1/*
2 *  linux/fs/ext4/inode.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 *  from
10 *
11 *  linux/fs/minix/inode.c
12 *
13 *  Copyright (C) 1991, 1992  Linus Torvalds
14 *
15 *  64-bit file support on 64-bit platforms by Jakub Jelinek
16 *	(jj@sunsite.ms.mff.cuni.cz)
17 *
18 *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19 */
20
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/highuid.h>
24#include <linux/pagemap.h>
25#include <linux/quotaops.h>
26#include <linux/string.h>
27#include <linux/buffer_head.h>
28#include <linux/writeback.h>
29#include <linux/pagevec.h>
30#include <linux/mpage.h>
31#include <linux/namei.h>
32#include <linux/uio.h>
33#include <linux/bio.h>
34#include <linux/workqueue.h>
35#include <linux/kernel.h>
36#include <linux/printk.h>
37#include <linux/slab.h>
38#include <linux/bitops.h>
39
40#include "ext4_jbd2.h"
41#include "xattr.h"
42#include "acl.h"
43#include "truncate.h"
44
45#include <trace/events/ext4.h>
46
47#define MPAGE_DA_EXTENT_TAIL 0x01
48
49static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
50			      struct ext4_inode_info *ei)
51{
52	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
53	__u16 csum_lo;
54	__u16 csum_hi = 0;
55	__u32 csum;
56
57	csum_lo = le16_to_cpu(raw->i_checksum_lo);
58	raw->i_checksum_lo = 0;
59	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
60	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
61		csum_hi = le16_to_cpu(raw->i_checksum_hi);
62		raw->i_checksum_hi = 0;
63	}
64
65	csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw,
66			   EXT4_INODE_SIZE(inode->i_sb));
67
68	raw->i_checksum_lo = cpu_to_le16(csum_lo);
69	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
70	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
71		raw->i_checksum_hi = cpu_to_le16(csum_hi);
72
73	return csum;
74}
75
76static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
77				  struct ext4_inode_info *ei)
78{
79	__u32 provided, calculated;
80
81	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
82	    cpu_to_le32(EXT4_OS_LINUX) ||
83	    !ext4_has_metadata_csum(inode->i_sb))
84		return 1;
85
86	provided = le16_to_cpu(raw->i_checksum_lo);
87	calculated = ext4_inode_csum(inode, raw, ei);
88	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
89	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
90		provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
91	else
92		calculated &= 0xFFFF;
93
94	return provided == calculated;
95}
96
97static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
98				struct ext4_inode_info *ei)
99{
100	__u32 csum;
101
102	if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
103	    cpu_to_le32(EXT4_OS_LINUX) ||
104	    !ext4_has_metadata_csum(inode->i_sb))
105		return;
106
107	csum = ext4_inode_csum(inode, raw, ei);
108	raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
109	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
110	    EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
111		raw->i_checksum_hi = cpu_to_le16(csum >> 16);
112}
113
114static inline int ext4_begin_ordered_truncate(struct inode *inode,
115					      loff_t new_size)
116{
117	trace_ext4_begin_ordered_truncate(inode, new_size);
118	/*
119	 * If jinode is zero, then we never opened the file for
120	 * writing, so there's no need to call
121	 * jbd2_journal_begin_ordered_truncate() since there's no
122	 * outstanding writes we need to flush.
123	 */
124	if (!EXT4_I(inode)->jinode)
125		return 0;
126	return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
127						   EXT4_I(inode)->jinode,
128						   new_size);
129}
130
131static void ext4_invalidatepage(struct page *page, unsigned int offset,
132				unsigned int length);
133static int __ext4_journalled_writepage(struct page *page, unsigned int len);
134static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
135static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
136				  int pextents);
137
138/*
139 * Test whether an inode is a fast symlink.
140 */
141int ext4_inode_is_fast_symlink(struct inode *inode)
142{
143        int ea_blocks = EXT4_I(inode)->i_file_acl ?
144		EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
145
146	if (ext4_has_inline_data(inode))
147		return 0;
148
149	return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
150}
151
152/*
153 * Restart the transaction associated with *handle.  This does a commit,
154 * so before we call here everything must be consistently dirtied against
155 * this transaction.
156 */
157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
158				 int nblocks)
159{
160	int ret;
161
162	/*
163	 * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
164	 * moment, get_block can be called only for blocks inside i_size since
165	 * page cache has been already dropped and writes are blocked by
166	 * i_mutex. So we can safely drop the i_data_sem here.
167	 */
168	BUG_ON(EXT4_JOURNAL(inode) == NULL);
169	jbd_debug(2, "restarting handle %p\n", handle);
170	up_write(&EXT4_I(inode)->i_data_sem);
171	ret = ext4_journal_restart(handle, nblocks);
172	down_write(&EXT4_I(inode)->i_data_sem);
173	ext4_discard_preallocations(inode);
174
175	return ret;
176}
177
178/*
179 * Called at the last iput() if i_nlink is zero.
180 */
181void ext4_evict_inode(struct inode *inode)
182{
183	handle_t *handle;
184	int err;
185
186	trace_ext4_evict_inode(inode);
187
188	if (inode->i_nlink) {
189		/*
190		 * When journalling data dirty buffers are tracked only in the
191		 * journal. So although mm thinks everything is clean and
192		 * ready for reaping the inode might still have some pages to
193		 * write in the running transaction or waiting to be
194		 * checkpointed. Thus calling jbd2_journal_invalidatepage()
195		 * (via truncate_inode_pages()) to discard these buffers can
196		 * cause data loss. Also even if we did not discard these
197		 * buffers, we would have no way to find them after the inode
198		 * is reaped and thus user could see stale data if he tries to
199		 * read them before the transaction is checkpointed. So be
200		 * careful and force everything to disk here... We use
201		 * ei->i_datasync_tid to store the newest transaction
202		 * containing inode's data.
203		 *
204		 * Note that directories do not have this problem because they
205		 * don't use page cache.
206		 */
207		if (ext4_should_journal_data(inode) &&
208		    (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
209		    inode->i_ino != EXT4_JOURNAL_INO) {
210			journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
211			tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
212
213			jbd2_complete_transaction(journal, commit_tid);
214			filemap_write_and_wait(&inode->i_data);
215		}
216		truncate_inode_pages_final(&inode->i_data);
217
218		WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
219		goto no_delete;
220	}
221
222	if (is_bad_inode(inode))
223		goto no_delete;
224	dquot_initialize(inode);
225
226	if (ext4_should_order_data(inode))
227		ext4_begin_ordered_truncate(inode, 0);
228	truncate_inode_pages_final(&inode->i_data);
229
230	WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count));
231
232	/*
233	 * Protect us against freezing - iput() caller didn't have to have any
234	 * protection against it
235	 */
236	sb_start_intwrite(inode->i_sb);
237	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
238				    ext4_blocks_for_truncate(inode)+3);
239	if (IS_ERR(handle)) {
240		ext4_std_error(inode->i_sb, PTR_ERR(handle));
241		/*
242		 * If we're going to skip the normal cleanup, we still need to
243		 * make sure that the in-core orphan linked list is properly
244		 * cleaned up.
245		 */
246		ext4_orphan_del(NULL, inode);
247		sb_end_intwrite(inode->i_sb);
248		goto no_delete;
249	}
250
251	if (IS_SYNC(inode))
252		ext4_handle_sync(handle);
253	inode->i_size = 0;
254	err = ext4_mark_inode_dirty(handle, inode);
255	if (err) {
256		ext4_warning(inode->i_sb,
257			     "couldn't mark inode dirty (err %d)", err);
258		goto stop_handle;
259	}
260	if (inode->i_blocks)
261		ext4_truncate(inode);
262
263	/*
264	 * ext4_ext_truncate() doesn't reserve any slop when it
265	 * restarts journal transactions; therefore there may not be
266	 * enough credits left in the handle to remove the inode from
267	 * the orphan list and set the dtime field.
268	 */
269	if (!ext4_handle_has_enough_credits(handle, 3)) {
270		err = ext4_journal_extend(handle, 3);
271		if (err > 0)
272			err = ext4_journal_restart(handle, 3);
273		if (err != 0) {
274			ext4_warning(inode->i_sb,
275				     "couldn't extend journal (err %d)", err);
276		stop_handle:
277			ext4_journal_stop(handle);
278			ext4_orphan_del(NULL, inode);
279			sb_end_intwrite(inode->i_sb);
280			goto no_delete;
281		}
282	}
283
284	/*
285	 * Kill off the orphan record which ext4_truncate created.
286	 * AKPM: I think this can be inside the above `if'.
287	 * Note that ext4_orphan_del() has to be able to cope with the
288	 * deletion of a non-existent orphan - this is because we don't
289	 * know if ext4_truncate() actually created an orphan record.
290	 * (Well, we could do this if we need to, but heck - it works)
291	 */
292	ext4_orphan_del(handle, inode);
293	EXT4_I(inode)->i_dtime	= get_seconds();
294
295	/*
296	 * One subtle ordering requirement: if anything has gone wrong
297	 * (transaction abort, IO errors, whatever), then we can still
298	 * do these next steps (the fs will already have been marked as
299	 * having errors), but we can't free the inode if the mark_dirty
300	 * fails.
301	 */
302	if (ext4_mark_inode_dirty(handle, inode))
303		/* If that failed, just do the required in-core inode clear. */
304		ext4_clear_inode(inode);
305	else
306		ext4_free_inode(handle, inode);
307	ext4_journal_stop(handle);
308	sb_end_intwrite(inode->i_sb);
309	return;
310no_delete:
311	ext4_clear_inode(inode);	/* We must guarantee clearing of inode... */
312}
313
314#ifdef CONFIG_QUOTA
315qsize_t *ext4_get_reserved_space(struct inode *inode)
316{
317	return &EXT4_I(inode)->i_reserved_quota;
318}
319#endif
320
321/*
322 * Called with i_data_sem down, which is important since we can call
323 * ext4_discard_preallocations() from here.
324 */
325void ext4_da_update_reserve_space(struct inode *inode,
326					int used, int quota_claim)
327{
328	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
329	struct ext4_inode_info *ei = EXT4_I(inode);
330
331	spin_lock(&ei->i_block_reservation_lock);
332	trace_ext4_da_update_reserve_space(inode, used, quota_claim);
333	if (unlikely(used > ei->i_reserved_data_blocks)) {
334		ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
335			 "with only %d reserved data blocks",
336			 __func__, inode->i_ino, used,
337			 ei->i_reserved_data_blocks);
338		WARN_ON(1);
339		used = ei->i_reserved_data_blocks;
340	}
341
342	/* Update per-inode reservations */
343	ei->i_reserved_data_blocks -= used;
344	percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
345
346	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
347
348	/* Update quota subsystem for data blocks */
349	if (quota_claim)
350		dquot_claim_block(inode, EXT4_C2B(sbi, used));
351	else {
352		/*
353		 * We did fallocate with an offset that is already delayed
354		 * allocated. So on delayed allocated writeback we should
355		 * not re-claim the quota for fallocated blocks.
356		 */
357		dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
358	}
359
360	/*
361	 * If we have done all the pending block allocations and if
362	 * there aren't any writers on the inode, we can discard the
363	 * inode's preallocations.
364	 */
365	if ((ei->i_reserved_data_blocks == 0) &&
366	    (atomic_read(&inode->i_writecount) == 0))
367		ext4_discard_preallocations(inode);
368}
369
370static int __check_block_validity(struct inode *inode, const char *func,
371				unsigned int line,
372				struct ext4_map_blocks *map)
373{
374	if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
375				   map->m_len)) {
376		ext4_error_inode(inode, func, line, map->m_pblk,
377				 "lblock %lu mapped to illegal pblock "
378				 "(length %d)", (unsigned long) map->m_lblk,
379				 map->m_len);
380		return -EIO;
381	}
382	return 0;
383}
384
385#define check_block_validity(inode, map)	\
386	__check_block_validity((inode), __func__, __LINE__, (map))
387
388#ifdef ES_AGGRESSIVE_TEST
389static void ext4_map_blocks_es_recheck(handle_t *handle,
390				       struct inode *inode,
391				       struct ext4_map_blocks *es_map,
392				       struct ext4_map_blocks *map,
393				       int flags)
394{
395	int retval;
396
397	map->m_flags = 0;
398	/*
399	 * There is a race window that the result is not the same.
400	 * e.g. xfstests #223 when dioread_nolock enables.  The reason
401	 * is that we lookup a block mapping in extent status tree with
402	 * out taking i_data_sem.  So at the time the unwritten extent
403	 * could be converted.
404	 */
405	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
406		down_read(&EXT4_I(inode)->i_data_sem);
407	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
408		retval = ext4_ext_map_blocks(handle, inode, map, flags &
409					     EXT4_GET_BLOCKS_KEEP_SIZE);
410	} else {
411		retval = ext4_ind_map_blocks(handle, inode, map, flags &
412					     EXT4_GET_BLOCKS_KEEP_SIZE);
413	}
414	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
415		up_read((&EXT4_I(inode)->i_data_sem));
416
417	/*
418	 * We don't check m_len because extent will be collpased in status
419	 * tree.  So the m_len might not equal.
420	 */
421	if (es_map->m_lblk != map->m_lblk ||
422	    es_map->m_flags != map->m_flags ||
423	    es_map->m_pblk != map->m_pblk) {
424		printk("ES cache assertion failed for inode: %lu "
425		       "es_cached ex [%d/%d/%llu/%x] != "
426		       "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
427		       inode->i_ino, es_map->m_lblk, es_map->m_len,
428		       es_map->m_pblk, es_map->m_flags, map->m_lblk,
429		       map->m_len, map->m_pblk, map->m_flags,
430		       retval, flags);
431	}
432}
433#endif /* ES_AGGRESSIVE_TEST */
434
435/*
436 * The ext4_map_blocks() function tries to look up the requested blocks,
437 * and returns if the blocks are already mapped.
438 *
439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
440 * and store the allocated blocks in the result buffer head and mark it
441 * mapped.
442 *
443 * If file type is extents based, it will call ext4_ext_map_blocks(),
444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
445 * based files
446 *
447 * On success, it returns the number of blocks being mapped or allocated.
448 * if create==0 and the blocks are pre-allocated and unwritten block,
449 * the result buffer head is unmapped. If the create ==1, it will make sure
450 * the buffer head is mapped.
451 *
452 * It returns 0 if plain look up failed (blocks have not been allocated), in
453 * that case, buffer head is unmapped
454 *
455 * It returns the error in case of allocation failure.
456 */
457int ext4_map_blocks(handle_t *handle, struct inode *inode,
458		    struct ext4_map_blocks *map, int flags)
459{
460	struct extent_status es;
461	int retval;
462	int ret = 0;
463#ifdef ES_AGGRESSIVE_TEST
464	struct ext4_map_blocks orig_map;
465
466	memcpy(&orig_map, map, sizeof(*map));
467#endif
468
469	map->m_flags = 0;
470	ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
471		  "logical block %lu\n", inode->i_ino, flags, map->m_len,
472		  (unsigned long) map->m_lblk);
473
474	/*
475	 * ext4_map_blocks returns an int, and m_len is an unsigned int
476	 */
477	if (unlikely(map->m_len > INT_MAX))
478		map->m_len = INT_MAX;
479
480	/* We can handle the block number less than EXT_MAX_BLOCKS */
481	if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
482		return -EIO;
483
484	/* Lookup extent status tree firstly */
485	if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
486		if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
487			map->m_pblk = ext4_es_pblock(&es) +
488					map->m_lblk - es.es_lblk;
489			map->m_flags |= ext4_es_is_written(&es) ?
490					EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
491			retval = es.es_len - (map->m_lblk - es.es_lblk);
492			if (retval > map->m_len)
493				retval = map->m_len;
494			map->m_len = retval;
495		} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
496			retval = 0;
497		} else {
498			BUG_ON(1);
499		}
500#ifdef ES_AGGRESSIVE_TEST
501		ext4_map_blocks_es_recheck(handle, inode, map,
502					   &orig_map, flags);
503#endif
504		goto found;
505	}
506
507	/*
508	 * Try to see if we can get the block without requesting a new
509	 * file system block.
510	 */
511	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
512		down_read(&EXT4_I(inode)->i_data_sem);
513	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
514		retval = ext4_ext_map_blocks(handle, inode, map, flags &
515					     EXT4_GET_BLOCKS_KEEP_SIZE);
516	} else {
517		retval = ext4_ind_map_blocks(handle, inode, map, flags &
518					     EXT4_GET_BLOCKS_KEEP_SIZE);
519	}
520	if (retval > 0) {
521		unsigned int status;
522
523		if (unlikely(retval != map->m_len)) {
524			ext4_warning(inode->i_sb,
525				     "ES len assertion failed for inode "
526				     "%lu: retval %d != map->m_len %d",
527				     inode->i_ino, retval, map->m_len);
528			WARN_ON(1);
529		}
530
531		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
532				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
533		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
534		    !(status & EXTENT_STATUS_WRITTEN) &&
535		    ext4_find_delalloc_range(inode, map->m_lblk,
536					     map->m_lblk + map->m_len - 1))
537			status |= EXTENT_STATUS_DELAYED;
538		ret = ext4_es_insert_extent(inode, map->m_lblk,
539					    map->m_len, map->m_pblk, status);
540		if (ret < 0)
541			retval = ret;
542	}
543	if (!(flags & EXT4_GET_BLOCKS_NO_LOCK))
544		up_read((&EXT4_I(inode)->i_data_sem));
545
546found:
547	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
548		ret = check_block_validity(inode, map);
549		if (ret != 0)
550			return ret;
551	}
552
553	/* If it is only a block(s) look up */
554	if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
555		return retval;
556
557	/*
558	 * Returns if the blocks have already allocated
559	 *
560	 * Note that if blocks have been preallocated
561	 * ext4_ext_get_block() returns the create = 0
562	 * with buffer head unmapped.
563	 */
564	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
565		/*
566		 * If we need to convert extent to unwritten
567		 * we continue and do the actual work in
568		 * ext4_ext_map_blocks()
569		 */
570		if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
571			return retval;
572
573	/*
574	 * Here we clear m_flags because after allocating an new extent,
575	 * it will be set again.
576	 */
577	map->m_flags &= ~EXT4_MAP_FLAGS;
578
579	/*
580	 * New blocks allocate and/or writing to unwritten extent
581	 * will possibly result in updating i_data, so we take
582	 * the write lock of i_data_sem, and call get_block()
583	 * with create == 1 flag.
584	 */
585	down_write(&EXT4_I(inode)->i_data_sem);
586
587	/*
588	 * We need to check for EXT4 here because migrate
589	 * could have changed the inode type in between
590	 */
591	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
592		retval = ext4_ext_map_blocks(handle, inode, map, flags);
593	} else {
594		retval = ext4_ind_map_blocks(handle, inode, map, flags);
595
596		if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
597			/*
598			 * We allocated new blocks which will result in
599			 * i_data's format changing.  Force the migrate
600			 * to fail by clearing migrate flags
601			 */
602			ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
603		}
604
605		/*
606		 * Update reserved blocks/metadata blocks after successful
607		 * block allocation which had been deferred till now. We don't
608		 * support fallocate for non extent files. So we can update
609		 * reserve space here.
610		 */
611		if ((retval > 0) &&
612			(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
613			ext4_da_update_reserve_space(inode, retval, 1);
614	}
615
616	if (retval > 0) {
617		unsigned int status;
618
619		if (unlikely(retval != map->m_len)) {
620			ext4_warning(inode->i_sb,
621				     "ES len assertion failed for inode "
622				     "%lu: retval %d != map->m_len %d",
623				     inode->i_ino, retval, map->m_len);
624			WARN_ON(1);
625		}
626
627		/*
628		 * If the extent has been zeroed out, we don't need to update
629		 * extent status tree.
630		 */
631		if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
632		    ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
633			if (ext4_es_is_written(&es))
634				goto has_zeroout;
635		}
636		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
637				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
638		if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
639		    !(status & EXTENT_STATUS_WRITTEN) &&
640		    ext4_find_delalloc_range(inode, map->m_lblk,
641					     map->m_lblk + map->m_len - 1))
642			status |= EXTENT_STATUS_DELAYED;
643		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
644					    map->m_pblk, status);
645		if (ret < 0)
646			retval = ret;
647	}
648
649has_zeroout:
650	up_write((&EXT4_I(inode)->i_data_sem));
651	if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
652		ret = check_block_validity(inode, map);
653		if (ret != 0)
654			return ret;
655	}
656	return retval;
657}
658
659/*
660 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
661 * we have to be careful as someone else may be manipulating b_state as well.
662 */
663static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
664{
665	unsigned long old_state;
666	unsigned long new_state;
667
668	flags &= EXT4_MAP_FLAGS;
669
670	/* Dummy buffer_head? Set non-atomically. */
671	if (!bh->b_page) {
672		bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
673		return;
674	}
675	/*
676	 * Someone else may be modifying b_state. Be careful! This is ugly but
677	 * once we get rid of using bh as a container for mapping information
678	 * to pass to / from get_block functions, this can go away.
679	 */
680	do {
681		old_state = READ_ONCE(bh->b_state);
682		new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
683	} while (unlikely(
684		 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
685}
686
687/* Maximum number of blocks we map for direct IO at once. */
688#define DIO_MAX_BLOCKS 4096
689
690static int _ext4_get_block(struct inode *inode, sector_t iblock,
691			   struct buffer_head *bh, int flags)
692{
693	handle_t *handle = ext4_journal_current_handle();
694	struct ext4_map_blocks map;
695	int ret = 0, started = 0;
696	int dio_credits;
697
698	if (ext4_has_inline_data(inode))
699		return -ERANGE;
700
701	map.m_lblk = iblock;
702	map.m_len = bh->b_size >> inode->i_blkbits;
703
704	if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) {
705		/* Direct IO write... */
706		if (map.m_len > DIO_MAX_BLOCKS)
707			map.m_len = DIO_MAX_BLOCKS;
708		dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
709		handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
710					    dio_credits);
711		if (IS_ERR(handle)) {
712			ret = PTR_ERR(handle);
713			return ret;
714		}
715		started = 1;
716	}
717
718	ret = ext4_map_blocks(handle, inode, &map, flags);
719	if (ret > 0) {
720		ext4_io_end_t *io_end = ext4_inode_aio(inode);
721
722		map_bh(bh, inode->i_sb, map.m_pblk);
723		ext4_update_bh_state(bh, map.m_flags);
724		if (IS_DAX(inode) && buffer_unwritten(bh)) {
725			/*
726			 * dgc: I suspect unwritten conversion on ext4+DAX is
727			 * fundamentally broken here when there are concurrent
728			 * read/write in progress on this inode.
729			 */
730			WARN_ON_ONCE(io_end);
731			bh->b_assoc_map = inode->i_mapping;
732			bh->b_private = (void *)(unsigned long)iblock;
733		}
734		if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN)
735			set_buffer_defer_completion(bh);
736		bh->b_size = inode->i_sb->s_blocksize * map.m_len;
737		ret = 0;
738	}
739	if (started)
740		ext4_journal_stop(handle);
741	return ret;
742}
743
744int ext4_get_block(struct inode *inode, sector_t iblock,
745		   struct buffer_head *bh, int create)
746{
747	return _ext4_get_block(inode, iblock, bh,
748			       create ? EXT4_GET_BLOCKS_CREATE : 0);
749}
750
751/*
752 * `handle' can be NULL if create is zero
753 */
754struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
755				ext4_lblk_t block, int create)
756{
757	struct ext4_map_blocks map;
758	struct buffer_head *bh;
759	int err;
760
761	J_ASSERT(handle != NULL || create == 0);
762
763	map.m_lblk = block;
764	map.m_len = 1;
765	err = ext4_map_blocks(handle, inode, &map,
766			      create ? EXT4_GET_BLOCKS_CREATE : 0);
767
768	if (err == 0)
769		return create ? ERR_PTR(-ENOSPC) : NULL;
770	if (err < 0)
771		return ERR_PTR(err);
772
773	bh = sb_getblk(inode->i_sb, map.m_pblk);
774	if (unlikely(!bh))
775		return ERR_PTR(-ENOMEM);
776	if (map.m_flags & EXT4_MAP_NEW) {
777		J_ASSERT(create != 0);
778		J_ASSERT(handle != NULL);
779
780		/*
781		 * Now that we do not always journal data, we should
782		 * keep in mind whether this should always journal the
783		 * new buffer as metadata.  For now, regular file
784		 * writes use ext4_get_block instead, so it's not a
785		 * problem.
786		 */
787		lock_buffer(bh);
788		BUFFER_TRACE(bh, "call get_create_access");
789		err = ext4_journal_get_create_access(handle, bh);
790		if (unlikely(err)) {
791			unlock_buffer(bh);
792			goto errout;
793		}
794		if (!buffer_uptodate(bh)) {
795			memset(bh->b_data, 0, inode->i_sb->s_blocksize);
796			set_buffer_uptodate(bh);
797		}
798		unlock_buffer(bh);
799		BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
800		err = ext4_handle_dirty_metadata(handle, inode, bh);
801		if (unlikely(err))
802			goto errout;
803	} else
804		BUFFER_TRACE(bh, "not a new buffer");
805	return bh;
806errout:
807	brelse(bh);
808	return ERR_PTR(err);
809}
810
811struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
812			       ext4_lblk_t block, int create)
813{
814	struct buffer_head *bh;
815
816	bh = ext4_getblk(handle, inode, block, create);
817	if (IS_ERR(bh))
818		return bh;
819	if (!bh || buffer_uptodate(bh))
820		return bh;
821	ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
822	wait_on_buffer(bh);
823	if (buffer_uptodate(bh))
824		return bh;
825	put_bh(bh);
826	return ERR_PTR(-EIO);
827}
828
829int ext4_walk_page_buffers(handle_t *handle,
830			   struct buffer_head *head,
831			   unsigned from,
832			   unsigned to,
833			   int *partial,
834			   int (*fn)(handle_t *handle,
835				     struct buffer_head *bh))
836{
837	struct buffer_head *bh;
838	unsigned block_start, block_end;
839	unsigned blocksize = head->b_size;
840	int err, ret = 0;
841	struct buffer_head *next;
842
843	for (bh = head, block_start = 0;
844	     ret == 0 && (bh != head || !block_start);
845	     block_start = block_end, bh = next) {
846		next = bh->b_this_page;
847		block_end = block_start + blocksize;
848		if (block_end <= from || block_start >= to) {
849			if (partial && !buffer_uptodate(bh))
850				*partial = 1;
851			continue;
852		}
853		err = (*fn)(handle, bh);
854		if (!ret)
855			ret = err;
856	}
857	return ret;
858}
859
860/*
861 * To preserve ordering, it is essential that the hole instantiation and
862 * the data write be encapsulated in a single transaction.  We cannot
863 * close off a transaction and start a new one between the ext4_get_block()
864 * and the commit_write().  So doing the jbd2_journal_start at the start of
865 * prepare_write() is the right place.
866 *
867 * Also, this function can nest inside ext4_writepage().  In that case, we
868 * *know* that ext4_writepage() has generated enough buffer credits to do the
869 * whole page.  So we won't block on the journal in that case, which is good,
870 * because the caller may be PF_MEMALLOC.
871 *
872 * By accident, ext4 can be reentered when a transaction is open via
873 * quota file writes.  If we were to commit the transaction while thus
874 * reentered, there can be a deadlock - we would be holding a quota
875 * lock, and the commit would never complete if another thread had a
876 * transaction open and was blocking on the quota lock - a ranking
877 * violation.
878 *
879 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
880 * will _not_ run commit under these circumstances because handle->h_ref
881 * is elevated.  We'll still have enough credits for the tiny quotafile
882 * write.
883 */
884int do_journal_get_write_access(handle_t *handle,
885				struct buffer_head *bh)
886{
887	int dirty = buffer_dirty(bh);
888	int ret;
889
890	if (!buffer_mapped(bh) || buffer_freed(bh))
891		return 0;
892	/*
893	 * __block_write_begin() could have dirtied some buffers. Clean
894	 * the dirty bit as jbd2_journal_get_write_access() could complain
895	 * otherwise about fs integrity issues. Setting of the dirty bit
896	 * by __block_write_begin() isn't a real problem here as we clear
897	 * the bit before releasing a page lock and thus writeback cannot
898	 * ever write the buffer.
899	 */
900	if (dirty)
901		clear_buffer_dirty(bh);
902	BUFFER_TRACE(bh, "get write access");
903	ret = ext4_journal_get_write_access(handle, bh);
904	if (!ret && dirty)
905		ret = ext4_handle_dirty_metadata(handle, NULL, bh);
906	return ret;
907}
908
909static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
910		   struct buffer_head *bh_result, int create);
911
912#ifdef CONFIG_EXT4_FS_ENCRYPTION
913static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
914				  get_block_t *get_block)
915{
916	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
917	unsigned to = from + len;
918	struct inode *inode = page->mapping->host;
919	unsigned block_start, block_end;
920	sector_t block;
921	int err = 0;
922	unsigned blocksize = inode->i_sb->s_blocksize;
923	unsigned bbits;
924	struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
925	bool decrypt = false;
926
927	BUG_ON(!PageLocked(page));
928	BUG_ON(from > PAGE_CACHE_SIZE);
929	BUG_ON(to > PAGE_CACHE_SIZE);
930	BUG_ON(from > to);
931
932	if (!page_has_buffers(page))
933		create_empty_buffers(page, blocksize, 0);
934	head = page_buffers(page);
935	bbits = ilog2(blocksize);
936	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
937
938	for (bh = head, block_start = 0; bh != head || !block_start;
939	    block++, block_start = block_end, bh = bh->b_this_page) {
940		block_end = block_start + blocksize;
941		if (block_end <= from || block_start >= to) {
942			if (PageUptodate(page)) {
943				if (!buffer_uptodate(bh))
944					set_buffer_uptodate(bh);
945			}
946			continue;
947		}
948		if (buffer_new(bh))
949			clear_buffer_new(bh);
950		if (!buffer_mapped(bh)) {
951			WARN_ON(bh->b_size != blocksize);
952			err = get_block(inode, block, bh, 1);
953			if (err)
954				break;
955			if (buffer_new(bh)) {
956				unmap_underlying_metadata(bh->b_bdev,
957							  bh->b_blocknr);
958				if (PageUptodate(page)) {
959					clear_buffer_new(bh);
960					set_buffer_uptodate(bh);
961					mark_buffer_dirty(bh);
962					continue;
963				}
964				if (block_end > to || block_start < from)
965					zero_user_segments(page, to, block_end,
966							   block_start, from);
967				continue;
968			}
969		}
970		if (PageUptodate(page)) {
971			if (!buffer_uptodate(bh))
972				set_buffer_uptodate(bh);
973			continue;
974		}
975		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
976		    !buffer_unwritten(bh) &&
977		    (block_start < from || block_end > to)) {
978			ll_rw_block(READ, 1, &bh);
979			*wait_bh++ = bh;
980			decrypt = ext4_encrypted_inode(inode) &&
981				S_ISREG(inode->i_mode);
982		}
983	}
984	/*
985	 * If we issued read requests, let them complete.
986	 */
987	while (wait_bh > wait) {
988		wait_on_buffer(*--wait_bh);
989		if (!buffer_uptodate(*wait_bh))
990			err = -EIO;
991	}
992	if (unlikely(err))
993		page_zero_new_buffers(page, from, to);
994	else if (decrypt)
995		err = ext4_decrypt_one(inode, page);
996	return err;
997}
998#endif
999
1000static int ext4_write_begin(struct file *file, struct address_space *mapping,
1001			    loff_t pos, unsigned len, unsigned flags,
1002			    struct page **pagep, void **fsdata)
1003{
1004	struct inode *inode = mapping->host;
1005	int ret, needed_blocks;
1006	handle_t *handle;
1007	int retries = 0;
1008	struct page *page;
1009	pgoff_t index;
1010	unsigned from, to;
1011
1012	trace_ext4_write_begin(inode, pos, len, flags);
1013	/*
1014	 * Reserve one block more for addition to orphan list in case
1015	 * we allocate blocks but write fails for some reason
1016	 */
1017	needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1018	index = pos >> PAGE_CACHE_SHIFT;
1019	from = pos & (PAGE_CACHE_SIZE - 1);
1020	to = from + len;
1021
1022	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1023		ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1024						    flags, pagep);
1025		if (ret < 0)
1026			return ret;
1027		if (ret == 1)
1028			return 0;
1029	}
1030
1031	/*
1032	 * grab_cache_page_write_begin() can take a long time if the
1033	 * system is thrashing due to memory pressure, or if the page
1034	 * is being written back.  So grab it first before we start
1035	 * the transaction handle.  This also allows us to allocate
1036	 * the page (if needed) without using GFP_NOFS.
1037	 */
1038retry_grab:
1039	page = grab_cache_page_write_begin(mapping, index, flags);
1040	if (!page)
1041		return -ENOMEM;
1042	unlock_page(page);
1043
1044retry_journal:
1045	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1046	if (IS_ERR(handle)) {
1047		page_cache_release(page);
1048		return PTR_ERR(handle);
1049	}
1050
1051	lock_page(page);
1052	if (page->mapping != mapping) {
1053		/* The page got truncated from under us */
1054		unlock_page(page);
1055		page_cache_release(page);
1056		ext4_journal_stop(handle);
1057		goto retry_grab;
1058	}
1059	/* In case writeback began while the page was unlocked */
1060	wait_for_stable_page(page);
1061
1062#ifdef CONFIG_EXT4_FS_ENCRYPTION
1063	if (ext4_should_dioread_nolock(inode))
1064		ret = ext4_block_write_begin(page, pos, len,
1065					     ext4_get_block_write);
1066	else
1067		ret = ext4_block_write_begin(page, pos, len,
1068					     ext4_get_block);
1069#else
1070	if (ext4_should_dioread_nolock(inode))
1071		ret = __block_write_begin(page, pos, len, ext4_get_block_write);
1072	else
1073		ret = __block_write_begin(page, pos, len, ext4_get_block);
1074#endif
1075	if (!ret && ext4_should_journal_data(inode)) {
1076		ret = ext4_walk_page_buffers(handle, page_buffers(page),
1077					     from, to, NULL,
1078					     do_journal_get_write_access);
1079	}
1080
1081	if (ret) {
1082		unlock_page(page);
1083		/*
1084		 * __block_write_begin may have instantiated a few blocks
1085		 * outside i_size.  Trim these off again. Don't need
1086		 * i_size_read because we hold i_mutex.
1087		 *
1088		 * Add inode to orphan list in case we crash before
1089		 * truncate finishes
1090		 */
1091		if (pos + len > inode->i_size && ext4_can_truncate(inode))
1092			ext4_orphan_add(handle, inode);
1093
1094		ext4_journal_stop(handle);
1095		if (pos + len > inode->i_size) {
1096			ext4_truncate_failed_write(inode);
1097			/*
1098			 * If truncate failed early the inode might
1099			 * still be on the orphan list; we need to
1100			 * make sure the inode is removed from the
1101			 * orphan list in that case.
1102			 */
1103			if (inode->i_nlink)
1104				ext4_orphan_del(NULL, inode);
1105		}
1106
1107		if (ret == -ENOSPC &&
1108		    ext4_should_retry_alloc(inode->i_sb, &retries))
1109			goto retry_journal;
1110		page_cache_release(page);
1111		return ret;
1112	}
1113	*pagep = page;
1114	return ret;
1115}
1116
1117/* For write_end() in data=journal mode */
1118static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1119{
1120	int ret;
1121	if (!buffer_mapped(bh) || buffer_freed(bh))
1122		return 0;
1123	set_buffer_uptodate(bh);
1124	ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1125	clear_buffer_meta(bh);
1126	clear_buffer_prio(bh);
1127	return ret;
1128}
1129
1130/*
1131 * We need to pick up the new inode size which generic_commit_write gave us
1132 * `file' can be NULL - eg, when called from page_symlink().
1133 *
1134 * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1135 * buffers are managed internally.
1136 */
1137static int ext4_write_end(struct file *file,
1138			  struct address_space *mapping,
1139			  loff_t pos, unsigned len, unsigned copied,
1140			  struct page *page, void *fsdata)
1141{
1142	handle_t *handle = ext4_journal_current_handle();
1143	struct inode *inode = mapping->host;
1144	loff_t old_size = inode->i_size;
1145	int ret = 0, ret2;
1146	int i_size_changed = 0;
1147
1148	trace_ext4_write_end(inode, pos, len, copied);
1149	if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) {
1150		ret = ext4_jbd2_file_inode(handle, inode);
1151		if (ret) {
1152			unlock_page(page);
1153			page_cache_release(page);
1154			goto errout;
1155		}
1156	}
1157
1158	if (ext4_has_inline_data(inode)) {
1159		ret = ext4_write_inline_data_end(inode, pos, len,
1160						 copied, page);
1161		if (ret < 0)
1162			goto errout;
1163		copied = ret;
1164	} else
1165		copied = block_write_end(file, mapping, pos,
1166					 len, copied, page, fsdata);
1167	/*
1168	 * it's important to update i_size while still holding page lock:
1169	 * page writeout could otherwise come in and zero beyond i_size.
1170	 */
1171	i_size_changed = ext4_update_inode_size(inode, pos + copied);
1172	unlock_page(page);
1173	page_cache_release(page);
1174
1175	if (old_size < pos)
1176		pagecache_isize_extended(inode, old_size, pos);
1177	/*
1178	 * Don't mark the inode dirty under page lock. First, it unnecessarily
1179	 * makes the holding time of page lock longer. Second, it forces lock
1180	 * ordering of page lock and transaction start for journaling
1181	 * filesystems.
1182	 */
1183	if (i_size_changed)
1184		ext4_mark_inode_dirty(handle, inode);
1185
1186	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1187		/* if we have allocated more blocks and copied
1188		 * less. We will have blocks allocated outside
1189		 * inode->i_size. So truncate them
1190		 */
1191		ext4_orphan_add(handle, inode);
1192errout:
1193	ret2 = ext4_journal_stop(handle);
1194	if (!ret)
1195		ret = ret2;
1196
1197	if (pos + len > inode->i_size) {
1198		ext4_truncate_failed_write(inode);
1199		/*
1200		 * If truncate failed early the inode might still be
1201		 * on the orphan list; we need to make sure the inode
1202		 * is removed from the orphan list in that case.
1203		 */
1204		if (inode->i_nlink)
1205			ext4_orphan_del(NULL, inode);
1206	}
1207
1208	return ret ? ret : copied;
1209}
1210
1211static int ext4_journalled_write_end(struct file *file,
1212				     struct address_space *mapping,
1213				     loff_t pos, unsigned len, unsigned copied,
1214				     struct page *page, void *fsdata)
1215{
1216	handle_t *handle = ext4_journal_current_handle();
1217	struct inode *inode = mapping->host;
1218	loff_t old_size = inode->i_size;
1219	int ret = 0, ret2;
1220	int partial = 0;
1221	unsigned from, to;
1222	int size_changed = 0;
1223
1224	trace_ext4_journalled_write_end(inode, pos, len, copied);
1225	from = pos & (PAGE_CACHE_SIZE - 1);
1226	to = from + len;
1227
1228	BUG_ON(!ext4_handle_valid(handle));
1229
1230	if (ext4_has_inline_data(inode))
1231		copied = ext4_write_inline_data_end(inode, pos, len,
1232						    copied, page);
1233	else {
1234		if (copied < len) {
1235			if (!PageUptodate(page))
1236				copied = 0;
1237			page_zero_new_buffers(page, from+copied, to);
1238		}
1239
1240		ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1241					     to, &partial, write_end_fn);
1242		if (!partial)
1243			SetPageUptodate(page);
1244	}
1245	size_changed = ext4_update_inode_size(inode, pos + copied);
1246	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1247	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1248	unlock_page(page);
1249	page_cache_release(page);
1250
1251	if (old_size < pos)
1252		pagecache_isize_extended(inode, old_size, pos);
1253
1254	if (size_changed) {
1255		ret2 = ext4_mark_inode_dirty(handle, inode);
1256		if (!ret)
1257			ret = ret2;
1258	}
1259
1260	if (pos + len > inode->i_size && ext4_can_truncate(inode))
1261		/* if we have allocated more blocks and copied
1262		 * less. We will have blocks allocated outside
1263		 * inode->i_size. So truncate them
1264		 */
1265		ext4_orphan_add(handle, inode);
1266
1267	ret2 = ext4_journal_stop(handle);
1268	if (!ret)
1269		ret = ret2;
1270	if (pos + len > inode->i_size) {
1271		ext4_truncate_failed_write(inode);
1272		/*
1273		 * If truncate failed early the inode might still be
1274		 * on the orphan list; we need to make sure the inode
1275		 * is removed from the orphan list in that case.
1276		 */
1277		if (inode->i_nlink)
1278			ext4_orphan_del(NULL, inode);
1279	}
1280
1281	return ret ? ret : copied;
1282}
1283
1284/*
1285 * Reserve a single cluster located at lblock
1286 */
1287static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock)
1288{
1289	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1290	struct ext4_inode_info *ei = EXT4_I(inode);
1291	unsigned int md_needed;
1292	int ret;
1293
1294	/*
1295	 * We will charge metadata quota at writeout time; this saves
1296	 * us from metadata over-estimation, though we may go over by
1297	 * a small amount in the end.  Here we just reserve for data.
1298	 */
1299	ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1300	if (ret)
1301		return ret;
1302
1303	/*
1304	 * recalculate the amount of metadata blocks to reserve
1305	 * in order to allocate nrblocks
1306	 * worse case is one extent per block
1307	 */
1308	spin_lock(&ei->i_block_reservation_lock);
1309	/*
1310	 * ext4_calc_metadata_amount() has side effects, which we have
1311	 * to be prepared undo if we fail to claim space.
1312	 */
1313	md_needed = 0;
1314	trace_ext4_da_reserve_space(inode, 0);
1315
1316	if (ext4_claim_free_clusters(sbi, 1, 0)) {
1317		spin_unlock(&ei->i_block_reservation_lock);
1318		dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1319		return -ENOSPC;
1320	}
1321	ei->i_reserved_data_blocks++;
1322	spin_unlock(&ei->i_block_reservation_lock);
1323
1324	return 0;       /* success */
1325}
1326
1327static void ext4_da_release_space(struct inode *inode, int to_free)
1328{
1329	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1330	struct ext4_inode_info *ei = EXT4_I(inode);
1331
1332	if (!to_free)
1333		return;		/* Nothing to release, exit */
1334
1335	spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1336
1337	trace_ext4_da_release_space(inode, to_free);
1338	if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1339		/*
1340		 * if there aren't enough reserved blocks, then the
1341		 * counter is messed up somewhere.  Since this
1342		 * function is called from invalidate page, it's
1343		 * harmless to return without any action.
1344		 */
1345		ext4_warning(inode->i_sb, "ext4_da_release_space: "
1346			 "ino %lu, to_free %d with only %d reserved "
1347			 "data blocks", inode->i_ino, to_free,
1348			 ei->i_reserved_data_blocks);
1349		WARN_ON(1);
1350		to_free = ei->i_reserved_data_blocks;
1351	}
1352	ei->i_reserved_data_blocks -= to_free;
1353
1354	/* update fs dirty data blocks counter */
1355	percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1356
1357	spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1358
1359	dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1360}
1361
1362static void ext4_da_page_release_reservation(struct page *page,
1363					     unsigned int offset,
1364					     unsigned int length)
1365{
1366	int to_release = 0, contiguous_blks = 0;
1367	struct buffer_head *head, *bh;
1368	unsigned int curr_off = 0;
1369	struct inode *inode = page->mapping->host;
1370	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1371	unsigned int stop = offset + length;
1372	int num_clusters;
1373	ext4_fsblk_t lblk;
1374
1375	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
1376
1377	head = page_buffers(page);
1378	bh = head;
1379	do {
1380		unsigned int next_off = curr_off + bh->b_size;
1381
1382		if (next_off > stop)
1383			break;
1384
1385		if ((offset <= curr_off) && (buffer_delay(bh))) {
1386			to_release++;
1387			contiguous_blks++;
1388			clear_buffer_delay(bh);
1389		} else if (contiguous_blks) {
1390			lblk = page->index <<
1391			       (PAGE_CACHE_SHIFT - inode->i_blkbits);
1392			lblk += (curr_off >> inode->i_blkbits) -
1393				contiguous_blks;
1394			ext4_es_remove_extent(inode, lblk, contiguous_blks);
1395			contiguous_blks = 0;
1396		}
1397		curr_off = next_off;
1398	} while ((bh = bh->b_this_page) != head);
1399
1400	if (contiguous_blks) {
1401		lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1402		lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1403		ext4_es_remove_extent(inode, lblk, contiguous_blks);
1404	}
1405
1406	/* If we have released all the blocks belonging to a cluster, then we
1407	 * need to release the reserved space for that cluster. */
1408	num_clusters = EXT4_NUM_B2C(sbi, to_release);
1409	while (num_clusters > 0) {
1410		lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) +
1411			((num_clusters - 1) << sbi->s_cluster_bits);
1412		if (sbi->s_cluster_ratio == 1 ||
1413		    !ext4_find_delalloc_cluster(inode, lblk))
1414			ext4_da_release_space(inode, 1);
1415
1416		num_clusters--;
1417	}
1418}
1419
1420/*
1421 * Delayed allocation stuff
1422 */
1423
1424struct mpage_da_data {
1425	struct inode *inode;
1426	struct writeback_control *wbc;
1427
1428	pgoff_t first_page;	/* The first page to write */
1429	pgoff_t next_page;	/* Current page to examine */
1430	pgoff_t last_page;	/* Last page to examine */
1431	/*
1432	 * Extent to map - this can be after first_page because that can be
1433	 * fully mapped. We somewhat abuse m_flags to store whether the extent
1434	 * is delalloc or unwritten.
1435	 */
1436	struct ext4_map_blocks map;
1437	struct ext4_io_submit io_submit;	/* IO submission data */
1438};
1439
1440static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1441				       bool invalidate)
1442{
1443	int nr_pages, i;
1444	pgoff_t index, end;
1445	struct pagevec pvec;
1446	struct inode *inode = mpd->inode;
1447	struct address_space *mapping = inode->i_mapping;
1448
1449	/* This is necessary when next_page == 0. */
1450	if (mpd->first_page >= mpd->next_page)
1451		return;
1452
1453	index = mpd->first_page;
1454	end   = mpd->next_page - 1;
1455	if (invalidate) {
1456		ext4_lblk_t start, last;
1457		start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1458		last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1459		ext4_es_remove_extent(inode, start, last - start + 1);
1460	}
1461
1462	pagevec_init(&pvec, 0);
1463	while (index <= end) {
1464		nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1465		if (nr_pages == 0)
1466			break;
1467		for (i = 0; i < nr_pages; i++) {
1468			struct page *page = pvec.pages[i];
1469			if (page->index > end)
1470				break;
1471			BUG_ON(!PageLocked(page));
1472			BUG_ON(PageWriteback(page));
1473			if (invalidate) {
1474				block_invalidatepage(page, 0, PAGE_CACHE_SIZE);
1475				ClearPageUptodate(page);
1476			}
1477			unlock_page(page);
1478		}
1479		index = pvec.pages[nr_pages - 1]->index + 1;
1480		pagevec_release(&pvec);
1481	}
1482}
1483
1484static void ext4_print_free_blocks(struct inode *inode)
1485{
1486	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1487	struct super_block *sb = inode->i_sb;
1488	struct ext4_inode_info *ei = EXT4_I(inode);
1489
1490	ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1491	       EXT4_C2B(EXT4_SB(inode->i_sb),
1492			ext4_count_free_clusters(sb)));
1493	ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1494	ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1495	       (long long) EXT4_C2B(EXT4_SB(sb),
1496		percpu_counter_sum(&sbi->s_freeclusters_counter)));
1497	ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1498	       (long long) EXT4_C2B(EXT4_SB(sb),
1499		percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1500	ext4_msg(sb, KERN_CRIT, "Block reservation details");
1501	ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1502		 ei->i_reserved_data_blocks);
1503	return;
1504}
1505
1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1507{
1508	return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1509}
1510
1511/*
1512 * This function is grabs code from the very beginning of
1513 * ext4_map_blocks, but assumes that the caller is from delayed write
1514 * time. This function looks up the requested blocks and sets the
1515 * buffer delay bit under the protection of i_data_sem.
1516 */
1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1518			      struct ext4_map_blocks *map,
1519			      struct buffer_head *bh)
1520{
1521	struct extent_status es;
1522	int retval;
1523	sector_t invalid_block = ~((sector_t) 0xffff);
1524#ifdef ES_AGGRESSIVE_TEST
1525	struct ext4_map_blocks orig_map;
1526
1527	memcpy(&orig_map, map, sizeof(*map));
1528#endif
1529
1530	if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1531		invalid_block = ~0;
1532
1533	map->m_flags = 0;
1534	ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1535		  "logical block %lu\n", inode->i_ino, map->m_len,
1536		  (unsigned long) map->m_lblk);
1537
1538	/* Lookup extent status tree firstly */
1539	if (ext4_es_lookup_extent(inode, iblock, &es)) {
1540		if (ext4_es_is_hole(&es)) {
1541			retval = 0;
1542			down_read(&EXT4_I(inode)->i_data_sem);
1543			goto add_delayed;
1544		}
1545
1546		/*
1547		 * Delayed extent could be allocated by fallocate.
1548		 * So we need to check it.
1549		 */
1550		if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1551			map_bh(bh, inode->i_sb, invalid_block);
1552			set_buffer_new(bh);
1553			set_buffer_delay(bh);
1554			return 0;
1555		}
1556
1557		map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1558		retval = es.es_len - (iblock - es.es_lblk);
1559		if (retval > map->m_len)
1560			retval = map->m_len;
1561		map->m_len = retval;
1562		if (ext4_es_is_written(&es))
1563			map->m_flags |= EXT4_MAP_MAPPED;
1564		else if (ext4_es_is_unwritten(&es))
1565			map->m_flags |= EXT4_MAP_UNWRITTEN;
1566		else
1567			BUG_ON(1);
1568
1569#ifdef ES_AGGRESSIVE_TEST
1570		ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1571#endif
1572		return retval;
1573	}
1574
1575	/*
1576	 * Try to see if we can get the block without requesting a new
1577	 * file system block.
1578	 */
1579	down_read(&EXT4_I(inode)->i_data_sem);
1580	if (ext4_has_inline_data(inode))
1581		retval = 0;
1582	else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1583		retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1584	else
1585		retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1586
1587add_delayed:
1588	if (retval == 0) {
1589		int ret;
1590		/*
1591		 * XXX: __block_prepare_write() unmaps passed block,
1592		 * is it OK?
1593		 */
1594		/*
1595		 * If the block was allocated from previously allocated cluster,
1596		 * then we don't need to reserve it again. However we still need
1597		 * to reserve metadata for every block we're going to write.
1598		 */
1599		if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 ||
1600		    !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1601			ret = ext4_da_reserve_space(inode, iblock);
1602			if (ret) {
1603				/* not enough space to reserve */
1604				retval = ret;
1605				goto out_unlock;
1606			}
1607		}
1608
1609		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1610					    ~0, EXTENT_STATUS_DELAYED);
1611		if (ret) {
1612			retval = ret;
1613			goto out_unlock;
1614		}
1615
1616		map_bh(bh, inode->i_sb, invalid_block);
1617		set_buffer_new(bh);
1618		set_buffer_delay(bh);
1619	} else if (retval > 0) {
1620		int ret;
1621		unsigned int status;
1622
1623		if (unlikely(retval != map->m_len)) {
1624			ext4_warning(inode->i_sb,
1625				     "ES len assertion failed for inode "
1626				     "%lu: retval %d != map->m_len %d",
1627				     inode->i_ino, retval, map->m_len);
1628			WARN_ON(1);
1629		}
1630
1631		status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1632				EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1633		ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1634					    map->m_pblk, status);
1635		if (ret != 0)
1636			retval = ret;
1637	}
1638
1639out_unlock:
1640	up_read((&EXT4_I(inode)->i_data_sem));
1641
1642	return retval;
1643}
1644
1645/*
1646 * This is a special get_block_t callback which is used by
1647 * ext4_da_write_begin().  It will either return mapped block or
1648 * reserve space for a single block.
1649 *
1650 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1651 * We also have b_blocknr = -1 and b_bdev initialized properly
1652 *
1653 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1654 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1655 * initialized properly.
1656 */
1657int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1658			   struct buffer_head *bh, int create)
1659{
1660	struct ext4_map_blocks map;
1661	int ret = 0;
1662
1663	BUG_ON(create == 0);
1664	BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1665
1666	map.m_lblk = iblock;
1667	map.m_len = 1;
1668
1669	/*
1670	 * first, we need to know whether the block is allocated already
1671	 * preallocated blocks are unmapped but should treated
1672	 * the same as allocated blocks.
1673	 */
1674	ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1675	if (ret <= 0)
1676		return ret;
1677
1678	map_bh(bh, inode->i_sb, map.m_pblk);
1679	ext4_update_bh_state(bh, map.m_flags);
1680
1681	if (buffer_unwritten(bh)) {
1682		/* A delayed write to unwritten bh should be marked
1683		 * new and mapped.  Mapped ensures that we don't do
1684		 * get_block multiple times when we write to the same
1685		 * offset and new ensures that we do proper zero out
1686		 * for partial write.
1687		 */
1688		set_buffer_new(bh);
1689		set_buffer_mapped(bh);
1690	}
1691	return 0;
1692}
1693
1694static int bget_one(handle_t *handle, struct buffer_head *bh)
1695{
1696	get_bh(bh);
1697	return 0;
1698}
1699
1700static int bput_one(handle_t *handle, struct buffer_head *bh)
1701{
1702	put_bh(bh);
1703	return 0;
1704}
1705
1706static int __ext4_journalled_writepage(struct page *page,
1707				       unsigned int len)
1708{
1709	struct address_space *mapping = page->mapping;
1710	struct inode *inode = mapping->host;
1711	struct buffer_head *page_bufs = NULL;
1712	handle_t *handle = NULL;
1713	int ret = 0, err = 0;
1714	int inline_data = ext4_has_inline_data(inode);
1715	struct buffer_head *inode_bh = NULL;
1716
1717	ClearPageChecked(page);
1718
1719	if (inline_data) {
1720		BUG_ON(page->index != 0);
1721		BUG_ON(len > ext4_get_max_inline_size(inode));
1722		inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1723		if (inode_bh == NULL)
1724			goto out;
1725	} else {
1726		page_bufs = page_buffers(page);
1727		if (!page_bufs) {
1728			BUG();
1729			goto out;
1730		}
1731		ext4_walk_page_buffers(handle, page_bufs, 0, len,
1732				       NULL, bget_one);
1733	}
1734	/*
1735	 * We need to release the page lock before we start the
1736	 * journal, so grab a reference so the page won't disappear
1737	 * out from under us.
1738	 */
1739	get_page(page);
1740	unlock_page(page);
1741
1742	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1743				    ext4_writepage_trans_blocks(inode));
1744	if (IS_ERR(handle)) {
1745		ret = PTR_ERR(handle);
1746		put_page(page);
1747		goto out_no_pagelock;
1748	}
1749	BUG_ON(!ext4_handle_valid(handle));
1750
1751	lock_page(page);
1752	put_page(page);
1753	if (page->mapping != mapping) {
1754		/* The page got truncated from under us */
1755		ext4_journal_stop(handle);
1756		ret = 0;
1757		goto out;
1758	}
1759
1760	if (inline_data) {
1761		BUFFER_TRACE(inode_bh, "get write access");
1762		ret = ext4_journal_get_write_access(handle, inode_bh);
1763
1764		err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
1765
1766	} else {
1767		ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1768					     do_journal_get_write_access);
1769
1770		err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1771					     write_end_fn);
1772	}
1773	if (ret == 0)
1774		ret = err;
1775	EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1776	err = ext4_journal_stop(handle);
1777	if (!ret)
1778		ret = err;
1779
1780	if (!ext4_has_inline_data(inode))
1781		ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1782				       NULL, bput_one);
1783	ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1784out:
1785	unlock_page(page);
1786out_no_pagelock:
1787	brelse(inode_bh);
1788	return ret;
1789}
1790
1791/*
1792 * Note that we don't need to start a transaction unless we're journaling data
1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1794 * need to file the inode to the transaction's list in ordered mode because if
1795 * we are writing back data added by write(), the inode is already there and if
1796 * we are writing back data modified via mmap(), no one guarantees in which
1797 * transaction the data will hit the disk. In case we are journaling data, we
1798 * cannot start transaction directly because transaction start ranks above page
1799 * lock so we have to do some magic.
1800 *
1801 * This function can get called via...
1802 *   - ext4_writepages after taking page lock (have journal handle)
1803 *   - journal_submit_inode_data_buffers (no journal handle)
1804 *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1805 *   - grab_page_cache when doing write_begin (have journal handle)
1806 *
1807 * We don't do any block allocation in this function. If we have page with
1808 * multiple blocks we need to write those buffer_heads that are mapped. This
1809 * is important for mmaped based write. So if we do with blocksize 1K
1810 * truncate(f, 1024);
1811 * a = mmap(f, 0, 4096);
1812 * a[0] = 'a';
1813 * truncate(f, 4096);
1814 * we have in the page first buffer_head mapped via page_mkwrite call back
1815 * but other buffer_heads would be unmapped but dirty (dirty done via the
1816 * do_wp_page). So writepage should write the first block. If we modify
1817 * the mmap area beyond 1024 we will again get a page_fault and the
1818 * page_mkwrite callback will do the block allocation and mark the
1819 * buffer_heads mapped.
1820 *
1821 * We redirty the page if we have any buffer_heads that is either delay or
1822 * unwritten in the page.
1823 *
1824 * We can get recursively called as show below.
1825 *
1826 *	ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1827 *		ext4_writepage()
1828 *
1829 * But since we don't do any block allocation we should not deadlock.
1830 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1831 */
1832static int ext4_writepage(struct page *page,
1833			  struct writeback_control *wbc)
1834{
1835	int ret = 0;
1836	loff_t size;
1837	unsigned int len;
1838	struct buffer_head *page_bufs = NULL;
1839	struct inode *inode = page->mapping->host;
1840	struct ext4_io_submit io_submit;
1841	bool keep_towrite = false;
1842
1843	trace_ext4_writepage(page);
1844	size = i_size_read(inode);
1845	if (page->index == size >> PAGE_CACHE_SHIFT)
1846		len = size & ~PAGE_CACHE_MASK;
1847	else
1848		len = PAGE_CACHE_SIZE;
1849
1850	page_bufs = page_buffers(page);
1851	/*
1852	 * We cannot do block allocation or other extent handling in this
1853	 * function. If there are buffers needing that, we have to redirty
1854	 * the page. But we may reach here when we do a journal commit via
1855	 * journal_submit_inode_data_buffers() and in that case we must write
1856	 * allocated buffers to achieve data=ordered mode guarantees.
1857	 */
1858	if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
1859				   ext4_bh_delay_or_unwritten)) {
1860		redirty_page_for_writepage(wbc, page);
1861		if (current->flags & PF_MEMALLOC) {
1862			/*
1863			 * For memory cleaning there's no point in writing only
1864			 * some buffers. So just bail out. Warn if we came here
1865			 * from direct reclaim.
1866			 */
1867			WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
1868							== PF_MEMALLOC);
1869			unlock_page(page);
1870			return 0;
1871		}
1872		keep_towrite = true;
1873	}
1874
1875	if (PageChecked(page) && ext4_should_journal_data(inode))
1876		/*
1877		 * It's mmapped pagecache.  Add buffers and journal it.  There
1878		 * doesn't seem much point in redirtying the page here.
1879		 */
1880		return __ext4_journalled_writepage(page, len);
1881
1882	ext4_io_submit_init(&io_submit, wbc);
1883	io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
1884	if (!io_submit.io_end) {
1885		redirty_page_for_writepage(wbc, page);
1886		unlock_page(page);
1887		return -ENOMEM;
1888	}
1889	ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
1890	ext4_io_submit(&io_submit);
1891	/* Drop io_end reference we got from init */
1892	ext4_put_io_end_defer(io_submit.io_end);
1893	return ret;
1894}
1895
1896static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
1897{
1898	int len;
1899	loff_t size = i_size_read(mpd->inode);
1900	int err;
1901
1902	BUG_ON(page->index != mpd->first_page);
1903	if (page->index == size >> PAGE_CACHE_SHIFT)
1904		len = size & ~PAGE_CACHE_MASK;
1905	else
1906		len = PAGE_CACHE_SIZE;
1907	clear_page_dirty_for_io(page);
1908	err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
1909	if (!err)
1910		mpd->wbc->nr_to_write--;
1911	mpd->first_page++;
1912
1913	return err;
1914}
1915
1916#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
1917
1918/*
1919 * mballoc gives us at most this number of blocks...
1920 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
1921 * The rest of mballoc seems to handle chunks up to full group size.
1922 */
1923#define MAX_WRITEPAGES_EXTENT_LEN 2048
1924
1925/*
1926 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
1927 *
1928 * @mpd - extent of blocks
1929 * @lblk - logical number of the block in the file
1930 * @bh - buffer head we want to add to the extent
1931 *
1932 * The function is used to collect contig. blocks in the same state. If the
1933 * buffer doesn't require mapping for writeback and we haven't started the
1934 * extent of buffers to map yet, the function returns 'true' immediately - the
1935 * caller can write the buffer right away. Otherwise the function returns true
1936 * if the block has been added to the extent, false if the block couldn't be
1937 * added.
1938 */
1939static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
1940				   struct buffer_head *bh)
1941{
1942	struct ext4_map_blocks *map = &mpd->map;
1943
1944	/* Buffer that doesn't need mapping for writeback? */
1945	if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
1946	    (!buffer_delay(bh) && !buffer_unwritten(bh))) {
1947		/* So far no extent to map => we write the buffer right away */
1948		if (map->m_len == 0)
1949			return true;
1950		return false;
1951	}
1952
1953	/* First block in the extent? */
1954	if (map->m_len == 0) {
1955		map->m_lblk = lblk;
1956		map->m_len = 1;
1957		map->m_flags = bh->b_state & BH_FLAGS;
1958		return true;
1959	}
1960
1961	/* Don't go larger than mballoc is willing to allocate */
1962	if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
1963		return false;
1964
1965	/* Can we merge the block to our big extent? */
1966	if (lblk == map->m_lblk + map->m_len &&
1967	    (bh->b_state & BH_FLAGS) == map->m_flags) {
1968		map->m_len++;
1969		return true;
1970	}
1971	return false;
1972}
1973
1974/*
1975 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
1976 *
1977 * @mpd - extent of blocks for mapping
1978 * @head - the first buffer in the page
1979 * @bh - buffer we should start processing from
1980 * @lblk - logical number of the block in the file corresponding to @bh
1981 *
1982 * Walk through page buffers from @bh upto @head (exclusive) and either submit
1983 * the page for IO if all buffers in this page were mapped and there's no
1984 * accumulated extent of buffers to map or add buffers in the page to the
1985 * extent of buffers to map. The function returns 1 if the caller can continue
1986 * by processing the next page, 0 if it should stop adding buffers to the
1987 * extent to map because we cannot extend it anymore. It can also return value
1988 * < 0 in case of error during IO submission.
1989 */
1990static int mpage_process_page_bufs(struct mpage_da_data *mpd,
1991				   struct buffer_head *head,
1992				   struct buffer_head *bh,
1993				   ext4_lblk_t lblk)
1994{
1995	struct inode *inode = mpd->inode;
1996	int err;
1997	ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
1998							>> inode->i_blkbits;
1999
2000	do {
2001		BUG_ON(buffer_locked(bh));
2002
2003		if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2004			/* Found extent to map? */
2005			if (mpd->map.m_len)
2006				return 0;
2007			/* Everything mapped so far and we hit EOF */
2008			break;
2009		}
2010	} while (lblk++, (bh = bh->b_this_page) != head);
2011	/* So far everything mapped? Submit the page for IO. */
2012	if (mpd->map.m_len == 0) {
2013		err = mpage_submit_page(mpd, head->b_page);
2014		if (err < 0)
2015			return err;
2016	}
2017	return lblk < blocks;
2018}
2019
2020/*
2021 * mpage_map_buffers - update buffers corresponding to changed extent and
2022 *		       submit fully mapped pages for IO
2023 *
2024 * @mpd - description of extent to map, on return next extent to map
2025 *
2026 * Scan buffers corresponding to changed extent (we expect corresponding pages
2027 * to be already locked) and update buffer state according to new extent state.
2028 * We map delalloc buffers to their physical location, clear unwritten bits,
2029 * and mark buffers as uninit when we perform writes to unwritten extents
2030 * and do extent conversion after IO is finished. If the last page is not fully
2031 * mapped, we update @map to the next extent in the last page that needs
2032 * mapping. Otherwise we submit the page for IO.
2033 */
2034static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2035{
2036	struct pagevec pvec;
2037	int nr_pages, i;
2038	struct inode *inode = mpd->inode;
2039	struct buffer_head *head, *bh;
2040	int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits;
2041	pgoff_t start, end;
2042	ext4_lblk_t lblk;
2043	sector_t pblock;
2044	int err;
2045
2046	start = mpd->map.m_lblk >> bpp_bits;
2047	end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2048	lblk = start << bpp_bits;
2049	pblock = mpd->map.m_pblk;
2050
2051	pagevec_init(&pvec, 0);
2052	while (start <= end) {
2053		nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2054					  PAGEVEC_SIZE);
2055		if (nr_pages == 0)
2056			break;
2057		for (i = 0; i < nr_pages; i++) {
2058			struct page *page = pvec.pages[i];
2059
2060			if (page->index > end)
2061				break;
2062			/* Up to 'end' pages must be contiguous */
2063			BUG_ON(page->index != start);
2064			bh = head = page_buffers(page);
2065			do {
2066				if (lblk < mpd->map.m_lblk)
2067					continue;
2068				if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2069					/*
2070					 * Buffer after end of mapped extent.
2071					 * Find next buffer in the page to map.
2072					 */
2073					mpd->map.m_len = 0;
2074					mpd->map.m_flags = 0;
2075					/*
2076					 * FIXME: If dioread_nolock supports
2077					 * blocksize < pagesize, we need to make
2078					 * sure we add size mapped so far to
2079					 * io_end->size as the following call
2080					 * can submit the page for IO.
2081					 */
2082					err = mpage_process_page_bufs(mpd, head,
2083								      bh, lblk);
2084					pagevec_release(&pvec);
2085					if (err > 0)
2086						err = 0;
2087					return err;
2088				}
2089				if (buffer_delay(bh)) {
2090					clear_buffer_delay(bh);
2091					bh->b_blocknr = pblock++;
2092				}
2093				clear_buffer_unwritten(bh);
2094			} while (lblk++, (bh = bh->b_this_page) != head);
2095
2096			/*
2097			 * FIXME: This is going to break if dioread_nolock
2098			 * supports blocksize < pagesize as we will try to
2099			 * convert potentially unmapped parts of inode.
2100			 */
2101			mpd->io_submit.io_end->size += PAGE_CACHE_SIZE;
2102			/* Page fully mapped - let IO run! */
2103			err = mpage_submit_page(mpd, page);
2104			if (err < 0) {
2105				pagevec_release(&pvec);
2106				return err;
2107			}
2108			start++;
2109		}
2110		pagevec_release(&pvec);
2111	}
2112	/* Extent fully mapped and matches with page boundary. We are done. */
2113	mpd->map.m_len = 0;
2114	mpd->map.m_flags = 0;
2115	return 0;
2116}
2117
2118static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2119{
2120	struct inode *inode = mpd->inode;
2121	struct ext4_map_blocks *map = &mpd->map;
2122	int get_blocks_flags;
2123	int err, dioread_nolock;
2124
2125	trace_ext4_da_write_pages_extent(inode, map);
2126	/*
2127	 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2128	 * to convert an unwritten extent to be initialized (in the case
2129	 * where we have written into one or more preallocated blocks).  It is
2130	 * possible that we're going to need more metadata blocks than
2131	 * previously reserved. However we must not fail because we're in
2132	 * writeback and there is nothing we can do about it so it might result
2133	 * in data loss.  So use reserved blocks to allocate metadata if
2134	 * possible.
2135	 *
2136	 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2137	 * the blocks in question are delalloc blocks.  This indicates
2138	 * that the blocks and quotas has already been checked when
2139	 * the data was copied into the page cache.
2140	 */
2141	get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2142			   EXT4_GET_BLOCKS_METADATA_NOFAIL;
2143	dioread_nolock = ext4_should_dioread_nolock(inode);
2144	if (dioread_nolock)
2145		get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2146	if (map->m_flags & (1 << BH_Delay))
2147		get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2148
2149	err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2150	if (err < 0)
2151		return err;
2152	if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2153		if (!mpd->io_submit.io_end->handle &&
2154		    ext4_handle_valid(handle)) {
2155			mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2156			handle->h_rsv_handle = NULL;
2157		}
2158		ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2159	}
2160
2161	BUG_ON(map->m_len == 0);
2162	if (map->m_flags & EXT4_MAP_NEW) {
2163		struct block_device *bdev = inode->i_sb->s_bdev;
2164		int i;
2165
2166		for (i = 0; i < map->m_len; i++)
2167			unmap_underlying_metadata(bdev, map->m_pblk + i);
2168	}
2169	return 0;
2170}
2171
2172/*
2173 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2174 *				 mpd->len and submit pages underlying it for IO
2175 *
2176 * @handle - handle for journal operations
2177 * @mpd - extent to map
2178 * @give_up_on_write - we set this to true iff there is a fatal error and there
2179 *                     is no hope of writing the data. The caller should discard
2180 *                     dirty pages to avoid infinite loops.
2181 *
2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2184 * them to initialized or split the described range from larger unwritten
2185 * extent. Note that we need not map all the described range since allocation
2186 * can return less blocks or the range is covered by more unwritten extents. We
2187 * cannot map more because we are limited by reserved transaction credits. On
2188 * the other hand we always make sure that the last touched page is fully
2189 * mapped so that it can be written out (and thus forward progress is
2190 * guaranteed). After mapping we submit all mapped pages for IO.
2191 */
2192static int mpage_map_and_submit_extent(handle_t *handle,
2193				       struct mpage_da_data *mpd,
2194				       bool *give_up_on_write)
2195{
2196	struct inode *inode = mpd->inode;
2197	struct ext4_map_blocks *map = &mpd->map;
2198	int err;
2199	loff_t disksize;
2200	int progress = 0;
2201
2202	mpd->io_submit.io_end->offset =
2203				((loff_t)map->m_lblk) << inode->i_blkbits;
2204	do {
2205		err = mpage_map_one_extent(handle, mpd);
2206		if (err < 0) {
2207			struct super_block *sb = inode->i_sb;
2208
2209			if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2210				goto invalidate_dirty_pages;
2211			/*
2212			 * Let the uper layers retry transient errors.
2213			 * In the case of ENOSPC, if ext4_count_free_blocks()
2214			 * is non-zero, a commit should free up blocks.
2215			 */
2216			if ((err == -ENOMEM) ||
2217			    (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2218				if (progress)
2219					goto update_disksize;
2220				return err;
2221			}
2222			ext4_msg(sb, KERN_CRIT,
2223				 "Delayed block allocation failed for "
2224				 "inode %lu at logical offset %llu with"
2225				 " max blocks %u with error %d",
2226				 inode->i_ino,
2227				 (unsigned long long)map->m_lblk,
2228				 (unsigned)map->m_len, -err);
2229			ext4_msg(sb, KERN_CRIT,
2230				 "This should not happen!! Data will "
2231				 "be lost\n");
2232			if (err == -ENOSPC)
2233				ext4_print_free_blocks(inode);
2234		invalidate_dirty_pages:
2235			*give_up_on_write = true;
2236			return err;
2237		}
2238		progress = 1;
2239		/*
2240		 * Update buffer state, submit mapped pages, and get us new
2241		 * extent to map
2242		 */
2243		err = mpage_map_and_submit_buffers(mpd);
2244		if (err < 0)
2245			goto update_disksize;
2246	} while (map->m_len);
2247
2248update_disksize:
2249	/*
2250	 * Update on-disk size after IO is submitted.  Races with
2251	 * truncate are avoided by checking i_size under i_data_sem.
2252	 */
2253	disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT;
2254	if (disksize > EXT4_I(inode)->i_disksize) {
2255		int err2;
2256		loff_t i_size;
2257
2258		down_write(&EXT4_I(inode)->i_data_sem);
2259		i_size = i_size_read(inode);
2260		if (disksize > i_size)
2261			disksize = i_size;
2262		if (disksize > EXT4_I(inode)->i_disksize)
2263			EXT4_I(inode)->i_disksize = disksize;
2264		err2 = ext4_mark_inode_dirty(handle, inode);
2265		up_write(&EXT4_I(inode)->i_data_sem);
2266		if (err2)
2267			ext4_error(inode->i_sb,
2268				   "Failed to mark inode %lu dirty",
2269				   inode->i_ino);
2270		if (!err)
2271			err = err2;
2272	}
2273	return err;
2274}
2275
2276/*
2277 * Calculate the total number of credits to reserve for one writepages
2278 * iteration. This is called from ext4_writepages(). We map an extent of
2279 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2280 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2281 * bpp - 1 blocks in bpp different extents.
2282 */
2283static int ext4_da_writepages_trans_blocks(struct inode *inode)
2284{
2285	int bpp = ext4_journal_blocks_per_page(inode);
2286
2287	return ext4_meta_trans_blocks(inode,
2288				MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2289}
2290
2291/*
2292 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2293 * 				 and underlying extent to map
2294 *
2295 * @mpd - where to look for pages
2296 *
2297 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2298 * IO immediately. When we find a page which isn't mapped we start accumulating
2299 * extent of buffers underlying these pages that needs mapping (formed by
2300 * either delayed or unwritten buffers). We also lock the pages containing
2301 * these buffers. The extent found is returned in @mpd structure (starting at
2302 * mpd->lblk with length mpd->len blocks).
2303 *
2304 * Note that this function can attach bios to one io_end structure which are
2305 * neither logically nor physically contiguous. Although it may seem as an
2306 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2307 * case as we need to track IO to all buffers underlying a page in one io_end.
2308 */
2309static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2310{
2311	struct address_space *mapping = mpd->inode->i_mapping;
2312	struct pagevec pvec;
2313	unsigned int nr_pages;
2314	long left = mpd->wbc->nr_to_write;
2315	pgoff_t index = mpd->first_page;
2316	pgoff_t end = mpd->last_page;
2317	int tag;
2318	int i, err = 0;
2319	int blkbits = mpd->inode->i_blkbits;
2320	ext4_lblk_t lblk;
2321	struct buffer_head *head;
2322
2323	if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2324		tag = PAGECACHE_TAG_TOWRITE;
2325	else
2326		tag = PAGECACHE_TAG_DIRTY;
2327
2328	pagevec_init(&pvec, 0);
2329	mpd->map.m_len = 0;
2330	mpd->next_page = index;
2331	while (index <= end) {
2332		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2333			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2334		if (nr_pages == 0)
2335			goto out;
2336
2337		for (i = 0; i < nr_pages; i++) {
2338			struct page *page = pvec.pages[i];
2339
2340			/*
2341			 * At this point, the page may be truncated or
2342			 * invalidated (changing page->mapping to NULL), or
2343			 * even swizzled back from swapper_space to tmpfs file
2344			 * mapping. However, page->index will not change
2345			 * because we have a reference on the page.
2346			 */
2347			if (page->index > end)
2348				goto out;
2349
2350			/*
2351			 * Accumulated enough dirty pages? This doesn't apply
2352			 * to WB_SYNC_ALL mode. For integrity sync we have to
2353			 * keep going because someone may be concurrently
2354			 * dirtying pages, and we might have synced a lot of
2355			 * newly appeared dirty pages, but have not synced all
2356			 * of the old dirty pages.
2357			 */
2358			if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2359				goto out;
2360
2361			/* If we can't merge this page, we are done. */
2362			if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2363				goto out;
2364
2365			lock_page(page);
2366			/*
2367			 * If the page is no longer dirty, or its mapping no
2368			 * longer corresponds to inode we are writing (which
2369			 * means it has been truncated or invalidated), or the
2370			 * page is already under writeback and we are not doing
2371			 * a data integrity writeback, skip the page
2372			 */
2373			if (!PageDirty(page) ||
2374			    (PageWriteback(page) &&
2375			     (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2376			    unlikely(page->mapping != mapping)) {
2377				unlock_page(page);
2378				continue;
2379			}
2380
2381			wait_on_page_writeback(page);
2382			BUG_ON(PageWriteback(page));
2383
2384			if (mpd->map.m_len == 0)
2385				mpd->first_page = page->index;
2386			mpd->next_page = page->index + 1;
2387			/* Add all dirty buffers to mpd */
2388			lblk = ((ext4_lblk_t)page->index) <<
2389				(PAGE_CACHE_SHIFT - blkbits);
2390			head = page_buffers(page);
2391			err = mpage_process_page_bufs(mpd, head, head, lblk);
2392			if (err <= 0)
2393				goto out;
2394			err = 0;
2395			left--;
2396		}
2397		pagevec_release(&pvec);
2398		cond_resched();
2399	}
2400	return 0;
2401out:
2402	pagevec_release(&pvec);
2403	return err;
2404}
2405
2406static int __writepage(struct page *page, struct writeback_control *wbc,
2407		       void *data)
2408{
2409	struct address_space *mapping = data;
2410	int ret = ext4_writepage(page, wbc);
2411	mapping_set_error(mapping, ret);
2412	return ret;
2413}
2414
2415static int ext4_writepages(struct address_space *mapping,
2416			   struct writeback_control *wbc)
2417{
2418	pgoff_t	writeback_index = 0;
2419	long nr_to_write = wbc->nr_to_write;
2420	int range_whole = 0;
2421	int cycled = 1;
2422	handle_t *handle = NULL;
2423	struct mpage_da_data mpd;
2424	struct inode *inode = mapping->host;
2425	int needed_blocks, rsv_blocks = 0, ret = 0;
2426	struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2427	bool done;
2428	struct blk_plug plug;
2429	bool give_up_on_write = false;
2430
2431	trace_ext4_writepages(inode, wbc);
2432
2433	/*
2434	 * No pages to write? This is mainly a kludge to avoid starting
2435	 * a transaction for special inodes like journal inode on last iput()
2436	 * because that could violate lock ordering on umount
2437	 */
2438	if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2439		goto out_writepages;
2440
2441	if (ext4_should_journal_data(inode)) {
2442		struct blk_plug plug;
2443
2444		blk_start_plug(&plug);
2445		ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2446		blk_finish_plug(&plug);
2447		goto out_writepages;
2448	}
2449
2450	/*
2451	 * If the filesystem has aborted, it is read-only, so return
2452	 * right away instead of dumping stack traces later on that
2453	 * will obscure the real source of the problem.  We test
2454	 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2455	 * the latter could be true if the filesystem is mounted
2456	 * read-only, and in that case, ext4_writepages should
2457	 * *never* be called, so if that ever happens, we would want
2458	 * the stack trace.
2459	 */
2460	if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2461		ret = -EROFS;
2462		goto out_writepages;
2463	}
2464
2465	if (ext4_should_dioread_nolock(inode)) {
2466		/*
2467		 * We may need to convert up to one extent per block in
2468		 * the page and we may dirty the inode.
2469		 */
2470		rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits);
2471	}
2472
2473	/*
2474	 * If we have inline data and arrive here, it means that
2475	 * we will soon create the block for the 1st page, so
2476	 * we'd better clear the inline data here.
2477	 */
2478	if (ext4_has_inline_data(inode)) {
2479		/* Just inode will be modified... */
2480		handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2481		if (IS_ERR(handle)) {
2482			ret = PTR_ERR(handle);
2483			goto out_writepages;
2484		}
2485		BUG_ON(ext4_test_inode_state(inode,
2486				EXT4_STATE_MAY_INLINE_DATA));
2487		ext4_destroy_inline_data(handle, inode);
2488		ext4_journal_stop(handle);
2489	}
2490
2491	if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2492		range_whole = 1;
2493
2494	if (wbc->range_cyclic) {
2495		writeback_index = mapping->writeback_index;
2496		if (writeback_index)
2497			cycled = 0;
2498		mpd.first_page = writeback_index;
2499		mpd.last_page = -1;
2500	} else {
2501		mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT;
2502		mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT;
2503	}
2504
2505	mpd.inode = inode;
2506	mpd.wbc = wbc;
2507	ext4_io_submit_init(&mpd.io_submit, wbc);
2508retry:
2509	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2510		tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2511	done = false;
2512	blk_start_plug(&plug);
2513	while (!done && mpd.first_page <= mpd.last_page) {
2514		/* For each extent of pages we use new io_end */
2515		mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2516		if (!mpd.io_submit.io_end) {
2517			ret = -ENOMEM;
2518			break;
2519		}
2520
2521		/*
2522		 * We have two constraints: We find one extent to map and we
2523		 * must always write out whole page (makes a difference when
2524		 * blocksize < pagesize) so that we don't block on IO when we
2525		 * try to write out the rest of the page. Journalled mode is
2526		 * not supported by delalloc.
2527		 */
2528		BUG_ON(ext4_should_journal_data(inode));
2529		needed_blocks = ext4_da_writepages_trans_blocks(inode);
2530
2531		/* start a new transaction */
2532		handle = ext4_journal_start_with_reserve(inode,
2533				EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2534		if (IS_ERR(handle)) {
2535			ret = PTR_ERR(handle);
2536			ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2537			       "%ld pages, ino %lu; err %d", __func__,
2538				wbc->nr_to_write, inode->i_ino, ret);
2539			/* Release allocated io_end */
2540			ext4_put_io_end(mpd.io_submit.io_end);
2541			break;
2542		}
2543
2544		trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2545		ret = mpage_prepare_extent_to_map(&mpd);
2546		if (!ret) {
2547			if (mpd.map.m_len)
2548				ret = mpage_map_and_submit_extent(handle, &mpd,
2549					&give_up_on_write);
2550			else {
2551				/*
2552				 * We scanned the whole range (or exhausted
2553				 * nr_to_write), submitted what was mapped and
2554				 * didn't find anything needing mapping. We are
2555				 * done.
2556				 */
2557				done = true;
2558			}
2559		}
2560		ext4_journal_stop(handle);
2561		/* Submit prepared bio */
2562		ext4_io_submit(&mpd.io_submit);
2563		/* Unlock pages we didn't use */
2564		mpage_release_unused_pages(&mpd, give_up_on_write);
2565		/* Drop our io_end reference we got from init */
2566		ext4_put_io_end(mpd.io_submit.io_end);
2567
2568		if (ret == -ENOSPC && sbi->s_journal) {
2569			/*
2570			 * Commit the transaction which would
2571			 * free blocks released in the transaction
2572			 * and try again
2573			 */
2574			jbd2_journal_force_commit_nested(sbi->s_journal);
2575			ret = 0;
2576			continue;
2577		}
2578		/* Fatal error - ENOMEM, EIO... */
2579		if (ret)
2580			break;
2581	}
2582	blk_finish_plug(&plug);
2583	if (!ret && !cycled && wbc->nr_to_write > 0) {
2584		cycled = 1;
2585		mpd.last_page = writeback_index - 1;
2586		mpd.first_page = 0;
2587		goto retry;
2588	}
2589
2590	/* Update index */
2591	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2592		/*
2593		 * Set the writeback_index so that range_cyclic
2594		 * mode will write it back later
2595		 */
2596		mapping->writeback_index = mpd.first_page;
2597
2598out_writepages:
2599	trace_ext4_writepages_result(inode, wbc, ret,
2600				     nr_to_write - wbc->nr_to_write);
2601	return ret;
2602}
2603
2604static int ext4_nonda_switch(struct super_block *sb)
2605{
2606	s64 free_clusters, dirty_clusters;
2607	struct ext4_sb_info *sbi = EXT4_SB(sb);
2608
2609	/*
2610	 * switch to non delalloc mode if we are running low
2611	 * on free block. The free block accounting via percpu
2612	 * counters can get slightly wrong with percpu_counter_batch getting
2613	 * accumulated on each CPU without updating global counters
2614	 * Delalloc need an accurate free block accounting. So switch
2615	 * to non delalloc when we are near to error range.
2616	 */
2617	free_clusters =
2618		percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2619	dirty_clusters =
2620		percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2621	/*
2622	 * Start pushing delalloc when 1/2 of free blocks are dirty.
2623	 */
2624	if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2625		try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2626
2627	if (2 * free_clusters < 3 * dirty_clusters ||
2628	    free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2629		/*
2630		 * free block count is less than 150% of dirty blocks
2631		 * or free blocks is less than watermark
2632		 */
2633		return 1;
2634	}
2635	return 0;
2636}
2637
2638/* We always reserve for an inode update; the superblock could be there too */
2639static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2640{
2641	if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb,
2642				EXT4_FEATURE_RO_COMPAT_LARGE_FILE)))
2643		return 1;
2644
2645	if (pos + len <= 0x7fffffffULL)
2646		return 1;
2647
2648	/* We might need to update the superblock to set LARGE_FILE */
2649	return 2;
2650}
2651
2652static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2653			       loff_t pos, unsigned len, unsigned flags,
2654			       struct page **pagep, void **fsdata)
2655{
2656	int ret, retries = 0;
2657	struct page *page;
2658	pgoff_t index;
2659	struct inode *inode = mapping->host;
2660	handle_t *handle;
2661
2662	index = pos >> PAGE_CACHE_SHIFT;
2663
2664	if (ext4_nonda_switch(inode->i_sb)) {
2665		*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2666		return ext4_write_begin(file, mapping, pos,
2667					len, flags, pagep, fsdata);
2668	}
2669	*fsdata = (void *)0;
2670	trace_ext4_da_write_begin(inode, pos, len, flags);
2671
2672	if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2673		ret = ext4_da_write_inline_data_begin(mapping, inode,
2674						      pos, len, flags,
2675						      pagep, fsdata);
2676		if (ret < 0)
2677			return ret;
2678		if (ret == 1)
2679			return 0;
2680	}
2681
2682	/*
2683	 * grab_cache_page_write_begin() can take a long time if the
2684	 * system is thrashing due to memory pressure, or if the page
2685	 * is being written back.  So grab it first before we start
2686	 * the transaction handle.  This also allows us to allocate
2687	 * the page (if needed) without using GFP_NOFS.
2688	 */
2689retry_grab:
2690	page = grab_cache_page_write_begin(mapping, index, flags);
2691	if (!page)
2692		return -ENOMEM;
2693	unlock_page(page);
2694
2695	/*
2696	 * With delayed allocation, we don't log the i_disksize update
2697	 * if there is delayed block allocation. But we still need
2698	 * to journalling the i_disksize update if writes to the end
2699	 * of file which has an already mapped buffer.
2700	 */
2701retry_journal:
2702	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2703				ext4_da_write_credits(inode, pos, len));
2704	if (IS_ERR(handle)) {
2705		page_cache_release(page);
2706		return PTR_ERR(handle);
2707	}
2708
2709	lock_page(page);
2710	if (page->mapping != mapping) {
2711		/* The page got truncated from under us */
2712		unlock_page(page);
2713		page_cache_release(page);
2714		ext4_journal_stop(handle);
2715		goto retry_grab;
2716	}
2717	/* In case writeback began while the page was unlocked */
2718	wait_for_stable_page(page);
2719
2720#ifdef CONFIG_EXT4_FS_ENCRYPTION
2721	ret = ext4_block_write_begin(page, pos, len,
2722				     ext4_da_get_block_prep);
2723#else
2724	ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2725#endif
2726	if (ret < 0) {
2727		unlock_page(page);
2728		ext4_journal_stop(handle);
2729		/*
2730		 * block_write_begin may have instantiated a few blocks
2731		 * outside i_size.  Trim these off again. Don't need
2732		 * i_size_read because we hold i_mutex.
2733		 */
2734		if (pos + len > inode->i_size)
2735			ext4_truncate_failed_write(inode);
2736
2737		if (ret == -ENOSPC &&
2738		    ext4_should_retry_alloc(inode->i_sb, &retries))
2739			goto retry_journal;
2740
2741		page_cache_release(page);
2742		return ret;
2743	}
2744
2745	*pagep = page;
2746	return ret;
2747}
2748
2749/*
2750 * Check if we should update i_disksize
2751 * when write to the end of file but not require block allocation
2752 */
2753static int ext4_da_should_update_i_disksize(struct page *page,
2754					    unsigned long offset)
2755{
2756	struct buffer_head *bh;
2757	struct inode *inode = page->mapping->host;
2758	unsigned int idx;
2759	int i;
2760
2761	bh = page_buffers(page);
2762	idx = offset >> inode->i_blkbits;
2763
2764	for (i = 0; i < idx; i++)
2765		bh = bh->b_this_page;
2766
2767	if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
2768		return 0;
2769	return 1;
2770}
2771
2772static int ext4_da_write_end(struct file *file,
2773			     struct address_space *mapping,
2774			     loff_t pos, unsigned len, unsigned copied,
2775			     struct page *page, void *fsdata)
2776{
2777	struct inode *inode = mapping->host;
2778	int ret = 0, ret2;
2779	handle_t *handle = ext4_journal_current_handle();
2780	loff_t new_i_size;
2781	unsigned long start, end;
2782	int write_mode = (int)(unsigned long)fsdata;
2783
2784	if (write_mode == FALL_BACK_TO_NONDELALLOC)
2785		return ext4_write_end(file, mapping, pos,
2786				      len, copied, page, fsdata);
2787
2788	trace_ext4_da_write_end(inode, pos, len, copied);
2789	start = pos & (PAGE_CACHE_SIZE - 1);
2790	end = start + copied - 1;
2791
2792	/*
2793	 * generic_write_end() will run mark_inode_dirty() if i_size
2794	 * changes.  So let's piggyback the i_disksize mark_inode_dirty
2795	 * into that.
2796	 */
2797	new_i_size = pos + copied;
2798	if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
2799		if (ext4_has_inline_data(inode) ||
2800		    ext4_da_should_update_i_disksize(page, end)) {
2801			ext4_update_i_disksize(inode, new_i_size);
2802			/* We need to mark inode dirty even if
2803			 * new_i_size is less that inode->i_size
2804			 * bu greater than i_disksize.(hint delalloc)
2805			 */
2806			ext4_mark_inode_dirty(handle, inode);
2807		}
2808	}
2809
2810	if (write_mode != CONVERT_INLINE_DATA &&
2811	    ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
2812	    ext4_has_inline_data(inode))
2813		ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
2814						     page);
2815	else
2816		ret2 = generic_write_end(file, mapping, pos, len, copied,
2817							page, fsdata);
2818
2819	copied = ret2;
2820	if (ret2 < 0)
2821		ret = ret2;
2822	ret2 = ext4_journal_stop(handle);
2823	if (!ret)
2824		ret = ret2;
2825
2826	return ret ? ret : copied;
2827}
2828
2829static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
2830				   unsigned int length)
2831{
2832	/*
2833	 * Drop reserved blocks
2834	 */
2835	BUG_ON(!PageLocked(page));
2836	if (!page_has_buffers(page))
2837		goto out;
2838
2839	ext4_da_page_release_reservation(page, offset, length);
2840
2841out:
2842	ext4_invalidatepage(page, offset, length);
2843
2844	return;
2845}
2846
2847/*
2848 * Force all delayed allocation blocks to be allocated for a given inode.
2849 */
2850int ext4_alloc_da_blocks(struct inode *inode)
2851{
2852	trace_ext4_alloc_da_blocks(inode);
2853
2854	if (!EXT4_I(inode)->i_reserved_data_blocks)
2855		return 0;
2856
2857	/*
2858	 * We do something simple for now.  The filemap_flush() will
2859	 * also start triggering a write of the data blocks, which is
2860	 * not strictly speaking necessary (and for users of
2861	 * laptop_mode, not even desirable).  However, to do otherwise
2862	 * would require replicating code paths in:
2863	 *
2864	 * ext4_writepages() ->
2865	 *    write_cache_pages() ---> (via passed in callback function)
2866	 *        __mpage_da_writepage() -->
2867	 *           mpage_add_bh_to_extent()
2868	 *           mpage_da_map_blocks()
2869	 *
2870	 * The problem is that write_cache_pages(), located in
2871	 * mm/page-writeback.c, marks pages clean in preparation for
2872	 * doing I/O, which is not desirable if we're not planning on
2873	 * doing I/O at all.
2874	 *
2875	 * We could call write_cache_pages(), and then redirty all of
2876	 * the pages by calling redirty_page_for_writepage() but that
2877	 * would be ugly in the extreme.  So instead we would need to
2878	 * replicate parts of the code in the above functions,
2879	 * simplifying them because we wouldn't actually intend to
2880	 * write out the pages, but rather only collect contiguous
2881	 * logical block extents, call the multi-block allocator, and
2882	 * then update the buffer heads with the block allocations.
2883	 *
2884	 * For now, though, we'll cheat by calling filemap_flush(),
2885	 * which will map the blocks, and start the I/O, but not
2886	 * actually wait for the I/O to complete.
2887	 */
2888	return filemap_flush(inode->i_mapping);
2889}
2890
2891/*
2892 * bmap() is special.  It gets used by applications such as lilo and by
2893 * the swapper to find the on-disk block of a specific piece of data.
2894 *
2895 * Naturally, this is dangerous if the block concerned is still in the
2896 * journal.  If somebody makes a swapfile on an ext4 data-journaling
2897 * filesystem and enables swap, then they may get a nasty shock when the
2898 * data getting swapped to that swapfile suddenly gets overwritten by
2899 * the original zero's written out previously to the journal and
2900 * awaiting writeback in the kernel's buffer cache.
2901 *
2902 * So, if we see any bmap calls here on a modified, data-journaled file,
2903 * take extra steps to flush any blocks which might be in the cache.
2904 */
2905static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
2906{
2907	struct inode *inode = mapping->host;
2908	journal_t *journal;
2909	int err;
2910
2911	/*
2912	 * We can get here for an inline file via the FIBMAP ioctl
2913	 */
2914	if (ext4_has_inline_data(inode))
2915		return 0;
2916
2917	if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
2918			test_opt(inode->i_sb, DELALLOC)) {
2919		/*
2920		 * With delalloc we want to sync the file
2921		 * so that we can make sure we allocate
2922		 * blocks for file
2923		 */
2924		filemap_write_and_wait(mapping);
2925	}
2926
2927	if (EXT4_JOURNAL(inode) &&
2928	    ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
2929		/*
2930		 * This is a REALLY heavyweight approach, but the use of
2931		 * bmap on dirty files is expected to be extremely rare:
2932		 * only if we run lilo or swapon on a freshly made file
2933		 * do we expect this to happen.
2934		 *
2935		 * (bmap requires CAP_SYS_RAWIO so this does not
2936		 * represent an unprivileged user DOS attack --- we'd be
2937		 * in trouble if mortal users could trigger this path at
2938		 * will.)
2939		 *
2940		 * NB. EXT4_STATE_JDATA is not set on files other than
2941		 * regular files.  If somebody wants to bmap a directory
2942		 * or symlink and gets confused because the buffer
2943		 * hasn't yet been flushed to disk, they deserve
2944		 * everything they get.
2945		 */
2946
2947		ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
2948		journal = EXT4_JOURNAL(inode);
2949		jbd2_journal_lock_updates(journal);
2950		err = jbd2_journal_flush(journal);
2951		jbd2_journal_unlock_updates(journal);
2952
2953		if (err)
2954			return 0;
2955	}
2956
2957	return generic_block_bmap(mapping, block, ext4_get_block);
2958}
2959
2960static int ext4_readpage(struct file *file, struct page *page)
2961{
2962	int ret = -EAGAIN;
2963	struct inode *inode = page->mapping->host;
2964
2965	trace_ext4_readpage(page);
2966
2967	if (ext4_has_inline_data(inode))
2968		ret = ext4_readpage_inline(inode, page);
2969
2970	if (ret == -EAGAIN)
2971		return ext4_mpage_readpages(page->mapping, NULL, page, 1);
2972
2973	return ret;
2974}
2975
2976static int
2977ext4_readpages(struct file *file, struct address_space *mapping,
2978		struct list_head *pages, unsigned nr_pages)
2979{
2980	struct inode *inode = mapping->host;
2981
2982	/* If the file has inline data, no need to do readpages. */
2983	if (ext4_has_inline_data(inode))
2984		return 0;
2985
2986	return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
2987}
2988
2989static void ext4_invalidatepage(struct page *page, unsigned int offset,
2990				unsigned int length)
2991{
2992	trace_ext4_invalidatepage(page, offset, length);
2993
2994	/* No journalling happens on data buffers when this function is used */
2995	WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
2996
2997	block_invalidatepage(page, offset, length);
2998}
2999
3000static int __ext4_journalled_invalidatepage(struct page *page,
3001					    unsigned int offset,
3002					    unsigned int length)
3003{
3004	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3005
3006	trace_ext4_journalled_invalidatepage(page, offset, length);
3007
3008	/*
3009	 * If it's a full truncate we just forget about the pending dirtying
3010	 */
3011	if (offset == 0 && length == PAGE_CACHE_SIZE)
3012		ClearPageChecked(page);
3013
3014	return jbd2_journal_invalidatepage(journal, page, offset, length);
3015}
3016
3017/* Wrapper for aops... */
3018static void ext4_journalled_invalidatepage(struct page *page,
3019					   unsigned int offset,
3020					   unsigned int length)
3021{
3022	WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3023}
3024
3025static int ext4_releasepage(struct page *page, gfp_t wait)
3026{
3027	journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3028
3029	trace_ext4_releasepage(page);
3030
3031	/* Page has dirty journalled data -> cannot release */
3032	if (PageChecked(page))
3033		return 0;
3034	if (journal)
3035		return jbd2_journal_try_to_free_buffers(journal, page, wait);
3036	else
3037		return try_to_free_buffers(page);
3038}
3039
3040/*
3041 * ext4_get_block used when preparing for a DIO write or buffer write.
3042 * We allocate an uinitialized extent if blocks haven't been allocated.
3043 * The extent will be converted to initialized after the IO is complete.
3044 */
3045int ext4_get_block_write(struct inode *inode, sector_t iblock,
3046		   struct buffer_head *bh_result, int create)
3047{
3048	ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3049		   inode->i_ino, create);
3050	return _ext4_get_block(inode, iblock, bh_result,
3051			       EXT4_GET_BLOCKS_IO_CREATE_EXT);
3052}
3053
3054static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock,
3055		   struct buffer_head *bh_result, int create)
3056{
3057	ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n",
3058		   inode->i_ino, create);
3059	return _ext4_get_block(inode, iblock, bh_result,
3060			       EXT4_GET_BLOCKS_NO_LOCK);
3061}
3062
3063static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3064			    ssize_t size, void *private)
3065{
3066        ext4_io_end_t *io_end = iocb->private;
3067
3068	/* if not async direct IO just return */
3069	if (!io_end)
3070		return;
3071
3072	ext_debug("ext4_end_io_dio(): io_end 0x%p "
3073		  "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3074 		  iocb->private, io_end->inode->i_ino, iocb, offset,
3075		  size);
3076
3077	iocb->private = NULL;
3078	io_end->offset = offset;
3079	io_end->size = size;
3080	ext4_put_io_end(io_end);
3081}
3082
3083/*
3084 * For ext4 extent files, ext4 will do direct-io write to holes,
3085 * preallocated extents, and those write extend the file, no need to
3086 * fall back to buffered IO.
3087 *
3088 * For holes, we fallocate those blocks, mark them as unwritten
3089 * If those blocks were preallocated, we mark sure they are split, but
3090 * still keep the range to write as unwritten.
3091 *
3092 * The unwritten extents will be converted to written when DIO is completed.
3093 * For async direct IO, since the IO may still pending when return, we
3094 * set up an end_io call back function, which will do the conversion
3095 * when async direct IO completed.
3096 *
3097 * If the O_DIRECT write will extend the file then add this inode to the
3098 * orphan list.  So recovery will truncate it back to the original size
3099 * if the machine crashes during the write.
3100 *
3101 */
3102static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3103				  loff_t offset)
3104{
3105	struct file *file = iocb->ki_filp;
3106	struct inode *inode = file->f_mapping->host;
3107	ssize_t ret;
3108	size_t count = iov_iter_count(iter);
3109	int overwrite = 0;
3110	get_block_t *get_block_func = NULL;
3111	int dio_flags = 0;
3112	loff_t final_size = offset + count;
3113	ext4_io_end_t *io_end = NULL;
3114
3115	/* Use the old path for reads and writes beyond i_size. */
3116	if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size)
3117		return ext4_ind_direct_IO(iocb, iter, offset);
3118
3119	BUG_ON(iocb->private == NULL);
3120
3121	/*
3122	 * Make all waiters for direct IO properly wait also for extent
3123	 * conversion. This also disallows race between truncate() and
3124	 * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3125	 */
3126	if (iov_iter_rw(iter) == WRITE)
3127		inode_dio_begin(inode);
3128
3129	/* If we do a overwrite dio, i_mutex locking can be released */
3130	overwrite = *((int *)iocb->private);
3131
3132	if (overwrite) {
3133		down_read(&EXT4_I(inode)->i_data_sem);
3134		mutex_unlock(&inode->i_mutex);
3135	}
3136
3137	/*
3138	 * We could direct write to holes and fallocate.
3139	 *
3140	 * Allocated blocks to fill the hole are marked as
3141	 * unwritten to prevent parallel buffered read to expose
3142	 * the stale data before DIO complete the data IO.
3143	 *
3144	 * As to previously fallocated extents, ext4 get_block will
3145	 * just simply mark the buffer mapped but still keep the
3146	 * extents unwritten.
3147	 *
3148	 * For non AIO case, we will convert those unwritten extents
3149	 * to written after return back from blockdev_direct_IO.
3150	 *
3151	 * For async DIO, the conversion needs to be deferred when the
3152	 * IO is completed. The ext4 end_io callback function will be
3153	 * called to take care of the conversion work.  Here for async
3154	 * case, we allocate an io_end structure to hook to the iocb.
3155	 */
3156	iocb->private = NULL;
3157	if (overwrite) {
3158		get_block_func = ext4_get_block_write_nolock;
3159	} else {
3160		ext4_inode_aio_set(inode, NULL);
3161		if (!is_sync_kiocb(iocb)) {
3162			io_end = ext4_init_io_end(inode, GFP_NOFS);
3163			if (!io_end) {
3164				ret = -ENOMEM;
3165				goto retake_lock;
3166			}
3167			/*
3168			 * Grab reference for DIO. Will be dropped in
3169			 * ext4_end_io_dio()
3170			 */
3171			iocb->private = ext4_get_io_end(io_end);
3172			/*
3173			 * we save the io structure for current async direct
3174			 * IO, so that later ext4_map_blocks() could flag the
3175			 * io structure whether there is a unwritten extents
3176			 * needs to be converted when IO is completed.
3177			 */
3178			ext4_inode_aio_set(inode, io_end);
3179		}
3180		get_block_func = ext4_get_block_write;
3181		dio_flags = DIO_LOCKING;
3182	}
3183#ifdef CONFIG_EXT4_FS_ENCRYPTION
3184	BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3185#endif
3186	if (IS_DAX(inode))
3187		ret = dax_do_io(iocb, inode, iter, offset, get_block_func,
3188				ext4_end_io_dio, dio_flags);
3189	else
3190		ret = __blockdev_direct_IO(iocb, inode,
3191					   inode->i_sb->s_bdev, iter, offset,
3192					   get_block_func,
3193					   ext4_end_io_dio, NULL, dio_flags);
3194
3195	/*
3196	 * Put our reference to io_end. This can free the io_end structure e.g.
3197	 * in sync IO case or in case of error. It can even perform extent
3198	 * conversion if all bios we submitted finished before we got here.
3199	 * Note that in that case iocb->private can be already set to NULL
3200	 * here.
3201	 */
3202	if (io_end) {
3203		ext4_inode_aio_set(inode, NULL);
3204		ext4_put_io_end(io_end);
3205		/*
3206		 * When no IO was submitted ext4_end_io_dio() was not
3207		 * called so we have to put iocb's reference.
3208		 */
3209		if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) {
3210			WARN_ON(iocb->private != io_end);
3211			WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN);
3212			ext4_put_io_end(io_end);
3213			iocb->private = NULL;
3214		}
3215	}
3216	if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3217						EXT4_STATE_DIO_UNWRITTEN)) {
3218		int err;
3219		/*
3220		 * for non AIO case, since the IO is already
3221		 * completed, we could do the conversion right here
3222		 */
3223		err = ext4_convert_unwritten_extents(NULL, inode,
3224						     offset, ret);
3225		if (err < 0)
3226			ret = err;
3227		ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3228	}
3229
3230retake_lock:
3231	if (iov_iter_rw(iter) == WRITE)
3232		inode_dio_end(inode);
3233	/* take i_mutex locking again if we do a ovewrite dio */
3234	if (overwrite) {
3235		up_read(&EXT4_I(inode)->i_data_sem);
3236		mutex_lock(&inode->i_mutex);
3237	}
3238
3239	return ret;
3240}
3241
3242static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
3243			      loff_t offset)
3244{
3245	struct file *file = iocb->ki_filp;
3246	struct inode *inode = file->f_mapping->host;
3247	size_t count = iov_iter_count(iter);
3248	ssize_t ret;
3249
3250#ifdef CONFIG_EXT4_FS_ENCRYPTION
3251	if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3252		return 0;
3253#endif
3254
3255	/*
3256	 * If we are doing data journalling we don't support O_DIRECT
3257	 */
3258	if (ext4_should_journal_data(inode))
3259		return 0;
3260
3261	/* Let buffer I/O handle the inline data case. */
3262	if (ext4_has_inline_data(inode))
3263		return 0;
3264
3265	trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3266	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3267		ret = ext4_ext_direct_IO(iocb, iter, offset);
3268	else
3269		ret = ext4_ind_direct_IO(iocb, iter, offset);
3270	trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3271	return ret;
3272}
3273
3274/*
3275 * Pages can be marked dirty completely asynchronously from ext4's journalling
3276 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3277 * much here because ->set_page_dirty is called under VFS locks.  The page is
3278 * not necessarily locked.
3279 *
3280 * We cannot just dirty the page and leave attached buffers clean, because the
3281 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3282 * or jbddirty because all the journalling code will explode.
3283 *
3284 * So what we do is to mark the page "pending dirty" and next time writepage
3285 * is called, propagate that into the buffers appropriately.
3286 */
3287static int ext4_journalled_set_page_dirty(struct page *page)
3288{
3289	SetPageChecked(page);
3290	return __set_page_dirty_nobuffers(page);
3291}
3292
3293static const struct address_space_operations ext4_aops = {
3294	.readpage		= ext4_readpage,
3295	.readpages		= ext4_readpages,
3296	.writepage		= ext4_writepage,
3297	.writepages		= ext4_writepages,
3298	.write_begin		= ext4_write_begin,
3299	.write_end		= ext4_write_end,
3300	.bmap			= ext4_bmap,
3301	.invalidatepage		= ext4_invalidatepage,
3302	.releasepage		= ext4_releasepage,
3303	.direct_IO		= ext4_direct_IO,
3304	.migratepage		= buffer_migrate_page,
3305	.is_partially_uptodate  = block_is_partially_uptodate,
3306	.error_remove_page	= generic_error_remove_page,
3307};
3308
3309static const struct address_space_operations ext4_journalled_aops = {
3310	.readpage		= ext4_readpage,
3311	.readpages		= ext4_readpages,
3312	.writepage		= ext4_writepage,
3313	.writepages		= ext4_writepages,
3314	.write_begin		= ext4_write_begin,
3315	.write_end		= ext4_journalled_write_end,
3316	.set_page_dirty		= ext4_journalled_set_page_dirty,
3317	.bmap			= ext4_bmap,
3318	.invalidatepage		= ext4_journalled_invalidatepage,
3319	.releasepage		= ext4_releasepage,
3320	.direct_IO		= ext4_direct_IO,
3321	.is_partially_uptodate  = block_is_partially_uptodate,
3322	.error_remove_page	= generic_error_remove_page,
3323};
3324
3325static const struct address_space_operations ext4_da_aops = {
3326	.readpage		= ext4_readpage,
3327	.readpages		= ext4_readpages,
3328	.writepage		= ext4_writepage,
3329	.writepages		= ext4_writepages,
3330	.write_begin		= ext4_da_write_begin,
3331	.write_end		= ext4_da_write_end,
3332	.bmap			= ext4_bmap,
3333	.invalidatepage		= ext4_da_invalidatepage,
3334	.releasepage		= ext4_releasepage,
3335	.direct_IO		= ext4_direct_IO,
3336	.migratepage		= buffer_migrate_page,
3337	.is_partially_uptodate  = block_is_partially_uptodate,
3338	.error_remove_page	= generic_error_remove_page,
3339};
3340
3341void ext4_set_aops(struct inode *inode)
3342{
3343	switch (ext4_inode_journal_mode(inode)) {
3344	case EXT4_INODE_ORDERED_DATA_MODE:
3345		ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3346		break;
3347	case EXT4_INODE_WRITEBACK_DATA_MODE:
3348		ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE);
3349		break;
3350	case EXT4_INODE_JOURNAL_DATA_MODE:
3351		inode->i_mapping->a_ops = &ext4_journalled_aops;
3352		return;
3353	default:
3354		BUG();
3355	}
3356	if (test_opt(inode->i_sb, DELALLOC))
3357		inode->i_mapping->a_ops = &ext4_da_aops;
3358	else
3359		inode->i_mapping->a_ops = &ext4_aops;
3360}
3361
3362static int __ext4_block_zero_page_range(handle_t *handle,
3363		struct address_space *mapping, loff_t from, loff_t length)
3364{
3365	ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
3366	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3367	unsigned blocksize, pos;
3368	ext4_lblk_t iblock;
3369	struct inode *inode = mapping->host;
3370	struct buffer_head *bh;
3371	struct page *page;
3372	int err = 0;
3373
3374	page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
3375				   mapping_gfp_mask(mapping) & ~__GFP_FS);
3376	if (!page)
3377		return -ENOMEM;
3378
3379	blocksize = inode->i_sb->s_blocksize;
3380
3381	iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
3382
3383	if (!page_has_buffers(page))
3384		create_empty_buffers(page, blocksize, 0);
3385
3386	/* Find the buffer that contains "offset" */
3387	bh = page_buffers(page);
3388	pos = blocksize;
3389	while (offset >= pos) {
3390		bh = bh->b_this_page;
3391		iblock++;
3392		pos += blocksize;
3393	}
3394	if (buffer_freed(bh)) {
3395		BUFFER_TRACE(bh, "freed: skip");
3396		goto unlock;
3397	}
3398	if (!buffer_mapped(bh)) {
3399		BUFFER_TRACE(bh, "unmapped");
3400		ext4_get_block(inode, iblock, bh, 0);
3401		/* unmapped? It's a hole - nothing to do */
3402		if (!buffer_mapped(bh)) {
3403			BUFFER_TRACE(bh, "still unmapped");
3404			goto unlock;
3405		}
3406	}
3407
3408	/* Ok, it's mapped. Make sure it's up-to-date */
3409	if (PageUptodate(page))
3410		set_buffer_uptodate(bh);
3411
3412	if (!buffer_uptodate(bh)) {
3413		err = -EIO;
3414		ll_rw_block(READ, 1, &bh);
3415		wait_on_buffer(bh);
3416		/* Uhhuh. Read error. Complain and punt. */
3417		if (!buffer_uptodate(bh))
3418			goto unlock;
3419		if (S_ISREG(inode->i_mode) &&
3420		    ext4_encrypted_inode(inode)) {
3421			/* We expect the key to be set. */
3422			BUG_ON(!ext4_has_encryption_key(inode));
3423			BUG_ON(blocksize != PAGE_CACHE_SIZE);
3424			WARN_ON_ONCE(ext4_decrypt_one(inode, page));
3425		}
3426	}
3427	if (ext4_should_journal_data(inode)) {
3428		BUFFER_TRACE(bh, "get write access");
3429		err = ext4_journal_get_write_access(handle, bh);
3430		if (err)
3431			goto unlock;
3432	}
3433	zero_user(page, offset, length);
3434	BUFFER_TRACE(bh, "zeroed end of block");
3435
3436	if (ext4_should_journal_data(inode)) {
3437		err = ext4_handle_dirty_metadata(handle, inode, bh);
3438	} else {
3439		err = 0;
3440		mark_buffer_dirty(bh);
3441		if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE))
3442			err = ext4_jbd2_file_inode(handle, inode);
3443	}
3444
3445unlock:
3446	unlock_page(page);
3447	page_cache_release(page);
3448	return err;
3449}
3450
3451/*
3452 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3453 * starting from file offset 'from'.  The range to be zero'd must
3454 * be contained with in one block.  If the specified range exceeds
3455 * the end of the block it will be shortened to end of the block
3456 * that cooresponds to 'from'
3457 */
3458static int ext4_block_zero_page_range(handle_t *handle,
3459		struct address_space *mapping, loff_t from, loff_t length)
3460{
3461	struct inode *inode = mapping->host;
3462	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3463	unsigned blocksize = inode->i_sb->s_blocksize;
3464	unsigned max = blocksize - (offset & (blocksize - 1));
3465
3466	/*
3467	 * correct length if it does not fall between
3468	 * 'from' and the end of the block
3469	 */
3470	if (length > max || length < 0)
3471		length = max;
3472
3473	if (IS_DAX(inode))
3474		return dax_zero_page_range(inode, from, length, ext4_get_block);
3475	return __ext4_block_zero_page_range(handle, mapping, from, length);
3476}
3477
3478/*
3479 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3480 * up to the end of the block which corresponds to `from'.
3481 * This required during truncate. We need to physically zero the tail end
3482 * of that block so it doesn't yield old data if the file is later grown.
3483 */
3484static int ext4_block_truncate_page(handle_t *handle,
3485		struct address_space *mapping, loff_t from)
3486{
3487	unsigned offset = from & (PAGE_CACHE_SIZE-1);
3488	unsigned length;
3489	unsigned blocksize;
3490	struct inode *inode = mapping->host;
3491
3492	blocksize = inode->i_sb->s_blocksize;
3493	length = blocksize - (offset & (blocksize - 1));
3494
3495	return ext4_block_zero_page_range(handle, mapping, from, length);
3496}
3497
3498int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3499			     loff_t lstart, loff_t length)
3500{
3501	struct super_block *sb = inode->i_sb;
3502	struct address_space *mapping = inode->i_mapping;
3503	unsigned partial_start, partial_end;
3504	ext4_fsblk_t start, end;
3505	loff_t byte_end = (lstart + length - 1);
3506	int err = 0;
3507
3508	partial_start = lstart & (sb->s_blocksize - 1);
3509	partial_end = byte_end & (sb->s_blocksize - 1);
3510
3511	start = lstart >> sb->s_blocksize_bits;
3512	end = byte_end >> sb->s_blocksize_bits;
3513
3514	/* Handle partial zero within the single block */
3515	if (start == end &&
3516	    (partial_start || (partial_end != sb->s_blocksize - 1))) {
3517		err = ext4_block_zero_page_range(handle, mapping,
3518						 lstart, length);
3519		return err;
3520	}
3521	/* Handle partial zero out on the start of the range */
3522	if (partial_start) {
3523		err = ext4_block_zero_page_range(handle, mapping,
3524						 lstart, sb->s_blocksize);
3525		if (err)
3526			return err;
3527	}
3528	/* Handle partial zero out on the end of the range */
3529	if (partial_end != sb->s_blocksize - 1)
3530		err = ext4_block_zero_page_range(handle, mapping,
3531						 byte_end - partial_end,
3532						 partial_end + 1);
3533	return err;
3534}
3535
3536int ext4_can_truncate(struct inode *inode)
3537{
3538	if (S_ISREG(inode->i_mode))
3539		return 1;
3540	if (S_ISDIR(inode->i_mode))
3541		return 1;
3542	if (S_ISLNK(inode->i_mode))
3543		return !ext4_inode_is_fast_symlink(inode);
3544	return 0;
3545}
3546
3547/*
3548 * We have to make sure i_disksize gets properly updated before we truncate
3549 * page cache due to hole punching or zero range. Otherwise i_disksize update
3550 * can get lost as it may have been postponed to submission of writeback but
3551 * that will never happen after we truncate page cache.
3552 */
3553int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3554				      loff_t len)
3555{
3556	handle_t *handle;
3557	loff_t size = i_size_read(inode);
3558
3559	WARN_ON(!mutex_is_locked(&inode->i_mutex));
3560	if (offset > size || offset + len < size)
3561		return 0;
3562
3563	if (EXT4_I(inode)->i_disksize >= size)
3564		return 0;
3565
3566	handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3567	if (IS_ERR(handle))
3568		return PTR_ERR(handle);
3569	ext4_update_i_disksize(inode, size);
3570	ext4_mark_inode_dirty(handle, inode);
3571	ext4_journal_stop(handle);
3572
3573	return 0;
3574}
3575
3576/*
3577 * ext4_punch_hole: punches a hole in a file by releaseing the blocks
3578 * associated with the given offset and length
3579 *
3580 * @inode:  File inode
3581 * @offset: The offset where the hole will begin
3582 * @len:    The length of the hole
3583 *
3584 * Returns: 0 on success or negative on failure
3585 */
3586
3587int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3588{
3589	struct super_block *sb = inode->i_sb;
3590	ext4_lblk_t first_block, stop_block;
3591	struct address_space *mapping = inode->i_mapping;
3592	loff_t first_block_offset, last_block_offset;
3593	handle_t *handle;
3594	unsigned int credits;
3595	int ret = 0;
3596
3597	if (!S_ISREG(inode->i_mode))
3598		return -EOPNOTSUPP;
3599
3600	trace_ext4_punch_hole(inode, offset, length, 0);
3601
3602	/*
3603	 * Write out all dirty pages to avoid race conditions
3604	 * Then release them.
3605	 */
3606	if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3607		ret = filemap_write_and_wait_range(mapping, offset,
3608						   offset + length - 1);
3609		if (ret)
3610			return ret;
3611	}
3612
3613	mutex_lock(&inode->i_mutex);
3614
3615	/* No need to punch hole beyond i_size */
3616	if (offset >= inode->i_size)
3617		goto out_mutex;
3618
3619	/*
3620	 * If the hole extends beyond i_size, set the hole
3621	 * to end after the page that contains i_size
3622	 */
3623	if (offset + length > inode->i_size) {
3624		length = inode->i_size +
3625		   PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) -
3626		   offset;
3627	}
3628
3629	if (offset & (sb->s_blocksize - 1) ||
3630	    (offset + length) & (sb->s_blocksize - 1)) {
3631		/*
3632		 * Attach jinode to inode for jbd2 if we do any zeroing of
3633		 * partial block
3634		 */
3635		ret = ext4_inode_attach_jinode(inode);
3636		if (ret < 0)
3637			goto out_mutex;
3638
3639	}
3640
3641	/* Wait all existing dio workers, newcomers will block on i_mutex */
3642	ext4_inode_block_unlocked_dio(inode);
3643	inode_dio_wait(inode);
3644
3645	/*
3646	 * Prevent page faults from reinstantiating pages we have released from
3647	 * page cache.
3648	 */
3649	down_write(&EXT4_I(inode)->i_mmap_sem);
3650	first_block_offset = round_up(offset, sb->s_blocksize);
3651	last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
3652
3653	/* Now release the pages and zero block aligned part of pages*/
3654	if (last_block_offset > first_block_offset) {
3655		ret = ext4_update_disksize_before_punch(inode, offset, length);
3656		if (ret)
3657			goto out_dio;
3658		truncate_pagecache_range(inode, first_block_offset,
3659					 last_block_offset);
3660	}
3661
3662	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3663		credits = ext4_writepage_trans_blocks(inode);
3664	else
3665		credits = ext4_blocks_for_truncate(inode);
3666	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3667	if (IS_ERR(handle)) {
3668		ret = PTR_ERR(handle);
3669		ext4_std_error(sb, ret);
3670		goto out_dio;
3671	}
3672
3673	ret = ext4_zero_partial_blocks(handle, inode, offset,
3674				       length);
3675	if (ret)
3676		goto out_stop;
3677
3678	first_block = (offset + sb->s_blocksize - 1) >>
3679		EXT4_BLOCK_SIZE_BITS(sb);
3680	stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
3681
3682	/* If there are no blocks to remove, return now */
3683	if (first_block >= stop_block)
3684		goto out_stop;
3685
3686	down_write(&EXT4_I(inode)->i_data_sem);
3687	ext4_discard_preallocations(inode);
3688
3689	ret = ext4_es_remove_extent(inode, first_block,
3690				    stop_block - first_block);
3691	if (ret) {
3692		up_write(&EXT4_I(inode)->i_data_sem);
3693		goto out_stop;
3694	}
3695
3696	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3697		ret = ext4_ext_remove_space(inode, first_block,
3698					    stop_block - 1);
3699	else
3700		ret = ext4_ind_remove_space(handle, inode, first_block,
3701					    stop_block);
3702
3703	up_write(&EXT4_I(inode)->i_data_sem);
3704	if (IS_SYNC(inode))
3705		ext4_handle_sync(handle);
3706
3707	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3708	ext4_mark_inode_dirty(handle, inode);
3709out_stop:
3710	ext4_journal_stop(handle);
3711out_dio:
3712	up_write(&EXT4_I(inode)->i_mmap_sem);
3713	ext4_inode_resume_unlocked_dio(inode);
3714out_mutex:
3715	mutex_unlock(&inode->i_mutex);
3716	return ret;
3717}
3718
3719int ext4_inode_attach_jinode(struct inode *inode)
3720{
3721	struct ext4_inode_info *ei = EXT4_I(inode);
3722	struct jbd2_inode *jinode;
3723
3724	if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
3725		return 0;
3726
3727	jinode = jbd2_alloc_inode(GFP_KERNEL);
3728	spin_lock(&inode->i_lock);
3729	if (!ei->jinode) {
3730		if (!jinode) {
3731			spin_unlock(&inode->i_lock);
3732			return -ENOMEM;
3733		}
3734		ei->jinode = jinode;
3735		jbd2_journal_init_jbd_inode(ei->jinode, inode);
3736		jinode = NULL;
3737	}
3738	spin_unlock(&inode->i_lock);
3739	if (unlikely(jinode != NULL))
3740		jbd2_free_inode(jinode);
3741	return 0;
3742}
3743
3744/*
3745 * ext4_truncate()
3746 *
3747 * We block out ext4_get_block() block instantiations across the entire
3748 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
3749 * simultaneously on behalf of the same inode.
3750 *
3751 * As we work through the truncate and commit bits of it to the journal there
3752 * is one core, guiding principle: the file's tree must always be consistent on
3753 * disk.  We must be able to restart the truncate after a crash.
3754 *
3755 * The file's tree may be transiently inconsistent in memory (although it
3756 * probably isn't), but whenever we close off and commit a journal transaction,
3757 * the contents of (the filesystem + the journal) must be consistent and
3758 * restartable.  It's pretty simple, really: bottom up, right to left (although
3759 * left-to-right works OK too).
3760 *
3761 * Note that at recovery time, journal replay occurs *before* the restart of
3762 * truncate against the orphan inode list.
3763 *
3764 * The committed inode has the new, desired i_size (which is the same as
3765 * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
3766 * that this inode's truncate did not complete and it will again call
3767 * ext4_truncate() to have another go.  So there will be instantiated blocks
3768 * to the right of the truncation point in a crashed ext4 filesystem.  But
3769 * that's fine - as long as they are linked from the inode, the post-crash
3770 * ext4_truncate() run will find them and release them.
3771 */
3772void ext4_truncate(struct inode *inode)
3773{
3774	struct ext4_inode_info *ei = EXT4_I(inode);
3775	unsigned int credits;
3776	handle_t *handle;
3777	struct address_space *mapping = inode->i_mapping;
3778
3779	/*
3780	 * There is a possibility that we're either freeing the inode
3781	 * or it's a completely new inode. In those cases we might not
3782	 * have i_mutex locked because it's not necessary.
3783	 */
3784	if (!(inode->i_state & (I_NEW|I_FREEING)))
3785		WARN_ON(!mutex_is_locked(&inode->i_mutex));
3786	trace_ext4_truncate_enter(inode);
3787
3788	if (!ext4_can_truncate(inode))
3789		return;
3790
3791	ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
3792
3793	if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
3794		ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
3795
3796	if (ext4_has_inline_data(inode)) {
3797		int has_inline = 1;
3798
3799		ext4_inline_data_truncate(inode, &has_inline);
3800		if (has_inline)
3801			return;
3802	}
3803
3804	/* If we zero-out tail of the page, we have to create jinode for jbd2 */
3805	if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
3806		if (ext4_inode_attach_jinode(inode) < 0)
3807			return;
3808	}
3809
3810	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3811		credits = ext4_writepage_trans_blocks(inode);
3812	else
3813		credits = ext4_blocks_for_truncate(inode);
3814
3815	handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
3816	if (IS_ERR(handle)) {
3817		ext4_std_error(inode->i_sb, PTR_ERR(handle));
3818		return;
3819	}
3820
3821	if (inode->i_size & (inode->i_sb->s_blocksize - 1))
3822		ext4_block_truncate_page(handle, mapping, inode->i_size);
3823
3824	/*
3825	 * We add the inode to the orphan list, so that if this
3826	 * truncate spans multiple transactions, and we crash, we will
3827	 * resume the truncate when the filesystem recovers.  It also
3828	 * marks the inode dirty, to catch the new size.
3829	 *
3830	 * Implication: the file must always be in a sane, consistent
3831	 * truncatable state while each transaction commits.
3832	 */
3833	if (ext4_orphan_add(handle, inode))
3834		goto out_stop;
3835
3836	down_write(&EXT4_I(inode)->i_data_sem);
3837
3838	ext4_discard_preallocations(inode);
3839
3840	if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3841		ext4_ext_truncate(handle, inode);
3842	else
3843		ext4_ind_truncate(handle, inode);
3844
3845	up_write(&ei->i_data_sem);
3846
3847	if (IS_SYNC(inode))
3848		ext4_handle_sync(handle);
3849
3850out_stop:
3851	/*
3852	 * If this was a simple ftruncate() and the file will remain alive,
3853	 * then we need to clear up the orphan record which we created above.
3854	 * However, if this was a real unlink then we were called by
3855	 * ext4_evict_inode(), and we allow that function to clean up the
3856	 * orphan info for us.
3857	 */
3858	if (inode->i_nlink)
3859		ext4_orphan_del(handle, inode);
3860
3861	inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
3862	ext4_mark_inode_dirty(handle, inode);
3863	ext4_journal_stop(handle);
3864
3865	trace_ext4_truncate_exit(inode);
3866}
3867
3868/*
3869 * ext4_get_inode_loc returns with an extra refcount against the inode's
3870 * underlying buffer_head on success. If 'in_mem' is true, we have all
3871 * data in memory that is needed to recreate the on-disk version of this
3872 * inode.
3873 */
3874static int __ext4_get_inode_loc(struct inode *inode,
3875				struct ext4_iloc *iloc, int in_mem)
3876{
3877	struct ext4_group_desc	*gdp;
3878	struct buffer_head	*bh;
3879	struct super_block	*sb = inode->i_sb;
3880	ext4_fsblk_t		block;
3881	int			inodes_per_block, inode_offset;
3882
3883	iloc->bh = NULL;
3884	if (!ext4_valid_inum(sb, inode->i_ino))
3885		return -EIO;
3886
3887	iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
3888	gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
3889	if (!gdp)
3890		return -EIO;
3891
3892	/*
3893	 * Figure out the offset within the block group inode table
3894	 */
3895	inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
3896	inode_offset = ((inode->i_ino - 1) %
3897			EXT4_INODES_PER_GROUP(sb));
3898	block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
3899	iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
3900
3901	bh = sb_getblk(sb, block);
3902	if (unlikely(!bh))
3903		return -ENOMEM;
3904	if (!buffer_uptodate(bh)) {
3905		lock_buffer(bh);
3906
3907		/*
3908		 * If the buffer has the write error flag, we have failed
3909		 * to write out another inode in the same block.  In this
3910		 * case, we don't have to read the block because we may
3911		 * read the old inode data successfully.
3912		 */
3913		if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
3914			set_buffer_uptodate(bh);
3915
3916		if (buffer_uptodate(bh)) {
3917			/* someone brought it uptodate while we waited */
3918			unlock_buffer(bh);
3919			goto has_buffer;
3920		}
3921
3922		/*
3923		 * If we have all information of the inode in memory and this
3924		 * is the only valid inode in the block, we need not read the
3925		 * block.
3926		 */
3927		if (in_mem) {
3928			struct buffer_head *bitmap_bh;
3929			int i, start;
3930
3931			start = inode_offset & ~(inodes_per_block - 1);
3932
3933			/* Is the inode bitmap in cache? */
3934			bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
3935			if (unlikely(!bitmap_bh))
3936				goto make_io;
3937
3938			/*
3939			 * If the inode bitmap isn't in cache then the
3940			 * optimisation may end up performing two reads instead
3941			 * of one, so skip it.
3942			 */
3943			if (!buffer_uptodate(bitmap_bh)) {
3944				brelse(bitmap_bh);
3945				goto make_io;
3946			}
3947			for (i = start; i < start + inodes_per_block; i++) {
3948				if (i == inode_offset)
3949					continue;
3950				if (ext4_test_bit(i, bitmap_bh->b_data))
3951					break;
3952			}
3953			brelse(bitmap_bh);
3954			if (i == start + inodes_per_block) {
3955				/* all other inodes are free, so skip I/O */
3956				memset(bh->b_data, 0, bh->b_size);
3957				set_buffer_uptodate(bh);
3958				unlock_buffer(bh);
3959				goto has_buffer;
3960			}
3961		}
3962
3963make_io:
3964		/*
3965		 * If we need to do any I/O, try to pre-readahead extra
3966		 * blocks from the inode table.
3967		 */
3968		if (EXT4_SB(sb)->s_inode_readahead_blks) {
3969			ext4_fsblk_t b, end, table;
3970			unsigned num;
3971			__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
3972
3973			table = ext4_inode_table(sb, gdp);
3974			/* s_inode_readahead_blks is always a power of 2 */
3975			b = block & ~((ext4_fsblk_t) ra_blks - 1);
3976			if (table > b)
3977				b = table;
3978			end = b + ra_blks;
3979			num = EXT4_INODES_PER_GROUP(sb);
3980			if (ext4_has_group_desc_csum(sb))
3981				num -= ext4_itable_unused_count(sb, gdp);
3982			table += num / inodes_per_block;
3983			if (end > table)
3984				end = table;
3985			while (b <= end)
3986				sb_breadahead(sb, b++);
3987		}
3988
3989		/*
3990		 * There are other valid inodes in the buffer, this inode
3991		 * has in-inode xattrs, or we don't have this inode in memory.
3992		 * Read the block from disk.
3993		 */
3994		trace_ext4_load_inode(inode);
3995		get_bh(bh);
3996		bh->b_end_io = end_buffer_read_sync;
3997		submit_bh(READ | REQ_META | REQ_PRIO, bh);
3998		wait_on_buffer(bh);
3999		if (!buffer_uptodate(bh)) {
4000			EXT4_ERROR_INODE_BLOCK(inode, block,
4001					       "unable to read itable block");
4002			brelse(bh);
4003			return -EIO;
4004		}
4005	}
4006has_buffer:
4007	iloc->bh = bh;
4008	return 0;
4009}
4010
4011int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4012{
4013	/* We have all inode data except xattrs in memory here. */
4014	return __ext4_get_inode_loc(inode, iloc,
4015		!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4016}
4017
4018void ext4_set_inode_flags(struct inode *inode)
4019{
4020	unsigned int flags = EXT4_I(inode)->i_flags;
4021	unsigned int new_fl = 0;
4022
4023	if (flags & EXT4_SYNC_FL)
4024		new_fl |= S_SYNC;
4025	if (flags & EXT4_APPEND_FL)
4026		new_fl |= S_APPEND;
4027	if (flags & EXT4_IMMUTABLE_FL)
4028		new_fl |= S_IMMUTABLE;
4029	if (flags & EXT4_NOATIME_FL)
4030		new_fl |= S_NOATIME;
4031	if (flags & EXT4_DIRSYNC_FL)
4032		new_fl |= S_DIRSYNC;
4033	if (test_opt(inode->i_sb, DAX))
4034		new_fl |= S_DAX;
4035	inode_set_flags(inode, new_fl,
4036			S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4037}
4038
4039/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4040void ext4_get_inode_flags(struct ext4_inode_info *ei)
4041{
4042	unsigned int vfs_fl;
4043	unsigned long old_fl, new_fl;
4044
4045	do {
4046		vfs_fl = ei->vfs_inode.i_flags;
4047		old_fl = ei->i_flags;
4048		new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4049				EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4050				EXT4_DIRSYNC_FL);
4051		if (vfs_fl & S_SYNC)
4052			new_fl |= EXT4_SYNC_FL;
4053		if (vfs_fl & S_APPEND)
4054			new_fl |= EXT4_APPEND_FL;
4055		if (vfs_fl & S_IMMUTABLE)
4056			new_fl |= EXT4_IMMUTABLE_FL;
4057		if (vfs_fl & S_NOATIME)
4058			new_fl |= EXT4_NOATIME_FL;
4059		if (vfs_fl & S_DIRSYNC)
4060			new_fl |= EXT4_DIRSYNC_FL;
4061	} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4062}
4063
4064static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4065				  struct ext4_inode_info *ei)
4066{
4067	blkcnt_t i_blocks ;
4068	struct inode *inode = &(ei->vfs_inode);
4069	struct super_block *sb = inode->i_sb;
4070
4071	if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4072				EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4073		/* we are using combined 48 bit field */
4074		i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4075					le32_to_cpu(raw_inode->i_blocks_lo);
4076		if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4077			/* i_blocks represent file system block size */
4078			return i_blocks  << (inode->i_blkbits - 9);
4079		} else {
4080			return i_blocks;
4081		}
4082	} else {
4083		return le32_to_cpu(raw_inode->i_blocks_lo);
4084	}
4085}
4086
4087static inline void ext4_iget_extra_inode(struct inode *inode,
4088					 struct ext4_inode *raw_inode,
4089					 struct ext4_inode_info *ei)
4090{
4091	__le32 *magic = (void *)raw_inode +
4092			EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4093	if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4094		ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4095		ext4_find_inline_data_nolock(inode);
4096	} else
4097		EXT4_I(inode)->i_inline_off = 0;
4098}
4099
4100struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4101{
4102	struct ext4_iloc iloc;
4103	struct ext4_inode *raw_inode;
4104	struct ext4_inode_info *ei;
4105	struct inode *inode;
4106	journal_t *journal = EXT4_SB(sb)->s_journal;
4107	long ret;
4108	int block;
4109	uid_t i_uid;
4110	gid_t i_gid;
4111
4112	inode = iget_locked(sb, ino);
4113	if (!inode)
4114		return ERR_PTR(-ENOMEM);
4115	if (!(inode->i_state & I_NEW))
4116		return inode;
4117
4118	ei = EXT4_I(inode);
4119	iloc.bh = NULL;
4120
4121	ret = __ext4_get_inode_loc(inode, &iloc, 0);
4122	if (ret < 0)
4123		goto bad_inode;
4124	raw_inode = ext4_raw_inode(&iloc);
4125
4126	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4127		ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4128		if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4129		    EXT4_INODE_SIZE(inode->i_sb)) {
4130			EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4131				EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4132				EXT4_INODE_SIZE(inode->i_sb));
4133			ret = -EIO;
4134			goto bad_inode;
4135		}
4136	} else
4137		ei->i_extra_isize = 0;
4138
4139	/* Precompute checksum seed for inode metadata */
4140	if (ext4_has_metadata_csum(sb)) {
4141		struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4142		__u32 csum;
4143		__le32 inum = cpu_to_le32(inode->i_ino);
4144		__le32 gen = raw_inode->i_generation;
4145		csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4146				   sizeof(inum));
4147		ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4148					      sizeof(gen));
4149	}
4150
4151	if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4152		EXT4_ERROR_INODE(inode, "checksum invalid");
4153		ret = -EIO;
4154		goto bad_inode;
4155	}
4156
4157	inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4158	i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4159	i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4160	if (!(test_opt(inode->i_sb, NO_UID32))) {
4161		i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4162		i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4163	}
4164	i_uid_write(inode, i_uid);
4165	i_gid_write(inode, i_gid);
4166	set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4167
4168	ext4_clear_state_flags(ei);	/* Only relevant on 32-bit archs */
4169	ei->i_inline_off = 0;
4170	ei->i_dir_start_lookup = 0;
4171	ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4172	/* We now have enough fields to check if the inode was active or not.
4173	 * This is needed because nfsd might try to access dead inodes
4174	 * the test is that same one that e2fsck uses
4175	 * NeilBrown 1999oct15
4176	 */
4177	if (inode->i_nlink == 0) {
4178		if ((inode->i_mode == 0 ||
4179		     !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4180		    ino != EXT4_BOOT_LOADER_INO) {
4181			/* this inode is deleted */
4182			ret = -ESTALE;
4183			goto bad_inode;
4184		}
4185		/* The only unlinked inodes we let through here have
4186		 * valid i_mode and are being read by the orphan
4187		 * recovery code: that's fine, we're about to complete
4188		 * the process of deleting those.
4189		 * OR it is the EXT4_BOOT_LOADER_INO which is
4190		 * not initialized on a new filesystem. */
4191	}
4192	ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4193	inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4194	ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4195	if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
4196		ei->i_file_acl |=
4197			((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4198	inode->i_size = ext4_isize(raw_inode);
4199	ei->i_disksize = inode->i_size;
4200#ifdef CONFIG_QUOTA
4201	ei->i_reserved_quota = 0;
4202#endif
4203	inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4204	ei->i_block_group = iloc.block_group;
4205	ei->i_last_alloc_group = ~0;
4206	/*
4207	 * NOTE! The in-memory inode i_data array is in little-endian order
4208	 * even on big-endian machines: we do NOT byteswap the block numbers!
4209	 */
4210	for (block = 0; block < EXT4_N_BLOCKS; block++)
4211		ei->i_data[block] = raw_inode->i_block[block];
4212	INIT_LIST_HEAD(&ei->i_orphan);
4213
4214	/*
4215	 * Set transaction id's of transactions that have to be committed
4216	 * to finish f[data]sync. We set them to currently running transaction
4217	 * as we cannot be sure that the inode or some of its metadata isn't
4218	 * part of the transaction - the inode could have been reclaimed and
4219	 * now it is reread from disk.
4220	 */
4221	if (journal) {
4222		transaction_t *transaction;
4223		tid_t tid;
4224
4225		read_lock(&journal->j_state_lock);
4226		if (journal->j_running_transaction)
4227			transaction = journal->j_running_transaction;
4228		else
4229			transaction = journal->j_committing_transaction;
4230		if (transaction)
4231			tid = transaction->t_tid;
4232		else
4233			tid = journal->j_commit_sequence;
4234		read_unlock(&journal->j_state_lock);
4235		ei->i_sync_tid = tid;
4236		ei->i_datasync_tid = tid;
4237	}
4238
4239	if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4240		if (ei->i_extra_isize == 0) {
4241			/* The extra space is currently unused. Use it. */
4242			ei->i_extra_isize = sizeof(struct ext4_inode) -
4243					    EXT4_GOOD_OLD_INODE_SIZE;
4244		} else {
4245			ext4_iget_extra_inode(inode, raw_inode, ei);
4246		}
4247	}
4248
4249	EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4250	EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4251	EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4252	EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4253
4254	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4255		inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4256		if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4257			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4258				inode->i_version |=
4259		    (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4260		}
4261	}
4262
4263	ret = 0;
4264	if (ei->i_file_acl &&
4265	    !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4266		EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
4267				 ei->i_file_acl);
4268		ret = -EIO;
4269		goto bad_inode;
4270	} else if (!ext4_has_inline_data(inode)) {
4271		if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4272			if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4273			    (S_ISLNK(inode->i_mode) &&
4274			     !ext4_inode_is_fast_symlink(inode))))
4275				/* Validate extent which is part of inode */
4276				ret = ext4_ext_check_inode(inode);
4277		} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4278			   (S_ISLNK(inode->i_mode) &&
4279			    !ext4_inode_is_fast_symlink(inode))) {
4280			/* Validate block references which are part of inode */
4281			ret = ext4_ind_check_inode(inode);
4282		}
4283	}
4284	if (ret)
4285		goto bad_inode;
4286
4287	if (S_ISREG(inode->i_mode)) {
4288		inode->i_op = &ext4_file_inode_operations;
4289		inode->i_fop = &ext4_file_operations;
4290		ext4_set_aops(inode);
4291	} else if (S_ISDIR(inode->i_mode)) {
4292		inode->i_op = &ext4_dir_inode_operations;
4293		inode->i_fop = &ext4_dir_operations;
4294	} else if (S_ISLNK(inode->i_mode)) {
4295		if (ext4_inode_is_fast_symlink(inode) &&
4296		    !ext4_encrypted_inode(inode)) {
4297			inode->i_op = &ext4_fast_symlink_inode_operations;
4298			nd_terminate_link(ei->i_data, inode->i_size,
4299				sizeof(ei->i_data) - 1);
4300		} else {
4301			inode->i_op = &ext4_symlink_inode_operations;
4302			ext4_set_aops(inode);
4303		}
4304	} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4305	      S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4306		inode->i_op = &ext4_special_inode_operations;
4307		if (raw_inode->i_block[0])
4308			init_special_inode(inode, inode->i_mode,
4309			   old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4310		else
4311			init_special_inode(inode, inode->i_mode,
4312			   new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4313	} else if (ino == EXT4_BOOT_LOADER_INO) {
4314		make_bad_inode(inode);
4315	} else {
4316		ret = -EIO;
4317		EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
4318		goto bad_inode;
4319	}
4320	brelse(iloc.bh);
4321	ext4_set_inode_flags(inode);
4322	unlock_new_inode(inode);
4323	return inode;
4324
4325bad_inode:
4326	brelse(iloc.bh);
4327	iget_failed(inode);
4328	return ERR_PTR(ret);
4329}
4330
4331struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
4332{
4333	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
4334		return ERR_PTR(-EIO);
4335	return ext4_iget(sb, ino);
4336}
4337
4338static int ext4_inode_blocks_set(handle_t *handle,
4339				struct ext4_inode *raw_inode,
4340				struct ext4_inode_info *ei)
4341{
4342	struct inode *inode = &(ei->vfs_inode);
4343	u64 i_blocks = inode->i_blocks;
4344	struct super_block *sb = inode->i_sb;
4345
4346	if (i_blocks <= ~0U) {
4347		/*
4348		 * i_blocks can be represented in a 32 bit variable
4349		 * as multiple of 512 bytes
4350		 */
4351		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4352		raw_inode->i_blocks_high = 0;
4353		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4354		return 0;
4355	}
4356	if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
4357		return -EFBIG;
4358
4359	if (i_blocks <= 0xffffffffffffULL) {
4360		/*
4361		 * i_blocks can be represented in a 48 bit variable
4362		 * as multiple of 512 bytes
4363		 */
4364		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4365		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4366		ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4367	} else {
4368		ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4369		/* i_block is stored in file system block size */
4370		i_blocks = i_blocks >> (inode->i_blkbits - 9);
4371		raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4372		raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4373	}
4374	return 0;
4375}
4376
4377struct other_inode {
4378	unsigned long		orig_ino;
4379	struct ext4_inode	*raw_inode;
4380};
4381
4382static int other_inode_match(struct inode * inode, unsigned long ino,
4383			     void *data)
4384{
4385	struct other_inode *oi = (struct other_inode *) data;
4386
4387	if ((inode->i_ino != ino) ||
4388	    (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4389			       I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4390	    ((inode->i_state & I_DIRTY_TIME) == 0))
4391		return 0;
4392	spin_lock(&inode->i_lock);
4393	if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4394				I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4395	    (inode->i_state & I_DIRTY_TIME)) {
4396		struct ext4_inode_info	*ei = EXT4_I(inode);
4397
4398		inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4399		spin_unlock(&inode->i_lock);
4400
4401		spin_lock(&ei->i_raw_lock);
4402		EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4403		EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4404		EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4405		ext4_inode_csum_set(inode, oi->raw_inode, ei);
4406		spin_unlock(&ei->i_raw_lock);
4407		trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4408		return -1;
4409	}
4410	spin_unlock(&inode->i_lock);
4411	return -1;
4412}
4413
4414/*
4415 * Opportunistically update the other time fields for other inodes in
4416 * the same inode table block.
4417 */
4418static void ext4_update_other_inodes_time(struct super_block *sb,
4419					  unsigned long orig_ino, char *buf)
4420{
4421	struct other_inode oi;
4422	unsigned long ino;
4423	int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4424	int inode_size = EXT4_INODE_SIZE(sb);
4425
4426	oi.orig_ino = orig_ino;
4427	/*
4428	 * Calculate the first inode in the inode table block.  Inode
4429	 * numbers are one-based.  That is, the first inode in a block
4430	 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4431	 */
4432	ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4433	for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4434		if (ino == orig_ino)
4435			continue;
4436		oi.raw_inode = (struct ext4_inode *) buf;
4437		(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4438	}
4439}
4440
4441/*
4442 * Post the struct inode info into an on-disk inode location in the
4443 * buffer-cache.  This gobbles the caller's reference to the
4444 * buffer_head in the inode location struct.
4445 *
4446 * The caller must have write access to iloc->bh.
4447 */
4448static int ext4_do_update_inode(handle_t *handle,
4449				struct inode *inode,
4450				struct ext4_iloc *iloc)
4451{
4452	struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4453	struct ext4_inode_info *ei = EXT4_I(inode);
4454	struct buffer_head *bh = iloc->bh;
4455	struct super_block *sb = inode->i_sb;
4456	int err = 0, rc, block;
4457	int need_datasync = 0, set_large_file = 0;
4458	uid_t i_uid;
4459	gid_t i_gid;
4460
4461	spin_lock(&ei->i_raw_lock);
4462
4463	/* For fields not tracked in the in-memory inode,
4464	 * initialise them to zero for new inodes. */
4465	if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4466		memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4467
4468	ext4_get_inode_flags(ei);
4469	raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4470	i_uid = i_uid_read(inode);
4471	i_gid = i_gid_read(inode);
4472	if (!(test_opt(inode->i_sb, NO_UID32))) {
4473		raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4474		raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4475/*
4476 * Fix up interoperability with old kernels. Otherwise, old inodes get
4477 * re-used with the upper 16 bits of the uid/gid intact
4478 */
4479		if (!ei->i_dtime) {
4480			raw_inode->i_uid_high =
4481				cpu_to_le16(high_16_bits(i_uid));
4482			raw_inode->i_gid_high =
4483				cpu_to_le16(high_16_bits(i_gid));
4484		} else {
4485			raw_inode->i_uid_high = 0;
4486			raw_inode->i_gid_high = 0;
4487		}
4488	} else {
4489		raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4490		raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4491		raw_inode->i_uid_high = 0;
4492		raw_inode->i_gid_high = 0;
4493	}
4494	raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4495
4496	EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4497	EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4498	EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4499	EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4500
4501	err = ext4_inode_blocks_set(handle, raw_inode, ei);
4502	if (err) {
4503		spin_unlock(&ei->i_raw_lock);
4504		goto out_brelse;
4505	}
4506	raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4507	raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4508	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4509		raw_inode->i_file_acl_high =
4510			cpu_to_le16(ei->i_file_acl >> 32);
4511	raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4512	if (ei->i_disksize != ext4_isize(raw_inode)) {
4513		ext4_isize_set(raw_inode, ei->i_disksize);
4514		need_datasync = 1;
4515	}
4516	if (ei->i_disksize > 0x7fffffffULL) {
4517		if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
4518				EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
4519				EXT4_SB(sb)->s_es->s_rev_level ==
4520		    cpu_to_le32(EXT4_GOOD_OLD_REV))
4521			set_large_file = 1;
4522	}
4523	raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4524	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4525		if (old_valid_dev(inode->i_rdev)) {
4526			raw_inode->i_block[0] =
4527				cpu_to_le32(old_encode_dev(inode->i_rdev));
4528			raw_inode->i_block[1] = 0;
4529		} else {
4530			raw_inode->i_block[0] = 0;
4531			raw_inode->i_block[1] =
4532				cpu_to_le32(new_encode_dev(inode->i_rdev));
4533			raw_inode->i_block[2] = 0;
4534		}
4535	} else if (!ext4_has_inline_data(inode)) {
4536		for (block = 0; block < EXT4_N_BLOCKS; block++)
4537			raw_inode->i_block[block] = ei->i_data[block];
4538	}
4539
4540	if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4541		raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4542		if (ei->i_extra_isize) {
4543			if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4544				raw_inode->i_version_hi =
4545					cpu_to_le32(inode->i_version >> 32);
4546			raw_inode->i_extra_isize =
4547				cpu_to_le16(ei->i_extra_isize);
4548		}
4549	}
4550	ext4_inode_csum_set(inode, raw_inode, ei);
4551	spin_unlock(&ei->i_raw_lock);
4552	if (inode->i_sb->s_flags & MS_LAZYTIME)
4553		ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
4554					      bh->b_data);
4555
4556	BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4557	rc = ext4_handle_dirty_metadata(handle, NULL, bh);
4558	if (!err)
4559		err = rc;
4560	ext4_clear_inode_state(inode, EXT4_STATE_NEW);
4561	if (set_large_file) {
4562		BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
4563		err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
4564		if (err)
4565			goto out_brelse;
4566		ext4_update_dynamic_rev(sb);
4567		EXT4_SET_RO_COMPAT_FEATURE(sb,
4568					   EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
4569		ext4_handle_sync(handle);
4570		err = ext4_handle_dirty_super(handle, sb);
4571	}
4572	ext4_update_inode_fsync_trans(handle, inode, need_datasync);
4573out_brelse:
4574	brelse(bh);
4575	ext4_std_error(inode->i_sb, err);
4576	return err;
4577}
4578
4579/*
4580 * ext4_write_inode()
4581 *
4582 * We are called from a few places:
4583 *
4584 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
4585 *   Here, there will be no transaction running. We wait for any running
4586 *   transaction to commit.
4587 *
4588 * - Within flush work (sys_sync(), kupdate and such).
4589 *   We wait on commit, if told to.
4590 *
4591 * - Within iput_final() -> write_inode_now()
4592 *   We wait on commit, if told to.
4593 *
4594 * In all cases it is actually safe for us to return without doing anything,
4595 * because the inode has been copied into a raw inode buffer in
4596 * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
4597 * writeback.
4598 *
4599 * Note that we are absolutely dependent upon all inode dirtiers doing the
4600 * right thing: they *must* call mark_inode_dirty() after dirtying info in
4601 * which we are interested.
4602 *
4603 * It would be a bug for them to not do this.  The code:
4604 *
4605 *	mark_inode_dirty(inode)
4606 *	stuff();
4607 *	inode->i_size = expr;
4608 *
4609 * is in error because write_inode() could occur while `stuff()' is running,
4610 * and the new i_size will be lost.  Plus the inode will no longer be on the
4611 * superblock's dirty inode list.
4612 */
4613int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
4614{
4615	int err;
4616
4617	if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
4618		return 0;
4619
4620	if (EXT4_SB(inode->i_sb)->s_journal) {
4621		if (ext4_journal_current_handle()) {
4622			jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
4623			dump_stack();
4624			return -EIO;
4625		}
4626
4627		/*
4628		 * No need to force transaction in WB_SYNC_NONE mode. Also
4629		 * ext4_sync_fs() will force the commit after everything is
4630		 * written.
4631		 */
4632		if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
4633			return 0;
4634
4635		err = ext4_force_commit(inode->i_sb);
4636	} else {
4637		struct ext4_iloc iloc;
4638
4639		err = __ext4_get_inode_loc(inode, &iloc, 0);
4640		if (err)
4641			return err;
4642		/*
4643		 * sync(2) will flush the whole buffer cache. No need to do
4644		 * it here separately for each inode.
4645		 */
4646		if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
4647			sync_dirty_buffer(iloc.bh);
4648		if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
4649			EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
4650					 "IO error syncing inode");
4651			err = -EIO;
4652		}
4653		brelse(iloc.bh);
4654	}
4655	return err;
4656}
4657
4658/*
4659 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
4660 * buffers that are attached to a page stradding i_size and are undergoing
4661 * commit. In that case we have to wait for commit to finish and try again.
4662 */
4663static void ext4_wait_for_tail_page_commit(struct inode *inode)
4664{
4665	struct page *page;
4666	unsigned offset;
4667	journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
4668	tid_t commit_tid = 0;
4669	int ret;
4670
4671	offset = inode->i_size & (PAGE_CACHE_SIZE - 1);
4672	/*
4673	 * All buffers in the last page remain valid? Then there's nothing to
4674	 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE ==
4675	 * blocksize case
4676	 */
4677	if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits))
4678		return;
4679	while (1) {
4680		page = find_lock_page(inode->i_mapping,
4681				      inode->i_size >> PAGE_CACHE_SHIFT);
4682		if (!page)
4683			return;
4684		ret = __ext4_journalled_invalidatepage(page, offset,
4685						PAGE_CACHE_SIZE - offset);
4686		unlock_page(page);
4687		page_cache_release(page);
4688		if (ret != -EBUSY)
4689			return;
4690		commit_tid = 0;
4691		read_lock(&journal->j_state_lock);
4692		if (journal->j_committing_transaction)
4693			commit_tid = journal->j_committing_transaction->t_tid;
4694		read_unlock(&journal->j_state_lock);
4695		if (commit_tid)
4696			jbd2_log_wait_commit(journal, commit_tid);
4697	}
4698}
4699
4700/*
4701 * ext4_setattr()
4702 *
4703 * Called from notify_change.
4704 *
4705 * We want to trap VFS attempts to truncate the file as soon as
4706 * possible.  In particular, we want to make sure that when the VFS
4707 * shrinks i_size, we put the inode on the orphan list and modify
4708 * i_disksize immediately, so that during the subsequent flushing of
4709 * dirty pages and freeing of disk blocks, we can guarantee that any
4710 * commit will leave the blocks being flushed in an unused state on
4711 * disk.  (On recovery, the inode will get truncated and the blocks will
4712 * be freed, so we have a strong guarantee that no future commit will
4713 * leave these blocks visible to the user.)
4714 *
4715 * Another thing we have to assure is that if we are in ordered mode
4716 * and inode is still attached to the committing transaction, we must
4717 * we start writeout of all the dirty pages which are being truncated.
4718 * This way we are sure that all the data written in the previous
4719 * transaction are already on disk (truncate waits for pages under
4720 * writeback).
4721 *
4722 * Called with inode->i_mutex down.
4723 */
4724int ext4_setattr(struct dentry *dentry, struct iattr *attr)
4725{
4726	struct inode *inode = d_inode(dentry);
4727	int error, rc = 0;
4728	int orphan = 0;
4729	const unsigned int ia_valid = attr->ia_valid;
4730
4731	error = inode_change_ok(inode, attr);
4732	if (error)
4733		return error;
4734
4735	if (is_quota_modification(inode, attr))
4736		dquot_initialize(inode);
4737	if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
4738	    (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
4739		handle_t *handle;
4740
4741		/* (user+group)*(old+new) structure, inode write (sb,
4742		 * inode block, ? - but truncate inode update has it) */
4743		handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
4744			(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
4745			 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
4746		if (IS_ERR(handle)) {
4747			error = PTR_ERR(handle);
4748			goto err_out;
4749		}
4750		error = dquot_transfer(inode, attr);
4751		if (error) {
4752			ext4_journal_stop(handle);
4753			return error;
4754		}
4755		/* Update corresponding info in inode so that everything is in
4756		 * one transaction */
4757		if (attr->ia_valid & ATTR_UID)
4758			inode->i_uid = attr->ia_uid;
4759		if (attr->ia_valid & ATTR_GID)
4760			inode->i_gid = attr->ia_gid;
4761		error = ext4_mark_inode_dirty(handle, inode);
4762		ext4_journal_stop(handle);
4763	}
4764
4765	if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) {
4766		handle_t *handle;
4767
4768		if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
4769			struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4770
4771			if (attr->ia_size > sbi->s_bitmap_maxbytes)
4772				return -EFBIG;
4773		}
4774
4775		if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
4776			inode_inc_iversion(inode);
4777
4778		if (S_ISREG(inode->i_mode) &&
4779		    (attr->ia_size < inode->i_size)) {
4780			if (ext4_should_order_data(inode)) {
4781				error = ext4_begin_ordered_truncate(inode,
4782							    attr->ia_size);
4783				if (error)
4784					goto err_out;
4785			}
4786			handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
4787			if (IS_ERR(handle)) {
4788				error = PTR_ERR(handle);
4789				goto err_out;
4790			}
4791			if (ext4_handle_valid(handle)) {
4792				error = ext4_orphan_add(handle, inode);
4793				orphan = 1;
4794			}
4795			down_write(&EXT4_I(inode)->i_data_sem);
4796			EXT4_I(inode)->i_disksize = attr->ia_size;
4797			rc = ext4_mark_inode_dirty(handle, inode);
4798			if (!error)
4799				error = rc;
4800			/*
4801			 * We have to update i_size under i_data_sem together
4802			 * with i_disksize to avoid races with writeback code
4803			 * running ext4_wb_update_i_disksize().
4804			 */
4805			if (!error)
4806				i_size_write(inode, attr->ia_size);
4807			up_write(&EXT4_I(inode)->i_data_sem);
4808			ext4_journal_stop(handle);
4809			if (error) {
4810				ext4_orphan_del(NULL, inode);
4811				goto err_out;
4812			}
4813		} else {
4814			loff_t oldsize = inode->i_size;
4815
4816			i_size_write(inode, attr->ia_size);
4817			pagecache_isize_extended(inode, oldsize, inode->i_size);
4818		}
4819
4820		/*
4821		 * Blocks are going to be removed from the inode. Wait
4822		 * for dio in flight.  Temporarily disable
4823		 * dioread_nolock to prevent livelock.
4824		 */
4825		if (orphan) {
4826			if (!ext4_should_journal_data(inode)) {
4827				ext4_inode_block_unlocked_dio(inode);
4828				inode_dio_wait(inode);
4829				ext4_inode_resume_unlocked_dio(inode);
4830			} else
4831				ext4_wait_for_tail_page_commit(inode);
4832		}
4833		down_write(&EXT4_I(inode)->i_mmap_sem);
4834		/*
4835		 * Truncate pagecache after we've waited for commit
4836		 * in data=journal mode to make pages freeable.
4837		 */
4838		truncate_pagecache(inode, inode->i_size);
4839		up_write(&EXT4_I(inode)->i_mmap_sem);
4840	}
4841	/*
4842	 * We want to call ext4_truncate() even if attr->ia_size ==
4843	 * inode->i_size for cases like truncation of fallocated space
4844	 */
4845	if (attr->ia_valid & ATTR_SIZE)
4846		ext4_truncate(inode);
4847
4848	if (!rc) {
4849		setattr_copy(inode, attr);
4850		mark_inode_dirty(inode);
4851	}
4852
4853	/*
4854	 * If the call to ext4_truncate failed to get a transaction handle at
4855	 * all, we need to clean up the in-core orphan list manually.
4856	 */
4857	if (orphan && inode->i_nlink)
4858		ext4_orphan_del(NULL, inode);
4859
4860	if (!rc && (ia_valid & ATTR_MODE))
4861		rc = posix_acl_chmod(inode, inode->i_mode);
4862
4863err_out:
4864	ext4_std_error(inode->i_sb, error);
4865	if (!error)
4866		error = rc;
4867	return error;
4868}
4869
4870int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
4871		 struct kstat *stat)
4872{
4873	struct inode *inode;
4874	unsigned long long delalloc_blocks;
4875
4876	inode = d_inode(dentry);
4877	generic_fillattr(inode, stat);
4878
4879	/*
4880	 * If there is inline data in the inode, the inode will normally not
4881	 * have data blocks allocated (it may have an external xattr block).
4882	 * Report at least one sector for such files, so tools like tar, rsync,
4883	 * others doen't incorrectly think the file is completely sparse.
4884	 */
4885	if (unlikely(ext4_has_inline_data(inode)))
4886		stat->blocks += (stat->size + 511) >> 9;
4887
4888	/*
4889	 * We can't update i_blocks if the block allocation is delayed
4890	 * otherwise in the case of system crash before the real block
4891	 * allocation is done, we will have i_blocks inconsistent with
4892	 * on-disk file blocks.
4893	 * We always keep i_blocks updated together with real
4894	 * allocation. But to not confuse with user, stat
4895	 * will return the blocks that include the delayed allocation
4896	 * blocks for this file.
4897	 */
4898	delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
4899				   EXT4_I(inode)->i_reserved_data_blocks);
4900	stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
4901	return 0;
4902}
4903
4904static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
4905				   int pextents)
4906{
4907	if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
4908		return ext4_ind_trans_blocks(inode, lblocks);
4909	return ext4_ext_index_trans_blocks(inode, pextents);
4910}
4911
4912/*
4913 * Account for index blocks, block groups bitmaps and block group
4914 * descriptor blocks if modify datablocks and index blocks
4915 * worse case, the indexs blocks spread over different block groups
4916 *
4917 * If datablocks are discontiguous, they are possible to spread over
4918 * different block groups too. If they are contiguous, with flexbg,
4919 * they could still across block group boundary.
4920 *
4921 * Also account for superblock, inode, quota and xattr blocks
4922 */
4923static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
4924				  int pextents)
4925{
4926	ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
4927	int gdpblocks;
4928	int idxblocks;
4929	int ret = 0;
4930
4931	/*
4932	 * How many index blocks need to touch to map @lblocks logical blocks
4933	 * to @pextents physical extents?
4934	 */
4935	idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
4936
4937	ret = idxblocks;
4938
4939	/*
4940	 * Now let's see how many group bitmaps and group descriptors need
4941	 * to account
4942	 */
4943	groups = idxblocks + pextents;
4944	gdpblocks = groups;
4945	if (groups > ngroups)
4946		groups = ngroups;
4947	if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
4948		gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
4949
4950	/* bitmaps and block group descriptor blocks */
4951	ret += groups + gdpblocks;
4952
4953	/* Blocks for super block, inode, quota and xattr blocks */
4954	ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
4955
4956	return ret;
4957}
4958
4959/*
4960 * Calculate the total number of credits to reserve to fit
4961 * the modification of a single pages into a single transaction,
4962 * which may include multiple chunks of block allocations.
4963 *
4964 * This could be called via ext4_write_begin()
4965 *
4966 * We need to consider the worse case, when
4967 * one new block per extent.
4968 */
4969int ext4_writepage_trans_blocks(struct inode *inode)
4970{
4971	int bpp = ext4_journal_blocks_per_page(inode);
4972	int ret;
4973
4974	ret = ext4_meta_trans_blocks(inode, bpp, bpp);
4975
4976	/* Account for data blocks for journalled mode */
4977	if (ext4_should_journal_data(inode))
4978		ret += bpp;
4979	return ret;
4980}
4981
4982/*
4983 * Calculate the journal credits for a chunk of data modification.
4984 *
4985 * This is called from DIO, fallocate or whoever calling
4986 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
4987 *
4988 * journal buffers for data blocks are not included here, as DIO
4989 * and fallocate do no need to journal data buffers.
4990 */
4991int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
4992{
4993	return ext4_meta_trans_blocks(inode, nrblocks, 1);
4994}
4995
4996/*
4997 * The caller must have previously called ext4_reserve_inode_write().
4998 * Give this, we know that the caller already has write access to iloc->bh.
4999 */
5000int ext4_mark_iloc_dirty(handle_t *handle,
5001			 struct inode *inode, struct ext4_iloc *iloc)
5002{
5003	int err = 0;
5004
5005	if (IS_I_VERSION(inode))
5006		inode_inc_iversion(inode);
5007
5008	/* the do_update_inode consumes one bh->b_count */
5009	get_bh(iloc->bh);
5010
5011	/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5012	err = ext4_do_update_inode(handle, inode, iloc);
5013	put_bh(iloc->bh);
5014	return err;
5015}
5016
5017/*
5018 * On success, We end up with an outstanding reference count against
5019 * iloc->bh.  This _must_ be cleaned up later.
5020 */
5021
5022int
5023ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5024			 struct ext4_iloc *iloc)
5025{
5026	int err;
5027
5028	err = ext4_get_inode_loc(inode, iloc);
5029	if (!err) {
5030		BUFFER_TRACE(iloc->bh, "get_write_access");
5031		err = ext4_journal_get_write_access(handle, iloc->bh);
5032		if (err) {
5033			brelse(iloc->bh);
5034			iloc->bh = NULL;
5035		}
5036	}
5037	ext4_std_error(inode->i_sb, err);
5038	return err;
5039}
5040
5041/*
5042 * Expand an inode by new_extra_isize bytes.
5043 * Returns 0 on success or negative error number on failure.
5044 */
5045static int ext4_expand_extra_isize(struct inode *inode,
5046				   unsigned int new_extra_isize,
5047				   struct ext4_iloc iloc,
5048				   handle_t *handle)
5049{
5050	struct ext4_inode *raw_inode;
5051	struct ext4_xattr_ibody_header *header;
5052
5053	if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5054		return 0;
5055
5056	raw_inode = ext4_raw_inode(&iloc);
5057
5058	header = IHDR(inode, raw_inode);
5059
5060	/* No extended attributes present */
5061	if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5062	    header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5063		memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5064			new_extra_isize);
5065		EXT4_I(inode)->i_extra_isize = new_extra_isize;
5066		return 0;
5067	}
5068
5069	/* try to expand with EAs present */
5070	return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5071					  raw_inode, handle);
5072}
5073
5074/*
5075 * What we do here is to mark the in-core inode as clean with respect to inode
5076 * dirtiness (it may still be data-dirty).
5077 * This means that the in-core inode may be reaped by prune_icache
5078 * without having to perform any I/O.  This is a very good thing,
5079 * because *any* task may call prune_icache - even ones which
5080 * have a transaction open against a different journal.
5081 *
5082 * Is this cheating?  Not really.  Sure, we haven't written the
5083 * inode out, but prune_icache isn't a user-visible syncing function.
5084 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5085 * we start and wait on commits.
5086 */
5087int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5088{
5089	struct ext4_iloc iloc;
5090	struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5091	static unsigned int mnt_count;
5092	int err, ret;
5093
5094	might_sleep();
5095	trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5096	err = ext4_reserve_inode_write(handle, inode, &iloc);
5097	if (ext4_handle_valid(handle) &&
5098	    EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5099	    !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5100		/*
5101		 * We need extra buffer credits since we may write into EA block
5102		 * with this same handle. If journal_extend fails, then it will
5103		 * only result in a minor loss of functionality for that inode.
5104		 * If this is felt to be critical, then e2fsck should be run to
5105		 * force a large enough s_min_extra_isize.
5106		 */
5107		if ((jbd2_journal_extend(handle,
5108			     EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5109			ret = ext4_expand_extra_isize(inode,
5110						      sbi->s_want_extra_isize,
5111						      iloc, handle);
5112			if (ret) {
5113				ext4_set_inode_state(inode,
5114						     EXT4_STATE_NO_EXPAND);
5115				if (mnt_count !=
5116					le16_to_cpu(sbi->s_es->s_mnt_count)) {
5117					ext4_warning(inode->i_sb,
5118					"Unable to expand inode %lu. Delete"
5119					" some EAs or run e2fsck.",
5120					inode->i_ino);
5121					mnt_count =
5122					  le16_to_cpu(sbi->s_es->s_mnt_count);
5123				}
5124			}
5125		}
5126	}
5127	if (!err)
5128		err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5129	return err;
5130}
5131
5132/*
5133 * ext4_dirty_inode() is called from __mark_inode_dirty()
5134 *
5135 * We're really interested in the case where a file is being extended.
5136 * i_size has been changed by generic_commit_write() and we thus need
5137 * to include the updated inode in the current transaction.
5138 *
5139 * Also, dquot_alloc_block() will always dirty the inode when blocks
5140 * are allocated to the file.
5141 *
5142 * If the inode is marked synchronous, we don't honour that here - doing
5143 * so would cause a commit on atime updates, which we don't bother doing.
5144 * We handle synchronous inodes at the highest possible level.
5145 *
5146 * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5147 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5148 * to copy into the on-disk inode structure are the timestamp files.
5149 */
5150void ext4_dirty_inode(struct inode *inode, int flags)
5151{
5152	handle_t *handle;
5153
5154	if (flags == I_DIRTY_TIME)
5155		return;
5156	handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5157	if (IS_ERR(handle))
5158		goto out;
5159
5160	ext4_mark_inode_dirty(handle, inode);
5161
5162	ext4_journal_stop(handle);
5163out:
5164	return;
5165}
5166
5167#if 0
5168/*
5169 * Bind an inode's backing buffer_head into this transaction, to prevent
5170 * it from being flushed to disk early.  Unlike
5171 * ext4_reserve_inode_write, this leaves behind no bh reference and
5172 * returns no iloc structure, so the caller needs to repeat the iloc
5173 * lookup to mark the inode dirty later.
5174 */
5175static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5176{
5177	struct ext4_iloc iloc;
5178
5179	int err = 0;
5180	if (handle) {
5181		err = ext4_get_inode_loc(inode, &iloc);
5182		if (!err) {
5183			BUFFER_TRACE(iloc.bh, "get_write_access");
5184			err = jbd2_journal_get_write_access(handle, iloc.bh);
5185			if (!err)
5186				err = ext4_handle_dirty_metadata(handle,
5187								 NULL,
5188								 iloc.bh);
5189			brelse(iloc.bh);
5190		}
5191	}
5192	ext4_std_error(inode->i_sb, err);
5193	return err;
5194}
5195#endif
5196
5197int ext4_change_inode_journal_flag(struct inode *inode, int val)
5198{
5199	journal_t *journal;
5200	handle_t *handle;
5201	int err;
5202
5203	/*
5204	 * We have to be very careful here: changing a data block's
5205	 * journaling status dynamically is dangerous.  If we write a
5206	 * data block to the journal, change the status and then delete
5207	 * that block, we risk forgetting to revoke the old log record
5208	 * from the journal and so a subsequent replay can corrupt data.
5209	 * So, first we make sure that the journal is empty and that
5210	 * nobody is changing anything.
5211	 */
5212
5213	journal = EXT4_JOURNAL(inode);
5214	if (!journal)
5215		return 0;
5216	if (is_journal_aborted(journal))
5217		return -EROFS;
5218	/* We have to allocate physical blocks for delalloc blocks
5219	 * before flushing journal. otherwise delalloc blocks can not
5220	 * be allocated any more. even more truncate on delalloc blocks
5221	 * could trigger BUG by flushing delalloc blocks in journal.
5222	 * There is no delalloc block in non-journal data mode.
5223	 */
5224	if (val && test_opt(inode->i_sb, DELALLOC)) {
5225		err = ext4_alloc_da_blocks(inode);
5226		if (err < 0)
5227			return err;
5228	}
5229
5230	/* Wait for all existing dio workers */
5231	ext4_inode_block_unlocked_dio(inode);
5232	inode_dio_wait(inode);
5233
5234	jbd2_journal_lock_updates(journal);
5235
5236	/*
5237	 * OK, there are no updates running now, and all cached data is
5238	 * synced to disk.  We are now in a completely consistent state
5239	 * which doesn't have anything in the journal, and we know that
5240	 * no filesystem updates are running, so it is safe to modify
5241	 * the inode's in-core data-journaling state flag now.
5242	 */
5243
5244	if (val)
5245		ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5246	else {
5247		err = jbd2_journal_flush(journal);
5248		if (err < 0) {
5249			jbd2_journal_unlock_updates(journal);
5250			ext4_inode_resume_unlocked_dio(inode);
5251			return err;
5252		}
5253		ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5254	}
5255	ext4_set_aops(inode);
5256
5257	jbd2_journal_unlock_updates(journal);
5258	ext4_inode_resume_unlocked_dio(inode);
5259
5260	/* Finally we can mark the inode as dirty. */
5261
5262	handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5263	if (IS_ERR(handle))
5264		return PTR_ERR(handle);
5265
5266	err = ext4_mark_inode_dirty(handle, inode);
5267	ext4_handle_sync(handle);
5268	ext4_journal_stop(handle);
5269	ext4_std_error(inode->i_sb, err);
5270
5271	return err;
5272}
5273
5274static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5275{
5276	return !buffer_mapped(bh);
5277}
5278
5279int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5280{
5281	struct page *page = vmf->page;
5282	loff_t size;
5283	unsigned long len;
5284	int ret;
5285	struct file *file = vma->vm_file;
5286	struct inode *inode = file_inode(file);
5287	struct address_space *mapping = inode->i_mapping;
5288	handle_t *handle;
5289	get_block_t *get_block;
5290	int retries = 0;
5291
5292	sb_start_pagefault(inode->i_sb);
5293	file_update_time(vma->vm_file);
5294
5295	down_read(&EXT4_I(inode)->i_mmap_sem);
5296	/* Delalloc case is easy... */
5297	if (test_opt(inode->i_sb, DELALLOC) &&
5298	    !ext4_should_journal_data(inode) &&
5299	    !ext4_nonda_switch(inode->i_sb)) {
5300		do {
5301			ret = __block_page_mkwrite(vma, vmf,
5302						   ext4_da_get_block_prep);
5303		} while (ret == -ENOSPC &&
5304		       ext4_should_retry_alloc(inode->i_sb, &retries));
5305		goto out_ret;
5306	}
5307
5308	lock_page(page);
5309	size = i_size_read(inode);
5310	/* Page got truncated from under us? */
5311	if (page->mapping != mapping || page_offset(page) > size) {
5312		unlock_page(page);
5313		ret = VM_FAULT_NOPAGE;
5314		goto out;
5315	}
5316
5317	if (page->index == size >> PAGE_CACHE_SHIFT)
5318		len = size & ~PAGE_CACHE_MASK;
5319	else
5320		len = PAGE_CACHE_SIZE;
5321	/*
5322	 * Return if we have all the buffers mapped. This avoids the need to do
5323	 * journal_start/journal_stop which can block and take a long time
5324	 */
5325	if (page_has_buffers(page)) {
5326		if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5327					    0, len, NULL,
5328					    ext4_bh_unmapped)) {
5329			/* Wait so that we don't change page under IO */
5330			wait_for_stable_page(page);
5331			ret = VM_FAULT_LOCKED;
5332			goto out;
5333		}
5334	}
5335	unlock_page(page);
5336	/* OK, we need to fill the hole... */
5337	if (ext4_should_dioread_nolock(inode))
5338		get_block = ext4_get_block_write;
5339	else
5340		get_block = ext4_get_block;
5341retry_alloc:
5342	handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5343				    ext4_writepage_trans_blocks(inode));
5344	if (IS_ERR(handle)) {
5345		ret = VM_FAULT_SIGBUS;
5346		goto out;
5347	}
5348	ret = __block_page_mkwrite(vma, vmf, get_block);
5349	if (!ret && ext4_should_journal_data(inode)) {
5350		if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5351			  PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) {
5352			unlock_page(page);
5353			ret = VM_FAULT_SIGBUS;
5354			ext4_journal_stop(handle);
5355			goto out;
5356		}
5357		ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5358	}
5359	ext4_journal_stop(handle);
5360	if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5361		goto retry_alloc;
5362out_ret:
5363	ret = block_page_mkwrite_return(ret);
5364out:
5365	up_read(&EXT4_I(inode)->i_mmap_sem);
5366	sb_end_pagefault(inode->i_sb);
5367	return ret;
5368}
5369
5370int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5371{
5372	struct inode *inode = file_inode(vma->vm_file);
5373	int err;
5374
5375	down_read(&EXT4_I(inode)->i_mmap_sem);
5376	err = filemap_fault(vma, vmf);
5377	up_read(&EXT4_I(inode)->i_mmap_sem);
5378
5379	return err;
5380}
5381