1/*
2 * Copyright (C) 2007 Oracle.  All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/slab.h>
20#include <linux/blkdev.h>
21#include <linux/writeback.h>
22#include <linux/pagevec.h>
23#include "ctree.h"
24#include "transaction.h"
25#include "btrfs_inode.h"
26#include "extent_io.h"
27#include "disk-io.h"
28
29static struct kmem_cache *btrfs_ordered_extent_cache;
30
31static u64 entry_end(struct btrfs_ordered_extent *entry)
32{
33	if (entry->file_offset + entry->len < entry->file_offset)
34		return (u64)-1;
35	return entry->file_offset + entry->len;
36}
37
38/* returns NULL if the insertion worked, or it returns the node it did find
39 * in the tree
40 */
41static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42				   struct rb_node *node)
43{
44	struct rb_node **p = &root->rb_node;
45	struct rb_node *parent = NULL;
46	struct btrfs_ordered_extent *entry;
47
48	while (*p) {
49		parent = *p;
50		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51
52		if (file_offset < entry->file_offset)
53			p = &(*p)->rb_left;
54		else if (file_offset >= entry_end(entry))
55			p = &(*p)->rb_right;
56		else
57			return parent;
58	}
59
60	rb_link_node(node, parent, p);
61	rb_insert_color(node, root);
62	return NULL;
63}
64
65static void ordered_data_tree_panic(struct inode *inode, int errno,
66					       u64 offset)
67{
68	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70		    "%llu", offset);
71}
72
73/*
74 * look for a given offset in the tree, and if it can't be found return the
75 * first lesser offset
76 */
77static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78				     struct rb_node **prev_ret)
79{
80	struct rb_node *n = root->rb_node;
81	struct rb_node *prev = NULL;
82	struct rb_node *test;
83	struct btrfs_ordered_extent *entry;
84	struct btrfs_ordered_extent *prev_entry = NULL;
85
86	while (n) {
87		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88		prev = n;
89		prev_entry = entry;
90
91		if (file_offset < entry->file_offset)
92			n = n->rb_left;
93		else if (file_offset >= entry_end(entry))
94			n = n->rb_right;
95		else
96			return n;
97	}
98	if (!prev_ret)
99		return NULL;
100
101	while (prev && file_offset >= entry_end(prev_entry)) {
102		test = rb_next(prev);
103		if (!test)
104			break;
105		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106				      rb_node);
107		if (file_offset < entry_end(prev_entry))
108			break;
109
110		prev = test;
111	}
112	if (prev)
113		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114				      rb_node);
115	while (prev && file_offset < entry_end(prev_entry)) {
116		test = rb_prev(prev);
117		if (!test)
118			break;
119		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120				      rb_node);
121		prev = test;
122	}
123	*prev_ret = prev;
124	return NULL;
125}
126
127/*
128 * helper to check if a given offset is inside a given entry
129 */
130static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131{
132	if (file_offset < entry->file_offset ||
133	    entry->file_offset + entry->len <= file_offset)
134		return 0;
135	return 1;
136}
137
138static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139			  u64 len)
140{
141	if (file_offset + len <= entry->file_offset ||
142	    entry->file_offset + entry->len <= file_offset)
143		return 0;
144	return 1;
145}
146
147/*
148 * look find the first ordered struct that has this offset, otherwise
149 * the first one less than this offset
150 */
151static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152					  u64 file_offset)
153{
154	struct rb_root *root = &tree->tree;
155	struct rb_node *prev = NULL;
156	struct rb_node *ret;
157	struct btrfs_ordered_extent *entry;
158
159	if (tree->last) {
160		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161				 rb_node);
162		if (offset_in_entry(entry, file_offset))
163			return tree->last;
164	}
165	ret = __tree_search(root, file_offset, &prev);
166	if (!ret)
167		ret = prev;
168	if (ret)
169		tree->last = ret;
170	return ret;
171}
172
173/* allocate and add a new ordered_extent into the per-inode tree.
174 * file_offset is the logical offset in the file
175 *
176 * start is the disk block number of an extent already reserved in the
177 * extent allocation tree
178 *
179 * len is the length of the extent
180 *
181 * The tree is given a single reference on the ordered extent that was
182 * inserted.
183 */
184static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185				      u64 start, u64 len, u64 disk_len,
186				      int type, int dio, int compress_type)
187{
188	struct btrfs_root *root = BTRFS_I(inode)->root;
189	struct btrfs_ordered_inode_tree *tree;
190	struct rb_node *node;
191	struct btrfs_ordered_extent *entry;
192
193	tree = &BTRFS_I(inode)->ordered_tree;
194	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195	if (!entry)
196		return -ENOMEM;
197
198	entry->file_offset = file_offset;
199	entry->start = start;
200	entry->len = len;
201	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202	    !(type == BTRFS_ORDERED_NOCOW))
203		entry->csum_bytes_left = disk_len;
204	entry->disk_len = disk_len;
205	entry->bytes_left = len;
206	entry->inode = igrab(inode);
207	entry->compress_type = compress_type;
208	entry->truncated_len = (u64)-1;
209	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
210		set_bit(type, &entry->flags);
211
212	if (dio)
213		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
214
215	/* one ref for the tree */
216	atomic_set(&entry->refs, 1);
217	init_waitqueue_head(&entry->wait);
218	INIT_LIST_HEAD(&entry->list);
219	INIT_LIST_HEAD(&entry->root_extent_list);
220	INIT_LIST_HEAD(&entry->work_list);
221	init_completion(&entry->completion);
222	INIT_LIST_HEAD(&entry->log_list);
223	INIT_LIST_HEAD(&entry->trans_list);
224
225	trace_btrfs_ordered_extent_add(inode, entry);
226
227	spin_lock_irq(&tree->lock);
228	node = tree_insert(&tree->tree, file_offset,
229			   &entry->rb_node);
230	if (node)
231		ordered_data_tree_panic(inode, -EEXIST, file_offset);
232	spin_unlock_irq(&tree->lock);
233
234	spin_lock(&root->ordered_extent_lock);
235	list_add_tail(&entry->root_extent_list,
236		      &root->ordered_extents);
237	root->nr_ordered_extents++;
238	if (root->nr_ordered_extents == 1) {
239		spin_lock(&root->fs_info->ordered_root_lock);
240		BUG_ON(!list_empty(&root->ordered_root));
241		list_add_tail(&root->ordered_root,
242			      &root->fs_info->ordered_roots);
243		spin_unlock(&root->fs_info->ordered_root_lock);
244	}
245	spin_unlock(&root->ordered_extent_lock);
246
247	return 0;
248}
249
250int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
251			     u64 start, u64 len, u64 disk_len, int type)
252{
253	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
254					  disk_len, type, 0,
255					  BTRFS_COMPRESS_NONE);
256}
257
258int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
259				 u64 start, u64 len, u64 disk_len, int type)
260{
261	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
262					  disk_len, type, 1,
263					  BTRFS_COMPRESS_NONE);
264}
265
266int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
267				      u64 start, u64 len, u64 disk_len,
268				      int type, int compress_type)
269{
270	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
271					  disk_len, type, 0,
272					  compress_type);
273}
274
275/*
276 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
277 * when an ordered extent is finished.  If the list covers more than one
278 * ordered extent, it is split across multiples.
279 */
280void btrfs_add_ordered_sum(struct inode *inode,
281			   struct btrfs_ordered_extent *entry,
282			   struct btrfs_ordered_sum *sum)
283{
284	struct btrfs_ordered_inode_tree *tree;
285
286	tree = &BTRFS_I(inode)->ordered_tree;
287	spin_lock_irq(&tree->lock);
288	list_add_tail(&sum->list, &entry->list);
289	WARN_ON(entry->csum_bytes_left < sum->len);
290	entry->csum_bytes_left -= sum->len;
291	if (entry->csum_bytes_left == 0)
292		wake_up(&entry->wait);
293	spin_unlock_irq(&tree->lock);
294}
295
296/*
297 * this is used to account for finished IO across a given range
298 * of the file.  The IO may span ordered extents.  If
299 * a given ordered_extent is completely done, 1 is returned, otherwise
300 * 0.
301 *
302 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
303 * to make sure this function only returns 1 once for a given ordered extent.
304 *
305 * file_offset is updated to one byte past the range that is recorded as
306 * complete.  This allows you to walk forward in the file.
307 */
308int btrfs_dec_test_first_ordered_pending(struct inode *inode,
309				   struct btrfs_ordered_extent **cached,
310				   u64 *file_offset, u64 io_size, int uptodate)
311{
312	struct btrfs_ordered_inode_tree *tree;
313	struct rb_node *node;
314	struct btrfs_ordered_extent *entry = NULL;
315	int ret;
316	unsigned long flags;
317	u64 dec_end;
318	u64 dec_start;
319	u64 to_dec;
320
321	tree = &BTRFS_I(inode)->ordered_tree;
322	spin_lock_irqsave(&tree->lock, flags);
323	node = tree_search(tree, *file_offset);
324	if (!node) {
325		ret = 1;
326		goto out;
327	}
328
329	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
330	if (!offset_in_entry(entry, *file_offset)) {
331		ret = 1;
332		goto out;
333	}
334
335	dec_start = max(*file_offset, entry->file_offset);
336	dec_end = min(*file_offset + io_size, entry->file_offset +
337		      entry->len);
338	*file_offset = dec_end;
339	if (dec_start > dec_end) {
340		btrfs_crit(BTRFS_I(inode)->root->fs_info,
341			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
342	}
343	to_dec = dec_end - dec_start;
344	if (to_dec > entry->bytes_left) {
345		btrfs_crit(BTRFS_I(inode)->root->fs_info,
346			"bad ordered accounting left %llu size %llu",
347			entry->bytes_left, to_dec);
348	}
349	entry->bytes_left -= to_dec;
350	if (!uptodate)
351		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
352
353	if (entry->bytes_left == 0) {
354		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
355		if (waitqueue_active(&entry->wait))
356			wake_up(&entry->wait);
357	} else {
358		ret = 1;
359	}
360out:
361	if (!ret && cached && entry) {
362		*cached = entry;
363		atomic_inc(&entry->refs);
364	}
365	spin_unlock_irqrestore(&tree->lock, flags);
366	return ret == 0;
367}
368
369/*
370 * this is used to account for finished IO across a given range
371 * of the file.  The IO should not span ordered extents.  If
372 * a given ordered_extent is completely done, 1 is returned, otherwise
373 * 0.
374 *
375 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
376 * to make sure this function only returns 1 once for a given ordered extent.
377 */
378int btrfs_dec_test_ordered_pending(struct inode *inode,
379				   struct btrfs_ordered_extent **cached,
380				   u64 file_offset, u64 io_size, int uptodate)
381{
382	struct btrfs_ordered_inode_tree *tree;
383	struct rb_node *node;
384	struct btrfs_ordered_extent *entry = NULL;
385	unsigned long flags;
386	int ret;
387
388	tree = &BTRFS_I(inode)->ordered_tree;
389	spin_lock_irqsave(&tree->lock, flags);
390	if (cached && *cached) {
391		entry = *cached;
392		goto have_entry;
393	}
394
395	node = tree_search(tree, file_offset);
396	if (!node) {
397		ret = 1;
398		goto out;
399	}
400
401	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
402have_entry:
403	if (!offset_in_entry(entry, file_offset)) {
404		ret = 1;
405		goto out;
406	}
407
408	if (io_size > entry->bytes_left) {
409		btrfs_crit(BTRFS_I(inode)->root->fs_info,
410			   "bad ordered accounting left %llu size %llu",
411		       entry->bytes_left, io_size);
412	}
413	entry->bytes_left -= io_size;
414	if (!uptodate)
415		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
416
417	if (entry->bytes_left == 0) {
418		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
419		if (waitqueue_active(&entry->wait))
420			wake_up(&entry->wait);
421	} else {
422		ret = 1;
423	}
424out:
425	if (!ret && cached && entry) {
426		*cached = entry;
427		atomic_inc(&entry->refs);
428	}
429	spin_unlock_irqrestore(&tree->lock, flags);
430	return ret == 0;
431}
432
433/* Needs to either be called under a log transaction or the log_mutex */
434void btrfs_get_logged_extents(struct inode *inode,
435			      struct list_head *logged_list,
436			      const loff_t start,
437			      const loff_t end)
438{
439	struct btrfs_ordered_inode_tree *tree;
440	struct btrfs_ordered_extent *ordered;
441	struct rb_node *n;
442	struct rb_node *prev;
443
444	tree = &BTRFS_I(inode)->ordered_tree;
445	spin_lock_irq(&tree->lock);
446	n = __tree_search(&tree->tree, end, &prev);
447	if (!n)
448		n = prev;
449	for (; n; n = rb_prev(n)) {
450		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
451		if (ordered->file_offset > end)
452			continue;
453		if (entry_end(ordered) <= start)
454			break;
455		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
456			continue;
457		list_add(&ordered->log_list, logged_list);
458		atomic_inc(&ordered->refs);
459	}
460	spin_unlock_irq(&tree->lock);
461}
462
463void btrfs_put_logged_extents(struct list_head *logged_list)
464{
465	struct btrfs_ordered_extent *ordered;
466
467	while (!list_empty(logged_list)) {
468		ordered = list_first_entry(logged_list,
469					   struct btrfs_ordered_extent,
470					   log_list);
471		list_del_init(&ordered->log_list);
472		btrfs_put_ordered_extent(ordered);
473	}
474}
475
476void btrfs_submit_logged_extents(struct list_head *logged_list,
477				 struct btrfs_root *log)
478{
479	int index = log->log_transid % 2;
480
481	spin_lock_irq(&log->log_extents_lock[index]);
482	list_splice_tail(logged_list, &log->logged_list[index]);
483	spin_unlock_irq(&log->log_extents_lock[index]);
484}
485
486void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
487			       struct btrfs_root *log, u64 transid)
488{
489	struct btrfs_ordered_extent *ordered;
490	int index = transid % 2;
491
492	spin_lock_irq(&log->log_extents_lock[index]);
493	while (!list_empty(&log->logged_list[index])) {
494		ordered = list_first_entry(&log->logged_list[index],
495					   struct btrfs_ordered_extent,
496					   log_list);
497		list_del_init(&ordered->log_list);
498		spin_unlock_irq(&log->log_extents_lock[index]);
499
500		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
501		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
502			struct inode *inode = ordered->inode;
503			u64 start = ordered->file_offset;
504			u64 end = ordered->file_offset + ordered->len - 1;
505
506			WARN_ON(!inode);
507			filemap_fdatawrite_range(inode->i_mapping, start, end);
508		}
509		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
510						   &ordered->flags));
511
512		list_add_tail(&ordered->trans_list, &trans->ordered);
513		spin_lock_irq(&log->log_extents_lock[index]);
514	}
515	spin_unlock_irq(&log->log_extents_lock[index]);
516}
517
518void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
519{
520	struct btrfs_ordered_extent *ordered;
521	int index = transid % 2;
522
523	spin_lock_irq(&log->log_extents_lock[index]);
524	while (!list_empty(&log->logged_list[index])) {
525		ordered = list_first_entry(&log->logged_list[index],
526					   struct btrfs_ordered_extent,
527					   log_list);
528		list_del_init(&ordered->log_list);
529		spin_unlock_irq(&log->log_extents_lock[index]);
530		btrfs_put_ordered_extent(ordered);
531		spin_lock_irq(&log->log_extents_lock[index]);
532	}
533	spin_unlock_irq(&log->log_extents_lock[index]);
534}
535
536/*
537 * used to drop a reference on an ordered extent.  This will free
538 * the extent if the last reference is dropped
539 */
540void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
541{
542	struct list_head *cur;
543	struct btrfs_ordered_sum *sum;
544
545	trace_btrfs_ordered_extent_put(entry->inode, entry);
546
547	if (atomic_dec_and_test(&entry->refs)) {
548		if (entry->inode)
549			btrfs_add_delayed_iput(entry->inode);
550		while (!list_empty(&entry->list)) {
551			cur = entry->list.next;
552			sum = list_entry(cur, struct btrfs_ordered_sum, list);
553			list_del(&sum->list);
554			kfree(sum);
555		}
556		kmem_cache_free(btrfs_ordered_extent_cache, entry);
557	}
558}
559
560/*
561 * remove an ordered extent from the tree.  No references are dropped
562 * and waiters are woken up.
563 */
564void btrfs_remove_ordered_extent(struct inode *inode,
565				 struct btrfs_ordered_extent *entry)
566{
567	struct btrfs_ordered_inode_tree *tree;
568	struct btrfs_root *root = BTRFS_I(inode)->root;
569	struct rb_node *node;
570
571	tree = &BTRFS_I(inode)->ordered_tree;
572	spin_lock_irq(&tree->lock);
573	node = &entry->rb_node;
574	rb_erase(node, &tree->tree);
575	if (tree->last == node)
576		tree->last = NULL;
577	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
578	spin_unlock_irq(&tree->lock);
579
580	spin_lock(&root->ordered_extent_lock);
581	list_del_init(&entry->root_extent_list);
582	root->nr_ordered_extents--;
583
584	trace_btrfs_ordered_extent_remove(inode, entry);
585
586	if (!root->nr_ordered_extents) {
587		spin_lock(&root->fs_info->ordered_root_lock);
588		BUG_ON(list_empty(&root->ordered_root));
589		list_del_init(&root->ordered_root);
590		spin_unlock(&root->fs_info->ordered_root_lock);
591	}
592	spin_unlock(&root->ordered_extent_lock);
593	wake_up(&entry->wait);
594}
595
596static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
597{
598	struct btrfs_ordered_extent *ordered;
599
600	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
601	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
602	complete(&ordered->completion);
603}
604
605/*
606 * wait for all the ordered extents in a root.  This is done when balancing
607 * space between drives.
608 */
609int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
610{
611	struct list_head splice, works;
612	struct btrfs_ordered_extent *ordered, *next;
613	int count = 0;
614
615	INIT_LIST_HEAD(&splice);
616	INIT_LIST_HEAD(&works);
617
618	mutex_lock(&root->ordered_extent_mutex);
619	spin_lock(&root->ordered_extent_lock);
620	list_splice_init(&root->ordered_extents, &splice);
621	while (!list_empty(&splice) && nr) {
622		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
623					   root_extent_list);
624		list_move_tail(&ordered->root_extent_list,
625			       &root->ordered_extents);
626		atomic_inc(&ordered->refs);
627		spin_unlock(&root->ordered_extent_lock);
628
629		btrfs_init_work(&ordered->flush_work,
630				btrfs_flush_delalloc_helper,
631				btrfs_run_ordered_extent_work, NULL, NULL);
632		list_add_tail(&ordered->work_list, &works);
633		btrfs_queue_work(root->fs_info->flush_workers,
634				 &ordered->flush_work);
635
636		cond_resched();
637		spin_lock(&root->ordered_extent_lock);
638		if (nr != -1)
639			nr--;
640		count++;
641	}
642	list_splice_tail(&splice, &root->ordered_extents);
643	spin_unlock(&root->ordered_extent_lock);
644
645	list_for_each_entry_safe(ordered, next, &works, work_list) {
646		list_del_init(&ordered->work_list);
647		wait_for_completion(&ordered->completion);
648		btrfs_put_ordered_extent(ordered);
649		cond_resched();
650	}
651	mutex_unlock(&root->ordered_extent_mutex);
652
653	return count;
654}
655
656void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
657{
658	struct btrfs_root *root;
659	struct list_head splice;
660	int done;
661
662	INIT_LIST_HEAD(&splice);
663
664	mutex_lock(&fs_info->ordered_operations_mutex);
665	spin_lock(&fs_info->ordered_root_lock);
666	list_splice_init(&fs_info->ordered_roots, &splice);
667	while (!list_empty(&splice) && nr) {
668		root = list_first_entry(&splice, struct btrfs_root,
669					ordered_root);
670		root = btrfs_grab_fs_root(root);
671		BUG_ON(!root);
672		list_move_tail(&root->ordered_root,
673			       &fs_info->ordered_roots);
674		spin_unlock(&fs_info->ordered_root_lock);
675
676		done = btrfs_wait_ordered_extents(root, nr);
677		btrfs_put_fs_root(root);
678
679		spin_lock(&fs_info->ordered_root_lock);
680		if (nr != -1) {
681			nr -= done;
682			WARN_ON(nr < 0);
683		}
684	}
685	list_splice_tail(&splice, &fs_info->ordered_roots);
686	spin_unlock(&fs_info->ordered_root_lock);
687	mutex_unlock(&fs_info->ordered_operations_mutex);
688}
689
690/*
691 * Used to start IO or wait for a given ordered extent to finish.
692 *
693 * If wait is one, this effectively waits on page writeback for all the pages
694 * in the extent, and it waits on the io completion code to insert
695 * metadata into the btree corresponding to the extent
696 */
697void btrfs_start_ordered_extent(struct inode *inode,
698				       struct btrfs_ordered_extent *entry,
699				       int wait)
700{
701	u64 start = entry->file_offset;
702	u64 end = start + entry->len - 1;
703
704	trace_btrfs_ordered_extent_start(inode, entry);
705
706	/*
707	 * pages in the range can be dirty, clean or writeback.  We
708	 * start IO on any dirty ones so the wait doesn't stall waiting
709	 * for the flusher thread to find them
710	 */
711	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
712		filemap_fdatawrite_range(inode->i_mapping, start, end);
713	if (wait) {
714		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
715						 &entry->flags));
716	}
717}
718
719/*
720 * Used to wait on ordered extents across a large range of bytes.
721 */
722int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
723{
724	int ret = 0;
725	int ret_wb = 0;
726	u64 end;
727	u64 orig_end;
728	struct btrfs_ordered_extent *ordered;
729
730	if (start + len < start) {
731		orig_end = INT_LIMIT(loff_t);
732	} else {
733		orig_end = start + len - 1;
734		if (orig_end > INT_LIMIT(loff_t))
735			orig_end = INT_LIMIT(loff_t);
736	}
737
738	/* start IO across the range first to instantiate any delalloc
739	 * extents
740	 */
741	ret = btrfs_fdatawrite_range(inode, start, orig_end);
742	if (ret)
743		return ret;
744
745	/*
746	 * If we have a writeback error don't return immediately. Wait first
747	 * for any ordered extents that haven't completed yet. This is to make
748	 * sure no one can dirty the same page ranges and call writepages()
749	 * before the ordered extents complete - to avoid failures (-EEXIST)
750	 * when adding the new ordered extents to the ordered tree.
751	 */
752	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
753
754	end = orig_end;
755	while (1) {
756		ordered = btrfs_lookup_first_ordered_extent(inode, end);
757		if (!ordered)
758			break;
759		if (ordered->file_offset > orig_end) {
760			btrfs_put_ordered_extent(ordered);
761			break;
762		}
763		if (ordered->file_offset + ordered->len <= start) {
764			btrfs_put_ordered_extent(ordered);
765			break;
766		}
767		btrfs_start_ordered_extent(inode, ordered, 1);
768		end = ordered->file_offset;
769		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
770			ret = -EIO;
771		btrfs_put_ordered_extent(ordered);
772		if (ret || end == 0 || end == start)
773			break;
774		end--;
775	}
776	return ret_wb ? ret_wb : ret;
777}
778
779/*
780 * find an ordered extent corresponding to file_offset.  return NULL if
781 * nothing is found, otherwise take a reference on the extent and return it
782 */
783struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
784							 u64 file_offset)
785{
786	struct btrfs_ordered_inode_tree *tree;
787	struct rb_node *node;
788	struct btrfs_ordered_extent *entry = NULL;
789
790	tree = &BTRFS_I(inode)->ordered_tree;
791	spin_lock_irq(&tree->lock);
792	node = tree_search(tree, file_offset);
793	if (!node)
794		goto out;
795
796	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
797	if (!offset_in_entry(entry, file_offset))
798		entry = NULL;
799	if (entry)
800		atomic_inc(&entry->refs);
801out:
802	spin_unlock_irq(&tree->lock);
803	return entry;
804}
805
806/* Since the DIO code tries to lock a wide area we need to look for any ordered
807 * extents that exist in the range, rather than just the start of the range.
808 */
809struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
810							u64 file_offset,
811							u64 len)
812{
813	struct btrfs_ordered_inode_tree *tree;
814	struct rb_node *node;
815	struct btrfs_ordered_extent *entry = NULL;
816
817	tree = &BTRFS_I(inode)->ordered_tree;
818	spin_lock_irq(&tree->lock);
819	node = tree_search(tree, file_offset);
820	if (!node) {
821		node = tree_search(tree, file_offset + len);
822		if (!node)
823			goto out;
824	}
825
826	while (1) {
827		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
828		if (range_overlaps(entry, file_offset, len))
829			break;
830
831		if (entry->file_offset >= file_offset + len) {
832			entry = NULL;
833			break;
834		}
835		entry = NULL;
836		node = rb_next(node);
837		if (!node)
838			break;
839	}
840out:
841	if (entry)
842		atomic_inc(&entry->refs);
843	spin_unlock_irq(&tree->lock);
844	return entry;
845}
846
847/*
848 * lookup and return any extent before 'file_offset'.  NULL is returned
849 * if none is found
850 */
851struct btrfs_ordered_extent *
852btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
853{
854	struct btrfs_ordered_inode_tree *tree;
855	struct rb_node *node;
856	struct btrfs_ordered_extent *entry = NULL;
857
858	tree = &BTRFS_I(inode)->ordered_tree;
859	spin_lock_irq(&tree->lock);
860	node = tree_search(tree, file_offset);
861	if (!node)
862		goto out;
863
864	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
865	atomic_inc(&entry->refs);
866out:
867	spin_unlock_irq(&tree->lock);
868	return entry;
869}
870
871/*
872 * After an extent is done, call this to conditionally update the on disk
873 * i_size.  i_size is updated to cover any fully written part of the file.
874 */
875int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
876				struct btrfs_ordered_extent *ordered)
877{
878	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
879	u64 disk_i_size;
880	u64 new_i_size;
881	u64 i_size = i_size_read(inode);
882	struct rb_node *node;
883	struct rb_node *prev = NULL;
884	struct btrfs_ordered_extent *test;
885	int ret = 1;
886
887	spin_lock_irq(&tree->lock);
888	if (ordered) {
889		offset = entry_end(ordered);
890		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
891			offset = min(offset,
892				     ordered->file_offset +
893				     ordered->truncated_len);
894	} else {
895		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
896	}
897	disk_i_size = BTRFS_I(inode)->disk_i_size;
898
899	/* truncate file */
900	if (disk_i_size > i_size) {
901		BTRFS_I(inode)->disk_i_size = i_size;
902		ret = 0;
903		goto out;
904	}
905
906	/*
907	 * if the disk i_size is already at the inode->i_size, or
908	 * this ordered extent is inside the disk i_size, we're done
909	 */
910	if (disk_i_size == i_size)
911		goto out;
912
913	/*
914	 * We still need to update disk_i_size if outstanding_isize is greater
915	 * than disk_i_size.
916	 */
917	if (offset <= disk_i_size &&
918	    (!ordered || ordered->outstanding_isize <= disk_i_size))
919		goto out;
920
921	/*
922	 * walk backward from this ordered extent to disk_i_size.
923	 * if we find an ordered extent then we can't update disk i_size
924	 * yet
925	 */
926	if (ordered) {
927		node = rb_prev(&ordered->rb_node);
928	} else {
929		prev = tree_search(tree, offset);
930		/*
931		 * we insert file extents without involving ordered struct,
932		 * so there should be no ordered struct cover this offset
933		 */
934		if (prev) {
935			test = rb_entry(prev, struct btrfs_ordered_extent,
936					rb_node);
937			BUG_ON(offset_in_entry(test, offset));
938		}
939		node = prev;
940	}
941	for (; node; node = rb_prev(node)) {
942		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
943
944		/* We treat this entry as if it doesnt exist */
945		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
946			continue;
947		if (test->file_offset + test->len <= disk_i_size)
948			break;
949		if (test->file_offset >= i_size)
950			break;
951		if (entry_end(test) > disk_i_size) {
952			/*
953			 * we don't update disk_i_size now, so record this
954			 * undealt i_size. Or we will not know the real
955			 * i_size.
956			 */
957			if (test->outstanding_isize < offset)
958				test->outstanding_isize = offset;
959			if (ordered &&
960			    ordered->outstanding_isize >
961			    test->outstanding_isize)
962				test->outstanding_isize =
963						ordered->outstanding_isize;
964			goto out;
965		}
966	}
967	new_i_size = min_t(u64, offset, i_size);
968
969	/*
970	 * Some ordered extents may completed before the current one, and
971	 * we hold the real i_size in ->outstanding_isize.
972	 */
973	if (ordered && ordered->outstanding_isize > new_i_size)
974		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
975	BTRFS_I(inode)->disk_i_size = new_i_size;
976	ret = 0;
977out:
978	/*
979	 * We need to do this because we can't remove ordered extents until
980	 * after the i_disk_size has been updated and then the inode has been
981	 * updated to reflect the change, so we need to tell anybody who finds
982	 * this ordered extent that we've already done all the real work, we
983	 * just haven't completed all the other work.
984	 */
985	if (ordered)
986		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
987	spin_unlock_irq(&tree->lock);
988	return ret;
989}
990
991/*
992 * search the ordered extents for one corresponding to 'offset' and
993 * try to find a checksum.  This is used because we allow pages to
994 * be reclaimed before their checksum is actually put into the btree
995 */
996int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
997			   u32 *sum, int len)
998{
999	struct btrfs_ordered_sum *ordered_sum;
1000	struct btrfs_ordered_extent *ordered;
1001	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1002	unsigned long num_sectors;
1003	unsigned long i;
1004	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1005	int index = 0;
1006
1007	ordered = btrfs_lookup_ordered_extent(inode, offset);
1008	if (!ordered)
1009		return 0;
1010
1011	spin_lock_irq(&tree->lock);
1012	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1013		if (disk_bytenr >= ordered_sum->bytenr &&
1014		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1015			i = (disk_bytenr - ordered_sum->bytenr) >>
1016			    inode->i_sb->s_blocksize_bits;
1017			num_sectors = ordered_sum->len >>
1018				      inode->i_sb->s_blocksize_bits;
1019			num_sectors = min_t(int, len - index, num_sectors - i);
1020			memcpy(sum + index, ordered_sum->sums + i,
1021			       num_sectors);
1022
1023			index += (int)num_sectors;
1024			if (index == len)
1025				goto out;
1026			disk_bytenr += num_sectors * sectorsize;
1027		}
1028	}
1029out:
1030	spin_unlock_irq(&tree->lock);
1031	btrfs_put_ordered_extent(ordered);
1032	return index;
1033}
1034
1035int __init ordered_data_init(void)
1036{
1037	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1038				     sizeof(struct btrfs_ordered_extent), 0,
1039				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1040				     NULL);
1041	if (!btrfs_ordered_extent_cache)
1042		return -ENOMEM;
1043
1044	return 0;
1045}
1046
1047void ordered_data_exit(void)
1048{
1049	if (btrfs_ordered_extent_cache)
1050		kmem_cache_destroy(btrfs_ordered_extent_cache);
1051}
1052