1/*
2 * fs/f2fs/f2fs.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#ifndef _LINUX_F2FS_H
12#define _LINUX_F2FS_H
13
14#include <linux/types.h>
15#include <linux/page-flags.h>
16#include <linux/buffer_head.h>
17#include <linux/slab.h>
18#include <linux/crc32.h>
19#include <linux/magic.h>
20#include <linux/kobject.h>
21#include <linux/sched.h>
22
23#ifdef CONFIG_F2FS_CHECK_FS
24#define f2fs_bug_on(sbi, condition)	BUG_ON(condition)
25#define f2fs_down_write(x, y)	down_write_nest_lock(x, y)
26#else
27#define f2fs_bug_on(sbi, condition)					\
28	do {								\
29		if (unlikely(condition)) {				\
30			WARN_ON(1);					\
31			set_sbi_flag(sbi, SBI_NEED_FSCK);		\
32		}							\
33	} while (0)
34#define f2fs_down_write(x, y)	down_write(x)
35#endif
36
37/*
38 * For mount options
39 */
40#define F2FS_MOUNT_BG_GC		0x00000001
41#define F2FS_MOUNT_DISABLE_ROLL_FORWARD	0x00000002
42#define F2FS_MOUNT_DISCARD		0x00000004
43#define F2FS_MOUNT_NOHEAP		0x00000008
44#define F2FS_MOUNT_XATTR_USER		0x00000010
45#define F2FS_MOUNT_POSIX_ACL		0x00000020
46#define F2FS_MOUNT_DISABLE_EXT_IDENTIFY	0x00000040
47#define F2FS_MOUNT_INLINE_XATTR		0x00000080
48#define F2FS_MOUNT_INLINE_DATA		0x00000100
49#define F2FS_MOUNT_INLINE_DENTRY	0x00000200
50#define F2FS_MOUNT_FLUSH_MERGE		0x00000400
51#define F2FS_MOUNT_NOBARRIER		0x00000800
52#define F2FS_MOUNT_FASTBOOT		0x00001000
53#define F2FS_MOUNT_EXTENT_CACHE		0x00002000
54
55#define clear_opt(sbi, option)	(sbi->mount_opt.opt &= ~F2FS_MOUNT_##option)
56#define set_opt(sbi, option)	(sbi->mount_opt.opt |= F2FS_MOUNT_##option)
57#define test_opt(sbi, option)	(sbi->mount_opt.opt & F2FS_MOUNT_##option)
58
59#define ver_after(a, b)	(typecheck(unsigned long long, a) &&		\
60		typecheck(unsigned long long, b) &&			\
61		((long long)((a) - (b)) > 0))
62
63typedef u32 block_t;	/*
64			 * should not change u32, since it is the on-disk block
65			 * address format, __le32.
66			 */
67typedef u32 nid_t;
68
69struct f2fs_mount_info {
70	unsigned int	opt;
71};
72
73#define CRCPOLY_LE 0xedb88320
74
75static inline __u32 f2fs_crc32(void *buf, size_t len)
76{
77	unsigned char *p = (unsigned char *)buf;
78	__u32 crc = F2FS_SUPER_MAGIC;
79	int i;
80
81	while (len--) {
82		crc ^= *p++;
83		for (i = 0; i < 8; i++)
84			crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_LE : 0);
85	}
86	return crc;
87}
88
89static inline bool f2fs_crc_valid(__u32 blk_crc, void *buf, size_t buf_size)
90{
91	return f2fs_crc32(buf, buf_size) == blk_crc;
92}
93
94/*
95 * For checkpoint manager
96 */
97enum {
98	NAT_BITMAP,
99	SIT_BITMAP
100};
101
102enum {
103	CP_UMOUNT,
104	CP_FASTBOOT,
105	CP_SYNC,
106	CP_RECOVERY,
107	CP_DISCARD,
108};
109
110#define DEF_BATCHED_TRIM_SECTIONS	32
111#define BATCHED_TRIM_SEGMENTS(sbi)	\
112		(SM_I(sbi)->trim_sections * (sbi)->segs_per_sec)
113
114struct cp_control {
115	int reason;
116	__u64 trim_start;
117	__u64 trim_end;
118	__u64 trim_minlen;
119	__u64 trimmed;
120};
121
122/*
123 * For CP/NAT/SIT/SSA readahead
124 */
125enum {
126	META_CP,
127	META_NAT,
128	META_SIT,
129	META_SSA,
130	META_POR,
131};
132
133/* for the list of ino */
134enum {
135	ORPHAN_INO,		/* for orphan ino list */
136	APPEND_INO,		/* for append ino list */
137	UPDATE_INO,		/* for update ino list */
138	MAX_INO_ENTRY,		/* max. list */
139};
140
141struct ino_entry {
142	struct list_head list;	/* list head */
143	nid_t ino;		/* inode number */
144};
145
146/*
147 * for the list of directory inodes or gc inodes.
148 * NOTE: there are two slab users for this structure, if we add/modify/delete
149 * fields in structure for one of slab users, it may affect fields or size of
150 * other one, in this condition, it's better to split both of slab and related
151 * data structure.
152 */
153struct inode_entry {
154	struct list_head list;	/* list head */
155	struct inode *inode;	/* vfs inode pointer */
156};
157
158/* for the list of blockaddresses to be discarded */
159struct discard_entry {
160	struct list_head list;	/* list head */
161	block_t blkaddr;	/* block address to be discarded */
162	int len;		/* # of consecutive blocks of the discard */
163};
164
165/* for the list of fsync inodes, used only during recovery */
166struct fsync_inode_entry {
167	struct list_head list;	/* list head */
168	struct inode *inode;	/* vfs inode pointer */
169	block_t blkaddr;	/* block address locating the last fsync */
170	block_t last_dentry;	/* block address locating the last dentry */
171	block_t last_inode;	/* block address locating the last inode */
172};
173
174#define nats_in_cursum(sum)		(le16_to_cpu(sum->n_nats))
175#define sits_in_cursum(sum)		(le16_to_cpu(sum->n_sits))
176
177#define nat_in_journal(sum, i)		(sum->nat_j.entries[i].ne)
178#define nid_in_journal(sum, i)		(sum->nat_j.entries[i].nid)
179#define sit_in_journal(sum, i)		(sum->sit_j.entries[i].se)
180#define segno_in_journal(sum, i)	(sum->sit_j.entries[i].segno)
181
182#define MAX_NAT_JENTRIES(sum)	(NAT_JOURNAL_ENTRIES - nats_in_cursum(sum))
183#define MAX_SIT_JENTRIES(sum)	(SIT_JOURNAL_ENTRIES - sits_in_cursum(sum))
184
185static inline int update_nats_in_cursum(struct f2fs_summary_block *rs, int i)
186{
187	int before = nats_in_cursum(rs);
188	rs->n_nats = cpu_to_le16(before + i);
189	return before;
190}
191
192static inline int update_sits_in_cursum(struct f2fs_summary_block *rs, int i)
193{
194	int before = sits_in_cursum(rs);
195	rs->n_sits = cpu_to_le16(before + i);
196	return before;
197}
198
199static inline bool __has_cursum_space(struct f2fs_summary_block *sum, int size,
200								int type)
201{
202	if (type == NAT_JOURNAL)
203		return size <= MAX_NAT_JENTRIES(sum);
204	return size <= MAX_SIT_JENTRIES(sum);
205}
206
207/*
208 * ioctl commands
209 */
210#define F2FS_IOC_GETFLAGS		FS_IOC_GETFLAGS
211#define F2FS_IOC_SETFLAGS		FS_IOC_SETFLAGS
212#define F2FS_IOC_GETVERSION		FS_IOC_GETVERSION
213
214#define F2FS_IOCTL_MAGIC		0xf5
215#define F2FS_IOC_START_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 1)
216#define F2FS_IOC_COMMIT_ATOMIC_WRITE	_IO(F2FS_IOCTL_MAGIC, 2)
217#define F2FS_IOC_START_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 3)
218#define F2FS_IOC_RELEASE_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 4)
219#define F2FS_IOC_ABORT_VOLATILE_WRITE	_IO(F2FS_IOCTL_MAGIC, 5)
220
221/*
222 * should be same as XFS_IOC_GOINGDOWN.
223 * Flags for going down operation used by FS_IOC_GOINGDOWN
224 */
225#define F2FS_IOC_SHUTDOWN	_IOR('X', 125, __u32)	/* Shutdown */
226#define F2FS_GOING_DOWN_FULLSYNC	0x0	/* going down with full sync */
227#define F2FS_GOING_DOWN_METASYNC	0x1	/* going down with metadata */
228#define F2FS_GOING_DOWN_NOSYNC		0x2	/* going down */
229
230#if defined(__KERNEL__) && defined(CONFIG_COMPAT)
231/*
232 * ioctl commands in 32 bit emulation
233 */
234#define F2FS_IOC32_GETFLAGS             FS_IOC32_GETFLAGS
235#define F2FS_IOC32_SETFLAGS             FS_IOC32_SETFLAGS
236#endif
237
238/*
239 * For INODE and NODE manager
240 */
241/* for directory operations */
242struct f2fs_dentry_ptr {
243	const void *bitmap;
244	struct f2fs_dir_entry *dentry;
245	__u8 (*filename)[F2FS_SLOT_LEN];
246	int max;
247};
248
249static inline void make_dentry_ptr(struct f2fs_dentry_ptr *d,
250					void *src, int type)
251{
252	if (type == 1) {
253		struct f2fs_dentry_block *t = (struct f2fs_dentry_block *)src;
254		d->max = NR_DENTRY_IN_BLOCK;
255		d->bitmap = &t->dentry_bitmap;
256		d->dentry = t->dentry;
257		d->filename = t->filename;
258	} else {
259		struct f2fs_inline_dentry *t = (struct f2fs_inline_dentry *)src;
260		d->max = NR_INLINE_DENTRY;
261		d->bitmap = &t->dentry_bitmap;
262		d->dentry = t->dentry;
263		d->filename = t->filename;
264	}
265}
266
267/*
268 * XATTR_NODE_OFFSET stores xattrs to one node block per file keeping -1
269 * as its node offset to distinguish from index node blocks.
270 * But some bits are used to mark the node block.
271 */
272#define XATTR_NODE_OFFSET	((((unsigned int)-1) << OFFSET_BIT_SHIFT) \
273				>> OFFSET_BIT_SHIFT)
274enum {
275	ALLOC_NODE,			/* allocate a new node page if needed */
276	LOOKUP_NODE,			/* look up a node without readahead */
277	LOOKUP_NODE_RA,			/*
278					 * look up a node with readahead called
279					 * by get_data_block.
280					 */
281};
282
283#define F2FS_LINK_MAX		32000	/* maximum link count per file */
284
285#define MAX_DIR_RA_PAGES	4	/* maximum ra pages of dir */
286
287/* vector size for gang look-up from extent cache that consists of radix tree */
288#define EXT_TREE_VEC_SIZE	64
289
290/* for in-memory extent cache entry */
291#define F2FS_MIN_EXTENT_LEN	64	/* minimum extent length */
292
293/* number of extent info in extent cache we try to shrink */
294#define EXTENT_CACHE_SHRINK_NUMBER	128
295
296struct extent_info {
297	unsigned int fofs;		/* start offset in a file */
298	u32 blk;			/* start block address of the extent */
299	unsigned int len;		/* length of the extent */
300};
301
302struct extent_node {
303	struct rb_node rb_node;		/* rb node located in rb-tree */
304	struct list_head list;		/* node in global extent list of sbi */
305	struct extent_info ei;		/* extent info */
306};
307
308struct extent_tree {
309	nid_t ino;			/* inode number */
310	struct rb_root root;		/* root of extent info rb-tree */
311	struct extent_node *cached_en;	/* recently accessed extent node */
312	rwlock_t lock;			/* protect extent info rb-tree */
313	atomic_t refcount;		/* reference count of rb-tree */
314	unsigned int count;		/* # of extent node in rb-tree*/
315};
316
317/*
318 * i_advise uses FADVISE_XXX_BIT. We can add additional hints later.
319 */
320#define FADVISE_COLD_BIT	0x01
321#define FADVISE_LOST_PINO_BIT	0x02
322
323#define DEF_DIR_LEVEL		0
324
325struct f2fs_inode_info {
326	struct inode vfs_inode;		/* serve a vfs inode */
327	unsigned long i_flags;		/* keep an inode flags for ioctl */
328	unsigned char i_advise;		/* use to give file attribute hints */
329	unsigned char i_dir_level;	/* use for dentry level for large dir */
330	unsigned int i_current_depth;	/* use only in directory structure */
331	unsigned int i_pino;		/* parent inode number */
332	umode_t i_acl_mode;		/* keep file acl mode temporarily */
333
334	/* Use below internally in f2fs*/
335	unsigned long flags;		/* use to pass per-file flags */
336	struct rw_semaphore i_sem;	/* protect fi info */
337	atomic_t dirty_pages;		/* # of dirty pages */
338	f2fs_hash_t chash;		/* hash value of given file name */
339	unsigned int clevel;		/* maximum level of given file name */
340	nid_t i_xattr_nid;		/* node id that contains xattrs */
341	unsigned long long xattr_ver;	/* cp version of xattr modification */
342	struct extent_info ext;		/* in-memory extent cache entry */
343	rwlock_t ext_lock;		/* rwlock for single extent cache */
344	struct inode_entry *dirty_dir;	/* the pointer of dirty dir */
345
346	struct radix_tree_root inmem_root;	/* radix tree for inmem pages */
347	struct list_head inmem_pages;	/* inmemory pages managed by f2fs */
348	struct mutex inmem_lock;	/* lock for inmemory pages */
349};
350
351static inline void get_extent_info(struct extent_info *ext,
352					struct f2fs_extent i_ext)
353{
354	ext->fofs = le32_to_cpu(i_ext.fofs);
355	ext->blk = le32_to_cpu(i_ext.blk);
356	ext->len = le32_to_cpu(i_ext.len);
357}
358
359static inline void set_raw_extent(struct extent_info *ext,
360					struct f2fs_extent *i_ext)
361{
362	i_ext->fofs = cpu_to_le32(ext->fofs);
363	i_ext->blk = cpu_to_le32(ext->blk);
364	i_ext->len = cpu_to_le32(ext->len);
365}
366
367static inline void set_extent_info(struct extent_info *ei, unsigned int fofs,
368						u32 blk, unsigned int len)
369{
370	ei->fofs = fofs;
371	ei->blk = blk;
372	ei->len = len;
373}
374
375static inline bool __is_extent_same(struct extent_info *ei1,
376						struct extent_info *ei2)
377{
378	return (ei1->fofs == ei2->fofs && ei1->blk == ei2->blk &&
379						ei1->len == ei2->len);
380}
381
382static inline bool __is_extent_mergeable(struct extent_info *back,
383						struct extent_info *front)
384{
385	return (back->fofs + back->len == front->fofs &&
386			back->blk + back->len == front->blk);
387}
388
389static inline bool __is_back_mergeable(struct extent_info *cur,
390						struct extent_info *back)
391{
392	return __is_extent_mergeable(back, cur);
393}
394
395static inline bool __is_front_mergeable(struct extent_info *cur,
396						struct extent_info *front)
397{
398	return __is_extent_mergeable(cur, front);
399}
400
401struct f2fs_nm_info {
402	block_t nat_blkaddr;		/* base disk address of NAT */
403	nid_t max_nid;			/* maximum possible node ids */
404	nid_t available_nids;		/* maximum available node ids */
405	nid_t next_scan_nid;		/* the next nid to be scanned */
406	unsigned int ram_thresh;	/* control the memory footprint */
407
408	/* NAT cache management */
409	struct radix_tree_root nat_root;/* root of the nat entry cache */
410	struct radix_tree_root nat_set_root;/* root of the nat set cache */
411	struct rw_semaphore nat_tree_lock;	/* protect nat_tree_lock */
412	struct list_head nat_entries;	/* cached nat entry list (clean) */
413	unsigned int nat_cnt;		/* the # of cached nat entries */
414	unsigned int dirty_nat_cnt;	/* total num of nat entries in set */
415
416	/* free node ids management */
417	struct radix_tree_root free_nid_root;/* root of the free_nid cache */
418	struct list_head free_nid_list;	/* a list for free nids */
419	spinlock_t free_nid_list_lock;	/* protect free nid list */
420	unsigned int fcnt;		/* the number of free node id */
421	struct mutex build_lock;	/* lock for build free nids */
422
423	/* for checkpoint */
424	char *nat_bitmap;		/* NAT bitmap pointer */
425	int bitmap_size;		/* bitmap size */
426};
427
428/*
429 * this structure is used as one of function parameters.
430 * all the information are dedicated to a given direct node block determined
431 * by the data offset in a file.
432 */
433struct dnode_of_data {
434	struct inode *inode;		/* vfs inode pointer */
435	struct page *inode_page;	/* its inode page, NULL is possible */
436	struct page *node_page;		/* cached direct node page */
437	nid_t nid;			/* node id of the direct node block */
438	unsigned int ofs_in_node;	/* data offset in the node page */
439	bool inode_page_locked;		/* inode page is locked or not */
440	block_t	data_blkaddr;		/* block address of the node block */
441};
442
443static inline void set_new_dnode(struct dnode_of_data *dn, struct inode *inode,
444		struct page *ipage, struct page *npage, nid_t nid)
445{
446	memset(dn, 0, sizeof(*dn));
447	dn->inode = inode;
448	dn->inode_page = ipage;
449	dn->node_page = npage;
450	dn->nid = nid;
451}
452
453/*
454 * For SIT manager
455 *
456 * By default, there are 6 active log areas across the whole main area.
457 * When considering hot and cold data separation to reduce cleaning overhead,
458 * we split 3 for data logs and 3 for node logs as hot, warm, and cold types,
459 * respectively.
460 * In the current design, you should not change the numbers intentionally.
461 * Instead, as a mount option such as active_logs=x, you can use 2, 4, and 6
462 * logs individually according to the underlying devices. (default: 6)
463 * Just in case, on-disk layout covers maximum 16 logs that consist of 8 for
464 * data and 8 for node logs.
465 */
466#define	NR_CURSEG_DATA_TYPE	(3)
467#define NR_CURSEG_NODE_TYPE	(3)
468#define NR_CURSEG_TYPE	(NR_CURSEG_DATA_TYPE + NR_CURSEG_NODE_TYPE)
469
470enum {
471	CURSEG_HOT_DATA	= 0,	/* directory entry blocks */
472	CURSEG_WARM_DATA,	/* data blocks */
473	CURSEG_COLD_DATA,	/* multimedia or GCed data blocks */
474	CURSEG_HOT_NODE,	/* direct node blocks of directory files */
475	CURSEG_WARM_NODE,	/* direct node blocks of normal files */
476	CURSEG_COLD_NODE,	/* indirect node blocks */
477	NO_CHECK_TYPE,
478	CURSEG_DIRECT_IO,	/* to use for the direct IO path */
479};
480
481struct flush_cmd {
482	struct completion wait;
483	struct llist_node llnode;
484	int ret;
485};
486
487struct flush_cmd_control {
488	struct task_struct *f2fs_issue_flush;	/* flush thread */
489	wait_queue_head_t flush_wait_queue;	/* waiting queue for wake-up */
490	struct llist_head issue_list;		/* list for command issue */
491	struct llist_node *dispatch_list;	/* list for command dispatch */
492};
493
494struct f2fs_sm_info {
495	struct sit_info *sit_info;		/* whole segment information */
496	struct free_segmap_info *free_info;	/* free segment information */
497	struct dirty_seglist_info *dirty_info;	/* dirty segment information */
498	struct curseg_info *curseg_array;	/* active segment information */
499
500	block_t seg0_blkaddr;		/* block address of 0'th segment */
501	block_t main_blkaddr;		/* start block address of main area */
502	block_t ssa_blkaddr;		/* start block address of SSA area */
503
504	unsigned int segment_count;	/* total # of segments */
505	unsigned int main_segments;	/* # of segments in main area */
506	unsigned int reserved_segments;	/* # of reserved segments */
507	unsigned int ovp_segments;	/* # of overprovision segments */
508
509	/* a threshold to reclaim prefree segments */
510	unsigned int rec_prefree_segments;
511
512	/* for small discard management */
513	struct list_head discard_list;		/* 4KB discard list */
514	int nr_discards;			/* # of discards in the list */
515	int max_discards;			/* max. discards to be issued */
516
517	/* for batched trimming */
518	unsigned int trim_sections;		/* # of sections to trim */
519
520	struct list_head sit_entry_set;	/* sit entry set list */
521
522	unsigned int ipu_policy;	/* in-place-update policy */
523	unsigned int min_ipu_util;	/* in-place-update threshold */
524	unsigned int min_fsync_blocks;	/* threshold for fsync */
525
526	/* for flush command control */
527	struct flush_cmd_control *cmd_control_info;
528
529};
530
531/*
532 * For superblock
533 */
534/*
535 * COUNT_TYPE for monitoring
536 *
537 * f2fs monitors the number of several block types such as on-writeback,
538 * dirty dentry blocks, dirty node blocks, and dirty meta blocks.
539 */
540enum count_type {
541	F2FS_WRITEBACK,
542	F2FS_DIRTY_DENTS,
543	F2FS_DIRTY_NODES,
544	F2FS_DIRTY_META,
545	F2FS_INMEM_PAGES,
546	NR_COUNT_TYPE,
547};
548
549/*
550 * The below are the page types of bios used in submit_bio().
551 * The available types are:
552 * DATA			User data pages. It operates as async mode.
553 * NODE			Node pages. It operates as async mode.
554 * META			FS metadata pages such as SIT, NAT, CP.
555 * NR_PAGE_TYPE		The number of page types.
556 * META_FLUSH		Make sure the previous pages are written
557 *			with waiting the bio's completion
558 * ...			Only can be used with META.
559 */
560#define PAGE_TYPE_OF_BIO(type)	((type) > META ? META : (type))
561enum page_type {
562	DATA,
563	NODE,
564	META,
565	NR_PAGE_TYPE,
566	META_FLUSH,
567	INMEM,		/* the below types are used by tracepoints only. */
568	INMEM_DROP,
569	IPU,
570	OPU,
571};
572
573struct f2fs_io_info {
574	enum page_type type;	/* contains DATA/NODE/META/META_FLUSH */
575	int rw;			/* contains R/RS/W/WS with REQ_META/REQ_PRIO */
576	block_t blk_addr;	/* block address to be written */
577};
578
579#define is_read_io(rw)	(((rw) & 1) == READ)
580struct f2fs_bio_info {
581	struct f2fs_sb_info *sbi;	/* f2fs superblock */
582	struct bio *bio;		/* bios to merge */
583	sector_t last_block_in_bio;	/* last block number */
584	struct f2fs_io_info fio;	/* store buffered io info. */
585	struct rw_semaphore io_rwsem;	/* blocking op for bio */
586};
587
588/* for inner inode cache management */
589struct inode_management {
590	struct radix_tree_root ino_root;	/* ino entry array */
591	spinlock_t ino_lock;			/* for ino entry lock */
592	struct list_head ino_list;		/* inode list head */
593	unsigned long ino_num;			/* number of entries */
594};
595
596/* For s_flag in struct f2fs_sb_info */
597enum {
598	SBI_IS_DIRTY,				/* dirty flag for checkpoint */
599	SBI_IS_CLOSE,				/* specify unmounting */
600	SBI_NEED_FSCK,				/* need fsck.f2fs to fix */
601	SBI_POR_DOING,				/* recovery is doing or not */
602};
603
604struct f2fs_sb_info {
605	struct super_block *sb;			/* pointer to VFS super block */
606	struct proc_dir_entry *s_proc;		/* proc entry */
607	struct buffer_head *raw_super_buf;	/* buffer head of raw sb */
608	struct f2fs_super_block *raw_super;	/* raw super block pointer */
609	int s_flag;				/* flags for sbi */
610
611	/* for node-related operations */
612	struct f2fs_nm_info *nm_info;		/* node manager */
613	struct inode *node_inode;		/* cache node blocks */
614
615	/* for segment-related operations */
616	struct f2fs_sm_info *sm_info;		/* segment manager */
617
618	/* for bio operations */
619	struct f2fs_bio_info read_io;			/* for read bios */
620	struct f2fs_bio_info write_io[NR_PAGE_TYPE];	/* for write bios */
621
622	/* for checkpoint */
623	struct f2fs_checkpoint *ckpt;		/* raw checkpoint pointer */
624	struct inode *meta_inode;		/* cache meta blocks */
625	struct mutex cp_mutex;			/* checkpoint procedure lock */
626	struct rw_semaphore cp_rwsem;		/* blocking FS operations */
627	struct rw_semaphore node_write;		/* locking node writes */
628	struct mutex writepages;		/* mutex for writepages() */
629	wait_queue_head_t cp_wait;
630
631	struct inode_management im[MAX_INO_ENTRY];      /* manage inode cache */
632
633	/* for orphan inode, use 0'th array */
634	unsigned int max_orphans;		/* max orphan inodes */
635
636	/* for directory inode management */
637	struct list_head dir_inode_list;	/* dir inode list */
638	spinlock_t dir_inode_lock;		/* for dir inode list lock */
639
640	/* for extent tree cache */
641	struct radix_tree_root extent_tree_root;/* cache extent cache entries */
642	struct rw_semaphore extent_tree_lock;	/* locking extent radix tree */
643	struct list_head extent_list;		/* lru list for shrinker */
644	spinlock_t extent_lock;			/* locking extent lru list */
645	int total_ext_tree;			/* extent tree count */
646	atomic_t total_ext_node;		/* extent info count */
647
648	/* basic filesystem units */
649	unsigned int log_sectors_per_block;	/* log2 sectors per block */
650	unsigned int log_blocksize;		/* log2 block size */
651	unsigned int blocksize;			/* block size */
652	unsigned int root_ino_num;		/* root inode number*/
653	unsigned int node_ino_num;		/* node inode number*/
654	unsigned int meta_ino_num;		/* meta inode number*/
655	unsigned int log_blocks_per_seg;	/* log2 blocks per segment */
656	unsigned int blocks_per_seg;		/* blocks per segment */
657	unsigned int segs_per_sec;		/* segments per section */
658	unsigned int secs_per_zone;		/* sections per zone */
659	unsigned int total_sections;		/* total section count */
660	unsigned int total_node_count;		/* total node block count */
661	unsigned int total_valid_node_count;	/* valid node block count */
662	unsigned int total_valid_inode_count;	/* valid inode count */
663	int active_logs;			/* # of active logs */
664	int dir_level;				/* directory level */
665
666	block_t user_block_count;		/* # of user blocks */
667	block_t total_valid_block_count;	/* # of valid blocks */
668	block_t alloc_valid_block_count;	/* # of allocated blocks */
669	block_t last_valid_block_count;		/* for recovery */
670	u32 s_next_generation;			/* for NFS support */
671	atomic_t nr_pages[NR_COUNT_TYPE];	/* # of pages, see count_type */
672
673	struct f2fs_mount_info mount_opt;	/* mount options */
674
675	/* for cleaning operations */
676	struct mutex gc_mutex;			/* mutex for GC */
677	struct f2fs_gc_kthread	*gc_thread;	/* GC thread */
678	unsigned int cur_victim_sec;		/* current victim section num */
679
680	/* maximum # of trials to find a victim segment for SSR and GC */
681	unsigned int max_victim_search;
682
683	/*
684	 * for stat information.
685	 * one is for the LFS mode, and the other is for the SSR mode.
686	 */
687#ifdef CONFIG_F2FS_STAT_FS
688	struct f2fs_stat_info *stat_info;	/* FS status information */
689	unsigned int segment_count[2];		/* # of allocated segments */
690	unsigned int block_count[2];		/* # of allocated blocks */
691	atomic_t inplace_count;		/* # of inplace update */
692	int total_hit_ext, read_hit_ext;	/* extent cache hit ratio */
693	atomic_t inline_inode;			/* # of inline_data inodes */
694	atomic_t inline_dir;			/* # of inline_dentry inodes */
695	int bg_gc;				/* background gc calls */
696	unsigned int n_dirty_dirs;		/* # of dir inodes */
697#endif
698	unsigned int last_victim[2];		/* last victim segment # */
699	spinlock_t stat_lock;			/* lock for stat operations */
700
701	/* For sysfs suppport */
702	struct kobject s_kobj;
703	struct completion s_kobj_unregister;
704};
705
706/*
707 * Inline functions
708 */
709static inline struct f2fs_inode_info *F2FS_I(struct inode *inode)
710{
711	return container_of(inode, struct f2fs_inode_info, vfs_inode);
712}
713
714static inline struct f2fs_sb_info *F2FS_SB(struct super_block *sb)
715{
716	return sb->s_fs_info;
717}
718
719static inline struct f2fs_sb_info *F2FS_I_SB(struct inode *inode)
720{
721	return F2FS_SB(inode->i_sb);
722}
723
724static inline struct f2fs_sb_info *F2FS_M_SB(struct address_space *mapping)
725{
726	return F2FS_I_SB(mapping->host);
727}
728
729static inline struct f2fs_sb_info *F2FS_P_SB(struct page *page)
730{
731	return F2FS_M_SB(page->mapping);
732}
733
734static inline struct f2fs_super_block *F2FS_RAW_SUPER(struct f2fs_sb_info *sbi)
735{
736	return (struct f2fs_super_block *)(sbi->raw_super);
737}
738
739static inline struct f2fs_checkpoint *F2FS_CKPT(struct f2fs_sb_info *sbi)
740{
741	return (struct f2fs_checkpoint *)(sbi->ckpt);
742}
743
744static inline struct f2fs_node *F2FS_NODE(struct page *page)
745{
746	return (struct f2fs_node *)page_address(page);
747}
748
749static inline struct f2fs_inode *F2FS_INODE(struct page *page)
750{
751	return &((struct f2fs_node *)page_address(page))->i;
752}
753
754static inline struct f2fs_nm_info *NM_I(struct f2fs_sb_info *sbi)
755{
756	return (struct f2fs_nm_info *)(sbi->nm_info);
757}
758
759static inline struct f2fs_sm_info *SM_I(struct f2fs_sb_info *sbi)
760{
761	return (struct f2fs_sm_info *)(sbi->sm_info);
762}
763
764static inline struct sit_info *SIT_I(struct f2fs_sb_info *sbi)
765{
766	return (struct sit_info *)(SM_I(sbi)->sit_info);
767}
768
769static inline struct free_segmap_info *FREE_I(struct f2fs_sb_info *sbi)
770{
771	return (struct free_segmap_info *)(SM_I(sbi)->free_info);
772}
773
774static inline struct dirty_seglist_info *DIRTY_I(struct f2fs_sb_info *sbi)
775{
776	return (struct dirty_seglist_info *)(SM_I(sbi)->dirty_info);
777}
778
779static inline struct address_space *META_MAPPING(struct f2fs_sb_info *sbi)
780{
781	return sbi->meta_inode->i_mapping;
782}
783
784static inline struct address_space *NODE_MAPPING(struct f2fs_sb_info *sbi)
785{
786	return sbi->node_inode->i_mapping;
787}
788
789static inline bool is_sbi_flag_set(struct f2fs_sb_info *sbi, unsigned int type)
790{
791	return sbi->s_flag & (0x01 << type);
792}
793
794static inline void set_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
795{
796	sbi->s_flag |= (0x01 << type);
797}
798
799static inline void clear_sbi_flag(struct f2fs_sb_info *sbi, unsigned int type)
800{
801	sbi->s_flag &= ~(0x01 << type);
802}
803
804static inline unsigned long long cur_cp_version(struct f2fs_checkpoint *cp)
805{
806	return le64_to_cpu(cp->checkpoint_ver);
807}
808
809static inline bool is_set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
810{
811	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
812	return ckpt_flags & f;
813}
814
815static inline void set_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
816{
817	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
818	ckpt_flags |= f;
819	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
820}
821
822static inline void clear_ckpt_flags(struct f2fs_checkpoint *cp, unsigned int f)
823{
824	unsigned int ckpt_flags = le32_to_cpu(cp->ckpt_flags);
825	ckpt_flags &= (~f);
826	cp->ckpt_flags = cpu_to_le32(ckpt_flags);
827}
828
829static inline void f2fs_lock_op(struct f2fs_sb_info *sbi)
830{
831	down_read(&sbi->cp_rwsem);
832}
833
834static inline void f2fs_unlock_op(struct f2fs_sb_info *sbi)
835{
836	up_read(&sbi->cp_rwsem);
837}
838
839static inline void f2fs_lock_all(struct f2fs_sb_info *sbi)
840{
841	f2fs_down_write(&sbi->cp_rwsem, &sbi->cp_mutex);
842}
843
844static inline void f2fs_unlock_all(struct f2fs_sb_info *sbi)
845{
846	up_write(&sbi->cp_rwsem);
847}
848
849static inline int __get_cp_reason(struct f2fs_sb_info *sbi)
850{
851	int reason = CP_SYNC;
852
853	if (test_opt(sbi, FASTBOOT))
854		reason = CP_FASTBOOT;
855	if (is_sbi_flag_set(sbi, SBI_IS_CLOSE))
856		reason = CP_UMOUNT;
857	return reason;
858}
859
860static inline bool __remain_node_summaries(int reason)
861{
862	return (reason == CP_UMOUNT || reason == CP_FASTBOOT);
863}
864
865static inline bool __exist_node_summaries(struct f2fs_sb_info *sbi)
866{
867	return (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG) ||
868			is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FASTBOOT_FLAG));
869}
870
871/*
872 * Check whether the given nid is within node id range.
873 */
874static inline int check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
875{
876	if (unlikely(nid < F2FS_ROOT_INO(sbi)))
877		return -EINVAL;
878	if (unlikely(nid >= NM_I(sbi)->max_nid))
879		return -EINVAL;
880	return 0;
881}
882
883#define F2FS_DEFAULT_ALLOCATED_BLOCKS	1
884
885/*
886 * Check whether the inode has blocks or not
887 */
888static inline int F2FS_HAS_BLOCKS(struct inode *inode)
889{
890	if (F2FS_I(inode)->i_xattr_nid)
891		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS + 1;
892	else
893		return inode->i_blocks > F2FS_DEFAULT_ALLOCATED_BLOCKS;
894}
895
896static inline bool f2fs_has_xattr_block(unsigned int ofs)
897{
898	return ofs == XATTR_NODE_OFFSET;
899}
900
901static inline bool inc_valid_block_count(struct f2fs_sb_info *sbi,
902				 struct inode *inode, blkcnt_t count)
903{
904	block_t	valid_block_count;
905
906	spin_lock(&sbi->stat_lock);
907	valid_block_count =
908		sbi->total_valid_block_count + (block_t)count;
909	if (unlikely(valid_block_count > sbi->user_block_count)) {
910		spin_unlock(&sbi->stat_lock);
911		return false;
912	}
913	inode->i_blocks += count;
914	sbi->total_valid_block_count = valid_block_count;
915	sbi->alloc_valid_block_count += (block_t)count;
916	spin_unlock(&sbi->stat_lock);
917	return true;
918}
919
920static inline void dec_valid_block_count(struct f2fs_sb_info *sbi,
921						struct inode *inode,
922						blkcnt_t count)
923{
924	spin_lock(&sbi->stat_lock);
925	f2fs_bug_on(sbi, sbi->total_valid_block_count < (block_t) count);
926	f2fs_bug_on(sbi, inode->i_blocks < count);
927	inode->i_blocks -= count;
928	sbi->total_valid_block_count -= (block_t)count;
929	spin_unlock(&sbi->stat_lock);
930}
931
932static inline void inc_page_count(struct f2fs_sb_info *sbi, int count_type)
933{
934	atomic_inc(&sbi->nr_pages[count_type]);
935	set_sbi_flag(sbi, SBI_IS_DIRTY);
936}
937
938static inline void inode_inc_dirty_pages(struct inode *inode)
939{
940	atomic_inc(&F2FS_I(inode)->dirty_pages);
941	if (S_ISDIR(inode->i_mode))
942		inc_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
943}
944
945static inline void dec_page_count(struct f2fs_sb_info *sbi, int count_type)
946{
947	atomic_dec(&sbi->nr_pages[count_type]);
948}
949
950static inline void inode_dec_dirty_pages(struct inode *inode)
951{
952	if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode))
953		return;
954
955	atomic_dec(&F2FS_I(inode)->dirty_pages);
956
957	if (S_ISDIR(inode->i_mode))
958		dec_page_count(F2FS_I_SB(inode), F2FS_DIRTY_DENTS);
959}
960
961static inline int get_pages(struct f2fs_sb_info *sbi, int count_type)
962{
963	return atomic_read(&sbi->nr_pages[count_type]);
964}
965
966static inline int get_dirty_pages(struct inode *inode)
967{
968	return atomic_read(&F2FS_I(inode)->dirty_pages);
969}
970
971static inline int get_blocktype_secs(struct f2fs_sb_info *sbi, int block_type)
972{
973	unsigned int pages_per_sec = sbi->segs_per_sec *
974					(1 << sbi->log_blocks_per_seg);
975	return ((get_pages(sbi, block_type) + pages_per_sec - 1)
976			>> sbi->log_blocks_per_seg) / sbi->segs_per_sec;
977}
978
979static inline block_t valid_user_blocks(struct f2fs_sb_info *sbi)
980{
981	return sbi->total_valid_block_count;
982}
983
984static inline unsigned long __bitmap_size(struct f2fs_sb_info *sbi, int flag)
985{
986	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
987
988	/* return NAT or SIT bitmap */
989	if (flag == NAT_BITMAP)
990		return le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
991	else if (flag == SIT_BITMAP)
992		return le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
993
994	return 0;
995}
996
997static inline block_t __cp_payload(struct f2fs_sb_info *sbi)
998{
999	return le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_payload);
1000}
1001
1002static inline void *__bitmap_ptr(struct f2fs_sb_info *sbi, int flag)
1003{
1004	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1005	int offset;
1006
1007	if (__cp_payload(sbi) > 0) {
1008		if (flag == NAT_BITMAP)
1009			return &ckpt->sit_nat_version_bitmap;
1010		else
1011			return (unsigned char *)ckpt + F2FS_BLKSIZE;
1012	} else {
1013		offset = (flag == NAT_BITMAP) ?
1014			le32_to_cpu(ckpt->sit_ver_bitmap_bytesize) : 0;
1015		return &ckpt->sit_nat_version_bitmap + offset;
1016	}
1017}
1018
1019static inline block_t __start_cp_addr(struct f2fs_sb_info *sbi)
1020{
1021	block_t start_addr;
1022	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1023	unsigned long long ckpt_version = cur_cp_version(ckpt);
1024
1025	start_addr = le32_to_cpu(F2FS_RAW_SUPER(sbi)->cp_blkaddr);
1026
1027	/*
1028	 * odd numbered checkpoint should at cp segment 0
1029	 * and even segment must be at cp segment 1
1030	 */
1031	if (!(ckpt_version & 1))
1032		start_addr += sbi->blocks_per_seg;
1033
1034	return start_addr;
1035}
1036
1037static inline block_t __start_sum_addr(struct f2fs_sb_info *sbi)
1038{
1039	return le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
1040}
1041
1042static inline bool inc_valid_node_count(struct f2fs_sb_info *sbi,
1043						struct inode *inode)
1044{
1045	block_t	valid_block_count;
1046	unsigned int valid_node_count;
1047
1048	spin_lock(&sbi->stat_lock);
1049
1050	valid_block_count = sbi->total_valid_block_count + 1;
1051	if (unlikely(valid_block_count > sbi->user_block_count)) {
1052		spin_unlock(&sbi->stat_lock);
1053		return false;
1054	}
1055
1056	valid_node_count = sbi->total_valid_node_count + 1;
1057	if (unlikely(valid_node_count > sbi->total_node_count)) {
1058		spin_unlock(&sbi->stat_lock);
1059		return false;
1060	}
1061
1062	if (inode)
1063		inode->i_blocks++;
1064
1065	sbi->alloc_valid_block_count++;
1066	sbi->total_valid_node_count++;
1067	sbi->total_valid_block_count++;
1068	spin_unlock(&sbi->stat_lock);
1069
1070	return true;
1071}
1072
1073static inline void dec_valid_node_count(struct f2fs_sb_info *sbi,
1074						struct inode *inode)
1075{
1076	spin_lock(&sbi->stat_lock);
1077
1078	f2fs_bug_on(sbi, !sbi->total_valid_block_count);
1079	f2fs_bug_on(sbi, !sbi->total_valid_node_count);
1080	f2fs_bug_on(sbi, !inode->i_blocks);
1081
1082	inode->i_blocks--;
1083	sbi->total_valid_node_count--;
1084	sbi->total_valid_block_count--;
1085
1086	spin_unlock(&sbi->stat_lock);
1087}
1088
1089static inline unsigned int valid_node_count(struct f2fs_sb_info *sbi)
1090{
1091	return sbi->total_valid_node_count;
1092}
1093
1094static inline void inc_valid_inode_count(struct f2fs_sb_info *sbi)
1095{
1096	spin_lock(&sbi->stat_lock);
1097	f2fs_bug_on(sbi, sbi->total_valid_inode_count == sbi->total_node_count);
1098	sbi->total_valid_inode_count++;
1099	spin_unlock(&sbi->stat_lock);
1100}
1101
1102static inline void dec_valid_inode_count(struct f2fs_sb_info *sbi)
1103{
1104	spin_lock(&sbi->stat_lock);
1105	f2fs_bug_on(sbi, !sbi->total_valid_inode_count);
1106	sbi->total_valid_inode_count--;
1107	spin_unlock(&sbi->stat_lock);
1108}
1109
1110static inline unsigned int valid_inode_count(struct f2fs_sb_info *sbi)
1111{
1112	return sbi->total_valid_inode_count;
1113}
1114
1115static inline void f2fs_put_page(struct page *page, int unlock)
1116{
1117	if (!page)
1118		return;
1119
1120	if (unlock) {
1121		f2fs_bug_on(F2FS_P_SB(page), !PageLocked(page));
1122		unlock_page(page);
1123	}
1124	page_cache_release(page);
1125}
1126
1127static inline void f2fs_put_dnode(struct dnode_of_data *dn)
1128{
1129	if (dn->node_page)
1130		f2fs_put_page(dn->node_page, 1);
1131	if (dn->inode_page && dn->node_page != dn->inode_page)
1132		f2fs_put_page(dn->inode_page, 0);
1133	dn->node_page = NULL;
1134	dn->inode_page = NULL;
1135}
1136
1137static inline struct kmem_cache *f2fs_kmem_cache_create(const char *name,
1138					size_t size)
1139{
1140	return kmem_cache_create(name, size, 0, SLAB_RECLAIM_ACCOUNT, NULL);
1141}
1142
1143static inline void *f2fs_kmem_cache_alloc(struct kmem_cache *cachep,
1144						gfp_t flags)
1145{
1146	void *entry;
1147retry:
1148	entry = kmem_cache_alloc(cachep, flags);
1149	if (!entry) {
1150		cond_resched();
1151		goto retry;
1152	}
1153
1154	return entry;
1155}
1156
1157static inline void f2fs_radix_tree_insert(struct radix_tree_root *root,
1158				unsigned long index, void *item)
1159{
1160	while (radix_tree_insert(root, index, item))
1161		cond_resched();
1162}
1163
1164#define RAW_IS_INODE(p)	((p)->footer.nid == (p)->footer.ino)
1165
1166static inline bool IS_INODE(struct page *page)
1167{
1168	struct f2fs_node *p = F2FS_NODE(page);
1169	return RAW_IS_INODE(p);
1170}
1171
1172static inline __le32 *blkaddr_in_node(struct f2fs_node *node)
1173{
1174	return RAW_IS_INODE(node) ? node->i.i_addr : node->dn.addr;
1175}
1176
1177static inline block_t datablock_addr(struct page *node_page,
1178		unsigned int offset)
1179{
1180	struct f2fs_node *raw_node;
1181	__le32 *addr_array;
1182	raw_node = F2FS_NODE(node_page);
1183	addr_array = blkaddr_in_node(raw_node);
1184	return le32_to_cpu(addr_array[offset]);
1185}
1186
1187static inline int f2fs_test_bit(unsigned int nr, char *addr)
1188{
1189	int mask;
1190
1191	addr += (nr >> 3);
1192	mask = 1 << (7 - (nr & 0x07));
1193	return mask & *addr;
1194}
1195
1196static inline int f2fs_test_and_set_bit(unsigned int nr, char *addr)
1197{
1198	int mask;
1199	int ret;
1200
1201	addr += (nr >> 3);
1202	mask = 1 << (7 - (nr & 0x07));
1203	ret = mask & *addr;
1204	*addr |= mask;
1205	return ret;
1206}
1207
1208static inline int f2fs_test_and_clear_bit(unsigned int nr, char *addr)
1209{
1210	int mask;
1211	int ret;
1212
1213	addr += (nr >> 3);
1214	mask = 1 << (7 - (nr & 0x07));
1215	ret = mask & *addr;
1216	*addr &= ~mask;
1217	return ret;
1218}
1219
1220static inline void f2fs_change_bit(unsigned int nr, char *addr)
1221{
1222	int mask;
1223
1224	addr += (nr >> 3);
1225	mask = 1 << (7 - (nr & 0x07));
1226	*addr ^= mask;
1227}
1228
1229/* used for f2fs_inode_info->flags */
1230enum {
1231	FI_NEW_INODE,		/* indicate newly allocated inode */
1232	FI_DIRTY_INODE,		/* indicate inode is dirty or not */
1233	FI_DIRTY_DIR,		/* indicate directory has dirty pages */
1234	FI_INC_LINK,		/* need to increment i_nlink */
1235	FI_ACL_MODE,		/* indicate acl mode */
1236	FI_NO_ALLOC,		/* should not allocate any blocks */
1237	FI_UPDATE_DIR,		/* should update inode block for consistency */
1238	FI_DELAY_IPUT,		/* used for the recovery */
1239	FI_NO_EXTENT,		/* not to use the extent cache */
1240	FI_INLINE_XATTR,	/* used for inline xattr */
1241	FI_INLINE_DATA,		/* used for inline data*/
1242	FI_INLINE_DENTRY,	/* used for inline dentry */
1243	FI_APPEND_WRITE,	/* inode has appended data */
1244	FI_UPDATE_WRITE,	/* inode has in-place-update data */
1245	FI_NEED_IPU,		/* used for ipu per file */
1246	FI_ATOMIC_FILE,		/* indicate atomic file */
1247	FI_VOLATILE_FILE,	/* indicate volatile file */
1248	FI_FIRST_BLOCK_WRITTEN,	/* indicate #0 data block was written */
1249	FI_DROP_CACHE,		/* drop dirty page cache */
1250	FI_DATA_EXIST,		/* indicate data exists */
1251	FI_INLINE_DOTS,		/* indicate inline dot dentries */
1252};
1253
1254static inline void set_inode_flag(struct f2fs_inode_info *fi, int flag)
1255{
1256	if (!test_bit(flag, &fi->flags))
1257		set_bit(flag, &fi->flags);
1258}
1259
1260static inline int is_inode_flag_set(struct f2fs_inode_info *fi, int flag)
1261{
1262	return test_bit(flag, &fi->flags);
1263}
1264
1265static inline void clear_inode_flag(struct f2fs_inode_info *fi, int flag)
1266{
1267	if (test_bit(flag, &fi->flags))
1268		clear_bit(flag, &fi->flags);
1269}
1270
1271static inline void set_acl_inode(struct f2fs_inode_info *fi, umode_t mode)
1272{
1273	fi->i_acl_mode = mode;
1274	set_inode_flag(fi, FI_ACL_MODE);
1275}
1276
1277static inline void get_inline_info(struct f2fs_inode_info *fi,
1278					struct f2fs_inode *ri)
1279{
1280	if (ri->i_inline & F2FS_INLINE_XATTR)
1281		set_inode_flag(fi, FI_INLINE_XATTR);
1282	if (ri->i_inline & F2FS_INLINE_DATA)
1283		set_inode_flag(fi, FI_INLINE_DATA);
1284	if (ri->i_inline & F2FS_INLINE_DENTRY)
1285		set_inode_flag(fi, FI_INLINE_DENTRY);
1286	if (ri->i_inline & F2FS_DATA_EXIST)
1287		set_inode_flag(fi, FI_DATA_EXIST);
1288	if (ri->i_inline & F2FS_INLINE_DOTS)
1289		set_inode_flag(fi, FI_INLINE_DOTS);
1290}
1291
1292static inline void set_raw_inline(struct f2fs_inode_info *fi,
1293					struct f2fs_inode *ri)
1294{
1295	ri->i_inline = 0;
1296
1297	if (is_inode_flag_set(fi, FI_INLINE_XATTR))
1298		ri->i_inline |= F2FS_INLINE_XATTR;
1299	if (is_inode_flag_set(fi, FI_INLINE_DATA))
1300		ri->i_inline |= F2FS_INLINE_DATA;
1301	if (is_inode_flag_set(fi, FI_INLINE_DENTRY))
1302		ri->i_inline |= F2FS_INLINE_DENTRY;
1303	if (is_inode_flag_set(fi, FI_DATA_EXIST))
1304		ri->i_inline |= F2FS_DATA_EXIST;
1305	if (is_inode_flag_set(fi, FI_INLINE_DOTS))
1306		ri->i_inline |= F2FS_INLINE_DOTS;
1307}
1308
1309static inline int f2fs_has_inline_xattr(struct inode *inode)
1310{
1311	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_XATTR);
1312}
1313
1314static inline unsigned int addrs_per_inode(struct f2fs_inode_info *fi)
1315{
1316	if (f2fs_has_inline_xattr(&fi->vfs_inode))
1317		return DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS;
1318	return DEF_ADDRS_PER_INODE;
1319}
1320
1321static inline void *inline_xattr_addr(struct page *page)
1322{
1323	struct f2fs_inode *ri = F2FS_INODE(page);
1324	return (void *)&(ri->i_addr[DEF_ADDRS_PER_INODE -
1325					F2FS_INLINE_XATTR_ADDRS]);
1326}
1327
1328static inline int inline_xattr_size(struct inode *inode)
1329{
1330	if (f2fs_has_inline_xattr(inode))
1331		return F2FS_INLINE_XATTR_ADDRS << 2;
1332	else
1333		return 0;
1334}
1335
1336static inline int f2fs_has_inline_data(struct inode *inode)
1337{
1338	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DATA);
1339}
1340
1341static inline void f2fs_clear_inline_inode(struct inode *inode)
1342{
1343	clear_inode_flag(F2FS_I(inode), FI_INLINE_DATA);
1344	clear_inode_flag(F2FS_I(inode), FI_DATA_EXIST);
1345}
1346
1347static inline int f2fs_exist_data(struct inode *inode)
1348{
1349	return is_inode_flag_set(F2FS_I(inode), FI_DATA_EXIST);
1350}
1351
1352static inline int f2fs_has_inline_dots(struct inode *inode)
1353{
1354	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DOTS);
1355}
1356
1357static inline bool f2fs_is_atomic_file(struct inode *inode)
1358{
1359	return is_inode_flag_set(F2FS_I(inode), FI_ATOMIC_FILE);
1360}
1361
1362static inline bool f2fs_is_volatile_file(struct inode *inode)
1363{
1364	return is_inode_flag_set(F2FS_I(inode), FI_VOLATILE_FILE);
1365}
1366
1367static inline bool f2fs_is_first_block_written(struct inode *inode)
1368{
1369	return is_inode_flag_set(F2FS_I(inode), FI_FIRST_BLOCK_WRITTEN);
1370}
1371
1372static inline bool f2fs_is_drop_cache(struct inode *inode)
1373{
1374	return is_inode_flag_set(F2FS_I(inode), FI_DROP_CACHE);
1375}
1376
1377static inline void *inline_data_addr(struct page *page)
1378{
1379	struct f2fs_inode *ri = F2FS_INODE(page);
1380	return (void *)&(ri->i_addr[1]);
1381}
1382
1383static inline int f2fs_has_inline_dentry(struct inode *inode)
1384{
1385	return is_inode_flag_set(F2FS_I(inode), FI_INLINE_DENTRY);
1386}
1387
1388static inline void f2fs_dentry_kunmap(struct inode *dir, struct page *page)
1389{
1390	if (!f2fs_has_inline_dentry(dir))
1391		kunmap(page);
1392}
1393
1394static inline int f2fs_readonly(struct super_block *sb)
1395{
1396	return sb->s_flags & MS_RDONLY;
1397}
1398
1399static inline bool f2fs_cp_error(struct f2fs_sb_info *sbi)
1400{
1401	return is_set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1402}
1403
1404static inline void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi)
1405{
1406	set_ckpt_flags(sbi->ckpt, CP_ERROR_FLAG);
1407	sbi->sb->s_flags |= MS_RDONLY;
1408}
1409
1410#define get_inode_mode(i) \
1411	((is_inode_flag_set(F2FS_I(i), FI_ACL_MODE)) ? \
1412	 (F2FS_I(i)->i_acl_mode) : ((i)->i_mode))
1413
1414/* get offset of first page in next direct node */
1415#define PGOFS_OF_NEXT_DNODE(pgofs, fi)				\
1416	((pgofs < ADDRS_PER_INODE(fi)) ? ADDRS_PER_INODE(fi) :	\
1417	(pgofs - ADDRS_PER_INODE(fi) + ADDRS_PER_BLOCK) /	\
1418	ADDRS_PER_BLOCK * ADDRS_PER_BLOCK + ADDRS_PER_INODE(fi))
1419
1420/*
1421 * file.c
1422 */
1423int f2fs_sync_file(struct file *, loff_t, loff_t, int);
1424void truncate_data_blocks(struct dnode_of_data *);
1425int truncate_blocks(struct inode *, u64, bool);
1426void f2fs_truncate(struct inode *);
1427int f2fs_getattr(struct vfsmount *, struct dentry *, struct kstat *);
1428int f2fs_setattr(struct dentry *, struct iattr *);
1429int truncate_hole(struct inode *, pgoff_t, pgoff_t);
1430int truncate_data_blocks_range(struct dnode_of_data *, int);
1431long f2fs_ioctl(struct file *, unsigned int, unsigned long);
1432long f2fs_compat_ioctl(struct file *, unsigned int, unsigned long);
1433
1434/*
1435 * inode.c
1436 */
1437void f2fs_set_inode_flags(struct inode *);
1438struct inode *f2fs_iget(struct super_block *, unsigned long);
1439int try_to_free_nats(struct f2fs_sb_info *, int);
1440void update_inode(struct inode *, struct page *);
1441void update_inode_page(struct inode *);
1442int f2fs_write_inode(struct inode *, struct writeback_control *);
1443void f2fs_evict_inode(struct inode *);
1444void handle_failed_inode(struct inode *);
1445
1446/*
1447 * namei.c
1448 */
1449struct dentry *f2fs_get_parent(struct dentry *child);
1450
1451/*
1452 * dir.c
1453 */
1454extern unsigned char f2fs_filetype_table[F2FS_FT_MAX];
1455void set_de_type(struct f2fs_dir_entry *, umode_t);
1456struct f2fs_dir_entry *find_target_dentry(struct qstr *, int *,
1457			struct f2fs_dentry_ptr *);
1458bool f2fs_fill_dentries(struct dir_context *, struct f2fs_dentry_ptr *,
1459			unsigned int);
1460void do_make_empty_dir(struct inode *, struct inode *,
1461			struct f2fs_dentry_ptr *);
1462struct page *init_inode_metadata(struct inode *, struct inode *,
1463			const struct qstr *, struct page *);
1464void update_parent_metadata(struct inode *, struct inode *, unsigned int);
1465int room_for_filename(const void *, int, int);
1466void f2fs_drop_nlink(struct inode *, struct inode *, struct page *);
1467struct f2fs_dir_entry *f2fs_find_entry(struct inode *, struct qstr *,
1468							struct page **);
1469struct f2fs_dir_entry *f2fs_parent_dir(struct inode *, struct page **);
1470ino_t f2fs_inode_by_name(struct inode *, struct qstr *);
1471void f2fs_set_link(struct inode *, struct f2fs_dir_entry *,
1472				struct page *, struct inode *);
1473int update_dent_inode(struct inode *, const struct qstr *);
1474void f2fs_update_dentry(nid_t ino, umode_t mode, struct f2fs_dentry_ptr *,
1475			const struct qstr *, f2fs_hash_t , unsigned int);
1476int __f2fs_add_link(struct inode *, const struct qstr *, struct inode *, nid_t,
1477			umode_t);
1478void f2fs_delete_entry(struct f2fs_dir_entry *, struct page *, struct inode *,
1479							struct inode *);
1480int f2fs_do_tmpfile(struct inode *, struct inode *);
1481int f2fs_make_empty(struct inode *, struct inode *);
1482bool f2fs_empty_dir(struct inode *);
1483
1484static inline int f2fs_add_link(struct dentry *dentry, struct inode *inode)
1485{
1486	return __f2fs_add_link(d_inode(dentry->d_parent), &dentry->d_name,
1487				inode, inode->i_ino, inode->i_mode);
1488}
1489
1490/*
1491 * super.c
1492 */
1493int f2fs_sync_fs(struct super_block *, int);
1494extern __printf(3, 4)
1495void f2fs_msg(struct super_block *, const char *, const char *, ...);
1496
1497/*
1498 * hash.c
1499 */
1500f2fs_hash_t f2fs_dentry_hash(const struct qstr *);
1501
1502/*
1503 * node.c
1504 */
1505struct dnode_of_data;
1506struct node_info;
1507
1508bool available_free_memory(struct f2fs_sb_info *, int);
1509bool is_checkpointed_node(struct f2fs_sb_info *, nid_t);
1510bool has_fsynced_inode(struct f2fs_sb_info *, nid_t);
1511bool need_inode_block_update(struct f2fs_sb_info *, nid_t);
1512void get_node_info(struct f2fs_sb_info *, nid_t, struct node_info *);
1513int get_dnode_of_data(struct dnode_of_data *, pgoff_t, int);
1514int truncate_inode_blocks(struct inode *, pgoff_t);
1515int truncate_xattr_node(struct inode *, struct page *);
1516int wait_on_node_pages_writeback(struct f2fs_sb_info *, nid_t);
1517void remove_inode_page(struct inode *);
1518struct page *new_inode_page(struct inode *);
1519struct page *new_node_page(struct dnode_of_data *, unsigned int, struct page *);
1520void ra_node_page(struct f2fs_sb_info *, nid_t);
1521struct page *get_node_page(struct f2fs_sb_info *, pgoff_t);
1522struct page *get_node_page_ra(struct page *, int);
1523void sync_inode_page(struct dnode_of_data *);
1524int sync_node_pages(struct f2fs_sb_info *, nid_t, struct writeback_control *);
1525bool alloc_nid(struct f2fs_sb_info *, nid_t *);
1526void alloc_nid_done(struct f2fs_sb_info *, nid_t);
1527void alloc_nid_failed(struct f2fs_sb_info *, nid_t);
1528void recover_inline_xattr(struct inode *, struct page *);
1529void recover_xattr_data(struct inode *, struct page *, block_t);
1530int recover_inode_page(struct f2fs_sb_info *, struct page *);
1531int restore_node_summary(struct f2fs_sb_info *, unsigned int,
1532				struct f2fs_summary_block *);
1533void flush_nat_entries(struct f2fs_sb_info *);
1534int build_node_manager(struct f2fs_sb_info *);
1535void destroy_node_manager(struct f2fs_sb_info *);
1536int __init create_node_manager_caches(void);
1537void destroy_node_manager_caches(void);
1538
1539/*
1540 * segment.c
1541 */
1542void register_inmem_page(struct inode *, struct page *);
1543void commit_inmem_pages(struct inode *, bool);
1544void f2fs_balance_fs(struct f2fs_sb_info *);
1545void f2fs_balance_fs_bg(struct f2fs_sb_info *);
1546int f2fs_issue_flush(struct f2fs_sb_info *);
1547int create_flush_cmd_control(struct f2fs_sb_info *);
1548void destroy_flush_cmd_control(struct f2fs_sb_info *);
1549void invalidate_blocks(struct f2fs_sb_info *, block_t);
1550void refresh_sit_entry(struct f2fs_sb_info *, block_t, block_t);
1551void clear_prefree_segments(struct f2fs_sb_info *);
1552void release_discard_addrs(struct f2fs_sb_info *);
1553void discard_next_dnode(struct f2fs_sb_info *, block_t);
1554int npages_for_summary_flush(struct f2fs_sb_info *, bool);
1555void allocate_new_segments(struct f2fs_sb_info *);
1556int f2fs_trim_fs(struct f2fs_sb_info *, struct fstrim_range *);
1557struct page *get_sum_page(struct f2fs_sb_info *, unsigned int);
1558void write_meta_page(struct f2fs_sb_info *, struct page *);
1559void write_node_page(struct f2fs_sb_info *, struct page *,
1560				unsigned int, struct f2fs_io_info *);
1561void write_data_page(struct page *, struct dnode_of_data *,
1562			struct f2fs_io_info *);
1563void rewrite_data_page(struct page *, struct f2fs_io_info *);
1564void recover_data_page(struct f2fs_sb_info *, struct page *,
1565				struct f2fs_summary *, block_t, block_t);
1566void allocate_data_block(struct f2fs_sb_info *, struct page *,
1567		block_t, block_t *, struct f2fs_summary *, int);
1568void f2fs_wait_on_page_writeback(struct page *, enum page_type);
1569void write_data_summaries(struct f2fs_sb_info *, block_t);
1570void write_node_summaries(struct f2fs_sb_info *, block_t);
1571int lookup_journal_in_cursum(struct f2fs_summary_block *,
1572					int, unsigned int, int);
1573void flush_sit_entries(struct f2fs_sb_info *, struct cp_control *);
1574int build_segment_manager(struct f2fs_sb_info *);
1575void destroy_segment_manager(struct f2fs_sb_info *);
1576int __init create_segment_manager_caches(void);
1577void destroy_segment_manager_caches(void);
1578
1579/*
1580 * checkpoint.c
1581 */
1582struct page *grab_meta_page(struct f2fs_sb_info *, pgoff_t);
1583struct page *get_meta_page(struct f2fs_sb_info *, pgoff_t);
1584int ra_meta_pages(struct f2fs_sb_info *, block_t, int, int);
1585void ra_meta_pages_cond(struct f2fs_sb_info *, pgoff_t);
1586long sync_meta_pages(struct f2fs_sb_info *, enum page_type, long);
1587void add_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1588void remove_dirty_inode(struct f2fs_sb_info *, nid_t, int type);
1589void release_dirty_inode(struct f2fs_sb_info *);
1590bool exist_written_data(struct f2fs_sb_info *, nid_t, int);
1591int acquire_orphan_inode(struct f2fs_sb_info *);
1592void release_orphan_inode(struct f2fs_sb_info *);
1593void add_orphan_inode(struct f2fs_sb_info *, nid_t);
1594void remove_orphan_inode(struct f2fs_sb_info *, nid_t);
1595void recover_orphan_inodes(struct f2fs_sb_info *);
1596int get_valid_checkpoint(struct f2fs_sb_info *);
1597void update_dirty_page(struct inode *, struct page *);
1598void add_dirty_dir_inode(struct inode *);
1599void remove_dirty_dir_inode(struct inode *);
1600void sync_dirty_dir_inodes(struct f2fs_sb_info *);
1601void write_checkpoint(struct f2fs_sb_info *, struct cp_control *);
1602void init_ino_entry_info(struct f2fs_sb_info *);
1603int __init create_checkpoint_caches(void);
1604void destroy_checkpoint_caches(void);
1605
1606/*
1607 * data.c
1608 */
1609void f2fs_submit_merged_bio(struct f2fs_sb_info *, enum page_type, int);
1610int f2fs_submit_page_bio(struct f2fs_sb_info *, struct page *,
1611						struct f2fs_io_info *);
1612void f2fs_submit_page_mbio(struct f2fs_sb_info *, struct page *,
1613						struct f2fs_io_info *);
1614void set_data_blkaddr(struct dnode_of_data *);
1615int reserve_new_block(struct dnode_of_data *);
1616int f2fs_reserve_block(struct dnode_of_data *, pgoff_t);
1617void f2fs_shrink_extent_tree(struct f2fs_sb_info *, int);
1618void f2fs_destroy_extent_tree(struct inode *);
1619void f2fs_init_extent_cache(struct inode *, struct f2fs_extent *);
1620void f2fs_update_extent_cache(struct dnode_of_data *);
1621void f2fs_preserve_extent_tree(struct inode *);
1622struct page *find_data_page(struct inode *, pgoff_t, bool);
1623struct page *get_lock_data_page(struct inode *, pgoff_t);
1624struct page *get_new_data_page(struct inode *, struct page *, pgoff_t, bool);
1625int do_write_data_page(struct page *, struct f2fs_io_info *);
1626int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *, u64, u64);
1627void init_extent_cache_info(struct f2fs_sb_info *);
1628int __init create_extent_cache(void);
1629void destroy_extent_cache(void);
1630void f2fs_invalidate_page(struct page *, unsigned int, unsigned int);
1631int f2fs_release_page(struct page *, gfp_t);
1632
1633/*
1634 * gc.c
1635 */
1636int start_gc_thread(struct f2fs_sb_info *);
1637void stop_gc_thread(struct f2fs_sb_info *);
1638block_t start_bidx_of_node(unsigned int, struct f2fs_inode_info *);
1639int f2fs_gc(struct f2fs_sb_info *);
1640void build_gc_manager(struct f2fs_sb_info *);
1641
1642/*
1643 * recovery.c
1644 */
1645int recover_fsync_data(struct f2fs_sb_info *);
1646bool space_for_roll_forward(struct f2fs_sb_info *);
1647
1648/*
1649 * debug.c
1650 */
1651#ifdef CONFIG_F2FS_STAT_FS
1652struct f2fs_stat_info {
1653	struct list_head stat_list;
1654	struct f2fs_sb_info *sbi;
1655	int all_area_segs, sit_area_segs, nat_area_segs, ssa_area_segs;
1656	int main_area_segs, main_area_sections, main_area_zones;
1657	int hit_ext, total_ext, ext_tree, ext_node;
1658	int ndirty_node, ndirty_dent, ndirty_dirs, ndirty_meta;
1659	int nats, dirty_nats, sits, dirty_sits, fnids;
1660	int total_count, utilization;
1661	int bg_gc, inline_inode, inline_dir, inmem_pages, wb_pages;
1662	unsigned int valid_count, valid_node_count, valid_inode_count;
1663	unsigned int bimodal, avg_vblocks;
1664	int util_free, util_valid, util_invalid;
1665	int rsvd_segs, overp_segs;
1666	int dirty_count, node_pages, meta_pages;
1667	int prefree_count, call_count, cp_count;
1668	int tot_segs, node_segs, data_segs, free_segs, free_secs;
1669	int bg_node_segs, bg_data_segs;
1670	int tot_blks, data_blks, node_blks;
1671	int bg_data_blks, bg_node_blks;
1672	int curseg[NR_CURSEG_TYPE];
1673	int cursec[NR_CURSEG_TYPE];
1674	int curzone[NR_CURSEG_TYPE];
1675
1676	unsigned int segment_count[2];
1677	unsigned int block_count[2];
1678	unsigned int inplace_count;
1679	unsigned base_mem, cache_mem, page_mem;
1680};
1681
1682static inline struct f2fs_stat_info *F2FS_STAT(struct f2fs_sb_info *sbi)
1683{
1684	return (struct f2fs_stat_info *)sbi->stat_info;
1685}
1686
1687#define stat_inc_cp_count(si)		((si)->cp_count++)
1688#define stat_inc_call_count(si)		((si)->call_count++)
1689#define stat_inc_bggc_count(sbi)	((sbi)->bg_gc++)
1690#define stat_inc_dirty_dir(sbi)		((sbi)->n_dirty_dirs++)
1691#define stat_dec_dirty_dir(sbi)		((sbi)->n_dirty_dirs--)
1692#define stat_inc_total_hit(sb)		((F2FS_SB(sb))->total_hit_ext++)
1693#define stat_inc_read_hit(sb)		((F2FS_SB(sb))->read_hit_ext++)
1694#define stat_inc_inline_inode(inode)					\
1695	do {								\
1696		if (f2fs_has_inline_data(inode))			\
1697			(atomic_inc(&F2FS_I_SB(inode)->inline_inode));	\
1698	} while (0)
1699#define stat_dec_inline_inode(inode)					\
1700	do {								\
1701		if (f2fs_has_inline_data(inode))			\
1702			(atomic_dec(&F2FS_I_SB(inode)->inline_inode));	\
1703	} while (0)
1704#define stat_inc_inline_dir(inode)					\
1705	do {								\
1706		if (f2fs_has_inline_dentry(inode))			\
1707			(atomic_inc(&F2FS_I_SB(inode)->inline_dir));	\
1708	} while (0)
1709#define stat_dec_inline_dir(inode)					\
1710	do {								\
1711		if (f2fs_has_inline_dentry(inode))			\
1712			(atomic_dec(&F2FS_I_SB(inode)->inline_dir));	\
1713	} while (0)
1714#define stat_inc_seg_type(sbi, curseg)					\
1715		((sbi)->segment_count[(curseg)->alloc_type]++)
1716#define stat_inc_block_count(sbi, curseg)				\
1717		((sbi)->block_count[(curseg)->alloc_type]++)
1718#define stat_inc_inplace_blocks(sbi)					\
1719		(atomic_inc(&(sbi)->inplace_count))
1720#define stat_inc_seg_count(sbi, type, gc_type)				\
1721	do {								\
1722		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1723		(si)->tot_segs++;					\
1724		if (type == SUM_TYPE_DATA) {				\
1725			si->data_segs++;				\
1726			si->bg_data_segs += (gc_type == BG_GC) ? 1 : 0;	\
1727		} else {						\
1728			si->node_segs++;				\
1729			si->bg_node_segs += (gc_type == BG_GC) ? 1 : 0;	\
1730		}							\
1731	} while (0)
1732
1733#define stat_inc_tot_blk_count(si, blks)				\
1734	(si->tot_blks += (blks))
1735
1736#define stat_inc_data_blk_count(sbi, blks, gc_type)			\
1737	do {								\
1738		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1739		stat_inc_tot_blk_count(si, blks);			\
1740		si->data_blks += (blks);				\
1741		si->bg_data_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1742	} while (0)
1743
1744#define stat_inc_node_blk_count(sbi, blks, gc_type)			\
1745	do {								\
1746		struct f2fs_stat_info *si = F2FS_STAT(sbi);		\
1747		stat_inc_tot_blk_count(si, blks);			\
1748		si->node_blks += (blks);				\
1749		si->bg_node_blks += (gc_type == BG_GC) ? (blks) : 0;	\
1750	} while (0)
1751
1752int f2fs_build_stats(struct f2fs_sb_info *);
1753void f2fs_destroy_stats(struct f2fs_sb_info *);
1754void __init f2fs_create_root_stats(void);
1755void f2fs_destroy_root_stats(void);
1756#else
1757#define stat_inc_cp_count(si)
1758#define stat_inc_call_count(si)
1759#define stat_inc_bggc_count(si)
1760#define stat_inc_dirty_dir(sbi)
1761#define stat_dec_dirty_dir(sbi)
1762#define stat_inc_total_hit(sb)
1763#define stat_inc_read_hit(sb)
1764#define stat_inc_inline_inode(inode)
1765#define stat_dec_inline_inode(inode)
1766#define stat_inc_inline_dir(inode)
1767#define stat_dec_inline_dir(inode)
1768#define stat_inc_seg_type(sbi, curseg)
1769#define stat_inc_block_count(sbi, curseg)
1770#define stat_inc_inplace_blocks(sbi)
1771#define stat_inc_seg_count(sbi, type, gc_type)
1772#define stat_inc_tot_blk_count(si, blks)
1773#define stat_inc_data_blk_count(sbi, blks, gc_type)
1774#define stat_inc_node_blk_count(sbi, blks, gc_type)
1775
1776static inline int f2fs_build_stats(struct f2fs_sb_info *sbi) { return 0; }
1777static inline void f2fs_destroy_stats(struct f2fs_sb_info *sbi) { }
1778static inline void __init f2fs_create_root_stats(void) { }
1779static inline void f2fs_destroy_root_stats(void) { }
1780#endif
1781
1782extern const struct file_operations f2fs_dir_operations;
1783extern const struct file_operations f2fs_file_operations;
1784extern const struct inode_operations f2fs_file_inode_operations;
1785extern const struct address_space_operations f2fs_dblock_aops;
1786extern const struct address_space_operations f2fs_node_aops;
1787extern const struct address_space_operations f2fs_meta_aops;
1788extern const struct inode_operations f2fs_dir_inode_operations;
1789extern const struct inode_operations f2fs_symlink_inode_operations;
1790extern const struct inode_operations f2fs_special_inode_operations;
1791extern struct kmem_cache *inode_entry_slab;
1792
1793/*
1794 * inline.c
1795 */
1796bool f2fs_may_inline(struct inode *);
1797void read_inline_data(struct page *, struct page *);
1798bool truncate_inline_inode(struct page *, u64);
1799int f2fs_read_inline_data(struct inode *, struct page *);
1800int f2fs_convert_inline_page(struct dnode_of_data *, struct page *);
1801int f2fs_convert_inline_inode(struct inode *);
1802int f2fs_write_inline_data(struct inode *, struct page *);
1803bool recover_inline_data(struct inode *, struct page *);
1804struct f2fs_dir_entry *find_in_inline_dir(struct inode *, struct qstr *,
1805							struct page **);
1806struct f2fs_dir_entry *f2fs_parent_inline_dir(struct inode *, struct page **);
1807int make_empty_inline_dir(struct inode *inode, struct inode *, struct page *);
1808int f2fs_add_inline_entry(struct inode *, const struct qstr *, struct inode *,
1809						nid_t, umode_t);
1810void f2fs_delete_inline_entry(struct f2fs_dir_entry *, struct page *,
1811						struct inode *, struct inode *);
1812bool f2fs_empty_inline_dir(struct inode *);
1813int f2fs_read_inline_dir(struct file *, struct dir_context *);
1814#endif
1815