1/* 2 * linux/fs/ext4/inode.c 3 * 4 * Copyright (C) 1992, 1993, 1994, 1995 5 * Remy Card (card@masi.ibp.fr) 6 * Laboratoire MASI - Institut Blaise Pascal 7 * Universite Pierre et Marie Curie (Paris VI) 8 * 9 * from 10 * 11 * linux/fs/minix/inode.c 12 * 13 * Copyright (C) 1991, 1992 Linus Torvalds 14 * 15 * 64-bit file support on 64-bit platforms by Jakub Jelinek 16 * (jj@sunsite.ms.mff.cuni.cz) 17 * 18 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000 19 */ 20 21#include <linux/fs.h> 22#include <linux/time.h> 23#include <linux/highuid.h> 24#include <linux/pagemap.h> 25#include <linux/quotaops.h> 26#include <linux/string.h> 27#include <linux/buffer_head.h> 28#include <linux/writeback.h> 29#include <linux/pagevec.h> 30#include <linux/mpage.h> 31#include <linux/namei.h> 32#include <linux/uio.h> 33#include <linux/bio.h> 34#include <linux/workqueue.h> 35#include <linux/kernel.h> 36#include <linux/printk.h> 37#include <linux/slab.h> 38#include <linux/bitops.h> 39 40#include "ext4_jbd2.h" 41#include "xattr.h" 42#include "acl.h" 43#include "truncate.h" 44 45#include <trace/events/ext4.h> 46 47#define MPAGE_DA_EXTENT_TAIL 0x01 48 49static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw, 50 struct ext4_inode_info *ei) 51{ 52 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 53 __u16 csum_lo; 54 __u16 csum_hi = 0; 55 __u32 csum; 56 57 csum_lo = le16_to_cpu(raw->i_checksum_lo); 58 raw->i_checksum_lo = 0; 59 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 60 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) { 61 csum_hi = le16_to_cpu(raw->i_checksum_hi); 62 raw->i_checksum_hi = 0; 63 } 64 65 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, 66 EXT4_INODE_SIZE(inode->i_sb)); 67 68 raw->i_checksum_lo = cpu_to_le16(csum_lo); 69 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 70 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 71 raw->i_checksum_hi = cpu_to_le16(csum_hi); 72 73 return csum; 74} 75 76static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw, 77 struct ext4_inode_info *ei) 78{ 79 __u32 provided, calculated; 80 81 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 82 cpu_to_le32(EXT4_OS_LINUX) || 83 !ext4_has_metadata_csum(inode->i_sb)) 84 return 1; 85 86 provided = le16_to_cpu(raw->i_checksum_lo); 87 calculated = ext4_inode_csum(inode, raw, ei); 88 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 89 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 90 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16; 91 else 92 calculated &= 0xFFFF; 93 94 return provided == calculated; 95} 96 97static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw, 98 struct ext4_inode_info *ei) 99{ 100 __u32 csum; 101 102 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os != 103 cpu_to_le32(EXT4_OS_LINUX) || 104 !ext4_has_metadata_csum(inode->i_sb)) 105 return; 106 107 csum = ext4_inode_csum(inode, raw, ei); 108 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF); 109 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE && 110 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) 111 raw->i_checksum_hi = cpu_to_le16(csum >> 16); 112} 113 114static inline int ext4_begin_ordered_truncate(struct inode *inode, 115 loff_t new_size) 116{ 117 trace_ext4_begin_ordered_truncate(inode, new_size); 118 /* 119 * If jinode is zero, then we never opened the file for 120 * writing, so there's no need to call 121 * jbd2_journal_begin_ordered_truncate() since there's no 122 * outstanding writes we need to flush. 123 */ 124 if (!EXT4_I(inode)->jinode) 125 return 0; 126 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode), 127 EXT4_I(inode)->jinode, 128 new_size); 129} 130 131static void ext4_invalidatepage(struct page *page, unsigned int offset, 132 unsigned int length); 133static int __ext4_journalled_writepage(struct page *page, unsigned int len); 134static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh); 135static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 136 int pextents); 137 138/* 139 * Test whether an inode is a fast symlink. 140 */ 141int ext4_inode_is_fast_symlink(struct inode *inode) 142{ 143 int ea_blocks = EXT4_I(inode)->i_file_acl ? 144 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0; 145 146 if (ext4_has_inline_data(inode)) 147 return 0; 148 149 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0); 150} 151 152/* 153 * Restart the transaction associated with *handle. This does a commit, 154 * so before we call here everything must be consistently dirtied against 155 * this transaction. 156 */ 157int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode, 158 int nblocks) 159{ 160 int ret; 161 162 /* 163 * Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this 164 * moment, get_block can be called only for blocks inside i_size since 165 * page cache has been already dropped and writes are blocked by 166 * i_mutex. So we can safely drop the i_data_sem here. 167 */ 168 BUG_ON(EXT4_JOURNAL(inode) == NULL); 169 jbd_debug(2, "restarting handle %p\n", handle); 170 up_write(&EXT4_I(inode)->i_data_sem); 171 ret = ext4_journal_restart(handle, nblocks); 172 down_write(&EXT4_I(inode)->i_data_sem); 173 ext4_discard_preallocations(inode); 174 175 return ret; 176} 177 178/* 179 * Called at the last iput() if i_nlink is zero. 180 */ 181void ext4_evict_inode(struct inode *inode) 182{ 183 handle_t *handle; 184 int err; 185 186 trace_ext4_evict_inode(inode); 187 188 if (inode->i_nlink) { 189 /* 190 * When journalling data dirty buffers are tracked only in the 191 * journal. So although mm thinks everything is clean and 192 * ready for reaping the inode might still have some pages to 193 * write in the running transaction or waiting to be 194 * checkpointed. Thus calling jbd2_journal_invalidatepage() 195 * (via truncate_inode_pages()) to discard these buffers can 196 * cause data loss. Also even if we did not discard these 197 * buffers, we would have no way to find them after the inode 198 * is reaped and thus user could see stale data if he tries to 199 * read them before the transaction is checkpointed. So be 200 * careful and force everything to disk here... We use 201 * ei->i_datasync_tid to store the newest transaction 202 * containing inode's data. 203 * 204 * Note that directories do not have this problem because they 205 * don't use page cache. 206 */ 207 if (ext4_should_journal_data(inode) && 208 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) && 209 inode->i_ino != EXT4_JOURNAL_INO) { 210 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 211 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid; 212 213 jbd2_complete_transaction(journal, commit_tid); 214 filemap_write_and_wait(&inode->i_data); 215 } 216 truncate_inode_pages_final(&inode->i_data); 217 218 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 219 goto no_delete; 220 } 221 222 if (is_bad_inode(inode)) 223 goto no_delete; 224 dquot_initialize(inode); 225 226 if (ext4_should_order_data(inode)) 227 ext4_begin_ordered_truncate(inode, 0); 228 truncate_inode_pages_final(&inode->i_data); 229 230 WARN_ON(atomic_read(&EXT4_I(inode)->i_ioend_count)); 231 232 /* 233 * Protect us against freezing - iput() caller didn't have to have any 234 * protection against it 235 */ 236 sb_start_intwrite(inode->i_sb); 237 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, 238 ext4_blocks_for_truncate(inode)+3); 239 if (IS_ERR(handle)) { 240 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 241 /* 242 * If we're going to skip the normal cleanup, we still need to 243 * make sure that the in-core orphan linked list is properly 244 * cleaned up. 245 */ 246 ext4_orphan_del(NULL, inode); 247 sb_end_intwrite(inode->i_sb); 248 goto no_delete; 249 } 250 251 if (IS_SYNC(inode)) 252 ext4_handle_sync(handle); 253 inode->i_size = 0; 254 err = ext4_mark_inode_dirty(handle, inode); 255 if (err) { 256 ext4_warning(inode->i_sb, 257 "couldn't mark inode dirty (err %d)", err); 258 goto stop_handle; 259 } 260 if (inode->i_blocks) 261 ext4_truncate(inode); 262 263 /* 264 * ext4_ext_truncate() doesn't reserve any slop when it 265 * restarts journal transactions; therefore there may not be 266 * enough credits left in the handle to remove the inode from 267 * the orphan list and set the dtime field. 268 */ 269 if (!ext4_handle_has_enough_credits(handle, 3)) { 270 err = ext4_journal_extend(handle, 3); 271 if (err > 0) 272 err = ext4_journal_restart(handle, 3); 273 if (err != 0) { 274 ext4_warning(inode->i_sb, 275 "couldn't extend journal (err %d)", err); 276 stop_handle: 277 ext4_journal_stop(handle); 278 ext4_orphan_del(NULL, inode); 279 sb_end_intwrite(inode->i_sb); 280 goto no_delete; 281 } 282 } 283 284 /* 285 * Kill off the orphan record which ext4_truncate created. 286 * AKPM: I think this can be inside the above `if'. 287 * Note that ext4_orphan_del() has to be able to cope with the 288 * deletion of a non-existent orphan - this is because we don't 289 * know if ext4_truncate() actually created an orphan record. 290 * (Well, we could do this if we need to, but heck - it works) 291 */ 292 ext4_orphan_del(handle, inode); 293 EXT4_I(inode)->i_dtime = get_seconds(); 294 295 /* 296 * One subtle ordering requirement: if anything has gone wrong 297 * (transaction abort, IO errors, whatever), then we can still 298 * do these next steps (the fs will already have been marked as 299 * having errors), but we can't free the inode if the mark_dirty 300 * fails. 301 */ 302 if (ext4_mark_inode_dirty(handle, inode)) 303 /* If that failed, just do the required in-core inode clear. */ 304 ext4_clear_inode(inode); 305 else 306 ext4_free_inode(handle, inode); 307 ext4_journal_stop(handle); 308 sb_end_intwrite(inode->i_sb); 309 return; 310no_delete: 311 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */ 312} 313 314#ifdef CONFIG_QUOTA 315qsize_t *ext4_get_reserved_space(struct inode *inode) 316{ 317 return &EXT4_I(inode)->i_reserved_quota; 318} 319#endif 320 321/* 322 * Called with i_data_sem down, which is important since we can call 323 * ext4_discard_preallocations() from here. 324 */ 325void ext4_da_update_reserve_space(struct inode *inode, 326 int used, int quota_claim) 327{ 328 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 329 struct ext4_inode_info *ei = EXT4_I(inode); 330 331 spin_lock(&ei->i_block_reservation_lock); 332 trace_ext4_da_update_reserve_space(inode, used, quota_claim); 333 if (unlikely(used > ei->i_reserved_data_blocks)) { 334 ext4_warning(inode->i_sb, "%s: ino %lu, used %d " 335 "with only %d reserved data blocks", 336 __func__, inode->i_ino, used, 337 ei->i_reserved_data_blocks); 338 WARN_ON(1); 339 used = ei->i_reserved_data_blocks; 340 } 341 342 /* Update per-inode reservations */ 343 ei->i_reserved_data_blocks -= used; 344 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used); 345 346 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 347 348 /* Update quota subsystem for data blocks */ 349 if (quota_claim) 350 dquot_claim_block(inode, EXT4_C2B(sbi, used)); 351 else { 352 /* 353 * We did fallocate with an offset that is already delayed 354 * allocated. So on delayed allocated writeback we should 355 * not re-claim the quota for fallocated blocks. 356 */ 357 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used)); 358 } 359 360 /* 361 * If we have done all the pending block allocations and if 362 * there aren't any writers on the inode, we can discard the 363 * inode's preallocations. 364 */ 365 if ((ei->i_reserved_data_blocks == 0) && 366 (atomic_read(&inode->i_writecount) == 0)) 367 ext4_discard_preallocations(inode); 368} 369 370static int __check_block_validity(struct inode *inode, const char *func, 371 unsigned int line, 372 struct ext4_map_blocks *map) 373{ 374 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk, 375 map->m_len)) { 376 ext4_error_inode(inode, func, line, map->m_pblk, 377 "lblock %lu mapped to illegal pblock " 378 "(length %d)", (unsigned long) map->m_lblk, 379 map->m_len); 380 return -EIO; 381 } 382 return 0; 383} 384 385#define check_block_validity(inode, map) \ 386 __check_block_validity((inode), __func__, __LINE__, (map)) 387 388#ifdef ES_AGGRESSIVE_TEST 389static void ext4_map_blocks_es_recheck(handle_t *handle, 390 struct inode *inode, 391 struct ext4_map_blocks *es_map, 392 struct ext4_map_blocks *map, 393 int flags) 394{ 395 int retval; 396 397 map->m_flags = 0; 398 /* 399 * There is a race window that the result is not the same. 400 * e.g. xfstests #223 when dioread_nolock enables. The reason 401 * is that we lookup a block mapping in extent status tree with 402 * out taking i_data_sem. So at the time the unwritten extent 403 * could be converted. 404 */ 405 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 406 down_read(&EXT4_I(inode)->i_data_sem); 407 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 408 retval = ext4_ext_map_blocks(handle, inode, map, flags & 409 EXT4_GET_BLOCKS_KEEP_SIZE); 410 } else { 411 retval = ext4_ind_map_blocks(handle, inode, map, flags & 412 EXT4_GET_BLOCKS_KEEP_SIZE); 413 } 414 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 415 up_read((&EXT4_I(inode)->i_data_sem)); 416 417 /* 418 * We don't check m_len because extent will be collpased in status 419 * tree. So the m_len might not equal. 420 */ 421 if (es_map->m_lblk != map->m_lblk || 422 es_map->m_flags != map->m_flags || 423 es_map->m_pblk != map->m_pblk) { 424 printk("ES cache assertion failed for inode: %lu " 425 "es_cached ex [%d/%d/%llu/%x] != " 426 "found ex [%d/%d/%llu/%x] retval %d flags %x\n", 427 inode->i_ino, es_map->m_lblk, es_map->m_len, 428 es_map->m_pblk, es_map->m_flags, map->m_lblk, 429 map->m_len, map->m_pblk, map->m_flags, 430 retval, flags); 431 } 432} 433#endif /* ES_AGGRESSIVE_TEST */ 434 435/* 436 * The ext4_map_blocks() function tries to look up the requested blocks, 437 * and returns if the blocks are already mapped. 438 * 439 * Otherwise it takes the write lock of the i_data_sem and allocate blocks 440 * and store the allocated blocks in the result buffer head and mark it 441 * mapped. 442 * 443 * If file type is extents based, it will call ext4_ext_map_blocks(), 444 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping 445 * based files 446 * 447 * On success, it returns the number of blocks being mapped or allocated. 448 * if create==0 and the blocks are pre-allocated and unwritten block, 449 * the result buffer head is unmapped. If the create ==1, it will make sure 450 * the buffer head is mapped. 451 * 452 * It returns 0 if plain look up failed (blocks have not been allocated), in 453 * that case, buffer head is unmapped 454 * 455 * It returns the error in case of allocation failure. 456 */ 457int ext4_map_blocks(handle_t *handle, struct inode *inode, 458 struct ext4_map_blocks *map, int flags) 459{ 460 struct extent_status es; 461 int retval; 462 int ret = 0; 463#ifdef ES_AGGRESSIVE_TEST 464 struct ext4_map_blocks orig_map; 465 466 memcpy(&orig_map, map, sizeof(*map)); 467#endif 468 469 map->m_flags = 0; 470 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u," 471 "logical block %lu\n", inode->i_ino, flags, map->m_len, 472 (unsigned long) map->m_lblk); 473 474 /* 475 * ext4_map_blocks returns an int, and m_len is an unsigned int 476 */ 477 if (unlikely(map->m_len > INT_MAX)) 478 map->m_len = INT_MAX; 479 480 /* We can handle the block number less than EXT_MAX_BLOCKS */ 481 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS)) 482 return -EIO; 483 484 /* Lookup extent status tree firstly */ 485 if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 486 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) { 487 map->m_pblk = ext4_es_pblock(&es) + 488 map->m_lblk - es.es_lblk; 489 map->m_flags |= ext4_es_is_written(&es) ? 490 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN; 491 retval = es.es_len - (map->m_lblk - es.es_lblk); 492 if (retval > map->m_len) 493 retval = map->m_len; 494 map->m_len = retval; 495 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) { 496 retval = 0; 497 } else { 498 BUG_ON(1); 499 } 500#ifdef ES_AGGRESSIVE_TEST 501 ext4_map_blocks_es_recheck(handle, inode, map, 502 &orig_map, flags); 503#endif 504 goto found; 505 } 506 507 /* 508 * Try to see if we can get the block without requesting a new 509 * file system block. 510 */ 511 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 512 down_read(&EXT4_I(inode)->i_data_sem); 513 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 514 retval = ext4_ext_map_blocks(handle, inode, map, flags & 515 EXT4_GET_BLOCKS_KEEP_SIZE); 516 } else { 517 retval = ext4_ind_map_blocks(handle, inode, map, flags & 518 EXT4_GET_BLOCKS_KEEP_SIZE); 519 } 520 if (retval > 0) { 521 unsigned int status; 522 523 if (unlikely(retval != map->m_len)) { 524 ext4_warning(inode->i_sb, 525 "ES len assertion failed for inode " 526 "%lu: retval %d != map->m_len %d", 527 inode->i_ino, retval, map->m_len); 528 WARN_ON(1); 529 } 530 531 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 532 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 533 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 534 !(status & EXTENT_STATUS_WRITTEN) && 535 ext4_find_delalloc_range(inode, map->m_lblk, 536 map->m_lblk + map->m_len - 1)) 537 status |= EXTENT_STATUS_DELAYED; 538 ret = ext4_es_insert_extent(inode, map->m_lblk, 539 map->m_len, map->m_pblk, status); 540 if (ret < 0) 541 retval = ret; 542 } 543 if (!(flags & EXT4_GET_BLOCKS_NO_LOCK)) 544 up_read((&EXT4_I(inode)->i_data_sem)); 545 546found: 547 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 548 ret = check_block_validity(inode, map); 549 if (ret != 0) 550 return ret; 551 } 552 553 /* If it is only a block(s) look up */ 554 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0) 555 return retval; 556 557 /* 558 * Returns if the blocks have already allocated 559 * 560 * Note that if blocks have been preallocated 561 * ext4_ext_get_block() returns the create = 0 562 * with buffer head unmapped. 563 */ 564 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) 565 /* 566 * If we need to convert extent to unwritten 567 * we continue and do the actual work in 568 * ext4_ext_map_blocks() 569 */ 570 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN)) 571 return retval; 572 573 /* 574 * Here we clear m_flags because after allocating an new extent, 575 * it will be set again. 576 */ 577 map->m_flags &= ~EXT4_MAP_FLAGS; 578 579 /* 580 * New blocks allocate and/or writing to unwritten extent 581 * will possibly result in updating i_data, so we take 582 * the write lock of i_data_sem, and call get_block() 583 * with create == 1 flag. 584 */ 585 down_write(&EXT4_I(inode)->i_data_sem); 586 587 /* 588 * We need to check for EXT4 here because migrate 589 * could have changed the inode type in between 590 */ 591 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 592 retval = ext4_ext_map_blocks(handle, inode, map, flags); 593 } else { 594 retval = ext4_ind_map_blocks(handle, inode, map, flags); 595 596 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) { 597 /* 598 * We allocated new blocks which will result in 599 * i_data's format changing. Force the migrate 600 * to fail by clearing migrate flags 601 */ 602 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE); 603 } 604 605 /* 606 * Update reserved blocks/metadata blocks after successful 607 * block allocation which had been deferred till now. We don't 608 * support fallocate for non extent files. So we can update 609 * reserve space here. 610 */ 611 if ((retval > 0) && 612 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)) 613 ext4_da_update_reserve_space(inode, retval, 1); 614 } 615 616 if (retval > 0) { 617 unsigned int status; 618 619 if (unlikely(retval != map->m_len)) { 620 ext4_warning(inode->i_sb, 621 "ES len assertion failed for inode " 622 "%lu: retval %d != map->m_len %d", 623 inode->i_ino, retval, map->m_len); 624 WARN_ON(1); 625 } 626 627 /* 628 * If the extent has been zeroed out, we don't need to update 629 * extent status tree. 630 */ 631 if ((flags & EXT4_GET_BLOCKS_PRE_IO) && 632 ext4_es_lookup_extent(inode, map->m_lblk, &es)) { 633 if (ext4_es_is_written(&es)) 634 goto has_zeroout; 635 } 636 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 637 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 638 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) && 639 !(status & EXTENT_STATUS_WRITTEN) && 640 ext4_find_delalloc_range(inode, map->m_lblk, 641 map->m_lblk + map->m_len - 1)) 642 status |= EXTENT_STATUS_DELAYED; 643 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 644 map->m_pblk, status); 645 if (ret < 0) 646 retval = ret; 647 } 648 649has_zeroout: 650 up_write((&EXT4_I(inode)->i_data_sem)); 651 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) { 652 ret = check_block_validity(inode, map); 653 if (ret != 0) 654 return ret; 655 } 656 return retval; 657} 658 659/* 660 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages 661 * we have to be careful as someone else may be manipulating b_state as well. 662 */ 663static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags) 664{ 665 unsigned long old_state; 666 unsigned long new_state; 667 668 flags &= EXT4_MAP_FLAGS; 669 670 /* Dummy buffer_head? Set non-atomically. */ 671 if (!bh->b_page) { 672 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags; 673 return; 674 } 675 /* 676 * Someone else may be modifying b_state. Be careful! This is ugly but 677 * once we get rid of using bh as a container for mapping information 678 * to pass to / from get_block functions, this can go away. 679 */ 680 do { 681 old_state = READ_ONCE(bh->b_state); 682 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags; 683 } while (unlikely( 684 cmpxchg(&bh->b_state, old_state, new_state) != old_state)); 685} 686 687/* Maximum number of blocks we map for direct IO at once. */ 688#define DIO_MAX_BLOCKS 4096 689 690static int _ext4_get_block(struct inode *inode, sector_t iblock, 691 struct buffer_head *bh, int flags) 692{ 693 handle_t *handle = ext4_journal_current_handle(); 694 struct ext4_map_blocks map; 695 int ret = 0, started = 0; 696 int dio_credits; 697 698 if (ext4_has_inline_data(inode)) 699 return -ERANGE; 700 701 map.m_lblk = iblock; 702 map.m_len = bh->b_size >> inode->i_blkbits; 703 704 if (flags && !(flags & EXT4_GET_BLOCKS_NO_LOCK) && !handle) { 705 /* Direct IO write... */ 706 if (map.m_len > DIO_MAX_BLOCKS) 707 map.m_len = DIO_MAX_BLOCKS; 708 dio_credits = ext4_chunk_trans_blocks(inode, map.m_len); 709 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, 710 dio_credits); 711 if (IS_ERR(handle)) { 712 ret = PTR_ERR(handle); 713 return ret; 714 } 715 started = 1; 716 } 717 718 ret = ext4_map_blocks(handle, inode, &map, flags); 719 if (ret > 0) { 720 ext4_io_end_t *io_end = ext4_inode_aio(inode); 721 722 map_bh(bh, inode->i_sb, map.m_pblk); 723 ext4_update_bh_state(bh, map.m_flags); 724 if (IS_DAX(inode) && buffer_unwritten(bh)) { 725 /* 726 * dgc: I suspect unwritten conversion on ext4+DAX is 727 * fundamentally broken here when there are concurrent 728 * read/write in progress on this inode. 729 */ 730 WARN_ON_ONCE(io_end); 731 bh->b_assoc_map = inode->i_mapping; 732 bh->b_private = (void *)(unsigned long)iblock; 733 } 734 if (io_end && io_end->flag & EXT4_IO_END_UNWRITTEN) 735 set_buffer_defer_completion(bh); 736 bh->b_size = inode->i_sb->s_blocksize * map.m_len; 737 ret = 0; 738 } 739 if (started) 740 ext4_journal_stop(handle); 741 return ret; 742} 743 744int ext4_get_block(struct inode *inode, sector_t iblock, 745 struct buffer_head *bh, int create) 746{ 747 return _ext4_get_block(inode, iblock, bh, 748 create ? EXT4_GET_BLOCKS_CREATE : 0); 749} 750 751/* 752 * `handle' can be NULL if create is zero 753 */ 754struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode, 755 ext4_lblk_t block, int create) 756{ 757 struct ext4_map_blocks map; 758 struct buffer_head *bh; 759 int err; 760 761 J_ASSERT(handle != NULL || create == 0); 762 763 map.m_lblk = block; 764 map.m_len = 1; 765 err = ext4_map_blocks(handle, inode, &map, 766 create ? EXT4_GET_BLOCKS_CREATE : 0); 767 768 if (err == 0) 769 return create ? ERR_PTR(-ENOSPC) : NULL; 770 if (err < 0) 771 return ERR_PTR(err); 772 773 bh = sb_getblk(inode->i_sb, map.m_pblk); 774 if (unlikely(!bh)) 775 return ERR_PTR(-ENOMEM); 776 if (map.m_flags & EXT4_MAP_NEW) { 777 J_ASSERT(create != 0); 778 J_ASSERT(handle != NULL); 779 780 /* 781 * Now that we do not always journal data, we should 782 * keep in mind whether this should always journal the 783 * new buffer as metadata. For now, regular file 784 * writes use ext4_get_block instead, so it's not a 785 * problem. 786 */ 787 lock_buffer(bh); 788 BUFFER_TRACE(bh, "call get_create_access"); 789 err = ext4_journal_get_create_access(handle, bh); 790 if (unlikely(err)) { 791 unlock_buffer(bh); 792 goto errout; 793 } 794 if (!buffer_uptodate(bh)) { 795 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 796 set_buffer_uptodate(bh); 797 } 798 unlock_buffer(bh); 799 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 800 err = ext4_handle_dirty_metadata(handle, inode, bh); 801 if (unlikely(err)) 802 goto errout; 803 } else 804 BUFFER_TRACE(bh, "not a new buffer"); 805 return bh; 806errout: 807 brelse(bh); 808 return ERR_PTR(err); 809} 810 811struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode, 812 ext4_lblk_t block, int create) 813{ 814 struct buffer_head *bh; 815 816 bh = ext4_getblk(handle, inode, block, create); 817 if (IS_ERR(bh)) 818 return bh; 819 if (!bh || buffer_uptodate(bh)) 820 return bh; 821 ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh); 822 wait_on_buffer(bh); 823 if (buffer_uptodate(bh)) 824 return bh; 825 put_bh(bh); 826 return ERR_PTR(-EIO); 827} 828 829int ext4_walk_page_buffers(handle_t *handle, 830 struct buffer_head *head, 831 unsigned from, 832 unsigned to, 833 int *partial, 834 int (*fn)(handle_t *handle, 835 struct buffer_head *bh)) 836{ 837 struct buffer_head *bh; 838 unsigned block_start, block_end; 839 unsigned blocksize = head->b_size; 840 int err, ret = 0; 841 struct buffer_head *next; 842 843 for (bh = head, block_start = 0; 844 ret == 0 && (bh != head || !block_start); 845 block_start = block_end, bh = next) { 846 next = bh->b_this_page; 847 block_end = block_start + blocksize; 848 if (block_end <= from || block_start >= to) { 849 if (partial && !buffer_uptodate(bh)) 850 *partial = 1; 851 continue; 852 } 853 err = (*fn)(handle, bh); 854 if (!ret) 855 ret = err; 856 } 857 return ret; 858} 859 860/* 861 * To preserve ordering, it is essential that the hole instantiation and 862 * the data write be encapsulated in a single transaction. We cannot 863 * close off a transaction and start a new one between the ext4_get_block() 864 * and the commit_write(). So doing the jbd2_journal_start at the start of 865 * prepare_write() is the right place. 866 * 867 * Also, this function can nest inside ext4_writepage(). In that case, we 868 * *know* that ext4_writepage() has generated enough buffer credits to do the 869 * whole page. So we won't block on the journal in that case, which is good, 870 * because the caller may be PF_MEMALLOC. 871 * 872 * By accident, ext4 can be reentered when a transaction is open via 873 * quota file writes. If we were to commit the transaction while thus 874 * reentered, there can be a deadlock - we would be holding a quota 875 * lock, and the commit would never complete if another thread had a 876 * transaction open and was blocking on the quota lock - a ranking 877 * violation. 878 * 879 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start 880 * will _not_ run commit under these circumstances because handle->h_ref 881 * is elevated. We'll still have enough credits for the tiny quotafile 882 * write. 883 */ 884int do_journal_get_write_access(handle_t *handle, 885 struct buffer_head *bh) 886{ 887 int dirty = buffer_dirty(bh); 888 int ret; 889 890 if (!buffer_mapped(bh) || buffer_freed(bh)) 891 return 0; 892 /* 893 * __block_write_begin() could have dirtied some buffers. Clean 894 * the dirty bit as jbd2_journal_get_write_access() could complain 895 * otherwise about fs integrity issues. Setting of the dirty bit 896 * by __block_write_begin() isn't a real problem here as we clear 897 * the bit before releasing a page lock and thus writeback cannot 898 * ever write the buffer. 899 */ 900 if (dirty) 901 clear_buffer_dirty(bh); 902 BUFFER_TRACE(bh, "get write access"); 903 ret = ext4_journal_get_write_access(handle, bh); 904 if (!ret && dirty) 905 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 906 return ret; 907} 908 909static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 910 struct buffer_head *bh_result, int create); 911 912#ifdef CONFIG_EXT4_FS_ENCRYPTION 913static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len, 914 get_block_t *get_block) 915{ 916 unsigned from = pos & (PAGE_CACHE_SIZE - 1); 917 unsigned to = from + len; 918 struct inode *inode = page->mapping->host; 919 unsigned block_start, block_end; 920 sector_t block; 921 int err = 0; 922 unsigned blocksize = inode->i_sb->s_blocksize; 923 unsigned bbits; 924 struct buffer_head *bh, *head, *wait[2], **wait_bh = wait; 925 bool decrypt = false; 926 927 BUG_ON(!PageLocked(page)); 928 BUG_ON(from > PAGE_CACHE_SIZE); 929 BUG_ON(to > PAGE_CACHE_SIZE); 930 BUG_ON(from > to); 931 932 if (!page_has_buffers(page)) 933 create_empty_buffers(page, blocksize, 0); 934 head = page_buffers(page); 935 bbits = ilog2(blocksize); 936 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 937 938 for (bh = head, block_start = 0; bh != head || !block_start; 939 block++, block_start = block_end, bh = bh->b_this_page) { 940 block_end = block_start + blocksize; 941 if (block_end <= from || block_start >= to) { 942 if (PageUptodate(page)) { 943 if (!buffer_uptodate(bh)) 944 set_buffer_uptodate(bh); 945 } 946 continue; 947 } 948 if (buffer_new(bh)) 949 clear_buffer_new(bh); 950 if (!buffer_mapped(bh)) { 951 WARN_ON(bh->b_size != blocksize); 952 err = get_block(inode, block, bh, 1); 953 if (err) 954 break; 955 if (buffer_new(bh)) { 956 unmap_underlying_metadata(bh->b_bdev, 957 bh->b_blocknr); 958 if (PageUptodate(page)) { 959 clear_buffer_new(bh); 960 set_buffer_uptodate(bh); 961 mark_buffer_dirty(bh); 962 continue; 963 } 964 if (block_end > to || block_start < from) 965 zero_user_segments(page, to, block_end, 966 block_start, from); 967 continue; 968 } 969 } 970 if (PageUptodate(page)) { 971 if (!buffer_uptodate(bh)) 972 set_buffer_uptodate(bh); 973 continue; 974 } 975 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 976 !buffer_unwritten(bh) && 977 (block_start < from || block_end > to)) { 978 ll_rw_block(READ, 1, &bh); 979 *wait_bh++ = bh; 980 decrypt = ext4_encrypted_inode(inode) && 981 S_ISREG(inode->i_mode); 982 } 983 } 984 /* 985 * If we issued read requests, let them complete. 986 */ 987 while (wait_bh > wait) { 988 wait_on_buffer(*--wait_bh); 989 if (!buffer_uptodate(*wait_bh)) 990 err = -EIO; 991 } 992 if (unlikely(err)) 993 page_zero_new_buffers(page, from, to); 994 else if (decrypt) 995 err = ext4_decrypt_one(inode, page); 996 return err; 997} 998#endif 999 1000static int ext4_write_begin(struct file *file, struct address_space *mapping, 1001 loff_t pos, unsigned len, unsigned flags, 1002 struct page **pagep, void **fsdata) 1003{ 1004 struct inode *inode = mapping->host; 1005 int ret, needed_blocks; 1006 handle_t *handle; 1007 int retries = 0; 1008 struct page *page; 1009 pgoff_t index; 1010 unsigned from, to; 1011 1012 trace_ext4_write_begin(inode, pos, len, flags); 1013 /* 1014 * Reserve one block more for addition to orphan list in case 1015 * we allocate blocks but write fails for some reason 1016 */ 1017 needed_blocks = ext4_writepage_trans_blocks(inode) + 1; 1018 index = pos >> PAGE_CACHE_SHIFT; 1019 from = pos & (PAGE_CACHE_SIZE - 1); 1020 to = from + len; 1021 1022 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 1023 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len, 1024 flags, pagep); 1025 if (ret < 0) 1026 return ret; 1027 if (ret == 1) 1028 return 0; 1029 } 1030 1031 /* 1032 * grab_cache_page_write_begin() can take a long time if the 1033 * system is thrashing due to memory pressure, or if the page 1034 * is being written back. So grab it first before we start 1035 * the transaction handle. This also allows us to allocate 1036 * the page (if needed) without using GFP_NOFS. 1037 */ 1038retry_grab: 1039 page = grab_cache_page_write_begin(mapping, index, flags); 1040 if (!page) 1041 return -ENOMEM; 1042 unlock_page(page); 1043 1044retry_journal: 1045 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks); 1046 if (IS_ERR(handle)) { 1047 page_cache_release(page); 1048 return PTR_ERR(handle); 1049 } 1050 1051 lock_page(page); 1052 if (page->mapping != mapping) { 1053 /* The page got truncated from under us */ 1054 unlock_page(page); 1055 page_cache_release(page); 1056 ext4_journal_stop(handle); 1057 goto retry_grab; 1058 } 1059 /* In case writeback began while the page was unlocked */ 1060 wait_for_stable_page(page); 1061 1062#ifdef CONFIG_EXT4_FS_ENCRYPTION 1063 if (ext4_should_dioread_nolock(inode)) 1064 ret = ext4_block_write_begin(page, pos, len, 1065 ext4_get_block_write); 1066 else 1067 ret = ext4_block_write_begin(page, pos, len, 1068 ext4_get_block); 1069#else 1070 if (ext4_should_dioread_nolock(inode)) 1071 ret = __block_write_begin(page, pos, len, ext4_get_block_write); 1072 else 1073 ret = __block_write_begin(page, pos, len, ext4_get_block); 1074#endif 1075 if (!ret && ext4_should_journal_data(inode)) { 1076 ret = ext4_walk_page_buffers(handle, page_buffers(page), 1077 from, to, NULL, 1078 do_journal_get_write_access); 1079 } 1080 1081 if (ret) { 1082 unlock_page(page); 1083 /* 1084 * __block_write_begin may have instantiated a few blocks 1085 * outside i_size. Trim these off again. Don't need 1086 * i_size_read because we hold i_mutex. 1087 * 1088 * Add inode to orphan list in case we crash before 1089 * truncate finishes 1090 */ 1091 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1092 ext4_orphan_add(handle, inode); 1093 1094 ext4_journal_stop(handle); 1095 if (pos + len > inode->i_size) { 1096 ext4_truncate_failed_write(inode); 1097 /* 1098 * If truncate failed early the inode might 1099 * still be on the orphan list; we need to 1100 * make sure the inode is removed from the 1101 * orphan list in that case. 1102 */ 1103 if (inode->i_nlink) 1104 ext4_orphan_del(NULL, inode); 1105 } 1106 1107 if (ret == -ENOSPC && 1108 ext4_should_retry_alloc(inode->i_sb, &retries)) 1109 goto retry_journal; 1110 page_cache_release(page); 1111 return ret; 1112 } 1113 *pagep = page; 1114 return ret; 1115} 1116 1117/* For write_end() in data=journal mode */ 1118static int write_end_fn(handle_t *handle, struct buffer_head *bh) 1119{ 1120 int ret; 1121 if (!buffer_mapped(bh) || buffer_freed(bh)) 1122 return 0; 1123 set_buffer_uptodate(bh); 1124 ret = ext4_handle_dirty_metadata(handle, NULL, bh); 1125 clear_buffer_meta(bh); 1126 clear_buffer_prio(bh); 1127 return ret; 1128} 1129 1130/* 1131 * We need to pick up the new inode size which generic_commit_write gave us 1132 * `file' can be NULL - eg, when called from page_symlink(). 1133 * 1134 * ext4 never places buffers on inode->i_mapping->private_list. metadata 1135 * buffers are managed internally. 1136 */ 1137static int ext4_write_end(struct file *file, 1138 struct address_space *mapping, 1139 loff_t pos, unsigned len, unsigned copied, 1140 struct page *page, void *fsdata) 1141{ 1142 handle_t *handle = ext4_journal_current_handle(); 1143 struct inode *inode = mapping->host; 1144 loff_t old_size = inode->i_size; 1145 int ret = 0, ret2; 1146 int i_size_changed = 0; 1147 1148 trace_ext4_write_end(inode, pos, len, copied); 1149 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) { 1150 ret = ext4_jbd2_file_inode(handle, inode); 1151 if (ret) { 1152 unlock_page(page); 1153 page_cache_release(page); 1154 goto errout; 1155 } 1156 } 1157 1158 if (ext4_has_inline_data(inode)) { 1159 ret = ext4_write_inline_data_end(inode, pos, len, 1160 copied, page); 1161 if (ret < 0) 1162 goto errout; 1163 copied = ret; 1164 } else 1165 copied = block_write_end(file, mapping, pos, 1166 len, copied, page, fsdata); 1167 /* 1168 * it's important to update i_size while still holding page lock: 1169 * page writeout could otherwise come in and zero beyond i_size. 1170 */ 1171 i_size_changed = ext4_update_inode_size(inode, pos + copied); 1172 unlock_page(page); 1173 page_cache_release(page); 1174 1175 if (old_size < pos) 1176 pagecache_isize_extended(inode, old_size, pos); 1177 /* 1178 * Don't mark the inode dirty under page lock. First, it unnecessarily 1179 * makes the holding time of page lock longer. Second, it forces lock 1180 * ordering of page lock and transaction start for journaling 1181 * filesystems. 1182 */ 1183 if (i_size_changed) 1184 ext4_mark_inode_dirty(handle, inode); 1185 1186 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1187 /* if we have allocated more blocks and copied 1188 * less. We will have blocks allocated outside 1189 * inode->i_size. So truncate them 1190 */ 1191 ext4_orphan_add(handle, inode); 1192errout: 1193 ret2 = ext4_journal_stop(handle); 1194 if (!ret) 1195 ret = ret2; 1196 1197 if (pos + len > inode->i_size) { 1198 ext4_truncate_failed_write(inode); 1199 /* 1200 * If truncate failed early the inode might still be 1201 * on the orphan list; we need to make sure the inode 1202 * is removed from the orphan list in that case. 1203 */ 1204 if (inode->i_nlink) 1205 ext4_orphan_del(NULL, inode); 1206 } 1207 1208 return ret ? ret : copied; 1209} 1210 1211static int ext4_journalled_write_end(struct file *file, 1212 struct address_space *mapping, 1213 loff_t pos, unsigned len, unsigned copied, 1214 struct page *page, void *fsdata) 1215{ 1216 handle_t *handle = ext4_journal_current_handle(); 1217 struct inode *inode = mapping->host; 1218 loff_t old_size = inode->i_size; 1219 int ret = 0, ret2; 1220 int partial = 0; 1221 unsigned from, to; 1222 int size_changed = 0; 1223 1224 trace_ext4_journalled_write_end(inode, pos, len, copied); 1225 from = pos & (PAGE_CACHE_SIZE - 1); 1226 to = from + len; 1227 1228 BUG_ON(!ext4_handle_valid(handle)); 1229 1230 if (ext4_has_inline_data(inode)) 1231 copied = ext4_write_inline_data_end(inode, pos, len, 1232 copied, page); 1233 else { 1234 if (copied < len) { 1235 if (!PageUptodate(page)) 1236 copied = 0; 1237 page_zero_new_buffers(page, from+copied, to); 1238 } 1239 1240 ret = ext4_walk_page_buffers(handle, page_buffers(page), from, 1241 to, &partial, write_end_fn); 1242 if (!partial) 1243 SetPageUptodate(page); 1244 } 1245 size_changed = ext4_update_inode_size(inode, pos + copied); 1246 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1247 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1248 unlock_page(page); 1249 page_cache_release(page); 1250 1251 if (old_size < pos) 1252 pagecache_isize_extended(inode, old_size, pos); 1253 1254 if (size_changed) { 1255 ret2 = ext4_mark_inode_dirty(handle, inode); 1256 if (!ret) 1257 ret = ret2; 1258 } 1259 1260 if (pos + len > inode->i_size && ext4_can_truncate(inode)) 1261 /* if we have allocated more blocks and copied 1262 * less. We will have blocks allocated outside 1263 * inode->i_size. So truncate them 1264 */ 1265 ext4_orphan_add(handle, inode); 1266 1267 ret2 = ext4_journal_stop(handle); 1268 if (!ret) 1269 ret = ret2; 1270 if (pos + len > inode->i_size) { 1271 ext4_truncate_failed_write(inode); 1272 /* 1273 * If truncate failed early the inode might still be 1274 * on the orphan list; we need to make sure the inode 1275 * is removed from the orphan list in that case. 1276 */ 1277 if (inode->i_nlink) 1278 ext4_orphan_del(NULL, inode); 1279 } 1280 1281 return ret ? ret : copied; 1282} 1283 1284/* 1285 * Reserve a single cluster located at lblock 1286 */ 1287static int ext4_da_reserve_space(struct inode *inode, ext4_lblk_t lblock) 1288{ 1289 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1290 struct ext4_inode_info *ei = EXT4_I(inode); 1291 unsigned int md_needed; 1292 int ret; 1293 1294 /* 1295 * We will charge metadata quota at writeout time; this saves 1296 * us from metadata over-estimation, though we may go over by 1297 * a small amount in the end. Here we just reserve for data. 1298 */ 1299 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1)); 1300 if (ret) 1301 return ret; 1302 1303 /* 1304 * recalculate the amount of metadata blocks to reserve 1305 * in order to allocate nrblocks 1306 * worse case is one extent per block 1307 */ 1308 spin_lock(&ei->i_block_reservation_lock); 1309 /* 1310 * ext4_calc_metadata_amount() has side effects, which we have 1311 * to be prepared undo if we fail to claim space. 1312 */ 1313 md_needed = 0; 1314 trace_ext4_da_reserve_space(inode, 0); 1315 1316 if (ext4_claim_free_clusters(sbi, 1, 0)) { 1317 spin_unlock(&ei->i_block_reservation_lock); 1318 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1)); 1319 return -ENOSPC; 1320 } 1321 ei->i_reserved_data_blocks++; 1322 spin_unlock(&ei->i_block_reservation_lock); 1323 1324 return 0; /* success */ 1325} 1326 1327static void ext4_da_release_space(struct inode *inode, int to_free) 1328{ 1329 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1330 struct ext4_inode_info *ei = EXT4_I(inode); 1331 1332 if (!to_free) 1333 return; /* Nothing to release, exit */ 1334 1335 spin_lock(&EXT4_I(inode)->i_block_reservation_lock); 1336 1337 trace_ext4_da_release_space(inode, to_free); 1338 if (unlikely(to_free > ei->i_reserved_data_blocks)) { 1339 /* 1340 * if there aren't enough reserved blocks, then the 1341 * counter is messed up somewhere. Since this 1342 * function is called from invalidate page, it's 1343 * harmless to return without any action. 1344 */ 1345 ext4_warning(inode->i_sb, "ext4_da_release_space: " 1346 "ino %lu, to_free %d with only %d reserved " 1347 "data blocks", inode->i_ino, to_free, 1348 ei->i_reserved_data_blocks); 1349 WARN_ON(1); 1350 to_free = ei->i_reserved_data_blocks; 1351 } 1352 ei->i_reserved_data_blocks -= to_free; 1353 1354 /* update fs dirty data blocks counter */ 1355 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free); 1356 1357 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock); 1358 1359 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free)); 1360} 1361 1362static void ext4_da_page_release_reservation(struct page *page, 1363 unsigned int offset, 1364 unsigned int length) 1365{ 1366 int to_release = 0, contiguous_blks = 0; 1367 struct buffer_head *head, *bh; 1368 unsigned int curr_off = 0; 1369 struct inode *inode = page->mapping->host; 1370 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1371 unsigned int stop = offset + length; 1372 int num_clusters; 1373 ext4_fsblk_t lblk; 1374 1375 BUG_ON(stop > PAGE_CACHE_SIZE || stop < length); 1376 1377 head = page_buffers(page); 1378 bh = head; 1379 do { 1380 unsigned int next_off = curr_off + bh->b_size; 1381 1382 if (next_off > stop) 1383 break; 1384 1385 if ((offset <= curr_off) && (buffer_delay(bh))) { 1386 to_release++; 1387 contiguous_blks++; 1388 clear_buffer_delay(bh); 1389 } else if (contiguous_blks) { 1390 lblk = page->index << 1391 (PAGE_CACHE_SHIFT - inode->i_blkbits); 1392 lblk += (curr_off >> inode->i_blkbits) - 1393 contiguous_blks; 1394 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1395 contiguous_blks = 0; 1396 } 1397 curr_off = next_off; 1398 } while ((bh = bh->b_this_page) != head); 1399 1400 if (contiguous_blks) { 1401 lblk = page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1402 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks; 1403 ext4_es_remove_extent(inode, lblk, contiguous_blks); 1404 } 1405 1406 /* If we have released all the blocks belonging to a cluster, then we 1407 * need to release the reserved space for that cluster. */ 1408 num_clusters = EXT4_NUM_B2C(sbi, to_release); 1409 while (num_clusters > 0) { 1410 lblk = (page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits)) + 1411 ((num_clusters - 1) << sbi->s_cluster_bits); 1412 if (sbi->s_cluster_ratio == 1 || 1413 !ext4_find_delalloc_cluster(inode, lblk)) 1414 ext4_da_release_space(inode, 1); 1415 1416 num_clusters--; 1417 } 1418} 1419 1420/* 1421 * Delayed allocation stuff 1422 */ 1423 1424struct mpage_da_data { 1425 struct inode *inode; 1426 struct writeback_control *wbc; 1427 1428 pgoff_t first_page; /* The first page to write */ 1429 pgoff_t next_page; /* Current page to examine */ 1430 pgoff_t last_page; /* Last page to examine */ 1431 /* 1432 * Extent to map - this can be after first_page because that can be 1433 * fully mapped. We somewhat abuse m_flags to store whether the extent 1434 * is delalloc or unwritten. 1435 */ 1436 struct ext4_map_blocks map; 1437 struct ext4_io_submit io_submit; /* IO submission data */ 1438}; 1439 1440static void mpage_release_unused_pages(struct mpage_da_data *mpd, 1441 bool invalidate) 1442{ 1443 int nr_pages, i; 1444 pgoff_t index, end; 1445 struct pagevec pvec; 1446 struct inode *inode = mpd->inode; 1447 struct address_space *mapping = inode->i_mapping; 1448 1449 /* This is necessary when next_page == 0. */ 1450 if (mpd->first_page >= mpd->next_page) 1451 return; 1452 1453 index = mpd->first_page; 1454 end = mpd->next_page - 1; 1455 if (invalidate) { 1456 ext4_lblk_t start, last; 1457 start = index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1458 last = end << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1459 ext4_es_remove_extent(inode, start, last - start + 1); 1460 } 1461 1462 pagevec_init(&pvec, 0); 1463 while (index <= end) { 1464 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE); 1465 if (nr_pages == 0) 1466 break; 1467 for (i = 0; i < nr_pages; i++) { 1468 struct page *page = pvec.pages[i]; 1469 if (page->index > end) 1470 break; 1471 BUG_ON(!PageLocked(page)); 1472 BUG_ON(PageWriteback(page)); 1473 if (invalidate) { 1474 block_invalidatepage(page, 0, PAGE_CACHE_SIZE); 1475 ClearPageUptodate(page); 1476 } 1477 unlock_page(page); 1478 } 1479 index = pvec.pages[nr_pages - 1]->index + 1; 1480 pagevec_release(&pvec); 1481 } 1482} 1483 1484static void ext4_print_free_blocks(struct inode *inode) 1485{ 1486 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 1487 struct super_block *sb = inode->i_sb; 1488 struct ext4_inode_info *ei = EXT4_I(inode); 1489 1490 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld", 1491 EXT4_C2B(EXT4_SB(inode->i_sb), 1492 ext4_count_free_clusters(sb))); 1493 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details"); 1494 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld", 1495 (long long) EXT4_C2B(EXT4_SB(sb), 1496 percpu_counter_sum(&sbi->s_freeclusters_counter))); 1497 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld", 1498 (long long) EXT4_C2B(EXT4_SB(sb), 1499 percpu_counter_sum(&sbi->s_dirtyclusters_counter))); 1500 ext4_msg(sb, KERN_CRIT, "Block reservation details"); 1501 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u", 1502 ei->i_reserved_data_blocks); 1503 return; 1504} 1505 1506static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh) 1507{ 1508 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh); 1509} 1510 1511/* 1512 * This function is grabs code from the very beginning of 1513 * ext4_map_blocks, but assumes that the caller is from delayed write 1514 * time. This function looks up the requested blocks and sets the 1515 * buffer delay bit under the protection of i_data_sem. 1516 */ 1517static int ext4_da_map_blocks(struct inode *inode, sector_t iblock, 1518 struct ext4_map_blocks *map, 1519 struct buffer_head *bh) 1520{ 1521 struct extent_status es; 1522 int retval; 1523 sector_t invalid_block = ~((sector_t) 0xffff); 1524#ifdef ES_AGGRESSIVE_TEST 1525 struct ext4_map_blocks orig_map; 1526 1527 memcpy(&orig_map, map, sizeof(*map)); 1528#endif 1529 1530 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es)) 1531 invalid_block = ~0; 1532 1533 map->m_flags = 0; 1534 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u," 1535 "logical block %lu\n", inode->i_ino, map->m_len, 1536 (unsigned long) map->m_lblk); 1537 1538 /* Lookup extent status tree firstly */ 1539 if (ext4_es_lookup_extent(inode, iblock, &es)) { 1540 if (ext4_es_is_hole(&es)) { 1541 retval = 0; 1542 down_read(&EXT4_I(inode)->i_data_sem); 1543 goto add_delayed; 1544 } 1545 1546 /* 1547 * Delayed extent could be allocated by fallocate. 1548 * So we need to check it. 1549 */ 1550 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) { 1551 map_bh(bh, inode->i_sb, invalid_block); 1552 set_buffer_new(bh); 1553 set_buffer_delay(bh); 1554 return 0; 1555 } 1556 1557 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk; 1558 retval = es.es_len - (iblock - es.es_lblk); 1559 if (retval > map->m_len) 1560 retval = map->m_len; 1561 map->m_len = retval; 1562 if (ext4_es_is_written(&es)) 1563 map->m_flags |= EXT4_MAP_MAPPED; 1564 else if (ext4_es_is_unwritten(&es)) 1565 map->m_flags |= EXT4_MAP_UNWRITTEN; 1566 else 1567 BUG_ON(1); 1568 1569#ifdef ES_AGGRESSIVE_TEST 1570 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0); 1571#endif 1572 return retval; 1573 } 1574 1575 /* 1576 * Try to see if we can get the block without requesting a new 1577 * file system block. 1578 */ 1579 down_read(&EXT4_I(inode)->i_data_sem); 1580 if (ext4_has_inline_data(inode)) 1581 retval = 0; 1582 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 1583 retval = ext4_ext_map_blocks(NULL, inode, map, 0); 1584 else 1585 retval = ext4_ind_map_blocks(NULL, inode, map, 0); 1586 1587add_delayed: 1588 if (retval == 0) { 1589 int ret; 1590 /* 1591 * XXX: __block_prepare_write() unmaps passed block, 1592 * is it OK? 1593 */ 1594 /* 1595 * If the block was allocated from previously allocated cluster, 1596 * then we don't need to reserve it again. However we still need 1597 * to reserve metadata for every block we're going to write. 1598 */ 1599 if (EXT4_SB(inode->i_sb)->s_cluster_ratio <= 1 || 1600 !ext4_find_delalloc_cluster(inode, map->m_lblk)) { 1601 ret = ext4_da_reserve_space(inode, iblock); 1602 if (ret) { 1603 /* not enough space to reserve */ 1604 retval = ret; 1605 goto out_unlock; 1606 } 1607 } 1608 1609 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1610 ~0, EXTENT_STATUS_DELAYED); 1611 if (ret) { 1612 retval = ret; 1613 goto out_unlock; 1614 } 1615 1616 map_bh(bh, inode->i_sb, invalid_block); 1617 set_buffer_new(bh); 1618 set_buffer_delay(bh); 1619 } else if (retval > 0) { 1620 int ret; 1621 unsigned int status; 1622 1623 if (unlikely(retval != map->m_len)) { 1624 ext4_warning(inode->i_sb, 1625 "ES len assertion failed for inode " 1626 "%lu: retval %d != map->m_len %d", 1627 inode->i_ino, retval, map->m_len); 1628 WARN_ON(1); 1629 } 1630 1631 status = map->m_flags & EXT4_MAP_UNWRITTEN ? 1632 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN; 1633 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len, 1634 map->m_pblk, status); 1635 if (ret != 0) 1636 retval = ret; 1637 } 1638 1639out_unlock: 1640 up_read((&EXT4_I(inode)->i_data_sem)); 1641 1642 return retval; 1643} 1644 1645/* 1646 * This is a special get_block_t callback which is used by 1647 * ext4_da_write_begin(). It will either return mapped block or 1648 * reserve space for a single block. 1649 * 1650 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set. 1651 * We also have b_blocknr = -1 and b_bdev initialized properly 1652 * 1653 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set. 1654 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev 1655 * initialized properly. 1656 */ 1657int ext4_da_get_block_prep(struct inode *inode, sector_t iblock, 1658 struct buffer_head *bh, int create) 1659{ 1660 struct ext4_map_blocks map; 1661 int ret = 0; 1662 1663 BUG_ON(create == 0); 1664 BUG_ON(bh->b_size != inode->i_sb->s_blocksize); 1665 1666 map.m_lblk = iblock; 1667 map.m_len = 1; 1668 1669 /* 1670 * first, we need to know whether the block is allocated already 1671 * preallocated blocks are unmapped but should treated 1672 * the same as allocated blocks. 1673 */ 1674 ret = ext4_da_map_blocks(inode, iblock, &map, bh); 1675 if (ret <= 0) 1676 return ret; 1677 1678 map_bh(bh, inode->i_sb, map.m_pblk); 1679 ext4_update_bh_state(bh, map.m_flags); 1680 1681 if (buffer_unwritten(bh)) { 1682 /* A delayed write to unwritten bh should be marked 1683 * new and mapped. Mapped ensures that we don't do 1684 * get_block multiple times when we write to the same 1685 * offset and new ensures that we do proper zero out 1686 * for partial write. 1687 */ 1688 set_buffer_new(bh); 1689 set_buffer_mapped(bh); 1690 } 1691 return 0; 1692} 1693 1694static int bget_one(handle_t *handle, struct buffer_head *bh) 1695{ 1696 get_bh(bh); 1697 return 0; 1698} 1699 1700static int bput_one(handle_t *handle, struct buffer_head *bh) 1701{ 1702 put_bh(bh); 1703 return 0; 1704} 1705 1706static int __ext4_journalled_writepage(struct page *page, 1707 unsigned int len) 1708{ 1709 struct address_space *mapping = page->mapping; 1710 struct inode *inode = mapping->host; 1711 struct buffer_head *page_bufs = NULL; 1712 handle_t *handle = NULL; 1713 int ret = 0, err = 0; 1714 int inline_data = ext4_has_inline_data(inode); 1715 struct buffer_head *inode_bh = NULL; 1716 1717 ClearPageChecked(page); 1718 1719 if (inline_data) { 1720 BUG_ON(page->index != 0); 1721 BUG_ON(len > ext4_get_max_inline_size(inode)); 1722 inode_bh = ext4_journalled_write_inline_data(inode, len, page); 1723 if (inode_bh == NULL) 1724 goto out; 1725 } else { 1726 page_bufs = page_buffers(page); 1727 if (!page_bufs) { 1728 BUG(); 1729 goto out; 1730 } 1731 ext4_walk_page_buffers(handle, page_bufs, 0, len, 1732 NULL, bget_one); 1733 } 1734 /* 1735 * We need to release the page lock before we start the 1736 * journal, so grab a reference so the page won't disappear 1737 * out from under us. 1738 */ 1739 get_page(page); 1740 unlock_page(page); 1741 1742 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 1743 ext4_writepage_trans_blocks(inode)); 1744 if (IS_ERR(handle)) { 1745 ret = PTR_ERR(handle); 1746 put_page(page); 1747 goto out_no_pagelock; 1748 } 1749 BUG_ON(!ext4_handle_valid(handle)); 1750 1751 lock_page(page); 1752 put_page(page); 1753 if (page->mapping != mapping) { 1754 /* The page got truncated from under us */ 1755 ext4_journal_stop(handle); 1756 ret = 0; 1757 goto out; 1758 } 1759 1760 if (inline_data) { 1761 BUFFER_TRACE(inode_bh, "get write access"); 1762 ret = ext4_journal_get_write_access(handle, inode_bh); 1763 1764 err = ext4_handle_dirty_metadata(handle, inode, inode_bh); 1765 1766 } else { 1767 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1768 do_journal_get_write_access); 1769 1770 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL, 1771 write_end_fn); 1772 } 1773 if (ret == 0) 1774 ret = err; 1775 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid; 1776 err = ext4_journal_stop(handle); 1777 if (!ret) 1778 ret = err; 1779 1780 if (!ext4_has_inline_data(inode)) 1781 ext4_walk_page_buffers(NULL, page_bufs, 0, len, 1782 NULL, bput_one); 1783 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 1784out: 1785 unlock_page(page); 1786out_no_pagelock: 1787 brelse(inode_bh); 1788 return ret; 1789} 1790 1791/* 1792 * Note that we don't need to start a transaction unless we're journaling data 1793 * because we should have holes filled from ext4_page_mkwrite(). We even don't 1794 * need to file the inode to the transaction's list in ordered mode because if 1795 * we are writing back data added by write(), the inode is already there and if 1796 * we are writing back data modified via mmap(), no one guarantees in which 1797 * transaction the data will hit the disk. In case we are journaling data, we 1798 * cannot start transaction directly because transaction start ranks above page 1799 * lock so we have to do some magic. 1800 * 1801 * This function can get called via... 1802 * - ext4_writepages after taking page lock (have journal handle) 1803 * - journal_submit_inode_data_buffers (no journal handle) 1804 * - shrink_page_list via the kswapd/direct reclaim (no journal handle) 1805 * - grab_page_cache when doing write_begin (have journal handle) 1806 * 1807 * We don't do any block allocation in this function. If we have page with 1808 * multiple blocks we need to write those buffer_heads that are mapped. This 1809 * is important for mmaped based write. So if we do with blocksize 1K 1810 * truncate(f, 1024); 1811 * a = mmap(f, 0, 4096); 1812 * a[0] = 'a'; 1813 * truncate(f, 4096); 1814 * we have in the page first buffer_head mapped via page_mkwrite call back 1815 * but other buffer_heads would be unmapped but dirty (dirty done via the 1816 * do_wp_page). So writepage should write the first block. If we modify 1817 * the mmap area beyond 1024 we will again get a page_fault and the 1818 * page_mkwrite callback will do the block allocation and mark the 1819 * buffer_heads mapped. 1820 * 1821 * We redirty the page if we have any buffer_heads that is either delay or 1822 * unwritten in the page. 1823 * 1824 * We can get recursively called as show below. 1825 * 1826 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() -> 1827 * ext4_writepage() 1828 * 1829 * But since we don't do any block allocation we should not deadlock. 1830 * Page also have the dirty flag cleared so we don't get recurive page_lock. 1831 */ 1832static int ext4_writepage(struct page *page, 1833 struct writeback_control *wbc) 1834{ 1835 int ret = 0; 1836 loff_t size; 1837 unsigned int len; 1838 struct buffer_head *page_bufs = NULL; 1839 struct inode *inode = page->mapping->host; 1840 struct ext4_io_submit io_submit; 1841 bool keep_towrite = false; 1842 1843 trace_ext4_writepage(page); 1844 size = i_size_read(inode); 1845 if (page->index == size >> PAGE_CACHE_SHIFT) 1846 len = size & ~PAGE_CACHE_MASK; 1847 else 1848 len = PAGE_CACHE_SIZE; 1849 1850 page_bufs = page_buffers(page); 1851 /* 1852 * We cannot do block allocation or other extent handling in this 1853 * function. If there are buffers needing that, we have to redirty 1854 * the page. But we may reach here when we do a journal commit via 1855 * journal_submit_inode_data_buffers() and in that case we must write 1856 * allocated buffers to achieve data=ordered mode guarantees. 1857 */ 1858 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL, 1859 ext4_bh_delay_or_unwritten)) { 1860 redirty_page_for_writepage(wbc, page); 1861 if (current->flags & PF_MEMALLOC) { 1862 /* 1863 * For memory cleaning there's no point in writing only 1864 * some buffers. So just bail out. Warn if we came here 1865 * from direct reclaim. 1866 */ 1867 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) 1868 == PF_MEMALLOC); 1869 unlock_page(page); 1870 return 0; 1871 } 1872 keep_towrite = true; 1873 } 1874 1875 if (PageChecked(page) && ext4_should_journal_data(inode)) 1876 /* 1877 * It's mmapped pagecache. Add buffers and journal it. There 1878 * doesn't seem much point in redirtying the page here. 1879 */ 1880 return __ext4_journalled_writepage(page, len); 1881 1882 ext4_io_submit_init(&io_submit, wbc); 1883 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS); 1884 if (!io_submit.io_end) { 1885 redirty_page_for_writepage(wbc, page); 1886 unlock_page(page); 1887 return -ENOMEM; 1888 } 1889 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite); 1890 ext4_io_submit(&io_submit); 1891 /* Drop io_end reference we got from init */ 1892 ext4_put_io_end_defer(io_submit.io_end); 1893 return ret; 1894} 1895 1896static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page) 1897{ 1898 int len; 1899 loff_t size = i_size_read(mpd->inode); 1900 int err; 1901 1902 BUG_ON(page->index != mpd->first_page); 1903 if (page->index == size >> PAGE_CACHE_SHIFT) 1904 len = size & ~PAGE_CACHE_MASK; 1905 else 1906 len = PAGE_CACHE_SIZE; 1907 clear_page_dirty_for_io(page); 1908 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false); 1909 if (!err) 1910 mpd->wbc->nr_to_write--; 1911 mpd->first_page++; 1912 1913 return err; 1914} 1915 1916#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay)) 1917 1918/* 1919 * mballoc gives us at most this number of blocks... 1920 * XXX: That seems to be only a limitation of ext4_mb_normalize_request(). 1921 * The rest of mballoc seems to handle chunks up to full group size. 1922 */ 1923#define MAX_WRITEPAGES_EXTENT_LEN 2048 1924 1925/* 1926 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map 1927 * 1928 * @mpd - extent of blocks 1929 * @lblk - logical number of the block in the file 1930 * @bh - buffer head we want to add to the extent 1931 * 1932 * The function is used to collect contig. blocks in the same state. If the 1933 * buffer doesn't require mapping for writeback and we haven't started the 1934 * extent of buffers to map yet, the function returns 'true' immediately - the 1935 * caller can write the buffer right away. Otherwise the function returns true 1936 * if the block has been added to the extent, false if the block couldn't be 1937 * added. 1938 */ 1939static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk, 1940 struct buffer_head *bh) 1941{ 1942 struct ext4_map_blocks *map = &mpd->map; 1943 1944 /* Buffer that doesn't need mapping for writeback? */ 1945 if (!buffer_dirty(bh) || !buffer_mapped(bh) || 1946 (!buffer_delay(bh) && !buffer_unwritten(bh))) { 1947 /* So far no extent to map => we write the buffer right away */ 1948 if (map->m_len == 0) 1949 return true; 1950 return false; 1951 } 1952 1953 /* First block in the extent? */ 1954 if (map->m_len == 0) { 1955 map->m_lblk = lblk; 1956 map->m_len = 1; 1957 map->m_flags = bh->b_state & BH_FLAGS; 1958 return true; 1959 } 1960 1961 /* Don't go larger than mballoc is willing to allocate */ 1962 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN) 1963 return false; 1964 1965 /* Can we merge the block to our big extent? */ 1966 if (lblk == map->m_lblk + map->m_len && 1967 (bh->b_state & BH_FLAGS) == map->m_flags) { 1968 map->m_len++; 1969 return true; 1970 } 1971 return false; 1972} 1973 1974/* 1975 * mpage_process_page_bufs - submit page buffers for IO or add them to extent 1976 * 1977 * @mpd - extent of blocks for mapping 1978 * @head - the first buffer in the page 1979 * @bh - buffer we should start processing from 1980 * @lblk - logical number of the block in the file corresponding to @bh 1981 * 1982 * Walk through page buffers from @bh upto @head (exclusive) and either submit 1983 * the page for IO if all buffers in this page were mapped and there's no 1984 * accumulated extent of buffers to map or add buffers in the page to the 1985 * extent of buffers to map. The function returns 1 if the caller can continue 1986 * by processing the next page, 0 if it should stop adding buffers to the 1987 * extent to map because we cannot extend it anymore. It can also return value 1988 * < 0 in case of error during IO submission. 1989 */ 1990static int mpage_process_page_bufs(struct mpage_da_data *mpd, 1991 struct buffer_head *head, 1992 struct buffer_head *bh, 1993 ext4_lblk_t lblk) 1994{ 1995 struct inode *inode = mpd->inode; 1996 int err; 1997 ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1) 1998 >> inode->i_blkbits; 1999 2000 do { 2001 BUG_ON(buffer_locked(bh)); 2002 2003 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) { 2004 /* Found extent to map? */ 2005 if (mpd->map.m_len) 2006 return 0; 2007 /* Everything mapped so far and we hit EOF */ 2008 break; 2009 } 2010 } while (lblk++, (bh = bh->b_this_page) != head); 2011 /* So far everything mapped? Submit the page for IO. */ 2012 if (mpd->map.m_len == 0) { 2013 err = mpage_submit_page(mpd, head->b_page); 2014 if (err < 0) 2015 return err; 2016 } 2017 return lblk < blocks; 2018} 2019 2020/* 2021 * mpage_map_buffers - update buffers corresponding to changed extent and 2022 * submit fully mapped pages for IO 2023 * 2024 * @mpd - description of extent to map, on return next extent to map 2025 * 2026 * Scan buffers corresponding to changed extent (we expect corresponding pages 2027 * to be already locked) and update buffer state according to new extent state. 2028 * We map delalloc buffers to their physical location, clear unwritten bits, 2029 * and mark buffers as uninit when we perform writes to unwritten extents 2030 * and do extent conversion after IO is finished. If the last page is not fully 2031 * mapped, we update @map to the next extent in the last page that needs 2032 * mapping. Otherwise we submit the page for IO. 2033 */ 2034static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd) 2035{ 2036 struct pagevec pvec; 2037 int nr_pages, i; 2038 struct inode *inode = mpd->inode; 2039 struct buffer_head *head, *bh; 2040 int bpp_bits = PAGE_CACHE_SHIFT - inode->i_blkbits; 2041 pgoff_t start, end; 2042 ext4_lblk_t lblk; 2043 sector_t pblock; 2044 int err; 2045 2046 start = mpd->map.m_lblk >> bpp_bits; 2047 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits; 2048 lblk = start << bpp_bits; 2049 pblock = mpd->map.m_pblk; 2050 2051 pagevec_init(&pvec, 0); 2052 while (start <= end) { 2053 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start, 2054 PAGEVEC_SIZE); 2055 if (nr_pages == 0) 2056 break; 2057 for (i = 0; i < nr_pages; i++) { 2058 struct page *page = pvec.pages[i]; 2059 2060 if (page->index > end) 2061 break; 2062 /* Up to 'end' pages must be contiguous */ 2063 BUG_ON(page->index != start); 2064 bh = head = page_buffers(page); 2065 do { 2066 if (lblk < mpd->map.m_lblk) 2067 continue; 2068 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) { 2069 /* 2070 * Buffer after end of mapped extent. 2071 * Find next buffer in the page to map. 2072 */ 2073 mpd->map.m_len = 0; 2074 mpd->map.m_flags = 0; 2075 /* 2076 * FIXME: If dioread_nolock supports 2077 * blocksize < pagesize, we need to make 2078 * sure we add size mapped so far to 2079 * io_end->size as the following call 2080 * can submit the page for IO. 2081 */ 2082 err = mpage_process_page_bufs(mpd, head, 2083 bh, lblk); 2084 pagevec_release(&pvec); 2085 if (err > 0) 2086 err = 0; 2087 return err; 2088 } 2089 if (buffer_delay(bh)) { 2090 clear_buffer_delay(bh); 2091 bh->b_blocknr = pblock++; 2092 } 2093 clear_buffer_unwritten(bh); 2094 } while (lblk++, (bh = bh->b_this_page) != head); 2095 2096 /* 2097 * FIXME: This is going to break if dioread_nolock 2098 * supports blocksize < pagesize as we will try to 2099 * convert potentially unmapped parts of inode. 2100 */ 2101 mpd->io_submit.io_end->size += PAGE_CACHE_SIZE; 2102 /* Page fully mapped - let IO run! */ 2103 err = mpage_submit_page(mpd, page); 2104 if (err < 0) { 2105 pagevec_release(&pvec); 2106 return err; 2107 } 2108 start++; 2109 } 2110 pagevec_release(&pvec); 2111 } 2112 /* Extent fully mapped and matches with page boundary. We are done. */ 2113 mpd->map.m_len = 0; 2114 mpd->map.m_flags = 0; 2115 return 0; 2116} 2117 2118static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd) 2119{ 2120 struct inode *inode = mpd->inode; 2121 struct ext4_map_blocks *map = &mpd->map; 2122 int get_blocks_flags; 2123 int err, dioread_nolock; 2124 2125 trace_ext4_da_write_pages_extent(inode, map); 2126 /* 2127 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or 2128 * to convert an unwritten extent to be initialized (in the case 2129 * where we have written into one or more preallocated blocks). It is 2130 * possible that we're going to need more metadata blocks than 2131 * previously reserved. However we must not fail because we're in 2132 * writeback and there is nothing we can do about it so it might result 2133 * in data loss. So use reserved blocks to allocate metadata if 2134 * possible. 2135 * 2136 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if 2137 * the blocks in question are delalloc blocks. This indicates 2138 * that the blocks and quotas has already been checked when 2139 * the data was copied into the page cache. 2140 */ 2141 get_blocks_flags = EXT4_GET_BLOCKS_CREATE | 2142 EXT4_GET_BLOCKS_METADATA_NOFAIL; 2143 dioread_nolock = ext4_should_dioread_nolock(inode); 2144 if (dioread_nolock) 2145 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT; 2146 if (map->m_flags & (1 << BH_Delay)) 2147 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE; 2148 2149 err = ext4_map_blocks(handle, inode, map, get_blocks_flags); 2150 if (err < 0) 2151 return err; 2152 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) { 2153 if (!mpd->io_submit.io_end->handle && 2154 ext4_handle_valid(handle)) { 2155 mpd->io_submit.io_end->handle = handle->h_rsv_handle; 2156 handle->h_rsv_handle = NULL; 2157 } 2158 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end); 2159 } 2160 2161 BUG_ON(map->m_len == 0); 2162 if (map->m_flags & EXT4_MAP_NEW) { 2163 struct block_device *bdev = inode->i_sb->s_bdev; 2164 int i; 2165 2166 for (i = 0; i < map->m_len; i++) 2167 unmap_underlying_metadata(bdev, map->m_pblk + i); 2168 } 2169 return 0; 2170} 2171 2172/* 2173 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length 2174 * mpd->len and submit pages underlying it for IO 2175 * 2176 * @handle - handle for journal operations 2177 * @mpd - extent to map 2178 * @give_up_on_write - we set this to true iff there is a fatal error and there 2179 * is no hope of writing the data. The caller should discard 2180 * dirty pages to avoid infinite loops. 2181 * 2182 * The function maps extent starting at mpd->lblk of length mpd->len. If it is 2183 * delayed, blocks are allocated, if it is unwritten, we may need to convert 2184 * them to initialized or split the described range from larger unwritten 2185 * extent. Note that we need not map all the described range since allocation 2186 * can return less blocks or the range is covered by more unwritten extents. We 2187 * cannot map more because we are limited by reserved transaction credits. On 2188 * the other hand we always make sure that the last touched page is fully 2189 * mapped so that it can be written out (and thus forward progress is 2190 * guaranteed). After mapping we submit all mapped pages for IO. 2191 */ 2192static int mpage_map_and_submit_extent(handle_t *handle, 2193 struct mpage_da_data *mpd, 2194 bool *give_up_on_write) 2195{ 2196 struct inode *inode = mpd->inode; 2197 struct ext4_map_blocks *map = &mpd->map; 2198 int err; 2199 loff_t disksize; 2200 int progress = 0; 2201 2202 mpd->io_submit.io_end->offset = 2203 ((loff_t)map->m_lblk) << inode->i_blkbits; 2204 do { 2205 err = mpage_map_one_extent(handle, mpd); 2206 if (err < 0) { 2207 struct super_block *sb = inode->i_sb; 2208 2209 if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED) 2210 goto invalidate_dirty_pages; 2211 /* 2212 * Let the uper layers retry transient errors. 2213 * In the case of ENOSPC, if ext4_count_free_blocks() 2214 * is non-zero, a commit should free up blocks. 2215 */ 2216 if ((err == -ENOMEM) || 2217 (err == -ENOSPC && ext4_count_free_clusters(sb))) { 2218 if (progress) 2219 goto update_disksize; 2220 return err; 2221 } 2222 ext4_msg(sb, KERN_CRIT, 2223 "Delayed block allocation failed for " 2224 "inode %lu at logical offset %llu with" 2225 " max blocks %u with error %d", 2226 inode->i_ino, 2227 (unsigned long long)map->m_lblk, 2228 (unsigned)map->m_len, -err); 2229 ext4_msg(sb, KERN_CRIT, 2230 "This should not happen!! Data will " 2231 "be lost\n"); 2232 if (err == -ENOSPC) 2233 ext4_print_free_blocks(inode); 2234 invalidate_dirty_pages: 2235 *give_up_on_write = true; 2236 return err; 2237 } 2238 progress = 1; 2239 /* 2240 * Update buffer state, submit mapped pages, and get us new 2241 * extent to map 2242 */ 2243 err = mpage_map_and_submit_buffers(mpd); 2244 if (err < 0) 2245 goto update_disksize; 2246 } while (map->m_len); 2247 2248update_disksize: 2249 /* 2250 * Update on-disk size after IO is submitted. Races with 2251 * truncate are avoided by checking i_size under i_data_sem. 2252 */ 2253 disksize = ((loff_t)mpd->first_page) << PAGE_CACHE_SHIFT; 2254 if (disksize > EXT4_I(inode)->i_disksize) { 2255 int err2; 2256 loff_t i_size; 2257 2258 down_write(&EXT4_I(inode)->i_data_sem); 2259 i_size = i_size_read(inode); 2260 if (disksize > i_size) 2261 disksize = i_size; 2262 if (disksize > EXT4_I(inode)->i_disksize) 2263 EXT4_I(inode)->i_disksize = disksize; 2264 err2 = ext4_mark_inode_dirty(handle, inode); 2265 up_write(&EXT4_I(inode)->i_data_sem); 2266 if (err2) 2267 ext4_error(inode->i_sb, 2268 "Failed to mark inode %lu dirty", 2269 inode->i_ino); 2270 if (!err) 2271 err = err2; 2272 } 2273 return err; 2274} 2275 2276/* 2277 * Calculate the total number of credits to reserve for one writepages 2278 * iteration. This is called from ext4_writepages(). We map an extent of 2279 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping 2280 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN + 2281 * bpp - 1 blocks in bpp different extents. 2282 */ 2283static int ext4_da_writepages_trans_blocks(struct inode *inode) 2284{ 2285 int bpp = ext4_journal_blocks_per_page(inode); 2286 2287 return ext4_meta_trans_blocks(inode, 2288 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp); 2289} 2290 2291/* 2292 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages 2293 * and underlying extent to map 2294 * 2295 * @mpd - where to look for pages 2296 * 2297 * Walk dirty pages in the mapping. If they are fully mapped, submit them for 2298 * IO immediately. When we find a page which isn't mapped we start accumulating 2299 * extent of buffers underlying these pages that needs mapping (formed by 2300 * either delayed or unwritten buffers). We also lock the pages containing 2301 * these buffers. The extent found is returned in @mpd structure (starting at 2302 * mpd->lblk with length mpd->len blocks). 2303 * 2304 * Note that this function can attach bios to one io_end structure which are 2305 * neither logically nor physically contiguous. Although it may seem as an 2306 * unnecessary complication, it is actually inevitable in blocksize < pagesize 2307 * case as we need to track IO to all buffers underlying a page in one io_end. 2308 */ 2309static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd) 2310{ 2311 struct address_space *mapping = mpd->inode->i_mapping; 2312 struct pagevec pvec; 2313 unsigned int nr_pages; 2314 long left = mpd->wbc->nr_to_write; 2315 pgoff_t index = mpd->first_page; 2316 pgoff_t end = mpd->last_page; 2317 int tag; 2318 int i, err = 0; 2319 int blkbits = mpd->inode->i_blkbits; 2320 ext4_lblk_t lblk; 2321 struct buffer_head *head; 2322 2323 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages) 2324 tag = PAGECACHE_TAG_TOWRITE; 2325 else 2326 tag = PAGECACHE_TAG_DIRTY; 2327 2328 pagevec_init(&pvec, 0); 2329 mpd->map.m_len = 0; 2330 mpd->next_page = index; 2331 while (index <= end) { 2332 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2333 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2334 if (nr_pages == 0) 2335 goto out; 2336 2337 for (i = 0; i < nr_pages; i++) { 2338 struct page *page = pvec.pages[i]; 2339 2340 /* 2341 * At this point, the page may be truncated or 2342 * invalidated (changing page->mapping to NULL), or 2343 * even swizzled back from swapper_space to tmpfs file 2344 * mapping. However, page->index will not change 2345 * because we have a reference on the page. 2346 */ 2347 if (page->index > end) 2348 goto out; 2349 2350 /* 2351 * Accumulated enough dirty pages? This doesn't apply 2352 * to WB_SYNC_ALL mode. For integrity sync we have to 2353 * keep going because someone may be concurrently 2354 * dirtying pages, and we might have synced a lot of 2355 * newly appeared dirty pages, but have not synced all 2356 * of the old dirty pages. 2357 */ 2358 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0) 2359 goto out; 2360 2361 /* If we can't merge this page, we are done. */ 2362 if (mpd->map.m_len > 0 && mpd->next_page != page->index) 2363 goto out; 2364 2365 lock_page(page); 2366 /* 2367 * If the page is no longer dirty, or its mapping no 2368 * longer corresponds to inode we are writing (which 2369 * means it has been truncated or invalidated), or the 2370 * page is already under writeback and we are not doing 2371 * a data integrity writeback, skip the page 2372 */ 2373 if (!PageDirty(page) || 2374 (PageWriteback(page) && 2375 (mpd->wbc->sync_mode == WB_SYNC_NONE)) || 2376 unlikely(page->mapping != mapping)) { 2377 unlock_page(page); 2378 continue; 2379 } 2380 2381 wait_on_page_writeback(page); 2382 BUG_ON(PageWriteback(page)); 2383 2384 if (mpd->map.m_len == 0) 2385 mpd->first_page = page->index; 2386 mpd->next_page = page->index + 1; 2387 /* Add all dirty buffers to mpd */ 2388 lblk = ((ext4_lblk_t)page->index) << 2389 (PAGE_CACHE_SHIFT - blkbits); 2390 head = page_buffers(page); 2391 err = mpage_process_page_bufs(mpd, head, head, lblk); 2392 if (err <= 0) 2393 goto out; 2394 err = 0; 2395 left--; 2396 } 2397 pagevec_release(&pvec); 2398 cond_resched(); 2399 } 2400 return 0; 2401out: 2402 pagevec_release(&pvec); 2403 return err; 2404} 2405 2406static int __writepage(struct page *page, struct writeback_control *wbc, 2407 void *data) 2408{ 2409 struct address_space *mapping = data; 2410 int ret = ext4_writepage(page, wbc); 2411 mapping_set_error(mapping, ret); 2412 return ret; 2413} 2414 2415static int ext4_writepages(struct address_space *mapping, 2416 struct writeback_control *wbc) 2417{ 2418 pgoff_t writeback_index = 0; 2419 long nr_to_write = wbc->nr_to_write; 2420 int range_whole = 0; 2421 int cycled = 1; 2422 handle_t *handle = NULL; 2423 struct mpage_da_data mpd; 2424 struct inode *inode = mapping->host; 2425 int needed_blocks, rsv_blocks = 0, ret = 0; 2426 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb); 2427 bool done; 2428 struct blk_plug plug; 2429 bool give_up_on_write = false; 2430 2431 trace_ext4_writepages(inode, wbc); 2432 2433 /* 2434 * No pages to write? This is mainly a kludge to avoid starting 2435 * a transaction for special inodes like journal inode on last iput() 2436 * because that could violate lock ordering on umount 2437 */ 2438 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) 2439 goto out_writepages; 2440 2441 if (ext4_should_journal_data(inode)) { 2442 struct blk_plug plug; 2443 2444 blk_start_plug(&plug); 2445 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2446 blk_finish_plug(&plug); 2447 goto out_writepages; 2448 } 2449 2450 /* 2451 * If the filesystem has aborted, it is read-only, so return 2452 * right away instead of dumping stack traces later on that 2453 * will obscure the real source of the problem. We test 2454 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because 2455 * the latter could be true if the filesystem is mounted 2456 * read-only, and in that case, ext4_writepages should 2457 * *never* be called, so if that ever happens, we would want 2458 * the stack trace. 2459 */ 2460 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) { 2461 ret = -EROFS; 2462 goto out_writepages; 2463 } 2464 2465 if (ext4_should_dioread_nolock(inode)) { 2466 /* 2467 * We may need to convert up to one extent per block in 2468 * the page and we may dirty the inode. 2469 */ 2470 rsv_blocks = 1 + (PAGE_CACHE_SIZE >> inode->i_blkbits); 2471 } 2472 2473 /* 2474 * If we have inline data and arrive here, it means that 2475 * we will soon create the block for the 1st page, so 2476 * we'd better clear the inline data here. 2477 */ 2478 if (ext4_has_inline_data(inode)) { 2479 /* Just inode will be modified... */ 2480 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 2481 if (IS_ERR(handle)) { 2482 ret = PTR_ERR(handle); 2483 goto out_writepages; 2484 } 2485 BUG_ON(ext4_test_inode_state(inode, 2486 EXT4_STATE_MAY_INLINE_DATA)); 2487 ext4_destroy_inline_data(handle, inode); 2488 ext4_journal_stop(handle); 2489 } 2490 2491 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2492 range_whole = 1; 2493 2494 if (wbc->range_cyclic) { 2495 writeback_index = mapping->writeback_index; 2496 if (writeback_index) 2497 cycled = 0; 2498 mpd.first_page = writeback_index; 2499 mpd.last_page = -1; 2500 } else { 2501 mpd.first_page = wbc->range_start >> PAGE_CACHE_SHIFT; 2502 mpd.last_page = wbc->range_end >> PAGE_CACHE_SHIFT; 2503 } 2504 2505 mpd.inode = inode; 2506 mpd.wbc = wbc; 2507 ext4_io_submit_init(&mpd.io_submit, wbc); 2508retry: 2509 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2510 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page); 2511 done = false; 2512 blk_start_plug(&plug); 2513 while (!done && mpd.first_page <= mpd.last_page) { 2514 /* For each extent of pages we use new io_end */ 2515 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL); 2516 if (!mpd.io_submit.io_end) { 2517 ret = -ENOMEM; 2518 break; 2519 } 2520 2521 /* 2522 * We have two constraints: We find one extent to map and we 2523 * must always write out whole page (makes a difference when 2524 * blocksize < pagesize) so that we don't block on IO when we 2525 * try to write out the rest of the page. Journalled mode is 2526 * not supported by delalloc. 2527 */ 2528 BUG_ON(ext4_should_journal_data(inode)); 2529 needed_blocks = ext4_da_writepages_trans_blocks(inode); 2530 2531 /* start a new transaction */ 2532 handle = ext4_journal_start_with_reserve(inode, 2533 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks); 2534 if (IS_ERR(handle)) { 2535 ret = PTR_ERR(handle); 2536 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: " 2537 "%ld pages, ino %lu; err %d", __func__, 2538 wbc->nr_to_write, inode->i_ino, ret); 2539 /* Release allocated io_end */ 2540 ext4_put_io_end(mpd.io_submit.io_end); 2541 break; 2542 } 2543 2544 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc); 2545 ret = mpage_prepare_extent_to_map(&mpd); 2546 if (!ret) { 2547 if (mpd.map.m_len) 2548 ret = mpage_map_and_submit_extent(handle, &mpd, 2549 &give_up_on_write); 2550 else { 2551 /* 2552 * We scanned the whole range (or exhausted 2553 * nr_to_write), submitted what was mapped and 2554 * didn't find anything needing mapping. We are 2555 * done. 2556 */ 2557 done = true; 2558 } 2559 } 2560 ext4_journal_stop(handle); 2561 /* Submit prepared bio */ 2562 ext4_io_submit(&mpd.io_submit); 2563 /* Unlock pages we didn't use */ 2564 mpage_release_unused_pages(&mpd, give_up_on_write); 2565 /* Drop our io_end reference we got from init */ 2566 ext4_put_io_end(mpd.io_submit.io_end); 2567 2568 if (ret == -ENOSPC && sbi->s_journal) { 2569 /* 2570 * Commit the transaction which would 2571 * free blocks released in the transaction 2572 * and try again 2573 */ 2574 jbd2_journal_force_commit_nested(sbi->s_journal); 2575 ret = 0; 2576 continue; 2577 } 2578 /* Fatal error - ENOMEM, EIO... */ 2579 if (ret) 2580 break; 2581 } 2582 blk_finish_plug(&plug); 2583 if (!ret && !cycled && wbc->nr_to_write > 0) { 2584 cycled = 1; 2585 mpd.last_page = writeback_index - 1; 2586 mpd.first_page = 0; 2587 goto retry; 2588 } 2589 2590 /* Update index */ 2591 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2592 /* 2593 * Set the writeback_index so that range_cyclic 2594 * mode will write it back later 2595 */ 2596 mapping->writeback_index = mpd.first_page; 2597 2598out_writepages: 2599 trace_ext4_writepages_result(inode, wbc, ret, 2600 nr_to_write - wbc->nr_to_write); 2601 return ret; 2602} 2603 2604static int ext4_nonda_switch(struct super_block *sb) 2605{ 2606 s64 free_clusters, dirty_clusters; 2607 struct ext4_sb_info *sbi = EXT4_SB(sb); 2608 2609 /* 2610 * switch to non delalloc mode if we are running low 2611 * on free block. The free block accounting via percpu 2612 * counters can get slightly wrong with percpu_counter_batch getting 2613 * accumulated on each CPU without updating global counters 2614 * Delalloc need an accurate free block accounting. So switch 2615 * to non delalloc when we are near to error range. 2616 */ 2617 free_clusters = 2618 percpu_counter_read_positive(&sbi->s_freeclusters_counter); 2619 dirty_clusters = 2620 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter); 2621 /* 2622 * Start pushing delalloc when 1/2 of free blocks are dirty. 2623 */ 2624 if (dirty_clusters && (free_clusters < 2 * dirty_clusters)) 2625 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE); 2626 2627 if (2 * free_clusters < 3 * dirty_clusters || 2628 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) { 2629 /* 2630 * free block count is less than 150% of dirty blocks 2631 * or free blocks is less than watermark 2632 */ 2633 return 1; 2634 } 2635 return 0; 2636} 2637 2638/* We always reserve for an inode update; the superblock could be there too */ 2639static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len) 2640{ 2641 if (likely(EXT4_HAS_RO_COMPAT_FEATURE(inode->i_sb, 2642 EXT4_FEATURE_RO_COMPAT_LARGE_FILE))) 2643 return 1; 2644 2645 if (pos + len <= 0x7fffffffULL) 2646 return 1; 2647 2648 /* We might need to update the superblock to set LARGE_FILE */ 2649 return 2; 2650} 2651 2652static int ext4_da_write_begin(struct file *file, struct address_space *mapping, 2653 loff_t pos, unsigned len, unsigned flags, 2654 struct page **pagep, void **fsdata) 2655{ 2656 int ret, retries = 0; 2657 struct page *page; 2658 pgoff_t index; 2659 struct inode *inode = mapping->host; 2660 handle_t *handle; 2661 2662 index = pos >> PAGE_CACHE_SHIFT; 2663 2664 if (ext4_nonda_switch(inode->i_sb)) { 2665 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC; 2666 return ext4_write_begin(file, mapping, pos, 2667 len, flags, pagep, fsdata); 2668 } 2669 *fsdata = (void *)0; 2670 trace_ext4_da_write_begin(inode, pos, len, flags); 2671 2672 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) { 2673 ret = ext4_da_write_inline_data_begin(mapping, inode, 2674 pos, len, flags, 2675 pagep, fsdata); 2676 if (ret < 0) 2677 return ret; 2678 if (ret == 1) 2679 return 0; 2680 } 2681 2682 /* 2683 * grab_cache_page_write_begin() can take a long time if the 2684 * system is thrashing due to memory pressure, or if the page 2685 * is being written back. So grab it first before we start 2686 * the transaction handle. This also allows us to allocate 2687 * the page (if needed) without using GFP_NOFS. 2688 */ 2689retry_grab: 2690 page = grab_cache_page_write_begin(mapping, index, flags); 2691 if (!page) 2692 return -ENOMEM; 2693 unlock_page(page); 2694 2695 /* 2696 * With delayed allocation, we don't log the i_disksize update 2697 * if there is delayed block allocation. But we still need 2698 * to journalling the i_disksize update if writes to the end 2699 * of file which has an already mapped buffer. 2700 */ 2701retry_journal: 2702 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 2703 ext4_da_write_credits(inode, pos, len)); 2704 if (IS_ERR(handle)) { 2705 page_cache_release(page); 2706 return PTR_ERR(handle); 2707 } 2708 2709 lock_page(page); 2710 if (page->mapping != mapping) { 2711 /* The page got truncated from under us */ 2712 unlock_page(page); 2713 page_cache_release(page); 2714 ext4_journal_stop(handle); 2715 goto retry_grab; 2716 } 2717 /* In case writeback began while the page was unlocked */ 2718 wait_for_stable_page(page); 2719 2720#ifdef CONFIG_EXT4_FS_ENCRYPTION 2721 ret = ext4_block_write_begin(page, pos, len, 2722 ext4_da_get_block_prep); 2723#else 2724 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep); 2725#endif 2726 if (ret < 0) { 2727 unlock_page(page); 2728 ext4_journal_stop(handle); 2729 /* 2730 * block_write_begin may have instantiated a few blocks 2731 * outside i_size. Trim these off again. Don't need 2732 * i_size_read because we hold i_mutex. 2733 */ 2734 if (pos + len > inode->i_size) 2735 ext4_truncate_failed_write(inode); 2736 2737 if (ret == -ENOSPC && 2738 ext4_should_retry_alloc(inode->i_sb, &retries)) 2739 goto retry_journal; 2740 2741 page_cache_release(page); 2742 return ret; 2743 } 2744 2745 *pagep = page; 2746 return ret; 2747} 2748 2749/* 2750 * Check if we should update i_disksize 2751 * when write to the end of file but not require block allocation 2752 */ 2753static int ext4_da_should_update_i_disksize(struct page *page, 2754 unsigned long offset) 2755{ 2756 struct buffer_head *bh; 2757 struct inode *inode = page->mapping->host; 2758 unsigned int idx; 2759 int i; 2760 2761 bh = page_buffers(page); 2762 idx = offset >> inode->i_blkbits; 2763 2764 for (i = 0; i < idx; i++) 2765 bh = bh->b_this_page; 2766 2767 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh)) 2768 return 0; 2769 return 1; 2770} 2771 2772static int ext4_da_write_end(struct file *file, 2773 struct address_space *mapping, 2774 loff_t pos, unsigned len, unsigned copied, 2775 struct page *page, void *fsdata) 2776{ 2777 struct inode *inode = mapping->host; 2778 int ret = 0, ret2; 2779 handle_t *handle = ext4_journal_current_handle(); 2780 loff_t new_i_size; 2781 unsigned long start, end; 2782 int write_mode = (int)(unsigned long)fsdata; 2783 2784 if (write_mode == FALL_BACK_TO_NONDELALLOC) 2785 return ext4_write_end(file, mapping, pos, 2786 len, copied, page, fsdata); 2787 2788 trace_ext4_da_write_end(inode, pos, len, copied); 2789 start = pos & (PAGE_CACHE_SIZE - 1); 2790 end = start + copied - 1; 2791 2792 /* 2793 * generic_write_end() will run mark_inode_dirty() if i_size 2794 * changes. So let's piggyback the i_disksize mark_inode_dirty 2795 * into that. 2796 */ 2797 new_i_size = pos + copied; 2798 if (copied && new_i_size > EXT4_I(inode)->i_disksize) { 2799 if (ext4_has_inline_data(inode) || 2800 ext4_da_should_update_i_disksize(page, end)) { 2801 ext4_update_i_disksize(inode, new_i_size); 2802 /* We need to mark inode dirty even if 2803 * new_i_size is less that inode->i_size 2804 * bu greater than i_disksize.(hint delalloc) 2805 */ 2806 ext4_mark_inode_dirty(handle, inode); 2807 } 2808 } 2809 2810 if (write_mode != CONVERT_INLINE_DATA && 2811 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) && 2812 ext4_has_inline_data(inode)) 2813 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied, 2814 page); 2815 else 2816 ret2 = generic_write_end(file, mapping, pos, len, copied, 2817 page, fsdata); 2818 2819 copied = ret2; 2820 if (ret2 < 0) 2821 ret = ret2; 2822 ret2 = ext4_journal_stop(handle); 2823 if (!ret) 2824 ret = ret2; 2825 2826 return ret ? ret : copied; 2827} 2828 2829static void ext4_da_invalidatepage(struct page *page, unsigned int offset, 2830 unsigned int length) 2831{ 2832 /* 2833 * Drop reserved blocks 2834 */ 2835 BUG_ON(!PageLocked(page)); 2836 if (!page_has_buffers(page)) 2837 goto out; 2838 2839 ext4_da_page_release_reservation(page, offset, length); 2840 2841out: 2842 ext4_invalidatepage(page, offset, length); 2843 2844 return; 2845} 2846 2847/* 2848 * Force all delayed allocation blocks to be allocated for a given inode. 2849 */ 2850int ext4_alloc_da_blocks(struct inode *inode) 2851{ 2852 trace_ext4_alloc_da_blocks(inode); 2853 2854 if (!EXT4_I(inode)->i_reserved_data_blocks) 2855 return 0; 2856 2857 /* 2858 * We do something simple for now. The filemap_flush() will 2859 * also start triggering a write of the data blocks, which is 2860 * not strictly speaking necessary (and for users of 2861 * laptop_mode, not even desirable). However, to do otherwise 2862 * would require replicating code paths in: 2863 * 2864 * ext4_writepages() -> 2865 * write_cache_pages() ---> (via passed in callback function) 2866 * __mpage_da_writepage() --> 2867 * mpage_add_bh_to_extent() 2868 * mpage_da_map_blocks() 2869 * 2870 * The problem is that write_cache_pages(), located in 2871 * mm/page-writeback.c, marks pages clean in preparation for 2872 * doing I/O, which is not desirable if we're not planning on 2873 * doing I/O at all. 2874 * 2875 * We could call write_cache_pages(), and then redirty all of 2876 * the pages by calling redirty_page_for_writepage() but that 2877 * would be ugly in the extreme. So instead we would need to 2878 * replicate parts of the code in the above functions, 2879 * simplifying them because we wouldn't actually intend to 2880 * write out the pages, but rather only collect contiguous 2881 * logical block extents, call the multi-block allocator, and 2882 * then update the buffer heads with the block allocations. 2883 * 2884 * For now, though, we'll cheat by calling filemap_flush(), 2885 * which will map the blocks, and start the I/O, but not 2886 * actually wait for the I/O to complete. 2887 */ 2888 return filemap_flush(inode->i_mapping); 2889} 2890 2891/* 2892 * bmap() is special. It gets used by applications such as lilo and by 2893 * the swapper to find the on-disk block of a specific piece of data. 2894 * 2895 * Naturally, this is dangerous if the block concerned is still in the 2896 * journal. If somebody makes a swapfile on an ext4 data-journaling 2897 * filesystem and enables swap, then they may get a nasty shock when the 2898 * data getting swapped to that swapfile suddenly gets overwritten by 2899 * the original zero's written out previously to the journal and 2900 * awaiting writeback in the kernel's buffer cache. 2901 * 2902 * So, if we see any bmap calls here on a modified, data-journaled file, 2903 * take extra steps to flush any blocks which might be in the cache. 2904 */ 2905static sector_t ext4_bmap(struct address_space *mapping, sector_t block) 2906{ 2907 struct inode *inode = mapping->host; 2908 journal_t *journal; 2909 int err; 2910 2911 /* 2912 * We can get here for an inline file via the FIBMAP ioctl 2913 */ 2914 if (ext4_has_inline_data(inode)) 2915 return 0; 2916 2917 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) && 2918 test_opt(inode->i_sb, DELALLOC)) { 2919 /* 2920 * With delalloc we want to sync the file 2921 * so that we can make sure we allocate 2922 * blocks for file 2923 */ 2924 filemap_write_and_wait(mapping); 2925 } 2926 2927 if (EXT4_JOURNAL(inode) && 2928 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) { 2929 /* 2930 * This is a REALLY heavyweight approach, but the use of 2931 * bmap on dirty files is expected to be extremely rare: 2932 * only if we run lilo or swapon on a freshly made file 2933 * do we expect this to happen. 2934 * 2935 * (bmap requires CAP_SYS_RAWIO so this does not 2936 * represent an unprivileged user DOS attack --- we'd be 2937 * in trouble if mortal users could trigger this path at 2938 * will.) 2939 * 2940 * NB. EXT4_STATE_JDATA is not set on files other than 2941 * regular files. If somebody wants to bmap a directory 2942 * or symlink and gets confused because the buffer 2943 * hasn't yet been flushed to disk, they deserve 2944 * everything they get. 2945 */ 2946 2947 ext4_clear_inode_state(inode, EXT4_STATE_JDATA); 2948 journal = EXT4_JOURNAL(inode); 2949 jbd2_journal_lock_updates(journal); 2950 err = jbd2_journal_flush(journal); 2951 jbd2_journal_unlock_updates(journal); 2952 2953 if (err) 2954 return 0; 2955 } 2956 2957 return generic_block_bmap(mapping, block, ext4_get_block); 2958} 2959 2960static int ext4_readpage(struct file *file, struct page *page) 2961{ 2962 int ret = -EAGAIN; 2963 struct inode *inode = page->mapping->host; 2964 2965 trace_ext4_readpage(page); 2966 2967 if (ext4_has_inline_data(inode)) 2968 ret = ext4_readpage_inline(inode, page); 2969 2970 if (ret == -EAGAIN) 2971 return ext4_mpage_readpages(page->mapping, NULL, page, 1); 2972 2973 return ret; 2974} 2975 2976static int 2977ext4_readpages(struct file *file, struct address_space *mapping, 2978 struct list_head *pages, unsigned nr_pages) 2979{ 2980 struct inode *inode = mapping->host; 2981 2982 /* If the file has inline data, no need to do readpages. */ 2983 if (ext4_has_inline_data(inode)) 2984 return 0; 2985 2986 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages); 2987} 2988 2989static void ext4_invalidatepage(struct page *page, unsigned int offset, 2990 unsigned int length) 2991{ 2992 trace_ext4_invalidatepage(page, offset, length); 2993 2994 /* No journalling happens on data buffers when this function is used */ 2995 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page))); 2996 2997 block_invalidatepage(page, offset, length); 2998} 2999 3000static int __ext4_journalled_invalidatepage(struct page *page, 3001 unsigned int offset, 3002 unsigned int length) 3003{ 3004 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3005 3006 trace_ext4_journalled_invalidatepage(page, offset, length); 3007 3008 /* 3009 * If it's a full truncate we just forget about the pending dirtying 3010 */ 3011 if (offset == 0 && length == PAGE_CACHE_SIZE) 3012 ClearPageChecked(page); 3013 3014 return jbd2_journal_invalidatepage(journal, page, offset, length); 3015} 3016 3017/* Wrapper for aops... */ 3018static void ext4_journalled_invalidatepage(struct page *page, 3019 unsigned int offset, 3020 unsigned int length) 3021{ 3022 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0); 3023} 3024 3025static int ext4_releasepage(struct page *page, gfp_t wait) 3026{ 3027 journal_t *journal = EXT4_JOURNAL(page->mapping->host); 3028 3029 trace_ext4_releasepage(page); 3030 3031 /* Page has dirty journalled data -> cannot release */ 3032 if (PageChecked(page)) 3033 return 0; 3034 if (journal) 3035 return jbd2_journal_try_to_free_buffers(journal, page, wait); 3036 else 3037 return try_to_free_buffers(page); 3038} 3039 3040/* 3041 * ext4_get_block used when preparing for a DIO write or buffer write. 3042 * We allocate an uinitialized extent if blocks haven't been allocated. 3043 * The extent will be converted to initialized after the IO is complete. 3044 */ 3045int ext4_get_block_write(struct inode *inode, sector_t iblock, 3046 struct buffer_head *bh_result, int create) 3047{ 3048 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n", 3049 inode->i_ino, create); 3050 return _ext4_get_block(inode, iblock, bh_result, 3051 EXT4_GET_BLOCKS_IO_CREATE_EXT); 3052} 3053 3054static int ext4_get_block_write_nolock(struct inode *inode, sector_t iblock, 3055 struct buffer_head *bh_result, int create) 3056{ 3057 ext4_debug("ext4_get_block_write_nolock: inode %lu, create flag %d\n", 3058 inode->i_ino, create); 3059 return _ext4_get_block(inode, iblock, bh_result, 3060 EXT4_GET_BLOCKS_NO_LOCK); 3061} 3062 3063static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset, 3064 ssize_t size, void *private) 3065{ 3066 ext4_io_end_t *io_end = iocb->private; 3067 3068 /* if not async direct IO just return */ 3069 if (!io_end) 3070 return; 3071 3072 ext_debug("ext4_end_io_dio(): io_end 0x%p " 3073 "for inode %lu, iocb 0x%p, offset %llu, size %zd\n", 3074 iocb->private, io_end->inode->i_ino, iocb, offset, 3075 size); 3076 3077 iocb->private = NULL; 3078 io_end->offset = offset; 3079 io_end->size = size; 3080 ext4_put_io_end(io_end); 3081} 3082 3083/* 3084 * For ext4 extent files, ext4 will do direct-io write to holes, 3085 * preallocated extents, and those write extend the file, no need to 3086 * fall back to buffered IO. 3087 * 3088 * For holes, we fallocate those blocks, mark them as unwritten 3089 * If those blocks were preallocated, we mark sure they are split, but 3090 * still keep the range to write as unwritten. 3091 * 3092 * The unwritten extents will be converted to written when DIO is completed. 3093 * For async direct IO, since the IO may still pending when return, we 3094 * set up an end_io call back function, which will do the conversion 3095 * when async direct IO completed. 3096 * 3097 * If the O_DIRECT write will extend the file then add this inode to the 3098 * orphan list. So recovery will truncate it back to the original size 3099 * if the machine crashes during the write. 3100 * 3101 */ 3102static ssize_t ext4_ext_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3103 loff_t offset) 3104{ 3105 struct file *file = iocb->ki_filp; 3106 struct inode *inode = file->f_mapping->host; 3107 ssize_t ret; 3108 size_t count = iov_iter_count(iter); 3109 int overwrite = 0; 3110 get_block_t *get_block_func = NULL; 3111 int dio_flags = 0; 3112 loff_t final_size = offset + count; 3113 ext4_io_end_t *io_end = NULL; 3114 3115 /* Use the old path for reads and writes beyond i_size. */ 3116 if (iov_iter_rw(iter) != WRITE || final_size > inode->i_size) 3117 return ext4_ind_direct_IO(iocb, iter, offset); 3118 3119 BUG_ON(iocb->private == NULL); 3120 3121 /* 3122 * Make all waiters for direct IO properly wait also for extent 3123 * conversion. This also disallows race between truncate() and 3124 * overwrite DIO as i_dio_count needs to be incremented under i_mutex. 3125 */ 3126 if (iov_iter_rw(iter) == WRITE) 3127 inode_dio_begin(inode); 3128 3129 /* If we do a overwrite dio, i_mutex locking can be released */ 3130 overwrite = *((int *)iocb->private); 3131 3132 if (overwrite) { 3133 down_read(&EXT4_I(inode)->i_data_sem); 3134 mutex_unlock(&inode->i_mutex); 3135 } 3136 3137 /* 3138 * We could direct write to holes and fallocate. 3139 * 3140 * Allocated blocks to fill the hole are marked as 3141 * unwritten to prevent parallel buffered read to expose 3142 * the stale data before DIO complete the data IO. 3143 * 3144 * As to previously fallocated extents, ext4 get_block will 3145 * just simply mark the buffer mapped but still keep the 3146 * extents unwritten. 3147 * 3148 * For non AIO case, we will convert those unwritten extents 3149 * to written after return back from blockdev_direct_IO. 3150 * 3151 * For async DIO, the conversion needs to be deferred when the 3152 * IO is completed. The ext4 end_io callback function will be 3153 * called to take care of the conversion work. Here for async 3154 * case, we allocate an io_end structure to hook to the iocb. 3155 */ 3156 iocb->private = NULL; 3157 if (overwrite) { 3158 get_block_func = ext4_get_block_write_nolock; 3159 } else { 3160 ext4_inode_aio_set(inode, NULL); 3161 if (!is_sync_kiocb(iocb)) { 3162 io_end = ext4_init_io_end(inode, GFP_NOFS); 3163 if (!io_end) { 3164 ret = -ENOMEM; 3165 goto retake_lock; 3166 } 3167 /* 3168 * Grab reference for DIO. Will be dropped in 3169 * ext4_end_io_dio() 3170 */ 3171 iocb->private = ext4_get_io_end(io_end); 3172 /* 3173 * we save the io structure for current async direct 3174 * IO, so that later ext4_map_blocks() could flag the 3175 * io structure whether there is a unwritten extents 3176 * needs to be converted when IO is completed. 3177 */ 3178 ext4_inode_aio_set(inode, io_end); 3179 } 3180 get_block_func = ext4_get_block_write; 3181 dio_flags = DIO_LOCKING; 3182 } 3183#ifdef CONFIG_EXT4_FS_ENCRYPTION 3184 BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)); 3185#endif 3186 if (IS_DAX(inode)) 3187 ret = dax_do_io(iocb, inode, iter, offset, get_block_func, 3188 ext4_end_io_dio, dio_flags); 3189 else 3190 ret = __blockdev_direct_IO(iocb, inode, 3191 inode->i_sb->s_bdev, iter, offset, 3192 get_block_func, 3193 ext4_end_io_dio, NULL, dio_flags); 3194 3195 /* 3196 * Put our reference to io_end. This can free the io_end structure e.g. 3197 * in sync IO case or in case of error. It can even perform extent 3198 * conversion if all bios we submitted finished before we got here. 3199 * Note that in that case iocb->private can be already set to NULL 3200 * here. 3201 */ 3202 if (io_end) { 3203 ext4_inode_aio_set(inode, NULL); 3204 ext4_put_io_end(io_end); 3205 /* 3206 * When no IO was submitted ext4_end_io_dio() was not 3207 * called so we have to put iocb's reference. 3208 */ 3209 if (ret <= 0 && ret != -EIOCBQUEUED && iocb->private) { 3210 WARN_ON(iocb->private != io_end); 3211 WARN_ON(io_end->flag & EXT4_IO_END_UNWRITTEN); 3212 ext4_put_io_end(io_end); 3213 iocb->private = NULL; 3214 } 3215 } 3216 if (ret > 0 && !overwrite && ext4_test_inode_state(inode, 3217 EXT4_STATE_DIO_UNWRITTEN)) { 3218 int err; 3219 /* 3220 * for non AIO case, since the IO is already 3221 * completed, we could do the conversion right here 3222 */ 3223 err = ext4_convert_unwritten_extents(NULL, inode, 3224 offset, ret); 3225 if (err < 0) 3226 ret = err; 3227 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN); 3228 } 3229 3230retake_lock: 3231 if (iov_iter_rw(iter) == WRITE) 3232 inode_dio_end(inode); 3233 /* take i_mutex locking again if we do a ovewrite dio */ 3234 if (overwrite) { 3235 up_read(&EXT4_I(inode)->i_data_sem); 3236 mutex_lock(&inode->i_mutex); 3237 } 3238 3239 return ret; 3240} 3241 3242static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter, 3243 loff_t offset) 3244{ 3245 struct file *file = iocb->ki_filp; 3246 struct inode *inode = file->f_mapping->host; 3247 size_t count = iov_iter_count(iter); 3248 ssize_t ret; 3249 3250#ifdef CONFIG_EXT4_FS_ENCRYPTION 3251 if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode)) 3252 return 0; 3253#endif 3254 3255 /* 3256 * If we are doing data journalling we don't support O_DIRECT 3257 */ 3258 if (ext4_should_journal_data(inode)) 3259 return 0; 3260 3261 /* Let buffer I/O handle the inline data case. */ 3262 if (ext4_has_inline_data(inode)) 3263 return 0; 3264 3265 trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter)); 3266 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3267 ret = ext4_ext_direct_IO(iocb, iter, offset); 3268 else 3269 ret = ext4_ind_direct_IO(iocb, iter, offset); 3270 trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret); 3271 return ret; 3272} 3273 3274/* 3275 * Pages can be marked dirty completely asynchronously from ext4's journalling 3276 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do 3277 * much here because ->set_page_dirty is called under VFS locks. The page is 3278 * not necessarily locked. 3279 * 3280 * We cannot just dirty the page and leave attached buffers clean, because the 3281 * buffers' dirty state is "definitive". We cannot just set the buffers dirty 3282 * or jbddirty because all the journalling code will explode. 3283 * 3284 * So what we do is to mark the page "pending dirty" and next time writepage 3285 * is called, propagate that into the buffers appropriately. 3286 */ 3287static int ext4_journalled_set_page_dirty(struct page *page) 3288{ 3289 SetPageChecked(page); 3290 return __set_page_dirty_nobuffers(page); 3291} 3292 3293static const struct address_space_operations ext4_aops = { 3294 .readpage = ext4_readpage, 3295 .readpages = ext4_readpages, 3296 .writepage = ext4_writepage, 3297 .writepages = ext4_writepages, 3298 .write_begin = ext4_write_begin, 3299 .write_end = ext4_write_end, 3300 .bmap = ext4_bmap, 3301 .invalidatepage = ext4_invalidatepage, 3302 .releasepage = ext4_releasepage, 3303 .direct_IO = ext4_direct_IO, 3304 .migratepage = buffer_migrate_page, 3305 .is_partially_uptodate = block_is_partially_uptodate, 3306 .error_remove_page = generic_error_remove_page, 3307}; 3308 3309static const struct address_space_operations ext4_journalled_aops = { 3310 .readpage = ext4_readpage, 3311 .readpages = ext4_readpages, 3312 .writepage = ext4_writepage, 3313 .writepages = ext4_writepages, 3314 .write_begin = ext4_write_begin, 3315 .write_end = ext4_journalled_write_end, 3316 .set_page_dirty = ext4_journalled_set_page_dirty, 3317 .bmap = ext4_bmap, 3318 .invalidatepage = ext4_journalled_invalidatepage, 3319 .releasepage = ext4_releasepage, 3320 .direct_IO = ext4_direct_IO, 3321 .is_partially_uptodate = block_is_partially_uptodate, 3322 .error_remove_page = generic_error_remove_page, 3323}; 3324 3325static const struct address_space_operations ext4_da_aops = { 3326 .readpage = ext4_readpage, 3327 .readpages = ext4_readpages, 3328 .writepage = ext4_writepage, 3329 .writepages = ext4_writepages, 3330 .write_begin = ext4_da_write_begin, 3331 .write_end = ext4_da_write_end, 3332 .bmap = ext4_bmap, 3333 .invalidatepage = ext4_da_invalidatepage, 3334 .releasepage = ext4_releasepage, 3335 .direct_IO = ext4_direct_IO, 3336 .migratepage = buffer_migrate_page, 3337 .is_partially_uptodate = block_is_partially_uptodate, 3338 .error_remove_page = generic_error_remove_page, 3339}; 3340 3341void ext4_set_aops(struct inode *inode) 3342{ 3343 switch (ext4_inode_journal_mode(inode)) { 3344 case EXT4_INODE_ORDERED_DATA_MODE: 3345 ext4_set_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3346 break; 3347 case EXT4_INODE_WRITEBACK_DATA_MODE: 3348 ext4_clear_inode_state(inode, EXT4_STATE_ORDERED_MODE); 3349 break; 3350 case EXT4_INODE_JOURNAL_DATA_MODE: 3351 inode->i_mapping->a_ops = &ext4_journalled_aops; 3352 return; 3353 default: 3354 BUG(); 3355 } 3356 if (test_opt(inode->i_sb, DELALLOC)) 3357 inode->i_mapping->a_ops = &ext4_da_aops; 3358 else 3359 inode->i_mapping->a_ops = &ext4_aops; 3360} 3361 3362static int __ext4_block_zero_page_range(handle_t *handle, 3363 struct address_space *mapping, loff_t from, loff_t length) 3364{ 3365 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT; 3366 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3367 unsigned blocksize, pos; 3368 ext4_lblk_t iblock; 3369 struct inode *inode = mapping->host; 3370 struct buffer_head *bh; 3371 struct page *page; 3372 int err = 0; 3373 3374 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT, 3375 mapping_gfp_mask(mapping) & ~__GFP_FS); 3376 if (!page) 3377 return -ENOMEM; 3378 3379 blocksize = inode->i_sb->s_blocksize; 3380 3381 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits); 3382 3383 if (!page_has_buffers(page)) 3384 create_empty_buffers(page, blocksize, 0); 3385 3386 /* Find the buffer that contains "offset" */ 3387 bh = page_buffers(page); 3388 pos = blocksize; 3389 while (offset >= pos) { 3390 bh = bh->b_this_page; 3391 iblock++; 3392 pos += blocksize; 3393 } 3394 if (buffer_freed(bh)) { 3395 BUFFER_TRACE(bh, "freed: skip"); 3396 goto unlock; 3397 } 3398 if (!buffer_mapped(bh)) { 3399 BUFFER_TRACE(bh, "unmapped"); 3400 ext4_get_block(inode, iblock, bh, 0); 3401 /* unmapped? It's a hole - nothing to do */ 3402 if (!buffer_mapped(bh)) { 3403 BUFFER_TRACE(bh, "still unmapped"); 3404 goto unlock; 3405 } 3406 } 3407 3408 /* Ok, it's mapped. Make sure it's up-to-date */ 3409 if (PageUptodate(page)) 3410 set_buffer_uptodate(bh); 3411 3412 if (!buffer_uptodate(bh)) { 3413 err = -EIO; 3414 ll_rw_block(READ, 1, &bh); 3415 wait_on_buffer(bh); 3416 /* Uhhuh. Read error. Complain and punt. */ 3417 if (!buffer_uptodate(bh)) 3418 goto unlock; 3419 if (S_ISREG(inode->i_mode) && 3420 ext4_encrypted_inode(inode)) { 3421 /* We expect the key to be set. */ 3422 BUG_ON(!ext4_has_encryption_key(inode)); 3423 BUG_ON(blocksize != PAGE_CACHE_SIZE); 3424 WARN_ON_ONCE(ext4_decrypt_one(inode, page)); 3425 } 3426 } 3427 if (ext4_should_journal_data(inode)) { 3428 BUFFER_TRACE(bh, "get write access"); 3429 err = ext4_journal_get_write_access(handle, bh); 3430 if (err) 3431 goto unlock; 3432 } 3433 zero_user(page, offset, length); 3434 BUFFER_TRACE(bh, "zeroed end of block"); 3435 3436 if (ext4_should_journal_data(inode)) { 3437 err = ext4_handle_dirty_metadata(handle, inode, bh); 3438 } else { 3439 err = 0; 3440 mark_buffer_dirty(bh); 3441 if (ext4_test_inode_state(inode, EXT4_STATE_ORDERED_MODE)) 3442 err = ext4_jbd2_file_inode(handle, inode); 3443 } 3444 3445unlock: 3446 unlock_page(page); 3447 page_cache_release(page); 3448 return err; 3449} 3450 3451/* 3452 * ext4_block_zero_page_range() zeros out a mapping of length 'length' 3453 * starting from file offset 'from'. The range to be zero'd must 3454 * be contained with in one block. If the specified range exceeds 3455 * the end of the block it will be shortened to end of the block 3456 * that cooresponds to 'from' 3457 */ 3458static int ext4_block_zero_page_range(handle_t *handle, 3459 struct address_space *mapping, loff_t from, loff_t length) 3460{ 3461 struct inode *inode = mapping->host; 3462 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3463 unsigned blocksize = inode->i_sb->s_blocksize; 3464 unsigned max = blocksize - (offset & (blocksize - 1)); 3465 3466 /* 3467 * correct length if it does not fall between 3468 * 'from' and the end of the block 3469 */ 3470 if (length > max || length < 0) 3471 length = max; 3472 3473 if (IS_DAX(inode)) 3474 return dax_zero_page_range(inode, from, length, ext4_get_block); 3475 return __ext4_block_zero_page_range(handle, mapping, from, length); 3476} 3477 3478/* 3479 * ext4_block_truncate_page() zeroes out a mapping from file offset `from' 3480 * up to the end of the block which corresponds to `from'. 3481 * This required during truncate. We need to physically zero the tail end 3482 * of that block so it doesn't yield old data if the file is later grown. 3483 */ 3484static int ext4_block_truncate_page(handle_t *handle, 3485 struct address_space *mapping, loff_t from) 3486{ 3487 unsigned offset = from & (PAGE_CACHE_SIZE-1); 3488 unsigned length; 3489 unsigned blocksize; 3490 struct inode *inode = mapping->host; 3491 3492 blocksize = inode->i_sb->s_blocksize; 3493 length = blocksize - (offset & (blocksize - 1)); 3494 3495 return ext4_block_zero_page_range(handle, mapping, from, length); 3496} 3497 3498int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode, 3499 loff_t lstart, loff_t length) 3500{ 3501 struct super_block *sb = inode->i_sb; 3502 struct address_space *mapping = inode->i_mapping; 3503 unsigned partial_start, partial_end; 3504 ext4_fsblk_t start, end; 3505 loff_t byte_end = (lstart + length - 1); 3506 int err = 0; 3507 3508 partial_start = lstart & (sb->s_blocksize - 1); 3509 partial_end = byte_end & (sb->s_blocksize - 1); 3510 3511 start = lstart >> sb->s_blocksize_bits; 3512 end = byte_end >> sb->s_blocksize_bits; 3513 3514 /* Handle partial zero within the single block */ 3515 if (start == end && 3516 (partial_start || (partial_end != sb->s_blocksize - 1))) { 3517 err = ext4_block_zero_page_range(handle, mapping, 3518 lstart, length); 3519 return err; 3520 } 3521 /* Handle partial zero out on the start of the range */ 3522 if (partial_start) { 3523 err = ext4_block_zero_page_range(handle, mapping, 3524 lstart, sb->s_blocksize); 3525 if (err) 3526 return err; 3527 } 3528 /* Handle partial zero out on the end of the range */ 3529 if (partial_end != sb->s_blocksize - 1) 3530 err = ext4_block_zero_page_range(handle, mapping, 3531 byte_end - partial_end, 3532 partial_end + 1); 3533 return err; 3534} 3535 3536int ext4_can_truncate(struct inode *inode) 3537{ 3538 if (S_ISREG(inode->i_mode)) 3539 return 1; 3540 if (S_ISDIR(inode->i_mode)) 3541 return 1; 3542 if (S_ISLNK(inode->i_mode)) 3543 return !ext4_inode_is_fast_symlink(inode); 3544 return 0; 3545} 3546 3547/* 3548 * We have to make sure i_disksize gets properly updated before we truncate 3549 * page cache due to hole punching or zero range. Otherwise i_disksize update 3550 * can get lost as it may have been postponed to submission of writeback but 3551 * that will never happen after we truncate page cache. 3552 */ 3553int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset, 3554 loff_t len) 3555{ 3556 handle_t *handle; 3557 loff_t size = i_size_read(inode); 3558 3559 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3560 if (offset > size || offset + len < size) 3561 return 0; 3562 3563 if (EXT4_I(inode)->i_disksize >= size) 3564 return 0; 3565 3566 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1); 3567 if (IS_ERR(handle)) 3568 return PTR_ERR(handle); 3569 ext4_update_i_disksize(inode, size); 3570 ext4_mark_inode_dirty(handle, inode); 3571 ext4_journal_stop(handle); 3572 3573 return 0; 3574} 3575 3576/* 3577 * ext4_punch_hole: punches a hole in a file by releaseing the blocks 3578 * associated with the given offset and length 3579 * 3580 * @inode: File inode 3581 * @offset: The offset where the hole will begin 3582 * @len: The length of the hole 3583 * 3584 * Returns: 0 on success or negative on failure 3585 */ 3586 3587int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length) 3588{ 3589 struct super_block *sb = inode->i_sb; 3590 ext4_lblk_t first_block, stop_block; 3591 struct address_space *mapping = inode->i_mapping; 3592 loff_t first_block_offset, last_block_offset; 3593 handle_t *handle; 3594 unsigned int credits; 3595 int ret = 0; 3596 3597 if (!S_ISREG(inode->i_mode)) 3598 return -EOPNOTSUPP; 3599 3600 trace_ext4_punch_hole(inode, offset, length, 0); 3601 3602 /* 3603 * Write out all dirty pages to avoid race conditions 3604 * Then release them. 3605 */ 3606 if (mapping->nrpages && mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) { 3607 ret = filemap_write_and_wait_range(mapping, offset, 3608 offset + length - 1); 3609 if (ret) 3610 return ret; 3611 } 3612 3613 mutex_lock(&inode->i_mutex); 3614 3615 /* No need to punch hole beyond i_size */ 3616 if (offset >= inode->i_size) 3617 goto out_mutex; 3618 3619 /* 3620 * If the hole extends beyond i_size, set the hole 3621 * to end after the page that contains i_size 3622 */ 3623 if (offset + length > inode->i_size) { 3624 length = inode->i_size + 3625 PAGE_CACHE_SIZE - (inode->i_size & (PAGE_CACHE_SIZE - 1)) - 3626 offset; 3627 } 3628 3629 if (offset & (sb->s_blocksize - 1) || 3630 (offset + length) & (sb->s_blocksize - 1)) { 3631 /* 3632 * Attach jinode to inode for jbd2 if we do any zeroing of 3633 * partial block 3634 */ 3635 ret = ext4_inode_attach_jinode(inode); 3636 if (ret < 0) 3637 goto out_mutex; 3638 3639 } 3640 3641 /* Wait all existing dio workers, newcomers will block on i_mutex */ 3642 ext4_inode_block_unlocked_dio(inode); 3643 inode_dio_wait(inode); 3644 3645 /* 3646 * Prevent page faults from reinstantiating pages we have released from 3647 * page cache. 3648 */ 3649 down_write(&EXT4_I(inode)->i_mmap_sem); 3650 first_block_offset = round_up(offset, sb->s_blocksize); 3651 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1; 3652 3653 /* Now release the pages and zero block aligned part of pages*/ 3654 if (last_block_offset > first_block_offset) { 3655 ret = ext4_update_disksize_before_punch(inode, offset, length); 3656 if (ret) 3657 goto out_dio; 3658 truncate_pagecache_range(inode, first_block_offset, 3659 last_block_offset); 3660 } 3661 3662 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3663 credits = ext4_writepage_trans_blocks(inode); 3664 else 3665 credits = ext4_blocks_for_truncate(inode); 3666 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3667 if (IS_ERR(handle)) { 3668 ret = PTR_ERR(handle); 3669 ext4_std_error(sb, ret); 3670 goto out_dio; 3671 } 3672 3673 ret = ext4_zero_partial_blocks(handle, inode, offset, 3674 length); 3675 if (ret) 3676 goto out_stop; 3677 3678 first_block = (offset + sb->s_blocksize - 1) >> 3679 EXT4_BLOCK_SIZE_BITS(sb); 3680 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb); 3681 3682 /* If there are no blocks to remove, return now */ 3683 if (first_block >= stop_block) 3684 goto out_stop; 3685 3686 down_write(&EXT4_I(inode)->i_data_sem); 3687 ext4_discard_preallocations(inode); 3688 3689 ret = ext4_es_remove_extent(inode, first_block, 3690 stop_block - first_block); 3691 if (ret) { 3692 up_write(&EXT4_I(inode)->i_data_sem); 3693 goto out_stop; 3694 } 3695 3696 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3697 ret = ext4_ext_remove_space(inode, first_block, 3698 stop_block - 1); 3699 else 3700 ret = ext4_ind_remove_space(handle, inode, first_block, 3701 stop_block); 3702 3703 up_write(&EXT4_I(inode)->i_data_sem); 3704 if (IS_SYNC(inode)) 3705 ext4_handle_sync(handle); 3706 3707 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3708 ext4_mark_inode_dirty(handle, inode); 3709out_stop: 3710 ext4_journal_stop(handle); 3711out_dio: 3712 up_write(&EXT4_I(inode)->i_mmap_sem); 3713 ext4_inode_resume_unlocked_dio(inode); 3714out_mutex: 3715 mutex_unlock(&inode->i_mutex); 3716 return ret; 3717} 3718 3719int ext4_inode_attach_jinode(struct inode *inode) 3720{ 3721 struct ext4_inode_info *ei = EXT4_I(inode); 3722 struct jbd2_inode *jinode; 3723 3724 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal) 3725 return 0; 3726 3727 jinode = jbd2_alloc_inode(GFP_KERNEL); 3728 spin_lock(&inode->i_lock); 3729 if (!ei->jinode) { 3730 if (!jinode) { 3731 spin_unlock(&inode->i_lock); 3732 return -ENOMEM; 3733 } 3734 ei->jinode = jinode; 3735 jbd2_journal_init_jbd_inode(ei->jinode, inode); 3736 jinode = NULL; 3737 } 3738 spin_unlock(&inode->i_lock); 3739 if (unlikely(jinode != NULL)) 3740 jbd2_free_inode(jinode); 3741 return 0; 3742} 3743 3744/* 3745 * ext4_truncate() 3746 * 3747 * We block out ext4_get_block() block instantiations across the entire 3748 * transaction, and VFS/VM ensures that ext4_truncate() cannot run 3749 * simultaneously on behalf of the same inode. 3750 * 3751 * As we work through the truncate and commit bits of it to the journal there 3752 * is one core, guiding principle: the file's tree must always be consistent on 3753 * disk. We must be able to restart the truncate after a crash. 3754 * 3755 * The file's tree may be transiently inconsistent in memory (although it 3756 * probably isn't), but whenever we close off and commit a journal transaction, 3757 * the contents of (the filesystem + the journal) must be consistent and 3758 * restartable. It's pretty simple, really: bottom up, right to left (although 3759 * left-to-right works OK too). 3760 * 3761 * Note that at recovery time, journal replay occurs *before* the restart of 3762 * truncate against the orphan inode list. 3763 * 3764 * The committed inode has the new, desired i_size (which is the same as 3765 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see 3766 * that this inode's truncate did not complete and it will again call 3767 * ext4_truncate() to have another go. So there will be instantiated blocks 3768 * to the right of the truncation point in a crashed ext4 filesystem. But 3769 * that's fine - as long as they are linked from the inode, the post-crash 3770 * ext4_truncate() run will find them and release them. 3771 */ 3772void ext4_truncate(struct inode *inode) 3773{ 3774 struct ext4_inode_info *ei = EXT4_I(inode); 3775 unsigned int credits; 3776 handle_t *handle; 3777 struct address_space *mapping = inode->i_mapping; 3778 3779 /* 3780 * There is a possibility that we're either freeing the inode 3781 * or it's a completely new inode. In those cases we might not 3782 * have i_mutex locked because it's not necessary. 3783 */ 3784 if (!(inode->i_state & (I_NEW|I_FREEING))) 3785 WARN_ON(!mutex_is_locked(&inode->i_mutex)); 3786 trace_ext4_truncate_enter(inode); 3787 3788 if (!ext4_can_truncate(inode)) 3789 return; 3790 3791 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS); 3792 3793 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC)) 3794 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE); 3795 3796 if (ext4_has_inline_data(inode)) { 3797 int has_inline = 1; 3798 3799 ext4_inline_data_truncate(inode, &has_inline); 3800 if (has_inline) 3801 return; 3802 } 3803 3804 /* If we zero-out tail of the page, we have to create jinode for jbd2 */ 3805 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) { 3806 if (ext4_inode_attach_jinode(inode) < 0) 3807 return; 3808 } 3809 3810 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3811 credits = ext4_writepage_trans_blocks(inode); 3812 else 3813 credits = ext4_blocks_for_truncate(inode); 3814 3815 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits); 3816 if (IS_ERR(handle)) { 3817 ext4_std_error(inode->i_sb, PTR_ERR(handle)); 3818 return; 3819 } 3820 3821 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) 3822 ext4_block_truncate_page(handle, mapping, inode->i_size); 3823 3824 /* 3825 * We add the inode to the orphan list, so that if this 3826 * truncate spans multiple transactions, and we crash, we will 3827 * resume the truncate when the filesystem recovers. It also 3828 * marks the inode dirty, to catch the new size. 3829 * 3830 * Implication: the file must always be in a sane, consistent 3831 * truncatable state while each transaction commits. 3832 */ 3833 if (ext4_orphan_add(handle, inode)) 3834 goto out_stop; 3835 3836 down_write(&EXT4_I(inode)->i_data_sem); 3837 3838 ext4_discard_preallocations(inode); 3839 3840 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) 3841 ext4_ext_truncate(handle, inode); 3842 else 3843 ext4_ind_truncate(handle, inode); 3844 3845 up_write(&ei->i_data_sem); 3846 3847 if (IS_SYNC(inode)) 3848 ext4_handle_sync(handle); 3849 3850out_stop: 3851 /* 3852 * If this was a simple ftruncate() and the file will remain alive, 3853 * then we need to clear up the orphan record which we created above. 3854 * However, if this was a real unlink then we were called by 3855 * ext4_evict_inode(), and we allow that function to clean up the 3856 * orphan info for us. 3857 */ 3858 if (inode->i_nlink) 3859 ext4_orphan_del(handle, inode); 3860 3861 inode->i_mtime = inode->i_ctime = ext4_current_time(inode); 3862 ext4_mark_inode_dirty(handle, inode); 3863 ext4_journal_stop(handle); 3864 3865 trace_ext4_truncate_exit(inode); 3866} 3867 3868/* 3869 * ext4_get_inode_loc returns with an extra refcount against the inode's 3870 * underlying buffer_head on success. If 'in_mem' is true, we have all 3871 * data in memory that is needed to recreate the on-disk version of this 3872 * inode. 3873 */ 3874static int __ext4_get_inode_loc(struct inode *inode, 3875 struct ext4_iloc *iloc, int in_mem) 3876{ 3877 struct ext4_group_desc *gdp; 3878 struct buffer_head *bh; 3879 struct super_block *sb = inode->i_sb; 3880 ext4_fsblk_t block; 3881 int inodes_per_block, inode_offset; 3882 3883 iloc->bh = NULL; 3884 if (!ext4_valid_inum(sb, inode->i_ino)) 3885 return -EIO; 3886 3887 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb); 3888 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL); 3889 if (!gdp) 3890 return -EIO; 3891 3892 /* 3893 * Figure out the offset within the block group inode table 3894 */ 3895 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 3896 inode_offset = ((inode->i_ino - 1) % 3897 EXT4_INODES_PER_GROUP(sb)); 3898 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block); 3899 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb); 3900 3901 bh = sb_getblk(sb, block); 3902 if (unlikely(!bh)) 3903 return -ENOMEM; 3904 if (!buffer_uptodate(bh)) { 3905 lock_buffer(bh); 3906 3907 /* 3908 * If the buffer has the write error flag, we have failed 3909 * to write out another inode in the same block. In this 3910 * case, we don't have to read the block because we may 3911 * read the old inode data successfully. 3912 */ 3913 if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) 3914 set_buffer_uptodate(bh); 3915 3916 if (buffer_uptodate(bh)) { 3917 /* someone brought it uptodate while we waited */ 3918 unlock_buffer(bh); 3919 goto has_buffer; 3920 } 3921 3922 /* 3923 * If we have all information of the inode in memory and this 3924 * is the only valid inode in the block, we need not read the 3925 * block. 3926 */ 3927 if (in_mem) { 3928 struct buffer_head *bitmap_bh; 3929 int i, start; 3930 3931 start = inode_offset & ~(inodes_per_block - 1); 3932 3933 /* Is the inode bitmap in cache? */ 3934 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp)); 3935 if (unlikely(!bitmap_bh)) 3936 goto make_io; 3937 3938 /* 3939 * If the inode bitmap isn't in cache then the 3940 * optimisation may end up performing two reads instead 3941 * of one, so skip it. 3942 */ 3943 if (!buffer_uptodate(bitmap_bh)) { 3944 brelse(bitmap_bh); 3945 goto make_io; 3946 } 3947 for (i = start; i < start + inodes_per_block; i++) { 3948 if (i == inode_offset) 3949 continue; 3950 if (ext4_test_bit(i, bitmap_bh->b_data)) 3951 break; 3952 } 3953 brelse(bitmap_bh); 3954 if (i == start + inodes_per_block) { 3955 /* all other inodes are free, so skip I/O */ 3956 memset(bh->b_data, 0, bh->b_size); 3957 set_buffer_uptodate(bh); 3958 unlock_buffer(bh); 3959 goto has_buffer; 3960 } 3961 } 3962 3963make_io: 3964 /* 3965 * If we need to do any I/O, try to pre-readahead extra 3966 * blocks from the inode table. 3967 */ 3968 if (EXT4_SB(sb)->s_inode_readahead_blks) { 3969 ext4_fsblk_t b, end, table; 3970 unsigned num; 3971 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks; 3972 3973 table = ext4_inode_table(sb, gdp); 3974 /* s_inode_readahead_blks is always a power of 2 */ 3975 b = block & ~((ext4_fsblk_t) ra_blks - 1); 3976 if (table > b) 3977 b = table; 3978 end = b + ra_blks; 3979 num = EXT4_INODES_PER_GROUP(sb); 3980 if (ext4_has_group_desc_csum(sb)) 3981 num -= ext4_itable_unused_count(sb, gdp); 3982 table += num / inodes_per_block; 3983 if (end > table) 3984 end = table; 3985 while (b <= end) 3986 sb_breadahead(sb, b++); 3987 } 3988 3989 /* 3990 * There are other valid inodes in the buffer, this inode 3991 * has in-inode xattrs, or we don't have this inode in memory. 3992 * Read the block from disk. 3993 */ 3994 trace_ext4_load_inode(inode); 3995 get_bh(bh); 3996 bh->b_end_io = end_buffer_read_sync; 3997 submit_bh(READ | REQ_META | REQ_PRIO, bh); 3998 wait_on_buffer(bh); 3999 if (!buffer_uptodate(bh)) { 4000 EXT4_ERROR_INODE_BLOCK(inode, block, 4001 "unable to read itable block"); 4002 brelse(bh); 4003 return -EIO; 4004 } 4005 } 4006has_buffer: 4007 iloc->bh = bh; 4008 return 0; 4009} 4010 4011int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc) 4012{ 4013 /* We have all inode data except xattrs in memory here. */ 4014 return __ext4_get_inode_loc(inode, iloc, 4015 !ext4_test_inode_state(inode, EXT4_STATE_XATTR)); 4016} 4017 4018void ext4_set_inode_flags(struct inode *inode) 4019{ 4020 unsigned int flags = EXT4_I(inode)->i_flags; 4021 unsigned int new_fl = 0; 4022 4023 if (flags & EXT4_SYNC_FL) 4024 new_fl |= S_SYNC; 4025 if (flags & EXT4_APPEND_FL) 4026 new_fl |= S_APPEND; 4027 if (flags & EXT4_IMMUTABLE_FL) 4028 new_fl |= S_IMMUTABLE; 4029 if (flags & EXT4_NOATIME_FL) 4030 new_fl |= S_NOATIME; 4031 if (flags & EXT4_DIRSYNC_FL) 4032 new_fl |= S_DIRSYNC; 4033 if (test_opt(inode->i_sb, DAX)) 4034 new_fl |= S_DAX; 4035 inode_set_flags(inode, new_fl, 4036 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX); 4037} 4038 4039/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */ 4040void ext4_get_inode_flags(struct ext4_inode_info *ei) 4041{ 4042 unsigned int vfs_fl; 4043 unsigned long old_fl, new_fl; 4044 4045 do { 4046 vfs_fl = ei->vfs_inode.i_flags; 4047 old_fl = ei->i_flags; 4048 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL| 4049 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL| 4050 EXT4_DIRSYNC_FL); 4051 if (vfs_fl & S_SYNC) 4052 new_fl |= EXT4_SYNC_FL; 4053 if (vfs_fl & S_APPEND) 4054 new_fl |= EXT4_APPEND_FL; 4055 if (vfs_fl & S_IMMUTABLE) 4056 new_fl |= EXT4_IMMUTABLE_FL; 4057 if (vfs_fl & S_NOATIME) 4058 new_fl |= EXT4_NOATIME_FL; 4059 if (vfs_fl & S_DIRSYNC) 4060 new_fl |= EXT4_DIRSYNC_FL; 4061 } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl); 4062} 4063 4064static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode, 4065 struct ext4_inode_info *ei) 4066{ 4067 blkcnt_t i_blocks ; 4068 struct inode *inode = &(ei->vfs_inode); 4069 struct super_block *sb = inode->i_sb; 4070 4071 if (EXT4_HAS_RO_COMPAT_FEATURE(sb, 4072 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) { 4073 /* we are using combined 48 bit field */ 4074 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 | 4075 le32_to_cpu(raw_inode->i_blocks_lo); 4076 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) { 4077 /* i_blocks represent file system block size */ 4078 return i_blocks << (inode->i_blkbits - 9); 4079 } else { 4080 return i_blocks; 4081 } 4082 } else { 4083 return le32_to_cpu(raw_inode->i_blocks_lo); 4084 } 4085} 4086 4087static inline void ext4_iget_extra_inode(struct inode *inode, 4088 struct ext4_inode *raw_inode, 4089 struct ext4_inode_info *ei) 4090{ 4091 __le32 *magic = (void *)raw_inode + 4092 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize; 4093 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) { 4094 ext4_set_inode_state(inode, EXT4_STATE_XATTR); 4095 ext4_find_inline_data_nolock(inode); 4096 } else 4097 EXT4_I(inode)->i_inline_off = 0; 4098} 4099 4100struct inode *ext4_iget(struct super_block *sb, unsigned long ino) 4101{ 4102 struct ext4_iloc iloc; 4103 struct ext4_inode *raw_inode; 4104 struct ext4_inode_info *ei; 4105 struct inode *inode; 4106 journal_t *journal = EXT4_SB(sb)->s_journal; 4107 long ret; 4108 int block; 4109 uid_t i_uid; 4110 gid_t i_gid; 4111 4112 inode = iget_locked(sb, ino); 4113 if (!inode) 4114 return ERR_PTR(-ENOMEM); 4115 if (!(inode->i_state & I_NEW)) 4116 return inode; 4117 4118 ei = EXT4_I(inode); 4119 iloc.bh = NULL; 4120 4121 ret = __ext4_get_inode_loc(inode, &iloc, 0); 4122 if (ret < 0) 4123 goto bad_inode; 4124 raw_inode = ext4_raw_inode(&iloc); 4125 4126 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4127 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize); 4128 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > 4129 EXT4_INODE_SIZE(inode->i_sb)) { 4130 EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)", 4131 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize, 4132 EXT4_INODE_SIZE(inode->i_sb)); 4133 ret = -EIO; 4134 goto bad_inode; 4135 } 4136 } else 4137 ei->i_extra_isize = 0; 4138 4139 /* Precompute checksum seed for inode metadata */ 4140 if (ext4_has_metadata_csum(sb)) { 4141 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4142 __u32 csum; 4143 __le32 inum = cpu_to_le32(inode->i_ino); 4144 __le32 gen = raw_inode->i_generation; 4145 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum, 4146 sizeof(inum)); 4147 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen, 4148 sizeof(gen)); 4149 } 4150 4151 if (!ext4_inode_csum_verify(inode, raw_inode, ei)) { 4152 EXT4_ERROR_INODE(inode, "checksum invalid"); 4153 ret = -EIO; 4154 goto bad_inode; 4155 } 4156 4157 inode->i_mode = le16_to_cpu(raw_inode->i_mode); 4158 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low); 4159 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low); 4160 if (!(test_opt(inode->i_sb, NO_UID32))) { 4161 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16; 4162 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16; 4163 } 4164 i_uid_write(inode, i_uid); 4165 i_gid_write(inode, i_gid); 4166 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count)); 4167 4168 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */ 4169 ei->i_inline_off = 0; 4170 ei->i_dir_start_lookup = 0; 4171 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime); 4172 /* We now have enough fields to check if the inode was active or not. 4173 * This is needed because nfsd might try to access dead inodes 4174 * the test is that same one that e2fsck uses 4175 * NeilBrown 1999oct15 4176 */ 4177 if (inode->i_nlink == 0) { 4178 if ((inode->i_mode == 0 || 4179 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) && 4180 ino != EXT4_BOOT_LOADER_INO) { 4181 /* this inode is deleted */ 4182 ret = -ESTALE; 4183 goto bad_inode; 4184 } 4185 /* The only unlinked inodes we let through here have 4186 * valid i_mode and are being read by the orphan 4187 * recovery code: that's fine, we're about to complete 4188 * the process of deleting those. 4189 * OR it is the EXT4_BOOT_LOADER_INO which is 4190 * not initialized on a new filesystem. */ 4191 } 4192 ei->i_flags = le32_to_cpu(raw_inode->i_flags); 4193 inode->i_blocks = ext4_inode_blocks(raw_inode, ei); 4194 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo); 4195 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT)) 4196 ei->i_file_acl |= 4197 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32; 4198 inode->i_size = ext4_isize(raw_inode); 4199 ei->i_disksize = inode->i_size; 4200#ifdef CONFIG_QUOTA 4201 ei->i_reserved_quota = 0; 4202#endif 4203 inode->i_generation = le32_to_cpu(raw_inode->i_generation); 4204 ei->i_block_group = iloc.block_group; 4205 ei->i_last_alloc_group = ~0; 4206 /* 4207 * NOTE! The in-memory inode i_data array is in little-endian order 4208 * even on big-endian machines: we do NOT byteswap the block numbers! 4209 */ 4210 for (block = 0; block < EXT4_N_BLOCKS; block++) 4211 ei->i_data[block] = raw_inode->i_block[block]; 4212 INIT_LIST_HEAD(&ei->i_orphan); 4213 4214 /* 4215 * Set transaction id's of transactions that have to be committed 4216 * to finish f[data]sync. We set them to currently running transaction 4217 * as we cannot be sure that the inode or some of its metadata isn't 4218 * part of the transaction - the inode could have been reclaimed and 4219 * now it is reread from disk. 4220 */ 4221 if (journal) { 4222 transaction_t *transaction; 4223 tid_t tid; 4224 4225 read_lock(&journal->j_state_lock); 4226 if (journal->j_running_transaction) 4227 transaction = journal->j_running_transaction; 4228 else 4229 transaction = journal->j_committing_transaction; 4230 if (transaction) 4231 tid = transaction->t_tid; 4232 else 4233 tid = journal->j_commit_sequence; 4234 read_unlock(&journal->j_state_lock); 4235 ei->i_sync_tid = tid; 4236 ei->i_datasync_tid = tid; 4237 } 4238 4239 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4240 if (ei->i_extra_isize == 0) { 4241 /* The extra space is currently unused. Use it. */ 4242 ei->i_extra_isize = sizeof(struct ext4_inode) - 4243 EXT4_GOOD_OLD_INODE_SIZE; 4244 } else { 4245 ext4_iget_extra_inode(inode, raw_inode, ei); 4246 } 4247 } 4248 4249 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode); 4250 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode); 4251 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode); 4252 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode); 4253 4254 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4255 inode->i_version = le32_to_cpu(raw_inode->i_disk_version); 4256 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) { 4257 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4258 inode->i_version |= 4259 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32; 4260 } 4261 } 4262 4263 ret = 0; 4264 if (ei->i_file_acl && 4265 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) { 4266 EXT4_ERROR_INODE(inode, "bad extended attribute block %llu", 4267 ei->i_file_acl); 4268 ret = -EIO; 4269 goto bad_inode; 4270 } else if (!ext4_has_inline_data(inode)) { 4271 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) { 4272 if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4273 (S_ISLNK(inode->i_mode) && 4274 !ext4_inode_is_fast_symlink(inode)))) 4275 /* Validate extent which is part of inode */ 4276 ret = ext4_ext_check_inode(inode); 4277 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 4278 (S_ISLNK(inode->i_mode) && 4279 !ext4_inode_is_fast_symlink(inode))) { 4280 /* Validate block references which are part of inode */ 4281 ret = ext4_ind_check_inode(inode); 4282 } 4283 } 4284 if (ret) 4285 goto bad_inode; 4286 4287 if (S_ISREG(inode->i_mode)) { 4288 inode->i_op = &ext4_file_inode_operations; 4289 inode->i_fop = &ext4_file_operations; 4290 ext4_set_aops(inode); 4291 } else if (S_ISDIR(inode->i_mode)) { 4292 inode->i_op = &ext4_dir_inode_operations; 4293 inode->i_fop = &ext4_dir_operations; 4294 } else if (S_ISLNK(inode->i_mode)) { 4295 if (ext4_inode_is_fast_symlink(inode) && 4296 !ext4_encrypted_inode(inode)) { 4297 inode->i_op = &ext4_fast_symlink_inode_operations; 4298 nd_terminate_link(ei->i_data, inode->i_size, 4299 sizeof(ei->i_data) - 1); 4300 } else { 4301 inode->i_op = &ext4_symlink_inode_operations; 4302 ext4_set_aops(inode); 4303 } 4304 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) || 4305 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) { 4306 inode->i_op = &ext4_special_inode_operations; 4307 if (raw_inode->i_block[0]) 4308 init_special_inode(inode, inode->i_mode, 4309 old_decode_dev(le32_to_cpu(raw_inode->i_block[0]))); 4310 else 4311 init_special_inode(inode, inode->i_mode, 4312 new_decode_dev(le32_to_cpu(raw_inode->i_block[1]))); 4313 } else if (ino == EXT4_BOOT_LOADER_INO) { 4314 make_bad_inode(inode); 4315 } else { 4316 ret = -EIO; 4317 EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode); 4318 goto bad_inode; 4319 } 4320 brelse(iloc.bh); 4321 ext4_set_inode_flags(inode); 4322 unlock_new_inode(inode); 4323 return inode; 4324 4325bad_inode: 4326 brelse(iloc.bh); 4327 iget_failed(inode); 4328 return ERR_PTR(ret); 4329} 4330 4331struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino) 4332{ 4333 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO) 4334 return ERR_PTR(-EIO); 4335 return ext4_iget(sb, ino); 4336} 4337 4338static int ext4_inode_blocks_set(handle_t *handle, 4339 struct ext4_inode *raw_inode, 4340 struct ext4_inode_info *ei) 4341{ 4342 struct inode *inode = &(ei->vfs_inode); 4343 u64 i_blocks = inode->i_blocks; 4344 struct super_block *sb = inode->i_sb; 4345 4346 if (i_blocks <= ~0U) { 4347 /* 4348 * i_blocks can be represented in a 32 bit variable 4349 * as multiple of 512 bytes 4350 */ 4351 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4352 raw_inode->i_blocks_high = 0; 4353 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4354 return 0; 4355 } 4356 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) 4357 return -EFBIG; 4358 4359 if (i_blocks <= 0xffffffffffffULL) { 4360 /* 4361 * i_blocks can be represented in a 48 bit variable 4362 * as multiple of 512 bytes 4363 */ 4364 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4365 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4366 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4367 } else { 4368 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE); 4369 /* i_block is stored in file system block size */ 4370 i_blocks = i_blocks >> (inode->i_blkbits - 9); 4371 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks); 4372 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32); 4373 } 4374 return 0; 4375} 4376 4377struct other_inode { 4378 unsigned long orig_ino; 4379 struct ext4_inode *raw_inode; 4380}; 4381 4382static int other_inode_match(struct inode * inode, unsigned long ino, 4383 void *data) 4384{ 4385 struct other_inode *oi = (struct other_inode *) data; 4386 4387 if ((inode->i_ino != ino) || 4388 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4389 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) || 4390 ((inode->i_state & I_DIRTY_TIME) == 0)) 4391 return 0; 4392 spin_lock(&inode->i_lock); 4393 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW | 4394 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) && 4395 (inode->i_state & I_DIRTY_TIME)) { 4396 struct ext4_inode_info *ei = EXT4_I(inode); 4397 4398 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED); 4399 spin_unlock(&inode->i_lock); 4400 4401 spin_lock(&ei->i_raw_lock); 4402 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode); 4403 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode); 4404 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode); 4405 ext4_inode_csum_set(inode, oi->raw_inode, ei); 4406 spin_unlock(&ei->i_raw_lock); 4407 trace_ext4_other_inode_update_time(inode, oi->orig_ino); 4408 return -1; 4409 } 4410 spin_unlock(&inode->i_lock); 4411 return -1; 4412} 4413 4414/* 4415 * Opportunistically update the other time fields for other inodes in 4416 * the same inode table block. 4417 */ 4418static void ext4_update_other_inodes_time(struct super_block *sb, 4419 unsigned long orig_ino, char *buf) 4420{ 4421 struct other_inode oi; 4422 unsigned long ino; 4423 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block; 4424 int inode_size = EXT4_INODE_SIZE(sb); 4425 4426 oi.orig_ino = orig_ino; 4427 /* 4428 * Calculate the first inode in the inode table block. Inode 4429 * numbers are one-based. That is, the first inode in a block 4430 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1). 4431 */ 4432 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1; 4433 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) { 4434 if (ino == orig_ino) 4435 continue; 4436 oi.raw_inode = (struct ext4_inode *) buf; 4437 (void) find_inode_nowait(sb, ino, other_inode_match, &oi); 4438 } 4439} 4440 4441/* 4442 * Post the struct inode info into an on-disk inode location in the 4443 * buffer-cache. This gobbles the caller's reference to the 4444 * buffer_head in the inode location struct. 4445 * 4446 * The caller must have write access to iloc->bh. 4447 */ 4448static int ext4_do_update_inode(handle_t *handle, 4449 struct inode *inode, 4450 struct ext4_iloc *iloc) 4451{ 4452 struct ext4_inode *raw_inode = ext4_raw_inode(iloc); 4453 struct ext4_inode_info *ei = EXT4_I(inode); 4454 struct buffer_head *bh = iloc->bh; 4455 struct super_block *sb = inode->i_sb; 4456 int err = 0, rc, block; 4457 int need_datasync = 0, set_large_file = 0; 4458 uid_t i_uid; 4459 gid_t i_gid; 4460 4461 spin_lock(&ei->i_raw_lock); 4462 4463 /* For fields not tracked in the in-memory inode, 4464 * initialise them to zero for new inodes. */ 4465 if (ext4_test_inode_state(inode, EXT4_STATE_NEW)) 4466 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size); 4467 4468 ext4_get_inode_flags(ei); 4469 raw_inode->i_mode = cpu_to_le16(inode->i_mode); 4470 i_uid = i_uid_read(inode); 4471 i_gid = i_gid_read(inode); 4472 if (!(test_opt(inode->i_sb, NO_UID32))) { 4473 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid)); 4474 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid)); 4475/* 4476 * Fix up interoperability with old kernels. Otherwise, old inodes get 4477 * re-used with the upper 16 bits of the uid/gid intact 4478 */ 4479 if (!ei->i_dtime) { 4480 raw_inode->i_uid_high = 4481 cpu_to_le16(high_16_bits(i_uid)); 4482 raw_inode->i_gid_high = 4483 cpu_to_le16(high_16_bits(i_gid)); 4484 } else { 4485 raw_inode->i_uid_high = 0; 4486 raw_inode->i_gid_high = 0; 4487 } 4488 } else { 4489 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid)); 4490 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid)); 4491 raw_inode->i_uid_high = 0; 4492 raw_inode->i_gid_high = 0; 4493 } 4494 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink); 4495 4496 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode); 4497 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode); 4498 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode); 4499 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode); 4500 4501 err = ext4_inode_blocks_set(handle, raw_inode, ei); 4502 if (err) { 4503 spin_unlock(&ei->i_raw_lock); 4504 goto out_brelse; 4505 } 4506 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime); 4507 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF); 4508 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) 4509 raw_inode->i_file_acl_high = 4510 cpu_to_le16(ei->i_file_acl >> 32); 4511 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl); 4512 if (ei->i_disksize != ext4_isize(raw_inode)) { 4513 ext4_isize_set(raw_inode, ei->i_disksize); 4514 need_datasync = 1; 4515 } 4516 if (ei->i_disksize > 0x7fffffffULL) { 4517 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, 4518 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) || 4519 EXT4_SB(sb)->s_es->s_rev_level == 4520 cpu_to_le32(EXT4_GOOD_OLD_REV)) 4521 set_large_file = 1; 4522 } 4523 raw_inode->i_generation = cpu_to_le32(inode->i_generation); 4524 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 4525 if (old_valid_dev(inode->i_rdev)) { 4526 raw_inode->i_block[0] = 4527 cpu_to_le32(old_encode_dev(inode->i_rdev)); 4528 raw_inode->i_block[1] = 0; 4529 } else { 4530 raw_inode->i_block[0] = 0; 4531 raw_inode->i_block[1] = 4532 cpu_to_le32(new_encode_dev(inode->i_rdev)); 4533 raw_inode->i_block[2] = 0; 4534 } 4535 } else if (!ext4_has_inline_data(inode)) { 4536 for (block = 0; block < EXT4_N_BLOCKS; block++) 4537 raw_inode->i_block[block] = ei->i_data[block]; 4538 } 4539 4540 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) { 4541 raw_inode->i_disk_version = cpu_to_le32(inode->i_version); 4542 if (ei->i_extra_isize) { 4543 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi)) 4544 raw_inode->i_version_hi = 4545 cpu_to_le32(inode->i_version >> 32); 4546 raw_inode->i_extra_isize = 4547 cpu_to_le16(ei->i_extra_isize); 4548 } 4549 } 4550 ext4_inode_csum_set(inode, raw_inode, ei); 4551 spin_unlock(&ei->i_raw_lock); 4552 if (inode->i_sb->s_flags & MS_LAZYTIME) 4553 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino, 4554 bh->b_data); 4555 4556 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata"); 4557 rc = ext4_handle_dirty_metadata(handle, NULL, bh); 4558 if (!err) 4559 err = rc; 4560 ext4_clear_inode_state(inode, EXT4_STATE_NEW); 4561 if (set_large_file) { 4562 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access"); 4563 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh); 4564 if (err) 4565 goto out_brelse; 4566 ext4_update_dynamic_rev(sb); 4567 EXT4_SET_RO_COMPAT_FEATURE(sb, 4568 EXT4_FEATURE_RO_COMPAT_LARGE_FILE); 4569 ext4_handle_sync(handle); 4570 err = ext4_handle_dirty_super(handle, sb); 4571 } 4572 ext4_update_inode_fsync_trans(handle, inode, need_datasync); 4573out_brelse: 4574 brelse(bh); 4575 ext4_std_error(inode->i_sb, err); 4576 return err; 4577} 4578 4579/* 4580 * ext4_write_inode() 4581 * 4582 * We are called from a few places: 4583 * 4584 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files. 4585 * Here, there will be no transaction running. We wait for any running 4586 * transaction to commit. 4587 * 4588 * - Within flush work (sys_sync(), kupdate and such). 4589 * We wait on commit, if told to. 4590 * 4591 * - Within iput_final() -> write_inode_now() 4592 * We wait on commit, if told to. 4593 * 4594 * In all cases it is actually safe for us to return without doing anything, 4595 * because the inode has been copied into a raw inode buffer in 4596 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL 4597 * writeback. 4598 * 4599 * Note that we are absolutely dependent upon all inode dirtiers doing the 4600 * right thing: they *must* call mark_inode_dirty() after dirtying info in 4601 * which we are interested. 4602 * 4603 * It would be a bug for them to not do this. The code: 4604 * 4605 * mark_inode_dirty(inode) 4606 * stuff(); 4607 * inode->i_size = expr; 4608 * 4609 * is in error because write_inode() could occur while `stuff()' is running, 4610 * and the new i_size will be lost. Plus the inode will no longer be on the 4611 * superblock's dirty inode list. 4612 */ 4613int ext4_write_inode(struct inode *inode, struct writeback_control *wbc) 4614{ 4615 int err; 4616 4617 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC)) 4618 return 0; 4619 4620 if (EXT4_SB(inode->i_sb)->s_journal) { 4621 if (ext4_journal_current_handle()) { 4622 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n"); 4623 dump_stack(); 4624 return -EIO; 4625 } 4626 4627 /* 4628 * No need to force transaction in WB_SYNC_NONE mode. Also 4629 * ext4_sync_fs() will force the commit after everything is 4630 * written. 4631 */ 4632 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync) 4633 return 0; 4634 4635 err = ext4_force_commit(inode->i_sb); 4636 } else { 4637 struct ext4_iloc iloc; 4638 4639 err = __ext4_get_inode_loc(inode, &iloc, 0); 4640 if (err) 4641 return err; 4642 /* 4643 * sync(2) will flush the whole buffer cache. No need to do 4644 * it here separately for each inode. 4645 */ 4646 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) 4647 sync_dirty_buffer(iloc.bh); 4648 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) { 4649 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr, 4650 "IO error syncing inode"); 4651 err = -EIO; 4652 } 4653 brelse(iloc.bh); 4654 } 4655 return err; 4656} 4657 4658/* 4659 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate 4660 * buffers that are attached to a page stradding i_size and are undergoing 4661 * commit. In that case we have to wait for commit to finish and try again. 4662 */ 4663static void ext4_wait_for_tail_page_commit(struct inode *inode) 4664{ 4665 struct page *page; 4666 unsigned offset; 4667 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal; 4668 tid_t commit_tid = 0; 4669 int ret; 4670 4671 offset = inode->i_size & (PAGE_CACHE_SIZE - 1); 4672 /* 4673 * All buffers in the last page remain valid? Then there's nothing to 4674 * do. We do the check mainly to optimize the common PAGE_CACHE_SIZE == 4675 * blocksize case 4676 */ 4677 if (offset > PAGE_CACHE_SIZE - (1 << inode->i_blkbits)) 4678 return; 4679 while (1) { 4680 page = find_lock_page(inode->i_mapping, 4681 inode->i_size >> PAGE_CACHE_SHIFT); 4682 if (!page) 4683 return; 4684 ret = __ext4_journalled_invalidatepage(page, offset, 4685 PAGE_CACHE_SIZE - offset); 4686 unlock_page(page); 4687 page_cache_release(page); 4688 if (ret != -EBUSY) 4689 return; 4690 commit_tid = 0; 4691 read_lock(&journal->j_state_lock); 4692 if (journal->j_committing_transaction) 4693 commit_tid = journal->j_committing_transaction->t_tid; 4694 read_unlock(&journal->j_state_lock); 4695 if (commit_tid) 4696 jbd2_log_wait_commit(journal, commit_tid); 4697 } 4698} 4699 4700/* 4701 * ext4_setattr() 4702 * 4703 * Called from notify_change. 4704 * 4705 * We want to trap VFS attempts to truncate the file as soon as 4706 * possible. In particular, we want to make sure that when the VFS 4707 * shrinks i_size, we put the inode on the orphan list and modify 4708 * i_disksize immediately, so that during the subsequent flushing of 4709 * dirty pages and freeing of disk blocks, we can guarantee that any 4710 * commit will leave the blocks being flushed in an unused state on 4711 * disk. (On recovery, the inode will get truncated and the blocks will 4712 * be freed, so we have a strong guarantee that no future commit will 4713 * leave these blocks visible to the user.) 4714 * 4715 * Another thing we have to assure is that if we are in ordered mode 4716 * and inode is still attached to the committing transaction, we must 4717 * we start writeout of all the dirty pages which are being truncated. 4718 * This way we are sure that all the data written in the previous 4719 * transaction are already on disk (truncate waits for pages under 4720 * writeback). 4721 * 4722 * Called with inode->i_mutex down. 4723 */ 4724int ext4_setattr(struct dentry *dentry, struct iattr *attr) 4725{ 4726 struct inode *inode = d_inode(dentry); 4727 int error, rc = 0; 4728 int orphan = 0; 4729 const unsigned int ia_valid = attr->ia_valid; 4730 4731 error = inode_change_ok(inode, attr); 4732 if (error) 4733 return error; 4734 4735 if (is_quota_modification(inode, attr)) 4736 dquot_initialize(inode); 4737 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 4738 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 4739 handle_t *handle; 4740 4741 /* (user+group)*(old+new) structure, inode write (sb, 4742 * inode block, ? - but truncate inode update has it) */ 4743 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 4744 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) + 4745 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3); 4746 if (IS_ERR(handle)) { 4747 error = PTR_ERR(handle); 4748 goto err_out; 4749 } 4750 error = dquot_transfer(inode, attr); 4751 if (error) { 4752 ext4_journal_stop(handle); 4753 return error; 4754 } 4755 /* Update corresponding info in inode so that everything is in 4756 * one transaction */ 4757 if (attr->ia_valid & ATTR_UID) 4758 inode->i_uid = attr->ia_uid; 4759 if (attr->ia_valid & ATTR_GID) 4760 inode->i_gid = attr->ia_gid; 4761 error = ext4_mark_inode_dirty(handle, inode); 4762 ext4_journal_stop(handle); 4763 } 4764 4765 if (attr->ia_valid & ATTR_SIZE && attr->ia_size != inode->i_size) { 4766 handle_t *handle; 4767 4768 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) { 4769 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 4770 4771 if (attr->ia_size > sbi->s_bitmap_maxbytes) 4772 return -EFBIG; 4773 } 4774 4775 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size) 4776 inode_inc_iversion(inode); 4777 4778 if (S_ISREG(inode->i_mode) && 4779 (attr->ia_size < inode->i_size)) { 4780 if (ext4_should_order_data(inode)) { 4781 error = ext4_begin_ordered_truncate(inode, 4782 attr->ia_size); 4783 if (error) 4784 goto err_out; 4785 } 4786 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3); 4787 if (IS_ERR(handle)) { 4788 error = PTR_ERR(handle); 4789 goto err_out; 4790 } 4791 if (ext4_handle_valid(handle)) { 4792 error = ext4_orphan_add(handle, inode); 4793 orphan = 1; 4794 } 4795 down_write(&EXT4_I(inode)->i_data_sem); 4796 EXT4_I(inode)->i_disksize = attr->ia_size; 4797 rc = ext4_mark_inode_dirty(handle, inode); 4798 if (!error) 4799 error = rc; 4800 /* 4801 * We have to update i_size under i_data_sem together 4802 * with i_disksize to avoid races with writeback code 4803 * running ext4_wb_update_i_disksize(). 4804 */ 4805 if (!error) 4806 i_size_write(inode, attr->ia_size); 4807 up_write(&EXT4_I(inode)->i_data_sem); 4808 ext4_journal_stop(handle); 4809 if (error) { 4810 ext4_orphan_del(NULL, inode); 4811 goto err_out; 4812 } 4813 } else { 4814 loff_t oldsize = inode->i_size; 4815 4816 i_size_write(inode, attr->ia_size); 4817 pagecache_isize_extended(inode, oldsize, inode->i_size); 4818 } 4819 4820 /* 4821 * Blocks are going to be removed from the inode. Wait 4822 * for dio in flight. Temporarily disable 4823 * dioread_nolock to prevent livelock. 4824 */ 4825 if (orphan) { 4826 if (!ext4_should_journal_data(inode)) { 4827 ext4_inode_block_unlocked_dio(inode); 4828 inode_dio_wait(inode); 4829 ext4_inode_resume_unlocked_dio(inode); 4830 } else 4831 ext4_wait_for_tail_page_commit(inode); 4832 } 4833 down_write(&EXT4_I(inode)->i_mmap_sem); 4834 /* 4835 * Truncate pagecache after we've waited for commit 4836 * in data=journal mode to make pages freeable. 4837 */ 4838 truncate_pagecache(inode, inode->i_size); 4839 up_write(&EXT4_I(inode)->i_mmap_sem); 4840 } 4841 /* 4842 * We want to call ext4_truncate() even if attr->ia_size == 4843 * inode->i_size for cases like truncation of fallocated space 4844 */ 4845 if (attr->ia_valid & ATTR_SIZE) 4846 ext4_truncate(inode); 4847 4848 if (!rc) { 4849 setattr_copy(inode, attr); 4850 mark_inode_dirty(inode); 4851 } 4852 4853 /* 4854 * If the call to ext4_truncate failed to get a transaction handle at 4855 * all, we need to clean up the in-core orphan list manually. 4856 */ 4857 if (orphan && inode->i_nlink) 4858 ext4_orphan_del(NULL, inode); 4859 4860 if (!rc && (ia_valid & ATTR_MODE)) 4861 rc = posix_acl_chmod(inode, inode->i_mode); 4862 4863err_out: 4864 ext4_std_error(inode->i_sb, error); 4865 if (!error) 4866 error = rc; 4867 return error; 4868} 4869 4870int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry, 4871 struct kstat *stat) 4872{ 4873 struct inode *inode; 4874 unsigned long long delalloc_blocks; 4875 4876 inode = d_inode(dentry); 4877 generic_fillattr(inode, stat); 4878 4879 /* 4880 * If there is inline data in the inode, the inode will normally not 4881 * have data blocks allocated (it may have an external xattr block). 4882 * Report at least one sector for such files, so tools like tar, rsync, 4883 * others doen't incorrectly think the file is completely sparse. 4884 */ 4885 if (unlikely(ext4_has_inline_data(inode))) 4886 stat->blocks += (stat->size + 511) >> 9; 4887 4888 /* 4889 * We can't update i_blocks if the block allocation is delayed 4890 * otherwise in the case of system crash before the real block 4891 * allocation is done, we will have i_blocks inconsistent with 4892 * on-disk file blocks. 4893 * We always keep i_blocks updated together with real 4894 * allocation. But to not confuse with user, stat 4895 * will return the blocks that include the delayed allocation 4896 * blocks for this file. 4897 */ 4898 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb), 4899 EXT4_I(inode)->i_reserved_data_blocks); 4900 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9); 4901 return 0; 4902} 4903 4904static int ext4_index_trans_blocks(struct inode *inode, int lblocks, 4905 int pextents) 4906{ 4907 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) 4908 return ext4_ind_trans_blocks(inode, lblocks); 4909 return ext4_ext_index_trans_blocks(inode, pextents); 4910} 4911 4912/* 4913 * Account for index blocks, block groups bitmaps and block group 4914 * descriptor blocks if modify datablocks and index blocks 4915 * worse case, the indexs blocks spread over different block groups 4916 * 4917 * If datablocks are discontiguous, they are possible to spread over 4918 * different block groups too. If they are contiguous, with flexbg, 4919 * they could still across block group boundary. 4920 * 4921 * Also account for superblock, inode, quota and xattr blocks 4922 */ 4923static int ext4_meta_trans_blocks(struct inode *inode, int lblocks, 4924 int pextents) 4925{ 4926 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb); 4927 int gdpblocks; 4928 int idxblocks; 4929 int ret = 0; 4930 4931 /* 4932 * How many index blocks need to touch to map @lblocks logical blocks 4933 * to @pextents physical extents? 4934 */ 4935 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents); 4936 4937 ret = idxblocks; 4938 4939 /* 4940 * Now let's see how many group bitmaps and group descriptors need 4941 * to account 4942 */ 4943 groups = idxblocks + pextents; 4944 gdpblocks = groups; 4945 if (groups > ngroups) 4946 groups = ngroups; 4947 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count) 4948 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count; 4949 4950 /* bitmaps and block group descriptor blocks */ 4951 ret += groups + gdpblocks; 4952 4953 /* Blocks for super block, inode, quota and xattr blocks */ 4954 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb); 4955 4956 return ret; 4957} 4958 4959/* 4960 * Calculate the total number of credits to reserve to fit 4961 * the modification of a single pages into a single transaction, 4962 * which may include multiple chunks of block allocations. 4963 * 4964 * This could be called via ext4_write_begin() 4965 * 4966 * We need to consider the worse case, when 4967 * one new block per extent. 4968 */ 4969int ext4_writepage_trans_blocks(struct inode *inode) 4970{ 4971 int bpp = ext4_journal_blocks_per_page(inode); 4972 int ret; 4973 4974 ret = ext4_meta_trans_blocks(inode, bpp, bpp); 4975 4976 /* Account for data blocks for journalled mode */ 4977 if (ext4_should_journal_data(inode)) 4978 ret += bpp; 4979 return ret; 4980} 4981 4982/* 4983 * Calculate the journal credits for a chunk of data modification. 4984 * 4985 * This is called from DIO, fallocate or whoever calling 4986 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks. 4987 * 4988 * journal buffers for data blocks are not included here, as DIO 4989 * and fallocate do no need to journal data buffers. 4990 */ 4991int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks) 4992{ 4993 return ext4_meta_trans_blocks(inode, nrblocks, 1); 4994} 4995 4996/* 4997 * The caller must have previously called ext4_reserve_inode_write(). 4998 * Give this, we know that the caller already has write access to iloc->bh. 4999 */ 5000int ext4_mark_iloc_dirty(handle_t *handle, 5001 struct inode *inode, struct ext4_iloc *iloc) 5002{ 5003 int err = 0; 5004 5005 if (IS_I_VERSION(inode)) 5006 inode_inc_iversion(inode); 5007 5008 /* the do_update_inode consumes one bh->b_count */ 5009 get_bh(iloc->bh); 5010 5011 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */ 5012 err = ext4_do_update_inode(handle, inode, iloc); 5013 put_bh(iloc->bh); 5014 return err; 5015} 5016 5017/* 5018 * On success, We end up with an outstanding reference count against 5019 * iloc->bh. This _must_ be cleaned up later. 5020 */ 5021 5022int 5023ext4_reserve_inode_write(handle_t *handle, struct inode *inode, 5024 struct ext4_iloc *iloc) 5025{ 5026 int err; 5027 5028 err = ext4_get_inode_loc(inode, iloc); 5029 if (!err) { 5030 BUFFER_TRACE(iloc->bh, "get_write_access"); 5031 err = ext4_journal_get_write_access(handle, iloc->bh); 5032 if (err) { 5033 brelse(iloc->bh); 5034 iloc->bh = NULL; 5035 } 5036 } 5037 ext4_std_error(inode->i_sb, err); 5038 return err; 5039} 5040 5041/* 5042 * Expand an inode by new_extra_isize bytes. 5043 * Returns 0 on success or negative error number on failure. 5044 */ 5045static int ext4_expand_extra_isize(struct inode *inode, 5046 unsigned int new_extra_isize, 5047 struct ext4_iloc iloc, 5048 handle_t *handle) 5049{ 5050 struct ext4_inode *raw_inode; 5051 struct ext4_xattr_ibody_header *header; 5052 5053 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize) 5054 return 0; 5055 5056 raw_inode = ext4_raw_inode(&iloc); 5057 5058 header = IHDR(inode, raw_inode); 5059 5060 /* No extended attributes present */ 5061 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) || 5062 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) { 5063 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0, 5064 new_extra_isize); 5065 EXT4_I(inode)->i_extra_isize = new_extra_isize; 5066 return 0; 5067 } 5068 5069 /* try to expand with EAs present */ 5070 return ext4_expand_extra_isize_ea(inode, new_extra_isize, 5071 raw_inode, handle); 5072} 5073 5074/* 5075 * What we do here is to mark the in-core inode as clean with respect to inode 5076 * dirtiness (it may still be data-dirty). 5077 * This means that the in-core inode may be reaped by prune_icache 5078 * without having to perform any I/O. This is a very good thing, 5079 * because *any* task may call prune_icache - even ones which 5080 * have a transaction open against a different journal. 5081 * 5082 * Is this cheating? Not really. Sure, we haven't written the 5083 * inode out, but prune_icache isn't a user-visible syncing function. 5084 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync) 5085 * we start and wait on commits. 5086 */ 5087int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode) 5088{ 5089 struct ext4_iloc iloc; 5090 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb); 5091 static unsigned int mnt_count; 5092 int err, ret; 5093 5094 might_sleep(); 5095 trace_ext4_mark_inode_dirty(inode, _RET_IP_); 5096 err = ext4_reserve_inode_write(handle, inode, &iloc); 5097 if (ext4_handle_valid(handle) && 5098 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize && 5099 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) { 5100 /* 5101 * We need extra buffer credits since we may write into EA block 5102 * with this same handle. If journal_extend fails, then it will 5103 * only result in a minor loss of functionality for that inode. 5104 * If this is felt to be critical, then e2fsck should be run to 5105 * force a large enough s_min_extra_isize. 5106 */ 5107 if ((jbd2_journal_extend(handle, 5108 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) { 5109 ret = ext4_expand_extra_isize(inode, 5110 sbi->s_want_extra_isize, 5111 iloc, handle); 5112 if (ret) { 5113 ext4_set_inode_state(inode, 5114 EXT4_STATE_NO_EXPAND); 5115 if (mnt_count != 5116 le16_to_cpu(sbi->s_es->s_mnt_count)) { 5117 ext4_warning(inode->i_sb, 5118 "Unable to expand inode %lu. Delete" 5119 " some EAs or run e2fsck.", 5120 inode->i_ino); 5121 mnt_count = 5122 le16_to_cpu(sbi->s_es->s_mnt_count); 5123 } 5124 } 5125 } 5126 } 5127 if (!err) 5128 err = ext4_mark_iloc_dirty(handle, inode, &iloc); 5129 return err; 5130} 5131 5132/* 5133 * ext4_dirty_inode() is called from __mark_inode_dirty() 5134 * 5135 * We're really interested in the case where a file is being extended. 5136 * i_size has been changed by generic_commit_write() and we thus need 5137 * to include the updated inode in the current transaction. 5138 * 5139 * Also, dquot_alloc_block() will always dirty the inode when blocks 5140 * are allocated to the file. 5141 * 5142 * If the inode is marked synchronous, we don't honour that here - doing 5143 * so would cause a commit on atime updates, which we don't bother doing. 5144 * We handle synchronous inodes at the highest possible level. 5145 * 5146 * If only the I_DIRTY_TIME flag is set, we can skip everything. If 5147 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need 5148 * to copy into the on-disk inode structure are the timestamp files. 5149 */ 5150void ext4_dirty_inode(struct inode *inode, int flags) 5151{ 5152 handle_t *handle; 5153 5154 if (flags == I_DIRTY_TIME) 5155 return; 5156 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2); 5157 if (IS_ERR(handle)) 5158 goto out; 5159 5160 ext4_mark_inode_dirty(handle, inode); 5161 5162 ext4_journal_stop(handle); 5163out: 5164 return; 5165} 5166 5167#if 0 5168/* 5169 * Bind an inode's backing buffer_head into this transaction, to prevent 5170 * it from being flushed to disk early. Unlike 5171 * ext4_reserve_inode_write, this leaves behind no bh reference and 5172 * returns no iloc structure, so the caller needs to repeat the iloc 5173 * lookup to mark the inode dirty later. 5174 */ 5175static int ext4_pin_inode(handle_t *handle, struct inode *inode) 5176{ 5177 struct ext4_iloc iloc; 5178 5179 int err = 0; 5180 if (handle) { 5181 err = ext4_get_inode_loc(inode, &iloc); 5182 if (!err) { 5183 BUFFER_TRACE(iloc.bh, "get_write_access"); 5184 err = jbd2_journal_get_write_access(handle, iloc.bh); 5185 if (!err) 5186 err = ext4_handle_dirty_metadata(handle, 5187 NULL, 5188 iloc.bh); 5189 brelse(iloc.bh); 5190 } 5191 } 5192 ext4_std_error(inode->i_sb, err); 5193 return err; 5194} 5195#endif 5196 5197int ext4_change_inode_journal_flag(struct inode *inode, int val) 5198{ 5199 journal_t *journal; 5200 handle_t *handle; 5201 int err; 5202 5203 /* 5204 * We have to be very careful here: changing a data block's 5205 * journaling status dynamically is dangerous. If we write a 5206 * data block to the journal, change the status and then delete 5207 * that block, we risk forgetting to revoke the old log record 5208 * from the journal and so a subsequent replay can corrupt data. 5209 * So, first we make sure that the journal is empty and that 5210 * nobody is changing anything. 5211 */ 5212 5213 journal = EXT4_JOURNAL(inode); 5214 if (!journal) 5215 return 0; 5216 if (is_journal_aborted(journal)) 5217 return -EROFS; 5218 /* We have to allocate physical blocks for delalloc blocks 5219 * before flushing journal. otherwise delalloc blocks can not 5220 * be allocated any more. even more truncate on delalloc blocks 5221 * could trigger BUG by flushing delalloc blocks in journal. 5222 * There is no delalloc block in non-journal data mode. 5223 */ 5224 if (val && test_opt(inode->i_sb, DELALLOC)) { 5225 err = ext4_alloc_da_blocks(inode); 5226 if (err < 0) 5227 return err; 5228 } 5229 5230 /* Wait for all existing dio workers */ 5231 ext4_inode_block_unlocked_dio(inode); 5232 inode_dio_wait(inode); 5233 5234 jbd2_journal_lock_updates(journal); 5235 5236 /* 5237 * OK, there are no updates running now, and all cached data is 5238 * synced to disk. We are now in a completely consistent state 5239 * which doesn't have anything in the journal, and we know that 5240 * no filesystem updates are running, so it is safe to modify 5241 * the inode's in-core data-journaling state flag now. 5242 */ 5243 5244 if (val) 5245 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5246 else { 5247 err = jbd2_journal_flush(journal); 5248 if (err < 0) { 5249 jbd2_journal_unlock_updates(journal); 5250 ext4_inode_resume_unlocked_dio(inode); 5251 return err; 5252 } 5253 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA); 5254 } 5255 ext4_set_aops(inode); 5256 5257 jbd2_journal_unlock_updates(journal); 5258 ext4_inode_resume_unlocked_dio(inode); 5259 5260 /* Finally we can mark the inode as dirty. */ 5261 5262 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1); 5263 if (IS_ERR(handle)) 5264 return PTR_ERR(handle); 5265 5266 err = ext4_mark_inode_dirty(handle, inode); 5267 ext4_handle_sync(handle); 5268 ext4_journal_stop(handle); 5269 ext4_std_error(inode->i_sb, err); 5270 5271 return err; 5272} 5273 5274static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh) 5275{ 5276 return !buffer_mapped(bh); 5277} 5278 5279int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf) 5280{ 5281 struct page *page = vmf->page; 5282 loff_t size; 5283 unsigned long len; 5284 int ret; 5285 struct file *file = vma->vm_file; 5286 struct inode *inode = file_inode(file); 5287 struct address_space *mapping = inode->i_mapping; 5288 handle_t *handle; 5289 get_block_t *get_block; 5290 int retries = 0; 5291 5292 sb_start_pagefault(inode->i_sb); 5293 file_update_time(vma->vm_file); 5294 5295 down_read(&EXT4_I(inode)->i_mmap_sem); 5296 /* Delalloc case is easy... */ 5297 if (test_opt(inode->i_sb, DELALLOC) && 5298 !ext4_should_journal_data(inode) && 5299 !ext4_nonda_switch(inode->i_sb)) { 5300 do { 5301 ret = __block_page_mkwrite(vma, vmf, 5302 ext4_da_get_block_prep); 5303 } while (ret == -ENOSPC && 5304 ext4_should_retry_alloc(inode->i_sb, &retries)); 5305 goto out_ret; 5306 } 5307 5308 lock_page(page); 5309 size = i_size_read(inode); 5310 /* Page got truncated from under us? */ 5311 if (page->mapping != mapping || page_offset(page) > size) { 5312 unlock_page(page); 5313 ret = VM_FAULT_NOPAGE; 5314 goto out; 5315 } 5316 5317 if (page->index == size >> PAGE_CACHE_SHIFT) 5318 len = size & ~PAGE_CACHE_MASK; 5319 else 5320 len = PAGE_CACHE_SIZE; 5321 /* 5322 * Return if we have all the buffers mapped. This avoids the need to do 5323 * journal_start/journal_stop which can block and take a long time 5324 */ 5325 if (page_has_buffers(page)) { 5326 if (!ext4_walk_page_buffers(NULL, page_buffers(page), 5327 0, len, NULL, 5328 ext4_bh_unmapped)) { 5329 /* Wait so that we don't change page under IO */ 5330 wait_for_stable_page(page); 5331 ret = VM_FAULT_LOCKED; 5332 goto out; 5333 } 5334 } 5335 unlock_page(page); 5336 /* OK, we need to fill the hole... */ 5337 if (ext4_should_dioread_nolock(inode)) 5338 get_block = ext4_get_block_write; 5339 else 5340 get_block = ext4_get_block; 5341retry_alloc: 5342 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, 5343 ext4_writepage_trans_blocks(inode)); 5344 if (IS_ERR(handle)) { 5345 ret = VM_FAULT_SIGBUS; 5346 goto out; 5347 } 5348 ret = __block_page_mkwrite(vma, vmf, get_block); 5349 if (!ret && ext4_should_journal_data(inode)) { 5350 if (ext4_walk_page_buffers(handle, page_buffers(page), 0, 5351 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access)) { 5352 unlock_page(page); 5353 ret = VM_FAULT_SIGBUS; 5354 ext4_journal_stop(handle); 5355 goto out; 5356 } 5357 ext4_set_inode_state(inode, EXT4_STATE_JDATA); 5358 } 5359 ext4_journal_stop(handle); 5360 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries)) 5361 goto retry_alloc; 5362out_ret: 5363 ret = block_page_mkwrite_return(ret); 5364out: 5365 up_read(&EXT4_I(inode)->i_mmap_sem); 5366 sb_end_pagefault(inode->i_sb); 5367 return ret; 5368} 5369 5370int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf) 5371{ 5372 struct inode *inode = file_inode(vma->vm_file); 5373 int err; 5374 5375 down_read(&EXT4_I(inode)->i_mmap_sem); 5376 err = filemap_fault(vma, vmf); 5377 up_read(&EXT4_I(inode)->i_mmap_sem); 5378 5379 return err; 5380} 5381