9189		/* force full log commit if subvolume involved. */
9190		btrfs_set_log_full_commit(root->fs_info, trans);
9191	} else {
9192		ret = btrfs_insert_inode_ref(trans, dest,
9193					     new_dentry->d_name.name,
9194					     new_dentry->d_name.len,
9195					     old_ino,
9196					     btrfs_ino(new_dir), index);
9197		if (ret)
9198			goto out_fail;
9199		/*
9200		 * this is an ugly little race, but the rename is required
9201		 * to make sure that if we crash, the inode is either at the
9202		 * old name or the new one.  pinning the log transaction lets
9203		 * us make sure we don't allow a log commit to come in after
9204		 * we unlink the name but before we add the new name back in.
9205		 */
9206		btrfs_pin_log_trans(root);
9207	}
9208
9209	inode_inc_iversion(old_dir);
9210	inode_inc_iversion(new_dir);
9211	inode_inc_iversion(old_inode);
9212	old_dir->i_ctime = old_dir->i_mtime = ctime;
9213	new_dir->i_ctime = new_dir->i_mtime = ctime;
9214	old_inode->i_ctime = ctime;
9215
9216	if (old_dentry->d_parent != new_dentry->d_parent)
9217		btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
9218
9219	if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
9220		root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
9221		ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
9222					old_dentry->d_name.name,
9223					old_dentry->d_name.len);
9224	} else {
9225		ret = __btrfs_unlink_inode(trans, root, old_dir,
9226					d_inode(old_dentry),
9227					old_dentry->d_name.name,
9228					old_dentry->d_name.len);
9229		if (!ret)
9230			ret = btrfs_update_inode(trans, root, old_inode);
9231	}
9232	if (ret) {
9233		btrfs_abort_transaction(trans, root, ret);
9234		goto out_fail;
9235	}
9236
9237	if (new_inode) {
9238		inode_inc_iversion(new_inode);
9239		new_inode->i_ctime = CURRENT_TIME;
9240		if (unlikely(btrfs_ino(new_inode) ==
9241			     BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
9242			root_objectid = BTRFS_I(new_inode)->location.objectid;
9243			ret = btrfs_unlink_subvol(trans, dest, new_dir,
9244						root_objectid,
9245						new_dentry->d_name.name,
9246						new_dentry->d_name.len);
9247			BUG_ON(new_inode->i_nlink == 0);
9248		} else {
9249			ret = btrfs_unlink_inode(trans, dest, new_dir,
9250						 d_inode(new_dentry),
9251						 new_dentry->d_name.name,
9252						 new_dentry->d_name.len);
9253		}
9254		if (!ret && new_inode->i_nlink == 0)
9255			ret = btrfs_orphan_add(trans, d_inode(new_dentry));
9256		if (ret) {
9257			btrfs_abort_transaction(trans, root, ret);
9258			goto out_fail;
9259		}
9260	}
9261
9262	ret = btrfs_add_link(trans, new_dir, old_inode,
9263			     new_dentry->d_name.name,
9264			     new_dentry->d_name.len, 0, index);
9265	if (ret) {
9266		btrfs_abort_transaction(trans, root, ret);
9267		goto out_fail;
9268	}
9269
9270	if (old_inode->i_nlink == 1)
9271		BTRFS_I(old_inode)->dir_index = index;
9272
9273	if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
9274		struct dentry *parent = new_dentry->d_parent;
9275		btrfs_log_new_name(trans, old_inode, old_dir, parent);
9276		btrfs_end_log_trans(root);
9277	}
9278out_fail:
9279	btrfs_end_transaction(trans, root);
9280out_notrans:
9281	if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
9282		up_read(&root->fs_info->subvol_sem);
9283
9284	return ret;
9285}
9286
9287static int btrfs_rename2(struct inode *old_dir, struct dentry *old_dentry,
9288			 struct inode *new_dir, struct dentry *new_dentry,
9289			 unsigned int flags)
9290{
9291	if (flags & ~RENAME_NOREPLACE)
9292		return -EINVAL;
9293
9294	return btrfs_rename(old_dir, old_dentry, new_dir, new_dentry);
9295}
9296
9297static void btrfs_run_delalloc_work(struct btrfs_work *work)
9298{
9299	struct btrfs_delalloc_work *delalloc_work;
9300	struct inode *inode;
9301
9302	delalloc_work = container_of(work, struct btrfs_delalloc_work,
9303				     work);
9304	inode = delalloc_work->inode;
9305	if (delalloc_work->wait) {
9306		btrfs_wait_ordered_range(inode, 0, (u64)-1);
9307	} else {
9308		filemap_flush(inode->i_mapping);
9309		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
9310			     &BTRFS_I(inode)->runtime_flags))
9311			filemap_flush(inode->i_mapping);
9312	}
9313
9314	if (delalloc_work->delay_iput)
9315		btrfs_add_delayed_iput(inode);
9316	else
9317		iput(inode);
9318	complete(&delalloc_work->completion);
9319}
9320
9321struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
9322						    int wait, int delay_iput)
9323{
9324	struct btrfs_delalloc_work *work;
9325
9326	work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
9327	if (!work)
9328		return NULL;
9329
9330	init_completion(&work->completion);
9331	INIT_LIST_HEAD(&work->list);
9332	work->inode = inode;
9333	work->wait = wait;
9334	work->delay_iput = delay_iput;
9335	WARN_ON_ONCE(!inode);
9336	btrfs_init_work(&work->work, btrfs_flush_delalloc_helper,
9337			btrfs_run_delalloc_work, NULL, NULL);
9338
9339	return work;
9340}
9341
9342void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
9343{
9344	wait_for_completion(&work->completion);
9345	kmem_cache_free(btrfs_delalloc_work_cachep, work);
9346}
9347
9348/*
9349 * some fairly slow code that needs optimization. This walks the list
9350 * of all the inodes with pending delalloc and forces them to disk.
9351 */
9352static int __start_delalloc_inodes(struct btrfs_root *root, int delay_iput,
9353				   int nr)
9354{
9355	struct btrfs_inode *binode;
9356	struct inode *inode;
9357	struct btrfs_delalloc_work *work, *next;
9358	struct list_head works;
9359	struct list_head splice;
9360	int ret = 0;
9361
9362	INIT_LIST_HEAD(&works);
9363	INIT_LIST_HEAD(&splice);
9364
9365	mutex_lock(&root->delalloc_mutex);
9366	spin_lock(&root->delalloc_lock);
9367	list_splice_init(&root->delalloc_inodes, &splice);
9368	while (!list_empty(&splice)) {
9369		binode = list_entry(splice.next, struct btrfs_inode,
9370				    delalloc_inodes);
9371
9372		list_move_tail(&binode->delalloc_inodes,
9373			       &root->delalloc_inodes);
9374		inode = igrab(&binode->vfs_inode);
9375		if (!inode) {
9376			cond_resched_lock(&root->delalloc_lock);
9377			continue;
9378		}
9379		spin_unlock(&root->delalloc_lock);
9380
9381		work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
9382		if (!work) {
9383			if (delay_iput)
9384				btrfs_add_delayed_iput(inode);
9385			else
9386				iput(inode);
9387			ret = -ENOMEM;
9388			goto out;
9389		}
9390		list_add_tail(&work->list, &works);
9391		btrfs_queue_work(root->fs_info->flush_workers,
9392				 &work->work);
9393		ret++;
9394		if (nr != -1 && ret >= nr)
9395			goto out;
9396		cond_resched();
9397		spin_lock(&root->delalloc_lock);
9398	}
9399	spin_unlock(&root->delalloc_lock);
9400
9401out:
9402	list_for_each_entry_safe(work, next, &works, list) {
9403		list_del_init(&work->list);
9404		btrfs_wait_and_free_delalloc_work(work);
9405	}
9406
9407	if (!list_empty_careful(&splice)) {
9408		spin_lock(&root->delalloc_lock);
9409		list_splice_tail(&splice, &root->delalloc_inodes);
9410		spin_unlock(&root->delalloc_lock);
9411	}
9412	mutex_unlock(&root->delalloc_mutex);
9413	return ret;
9414}
9415
9416int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
9417{
9418	int ret;
9419
9420	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
9421		return -EROFS;
9422
9423	ret = __start_delalloc_inodes(root, delay_iput, -1);
9424	if (ret > 0)
9425		ret = 0;
9426	/*
9427	 * the filemap_flush will queue IO into the worker threads, but
9428	 * we have to make sure the IO is actually started and that
9429	 * ordered extents get created before we return
9430	 */
9431	atomic_inc(&root->fs_info->async_submit_draining);
9432	while (atomic_read(&root->fs_info->nr_async_submits) ||
9433	      atomic_read(&root->fs_info->async_delalloc_pages)) {
9434		wait_event(root->fs_info->async_submit_wait,
9435		   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
9436		    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
9437	}
9438	atomic_dec(&root->fs_info->async_submit_draining);
9439	return ret;
9440}
9441
9442int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
9443			       int nr)
9444{
9445	struct btrfs_root *root;
9446	struct list_head splice;
9447	int ret;
9448
9449	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
9450		return -EROFS;
9451
9452	INIT_LIST_HEAD(&splice);
9453
9454	mutex_lock(&fs_info->delalloc_root_mutex);
9455	spin_lock(&fs_info->delalloc_root_lock);
9456	list_splice_init(&fs_info->delalloc_roots, &splice);
9457	while (!list_empty(&splice) && nr) {
9458		root = list_first_entry(&splice, struct btrfs_root,
9459					delalloc_root);
9460		root = btrfs_grab_fs_root(root);
9461		BUG_ON(!root);
9462		list_move_tail(&root->delalloc_root,
9463			       &fs_info->delalloc_roots);
9464		spin_unlock(&fs_info->delalloc_root_lock);
9465
9466		ret = __start_delalloc_inodes(root, delay_iput, nr);
9467		btrfs_put_fs_root(root);
9468		if (ret < 0)
9469			goto out;
9470
9471		if (nr != -1) {
9472			nr -= ret;
9473			WARN_ON(nr < 0);
9474		}
9475		spin_lock(&fs_info->delalloc_root_lock);
9476	}
9477	spin_unlock(&fs_info->delalloc_root_lock);
9478
9479	ret = 0;
9480	atomic_inc(&fs_info->async_submit_draining);
9481	while (atomic_read(&fs_info->nr_async_submits) ||
9482	      atomic_read(&fs_info->async_delalloc_pages)) {
9483		wait_event(fs_info->async_submit_wait,
9484		   (atomic_read(&fs_info->nr_async_submits) == 0 &&
9485		    atomic_read(&fs_info->async_delalloc_pages) == 0));
9486	}
9487	atomic_dec(&fs_info->async_submit_draining);
9488out:
9489	if (!list_empty_careful(&splice)) {
9490		spin_lock(&fs_info->delalloc_root_lock);
9491		list_splice_tail(&splice, &fs_info->delalloc_roots);
9492		spin_unlock(&fs_info->delalloc_root_lock);
9493	}
9494	mutex_unlock(&fs_info->delalloc_root_mutex);
9495	return ret;
9496}
9497
9498static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
9499			 const char *symname)
9500{
9501	struct btrfs_trans_handle *trans;
9502	struct btrfs_root *root = BTRFS_I(dir)->root;
9503	struct btrfs_path *path;
9504	struct btrfs_key key;
9505	struct inode *inode = NULL;
9506	int err;
9507	int drop_inode = 0;
9508	u64 objectid;
9509	u64 index = 0;
9510	int name_len;
9511	int datasize;
9512	unsigned long ptr;
9513	struct btrfs_file_extent_item *ei;
9514	struct extent_buffer *leaf;
9515
9516	name_len = strlen(symname);
9517	if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
9518		return -ENAMETOOLONG;
9519
9520	/*
9521	 * 2 items for inode item and ref
9522	 * 2 items for dir items
9523	 * 1 item for updating parent inode item
9524	 * 1 item for the inline extent item
9525	 * 1 item for xattr if selinux is on
9526	 */
9527	trans = btrfs_start_transaction(root, 7);
9528	if (IS_ERR(trans))
9529		return PTR_ERR(trans);
9530
9531	err = btrfs_find_free_ino(root, &objectid);
9532	if (err)
9533		goto out_unlock;
9534
9535	inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
9536				dentry->d_name.len, btrfs_ino(dir), objectid,
9537				S_IFLNK|S_IRWXUGO, &index);
9538	if (IS_ERR(inode)) {
9539		err = PTR_ERR(inode);
9540		goto out_unlock;
9541	}
9542
9543	/*
9544	* If the active LSM wants to access the inode during
9545	* d_instantiate it needs these. Smack checks to see
9546	* if the filesystem supports xattrs by looking at the
9547	* ops vector.
9548	*/
9549	inode->i_fop = &btrfs_file_operations;
9550	inode->i_op = &btrfs_file_inode_operations;
9551	inode->i_mapping->a_ops = &btrfs_aops;
9552	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9553
9554	err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
9555	if (err)
9556		goto out_unlock_inode;
9557
9558	err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
9559	if (err)
9560		goto out_unlock_inode;
9561
9562	path = btrfs_alloc_path();
9563	if (!path) {
9564		err = -ENOMEM;
9565		goto out_unlock_inode;
9566	}
9567	key.objectid = btrfs_ino(inode);
9568	key.offset = 0;
9569	key.type = BTRFS_EXTENT_DATA_KEY;
9570	datasize = btrfs_file_extent_calc_inline_size(name_len);
9571	err = btrfs_insert_empty_item(trans, root, path, &key,
9572				      datasize);
9573	if (err) {
9574		btrfs_free_path(path);
9575		goto out_unlock_inode;
9576	}
9577	leaf = path->nodes[0];
9578	ei = btrfs_item_ptr(leaf, path->slots[0],
9579			    struct btrfs_file_extent_item);
9580	btrfs_set_file_extent_generation(leaf, ei, trans->transid);
9581	btrfs_set_file_extent_type(leaf, ei,
9582				   BTRFS_FILE_EXTENT_INLINE);
9583	btrfs_set_file_extent_encryption(leaf, ei, 0);
9584	btrfs_set_file_extent_compression(leaf, ei, 0);
9585	btrfs_set_file_extent_other_encoding(leaf, ei, 0);
9586	btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
9587
9588	ptr = btrfs_file_extent_inline_start(ei);
9589	write_extent_buffer(leaf, symname, ptr, name_len);
9590	btrfs_mark_buffer_dirty(leaf);
9591	btrfs_free_path(path);
9592
9593	inode->i_op = &btrfs_symlink_inode_operations;
9594	inode->i_mapping->a_ops = &btrfs_symlink_aops;
9595	inode_set_bytes(inode, name_len);
9596	btrfs_i_size_write(inode, name_len);
9597	err = btrfs_update_inode(trans, root, inode);
9598	if (err) {
9599		drop_inode = 1;
9600		goto out_unlock_inode;
9601	}
9602
9603	unlock_new_inode(inode);
9604	d_instantiate(dentry, inode);
9605
9606out_unlock:
9607	btrfs_end_transaction(trans, root);
9608	if (drop_inode) {
9609		inode_dec_link_count(inode);
9610		iput(inode);
9611	}
9612	btrfs_btree_balance_dirty(root);
9613	return err;
9614
9615out_unlock_inode:
9616	drop_inode = 1;
9617	unlock_new_inode(inode);
9618	goto out_unlock;
9619}
9620
9621static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
9622				       u64 start, u64 num_bytes, u64 min_size,
9623				       loff_t actual_len, u64 *alloc_hint,
9624				       struct btrfs_trans_handle *trans)
9625{
9626	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
9627	struct extent_map *em;
9628	struct btrfs_root *root = BTRFS_I(inode)->root;
9629	struct btrfs_key ins;
9630	u64 cur_offset = start;
9631	u64 i_size;
9632	u64 cur_bytes;
9633	int ret = 0;
9634	bool own_trans = true;
9635
9636	if (trans)
9637		own_trans = false;
9638	while (num_bytes > 0) {
9639		if (own_trans) {
9640			trans = btrfs_start_transaction(root, 3);
9641			if (IS_ERR(trans)) {
9642				ret = PTR_ERR(trans);
9643				break;
9644			}
9645		}
9646
9647		cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
9648		cur_bytes = max(cur_bytes, min_size);
9649		ret = btrfs_reserve_extent(root, cur_bytes, min_size, 0,
9650					   *alloc_hint, &ins, 1, 0);
9651		if (ret) {
9652			if (own_trans)
9653				btrfs_end_transaction(trans, root);
9654			break;
9655		}
9656
9657		ret = insert_reserved_file_extent(trans, inode,
9658						  cur_offset, ins.objectid,
9659						  ins.offset, ins.offset,
9660						  ins.offset, 0, 0, 0,
9661						  BTRFS_FILE_EXTENT_PREALLOC);
9662		if (ret) {
9663			btrfs_free_reserved_extent(root, ins.objectid,
9664						   ins.offset, 0);
9665			btrfs_abort_transaction(trans, root, ret);
9666			if (own_trans)
9667				btrfs_end_transaction(trans, root);
9668			break;
9669		}
9670
9671		btrfs_drop_extent_cache(inode, cur_offset,
9672					cur_offset + ins.offset -1, 0);
9673
9674		em = alloc_extent_map();
9675		if (!em) {
9676			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
9677				&BTRFS_I(inode)->runtime_flags);
9678			goto next;
9679		}
9680
9681		em->start = cur_offset;
9682		em->orig_start = cur_offset;
9683		em->len = ins.offset;
9684		em->block_start = ins.objectid;
9685		em->block_len = ins.offset;
9686		em->orig_block_len = ins.offset;
9687		em->ram_bytes = ins.offset;
9688		em->bdev = root->fs_info->fs_devices->latest_bdev;
9689		set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
9690		em->generation = trans->transid;
9691
9692		while (1) {
9693			write_lock(&em_tree->lock);
9694			ret = add_extent_mapping(em_tree, em, 1);
9695			write_unlock(&em_tree->lock);
9696			if (ret != -EEXIST)
9697				break;
9698			btrfs_drop_extent_cache(inode, cur_offset,
9699						cur_offset + ins.offset - 1,
9700						0);
9701		}
9702		free_extent_map(em);
9703next:
9704		num_bytes -= ins.offset;
9705		cur_offset += ins.offset;
9706		*alloc_hint = ins.objectid + ins.offset;
9707
9708		inode_inc_iversion(inode);
9709		inode->i_ctime = CURRENT_TIME;
9710		BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
9711		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
9712		    (actual_len > inode->i_size) &&
9713		    (cur_offset > inode->i_size)) {
9714			if (cur_offset > actual_len)
9715				i_size = actual_len;
9716			else
9717				i_size = cur_offset;
9718			i_size_write(inode, i_size);
9719			btrfs_ordered_update_i_size(inode, i_size, NULL);
9720		}
9721
9722		ret = btrfs_update_inode(trans, root, inode);
9723
9724		if (ret) {
9725			btrfs_abort_transaction(trans, root, ret);
9726			if (own_trans)
9727				btrfs_end_transaction(trans, root);
9728			break;
9729		}
9730
9731		if (own_trans)
9732			btrfs_end_transaction(trans, root);
9733	}
9734	return ret;
9735}
9736
9737int btrfs_prealloc_file_range(struct inode *inode, int mode,
9738			      u64 start, u64 num_bytes, u64 min_size,
9739			      loff_t actual_len, u64 *alloc_hint)
9740{
9741	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9742					   min_size, actual_len, alloc_hint,
9743					   NULL);
9744}
9745
9746int btrfs_prealloc_file_range_trans(struct inode *inode,
9747				    struct btrfs_trans_handle *trans, int mode,
9748				    u64 start, u64 num_bytes, u64 min_size,
9749				    loff_t actual_len, u64 *alloc_hint)
9750{
9751	return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
9752					   min_size, actual_len, alloc_hint, trans);
9753}
9754
9755static int btrfs_set_page_dirty(struct page *page)
9756{
9757	return __set_page_dirty_nobuffers(page);
9758}
9759
9760static int btrfs_permission(struct inode *inode, int mask)
9761{
9762	struct btrfs_root *root = BTRFS_I(inode)->root;
9763	umode_t mode = inode->i_mode;
9764
9765	if (mask & MAY_WRITE &&
9766	    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
9767		if (btrfs_root_readonly(root))
9768			return -EROFS;
9769		if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
9770			return -EACCES;
9771	}
9772	return generic_permission(inode, mask);
9773}
9774
9775static int btrfs_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
9776{
9777	struct btrfs_trans_handle *trans;
9778	struct btrfs_root *root = BTRFS_I(dir)->root;
9779	struct inode *inode = NULL;
9780	u64 objectid;
9781	u64 index;
9782	int ret = 0;
9783
9784	/*
9785	 * 5 units required for adding orphan entry
9786	 */
9787	trans = btrfs_start_transaction(root, 5);
9788	if (IS_ERR(trans))
9789		return PTR_ERR(trans);
9790
9791	ret = btrfs_find_free_ino(root, &objectid);
9792	if (ret)
9793		goto out;
9794
9795	inode = btrfs_new_inode(trans, root, dir, NULL, 0,
9796				btrfs_ino(dir), objectid, mode, &index);
9797	if (IS_ERR(inode)) {
9798		ret = PTR_ERR(inode);
9799		inode = NULL;
9800		goto out;
9801	}
9802
9803	inode->i_fop = &btrfs_file_operations;
9804	inode->i_op = &btrfs_file_inode_operations;
9805
9806	inode->i_mapping->a_ops = &btrfs_aops;
9807	BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
9808
9809	ret = btrfs_init_inode_security(trans, inode, dir, NULL);
9810	if (ret)
9811		goto out_inode;
9812
9813	ret = btrfs_update_inode(trans, root, inode);
9814	if (ret)
9815		goto out_inode;
9816	ret = btrfs_orphan_add(trans, inode);
9817	if (ret)
9818		goto out_inode;
9819
9820	/*
9821	 * We set number of links to 0 in btrfs_new_inode(), and here we set
9822	 * it to 1 because d_tmpfile() will issue a warning if the count is 0,
9823	 * through:
9824	 *
9825	 *    d_tmpfile() -> inode_dec_link_count() -> drop_nlink()
9826	 */
9827	set_nlink(inode, 1);
9828	unlock_new_inode(inode);
9829	d_tmpfile(dentry, inode);
9830	mark_inode_dirty(inode);
9831
9832out:
9833	btrfs_end_transaction(trans, root);
9834	if (ret)
9835		iput(inode);
9836	btrfs_balance_delayed_items(root);
9837	btrfs_btree_balance_dirty(root);
9838	return ret;
9839
9840out_inode:
9841	unlock_new_inode(inode);
9842	goto out;
9843
9844}
9845
9846/* Inspired by filemap_check_errors() */
9847int btrfs_inode_check_errors(struct inode *inode)
9848{
9849	int ret = 0;
9850
9851	if (test_bit(AS_ENOSPC, &inode->i_mapping->flags) &&
9852	    test_and_clear_bit(AS_ENOSPC, &inode->i_mapping->flags))
9853		ret = -ENOSPC;
9854	if (test_bit(AS_EIO, &inode->i_mapping->flags) &&
9855	    test_and_clear_bit(AS_EIO, &inode->i_mapping->flags))
9856		ret = -EIO;
9857
9858	return ret;
9859}
9860
9861static const struct inode_operations btrfs_dir_inode_operations = {
9862	.getattr	= btrfs_getattr,
9863	.lookup		= btrfs_lookup,
9864	.create		= btrfs_create,
9865	.unlink		= btrfs_unlink,
9866	.link		= btrfs_link,
9867	.mkdir		= btrfs_mkdir,
9868	.rmdir		= btrfs_rmdir,
9869	.rename2	= btrfs_rename2,
9870	.symlink	= btrfs_symlink,
9871	.setattr	= btrfs_setattr,
9872	.mknod		= btrfs_mknod,
9873	.setxattr	= btrfs_setxattr,
9874	.getxattr	= btrfs_getxattr,
9875	.listxattr	= btrfs_listxattr,
9876	.removexattr	= btrfs_removexattr,
9877	.permission	= btrfs_permission,
9878	.get_acl	= btrfs_get_acl,
9879	.set_acl	= btrfs_set_acl,
9880	.update_time	= btrfs_update_time,
9881	.tmpfile        = btrfs_tmpfile,
9882};
9883static const struct inode_operations btrfs_dir_ro_inode_operations = {
9884	.lookup		= btrfs_lookup,
9885	.permission	= btrfs_permission,
9886	.get_acl	= btrfs_get_acl,
9887	.set_acl	= btrfs_set_acl,
9888	.update_time	= btrfs_update_time,
9889};
9890
9891static const struct file_operations btrfs_dir_file_operations = {
9892	.llseek		= generic_file_llseek,
9893	.read		= generic_read_dir,
9894	.iterate	= btrfs_real_readdir,
9895	.unlocked_ioctl	= btrfs_ioctl,
9896#ifdef CONFIG_COMPAT
9897	.compat_ioctl	= btrfs_compat_ioctl,
9898#endif
9899	.release        = btrfs_release_file,
9900	.fsync		= btrfs_sync_file,
9901};
9902
9903static struct extent_io_ops btrfs_extent_io_ops = {
9904	.fill_delalloc = run_delalloc_range,
9905	.submit_bio_hook = btrfs_submit_bio_hook,
9906	.merge_bio_hook = btrfs_merge_bio_hook,
9907	.readpage_end_io_hook = btrfs_readpage_end_io_hook,
9908	.writepage_end_io_hook = btrfs_writepage_end_io_hook,
9909	.writepage_start_hook = btrfs_writepage_start_hook,
9910	.set_bit_hook = btrfs_set_bit_hook,
9911	.clear_bit_hook = btrfs_clear_bit_hook,
9912	.merge_extent_hook = btrfs_merge_extent_hook,
9913	.split_extent_hook = btrfs_split_extent_hook,
9914};
9915
9916/*
9917 * btrfs doesn't support the bmap operation because swapfiles
9918 * use bmap to make a mapping of extents in the file.  They assume
9919 * these extents won't change over the life of the file and they
9920 * use the bmap result to do IO directly to the drive.
9921 *
9922 * the btrfs bmap call would return logical addresses that aren't
9923 * suitable for IO and they also will change frequently as COW
9924 * operations happen.  So, swapfile + btrfs == corruption.
9925 *
9926 * For now we're avoiding this by dropping bmap.
9927 */
9928static const struct address_space_operations btrfs_aops = {
9929	.readpage	= btrfs_readpage,
9930	.writepage	= btrfs_writepage,
9931	.writepages	= btrfs_writepages,
9932	.readpages	= btrfs_readpages,
9933	.direct_IO	= btrfs_direct_IO,
9934	.invalidatepage = btrfs_invalidatepage,
9935	.releasepage	= btrfs_releasepage,
9936	.set_page_dirty	= btrfs_set_page_dirty,
9937	.error_remove_page = generic_error_remove_page,
9938};
9939
9940static const struct address_space_operations btrfs_symlink_aops = {
9941	.readpage	= btrfs_readpage,
9942	.writepage	= btrfs_writepage,
9943	.invalidatepage = btrfs_invalidatepage,
9944	.releasepage	= btrfs_releasepage,
9945};
9946
9947static const struct inode_operations btrfs_file_inode_operations = {
9948	.getattr	= btrfs_getattr,
9949	.setattr	= btrfs_setattr,
9950	.setxattr	= btrfs_setxattr,
9951	.getxattr	= btrfs_getxattr,
9952	.listxattr      = btrfs_listxattr,
9953	.removexattr	= btrfs_removexattr,
9954	.permission	= btrfs_permission,
9955	.fiemap		= btrfs_fiemap,
9956	.get_acl	= btrfs_get_acl,
9957	.set_acl	= btrfs_set_acl,
9958	.update_time	= btrfs_update_time,
9959};
9960static const struct inode_operations btrfs_special_inode_operations = {
9961	.getattr	= btrfs_getattr,
9962	.setattr	= btrfs_setattr,
9963	.permission	= btrfs_permission,
9964	.setxattr	= btrfs_setxattr,
9965	.getxattr	= btrfs_getxattr,
9966	.listxattr	= btrfs_listxattr,
9967	.removexattr	= btrfs_removexattr,
9968	.get_acl	= btrfs_get_acl,
9969	.set_acl	= btrfs_set_acl,
9970	.update_time	= btrfs_update_time,
9971};
9972static const struct inode_operations btrfs_symlink_inode_operations = {
9973	.readlink	= generic_readlink,
9974	.follow_link	= page_follow_link_light,
9975	.put_link	= page_put_link,
9976	.getattr	= btrfs_getattr,
9977	.setattr	= btrfs_setattr,
9978	.permission	= btrfs_permission,
9979	.setxattr	= btrfs_setxattr,
9980	.getxattr	= btrfs_getxattr,
9981	.listxattr	= btrfs_listxattr,
9982	.removexattr	= btrfs_removexattr,
9983	.update_time	= btrfs_update_time,
9984};
9985
9986const struct dentry_operations btrfs_dentry_operations = {
9987	.d_delete	= btrfs_dentry_delete,
9988	.d_release	= btrfs_dentry_release,
9989};
9990