1/*
2 * fs/f2fs/segment.h
3 *
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 *             http://www.samsung.com/
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11#include <linux/blkdev.h>
12
13/* constant macro */
14#define NULL_SEGNO			((unsigned int)(~0))
15#define NULL_SECNO			((unsigned int)(~0))
16
17#define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
18
19/* L: Logical segment # in volume, R: Relative segment # in main area */
20#define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21#define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22
23#define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24#define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25
26#define IS_CURSEG(sbi, seg)						\
27	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33
34#define IS_CURSEC(sbi, secno)						\
35	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36	  sbi->segs_per_sec) ||	\
37	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38	  sbi->segs_per_sec) ||	\
39	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40	  sbi->segs_per_sec) ||	\
41	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42	  sbi->segs_per_sec) ||	\
43	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44	  sbi->segs_per_sec) ||	\
45	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46	  sbi->segs_per_sec))	\
47
48#define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
49#define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
50
51#define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
52#define MAIN_SECS(sbi)	(sbi->total_sections)
53
54#define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
55#define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56
57#define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58#define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
59					sbi->log_blocks_per_seg))
60
61#define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
62	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
63
64#define NEXT_FREE_BLKADDR(sbi, curseg)					\
65	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66
67#define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
68#define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
69	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70#define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
71	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72
73#define GET_SEGNO(sbi, blk_addr)					\
74	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
75	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
76		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77#define GET_SECNO(sbi, segno)					\
78	((segno) / sbi->segs_per_sec)
79#define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
80	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81
82#define GET_SUM_BLOCK(sbi, segno)				\
83	((sbi->sm_info->ssa_blkaddr) + segno)
84
85#define GET_SUM_TYPE(footer) ((footer)->entry_type)
86#define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87
88#define SIT_ENTRY_OFFSET(sit_i, segno)					\
89	(segno % sit_i->sents_per_block)
90#define SIT_BLOCK_OFFSET(segno)					\
91	(segno / SIT_ENTRY_PER_BLOCK)
92#define	START_SEGNO(segno)		\
93	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94#define SIT_BLK_CNT(sbi)			\
95	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96#define f2fs_bitmap_size(nr)			\
97	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
98
99#define SECTOR_FROM_BLOCK(blk_addr)					\
100	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101#define SECTOR_TO_BLOCK(sectors)					\
102	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103#define MAX_BIO_BLOCKS(sbi)						\
104	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
105
106/*
107 * indicate a block allocation direction: RIGHT and LEFT.
108 * RIGHT means allocating new sections towards the end of volume.
109 * LEFT means the opposite direction.
110 */
111enum {
112	ALLOC_RIGHT = 0,
113	ALLOC_LEFT
114};
115
116/*
117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118 * LFS writes data sequentially with cleaning operations.
119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120 */
121enum {
122	LFS = 0,
123	SSR
124};
125
126/*
127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128 * GC_CB is based on cost-benefit algorithm.
129 * GC_GREEDY is based on greedy algorithm.
130 */
131enum {
132	GC_CB = 0,
133	GC_GREEDY
134};
135
136/*
137 * BG_GC means the background cleaning job.
138 * FG_GC means the on-demand cleaning job.
139 */
140enum {
141	BG_GC = 0,
142	FG_GC
143};
144
145/* for a function parameter to select a victim segment */
146struct victim_sel_policy {
147	int alloc_mode;			/* LFS or SSR */
148	int gc_mode;			/* GC_CB or GC_GREEDY */
149	unsigned long *dirty_segmap;	/* dirty segment bitmap */
150	unsigned int max_search;	/* maximum # of segments to search */
151	unsigned int offset;		/* last scanned bitmap offset */
152	unsigned int ofs_unit;		/* bitmap search unit */
153	unsigned int min_cost;		/* minimum cost */
154	unsigned int min_segno;		/* segment # having min. cost */
155};
156
157struct seg_entry {
158	unsigned short valid_blocks;	/* # of valid blocks */
159	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
160	/*
161	 * # of valid blocks and the validity bitmap stored in the the last
162	 * checkpoint pack. This information is used by the SSR mode.
163	 */
164	unsigned short ckpt_valid_blocks;
165	unsigned char *ckpt_valid_map;
166	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
167	unsigned long long mtime;	/* modification time of the segment */
168};
169
170struct sec_entry {
171	unsigned int valid_blocks;	/* # of valid blocks in a section */
172};
173
174struct segment_allocation {
175	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
176};
177
178struct inmem_pages {
179	struct list_head list;
180	struct page *page;
181};
182
183struct sit_info {
184	const struct segment_allocation *s_ops;
185
186	block_t sit_base_addr;		/* start block address of SIT area */
187	block_t sit_blocks;		/* # of blocks used by SIT area */
188	block_t written_valid_blocks;	/* # of valid blocks in main area */
189	char *sit_bitmap;		/* SIT bitmap pointer */
190	unsigned int bitmap_size;	/* SIT bitmap size */
191
192	unsigned long *tmp_map;			/* bitmap for temporal use */
193	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
194	unsigned int dirty_sentries;		/* # of dirty sentries */
195	unsigned int sents_per_block;		/* # of SIT entries per block */
196	struct mutex sentry_lock;		/* to protect SIT cache */
197	struct seg_entry *sentries;		/* SIT segment-level cache */
198	struct sec_entry *sec_entries;		/* SIT section-level cache */
199
200	/* for cost-benefit algorithm in cleaning procedure */
201	unsigned long long elapsed_time;	/* elapsed time after mount */
202	unsigned long long mounted_time;	/* mount time */
203	unsigned long long min_mtime;		/* min. modification time */
204	unsigned long long max_mtime;		/* max. modification time */
205};
206
207struct free_segmap_info {
208	unsigned int start_segno;	/* start segment number logically */
209	unsigned int free_segments;	/* # of free segments */
210	unsigned int free_sections;	/* # of free sections */
211	spinlock_t segmap_lock;		/* free segmap lock */
212	unsigned long *free_segmap;	/* free segment bitmap */
213	unsigned long *free_secmap;	/* free section bitmap */
214};
215
216/* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
217enum dirty_type {
218	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
219	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
220	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
221	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
222	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
223	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
224	DIRTY,			/* to count # of dirty segments */
225	PRE,			/* to count # of entirely obsolete segments */
226	NR_DIRTY_TYPE
227};
228
229struct dirty_seglist_info {
230	const struct victim_selection *v_ops;	/* victim selction operation */
231	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
232	struct mutex seglist_lock;		/* lock for segment bitmaps */
233	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
234	unsigned long *victim_secmap;		/* background GC victims */
235};
236
237/* victim selection function for cleaning and SSR */
238struct victim_selection {
239	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
240							int, int, char);
241};
242
243/* for active log information */
244struct curseg_info {
245	struct mutex curseg_mutex;		/* lock for consistency */
246	struct f2fs_summary_block *sum_blk;	/* cached summary block */
247	unsigned char alloc_type;		/* current allocation type */
248	unsigned int segno;			/* current segment number */
249	unsigned short next_blkoff;		/* next block offset to write */
250	unsigned int zone;			/* current zone number */
251	unsigned int next_segno;		/* preallocated segment */
252};
253
254struct sit_entry_set {
255	struct list_head set_list;	/* link with all sit sets */
256	unsigned int start_segno;	/* start segno of sits in set */
257	unsigned int entry_cnt;		/* the # of sit entries in set */
258};
259
260/*
261 * inline functions
262 */
263static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
264{
265	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
266}
267
268static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
269						unsigned int segno)
270{
271	struct sit_info *sit_i = SIT_I(sbi);
272	return &sit_i->sentries[segno];
273}
274
275static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
276						unsigned int segno)
277{
278	struct sit_info *sit_i = SIT_I(sbi);
279	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
280}
281
282static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
283				unsigned int segno, int section)
284{
285	/*
286	 * In order to get # of valid blocks in a section instantly from many
287	 * segments, f2fs manages two counting structures separately.
288	 */
289	if (section > 1)
290		return get_sec_entry(sbi, segno)->valid_blocks;
291	else
292		return get_seg_entry(sbi, segno)->valid_blocks;
293}
294
295static inline void seg_info_from_raw_sit(struct seg_entry *se,
296					struct f2fs_sit_entry *rs)
297{
298	se->valid_blocks = GET_SIT_VBLOCKS(rs);
299	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
300	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
302	se->type = GET_SIT_TYPE(rs);
303	se->mtime = le64_to_cpu(rs->mtime);
304}
305
306static inline void seg_info_to_raw_sit(struct seg_entry *se,
307					struct f2fs_sit_entry *rs)
308{
309	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
310					se->valid_blocks;
311	rs->vblocks = cpu_to_le16(raw_vblocks);
312	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
313	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
314	se->ckpt_valid_blocks = se->valid_blocks;
315	rs->mtime = cpu_to_le64(se->mtime);
316}
317
318static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
319		unsigned int max, unsigned int segno)
320{
321	unsigned int ret;
322	spin_lock(&free_i->segmap_lock);
323	ret = find_next_bit(free_i->free_segmap, max, segno);
324	spin_unlock(&free_i->segmap_lock);
325	return ret;
326}
327
328static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
329{
330	struct free_segmap_info *free_i = FREE_I(sbi);
331	unsigned int secno = segno / sbi->segs_per_sec;
332	unsigned int start_segno = secno * sbi->segs_per_sec;
333	unsigned int next;
334
335	spin_lock(&free_i->segmap_lock);
336	clear_bit(segno, free_i->free_segmap);
337	free_i->free_segments++;
338
339	next = find_next_bit(free_i->free_segmap,
340			start_segno + sbi->segs_per_sec, start_segno);
341	if (next >= start_segno + sbi->segs_per_sec) {
342		clear_bit(secno, free_i->free_secmap);
343		free_i->free_sections++;
344	}
345	spin_unlock(&free_i->segmap_lock);
346}
347
348static inline void __set_inuse(struct f2fs_sb_info *sbi,
349		unsigned int segno)
350{
351	struct free_segmap_info *free_i = FREE_I(sbi);
352	unsigned int secno = segno / sbi->segs_per_sec;
353	set_bit(segno, free_i->free_segmap);
354	free_i->free_segments--;
355	if (!test_and_set_bit(secno, free_i->free_secmap))
356		free_i->free_sections--;
357}
358
359static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
360		unsigned int segno)
361{
362	struct free_segmap_info *free_i = FREE_I(sbi);
363	unsigned int secno = segno / sbi->segs_per_sec;
364	unsigned int start_segno = secno * sbi->segs_per_sec;
365	unsigned int next;
366
367	spin_lock(&free_i->segmap_lock);
368	if (test_and_clear_bit(segno, free_i->free_segmap)) {
369		free_i->free_segments++;
370
371		next = find_next_bit(free_i->free_segmap,
372				start_segno + sbi->segs_per_sec, start_segno);
373		if (next >= start_segno + sbi->segs_per_sec) {
374			if (test_and_clear_bit(secno, free_i->free_secmap))
375				free_i->free_sections++;
376		}
377	}
378	spin_unlock(&free_i->segmap_lock);
379}
380
381static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
382		unsigned int segno)
383{
384	struct free_segmap_info *free_i = FREE_I(sbi);
385	unsigned int secno = segno / sbi->segs_per_sec;
386	spin_lock(&free_i->segmap_lock);
387	if (!test_and_set_bit(segno, free_i->free_segmap)) {
388		free_i->free_segments--;
389		if (!test_and_set_bit(secno, free_i->free_secmap))
390			free_i->free_sections--;
391	}
392	spin_unlock(&free_i->segmap_lock);
393}
394
395static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
396		void *dst_addr)
397{
398	struct sit_info *sit_i = SIT_I(sbi);
399	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
400}
401
402static inline block_t written_block_count(struct f2fs_sb_info *sbi)
403{
404	return SIT_I(sbi)->written_valid_blocks;
405}
406
407static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
408{
409	return FREE_I(sbi)->free_segments;
410}
411
412static inline int reserved_segments(struct f2fs_sb_info *sbi)
413{
414	return SM_I(sbi)->reserved_segments;
415}
416
417static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
418{
419	return FREE_I(sbi)->free_sections;
420}
421
422static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
423{
424	return DIRTY_I(sbi)->nr_dirty[PRE];
425}
426
427static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
428{
429	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
430		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
431		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
432		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
433		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
434		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
435}
436
437static inline int overprovision_segments(struct f2fs_sb_info *sbi)
438{
439	return SM_I(sbi)->ovp_segments;
440}
441
442static inline int overprovision_sections(struct f2fs_sb_info *sbi)
443{
444	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
445}
446
447static inline int reserved_sections(struct f2fs_sb_info *sbi)
448{
449	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
450}
451
452static inline bool need_SSR(struct f2fs_sb_info *sbi)
453{
454	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
455	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
456	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
457						reserved_sections(sbi) + 1);
458}
459
460static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
461{
462	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
463	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
464
465	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
466		return false;
467
468	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
469						reserved_sections(sbi));
470}
471
472static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
473{
474	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
475}
476
477static inline int utilization(struct f2fs_sb_info *sbi)
478{
479	return div_u64((u64)valid_user_blocks(sbi) * 100,
480					sbi->user_block_count);
481}
482
483/*
484 * Sometimes f2fs may be better to drop out-of-place update policy.
485 * And, users can control the policy through sysfs entries.
486 * There are five policies with triggering conditions as follows.
487 * F2FS_IPU_FORCE - all the time,
488 * F2FS_IPU_SSR - if SSR mode is activated,
489 * F2FS_IPU_UTIL - if FS utilization is over threashold,
490 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
491 *                     threashold,
492 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
493 *                     storages. IPU will be triggered only if the # of dirty
494 *                     pages over min_fsync_blocks.
495 * F2FS_IPUT_DISABLE - disable IPU. (=default option)
496 */
497#define DEF_MIN_IPU_UTIL	70
498#define DEF_MIN_FSYNC_BLOCKS	8
499
500enum {
501	F2FS_IPU_FORCE,
502	F2FS_IPU_SSR,
503	F2FS_IPU_UTIL,
504	F2FS_IPU_SSR_UTIL,
505	F2FS_IPU_FSYNC,
506};
507
508static inline bool need_inplace_update(struct inode *inode)
509{
510	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
511	unsigned int policy = SM_I(sbi)->ipu_policy;
512
513	/* IPU can be done only for the user data */
514	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
515		return false;
516
517	if (policy & (0x1 << F2FS_IPU_FORCE))
518		return true;
519	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
520		return true;
521	if (policy & (0x1 << F2FS_IPU_UTIL) &&
522			utilization(sbi) > SM_I(sbi)->min_ipu_util)
523		return true;
524	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
525			utilization(sbi) > SM_I(sbi)->min_ipu_util)
526		return true;
527
528	/* this is only set during fdatasync */
529	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
530			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
531		return true;
532
533	return false;
534}
535
536static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
537		int type)
538{
539	struct curseg_info *curseg = CURSEG_I(sbi, type);
540	return curseg->segno;
541}
542
543static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
544		int type)
545{
546	struct curseg_info *curseg = CURSEG_I(sbi, type);
547	return curseg->alloc_type;
548}
549
550static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
551{
552	struct curseg_info *curseg = CURSEG_I(sbi, type);
553	return curseg->next_blkoff;
554}
555
556#ifdef CONFIG_F2FS_CHECK_FS
557static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
558{
559	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
560}
561
562static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
563{
564	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
565	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
566}
567
568/*
569 * Summary block is always treated as an invalid block
570 */
571static inline void check_block_count(struct f2fs_sb_info *sbi,
572		int segno, struct f2fs_sit_entry *raw_sit)
573{
574	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
575	int valid_blocks = 0;
576	int cur_pos = 0, next_pos;
577
578	/* check segment usage */
579	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
580
581	/* check boundary of a given segment number */
582	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
583
584	/* check bitmap with valid block count */
585	do {
586		if (is_valid) {
587			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
588					sbi->blocks_per_seg,
589					cur_pos);
590			valid_blocks += next_pos - cur_pos;
591		} else
592			next_pos = find_next_bit_le(&raw_sit->valid_map,
593					sbi->blocks_per_seg,
594					cur_pos);
595		cur_pos = next_pos;
596		is_valid = !is_valid;
597	} while (cur_pos < sbi->blocks_per_seg);
598	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
599}
600#else
601static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
602{
603	if (segno > TOTAL_SEGS(sbi) - 1)
604		set_sbi_flag(sbi, SBI_NEED_FSCK);
605}
606
607static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
608{
609	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
610		set_sbi_flag(sbi, SBI_NEED_FSCK);
611}
612
613/*
614 * Summary block is always treated as an invalid block
615 */
616static inline void check_block_count(struct f2fs_sb_info *sbi,
617		int segno, struct f2fs_sit_entry *raw_sit)
618{
619	/* check segment usage */
620	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
621		set_sbi_flag(sbi, SBI_NEED_FSCK);
622
623	/* check boundary of a given segment number */
624	if (segno > TOTAL_SEGS(sbi) - 1)
625		set_sbi_flag(sbi, SBI_NEED_FSCK);
626}
627#endif
628
629static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
630						unsigned int start)
631{
632	struct sit_info *sit_i = SIT_I(sbi);
633	unsigned int offset = SIT_BLOCK_OFFSET(start);
634	block_t blk_addr = sit_i->sit_base_addr + offset;
635
636	check_seg_range(sbi, start);
637
638	/* calculate sit block address */
639	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
640		blk_addr += sit_i->sit_blocks;
641
642	return blk_addr;
643}
644
645static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
646						pgoff_t block_addr)
647{
648	struct sit_info *sit_i = SIT_I(sbi);
649	block_addr -= sit_i->sit_base_addr;
650	if (block_addr < sit_i->sit_blocks)
651		block_addr += sit_i->sit_blocks;
652	else
653		block_addr -= sit_i->sit_blocks;
654
655	return block_addr + sit_i->sit_base_addr;
656}
657
658static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
659{
660	unsigned int block_off = SIT_BLOCK_OFFSET(start);
661
662	f2fs_change_bit(block_off, sit_i->sit_bitmap);
663}
664
665static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
666{
667	struct sit_info *sit_i = SIT_I(sbi);
668	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
669						sit_i->mounted_time;
670}
671
672static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
673			unsigned int ofs_in_node, unsigned char version)
674{
675	sum->nid = cpu_to_le32(nid);
676	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
677	sum->version = version;
678}
679
680static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
681{
682	return __start_cp_addr(sbi) +
683		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
684}
685
686static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
687{
688	return __start_cp_addr(sbi) +
689		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
690				- (base + 1) + type;
691}
692
693static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
694{
695	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
696		return true;
697	return false;
698}
699
700static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
701{
702	struct block_device *bdev = sbi->sb->s_bdev;
703	struct request_queue *q = bdev_get_queue(bdev);
704	return SECTOR_TO_BLOCK(queue_max_sectors(q));
705}
706
707/*
708 * It is very important to gather dirty pages and write at once, so that we can
709 * submit a big bio without interfering other data writes.
710 * By default, 512 pages for directory data,
711 * 512 pages (2MB) * 3 for three types of nodes, and
712 * max_bio_blocks for meta are set.
713 */
714static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
715{
716	if (sbi->sb->s_bdi->dirty_exceeded)
717		return 0;
718
719	if (type == DATA)
720		return sbi->blocks_per_seg;
721	else if (type == NODE)
722		return 3 * sbi->blocks_per_seg;
723	else if (type == META)
724		return MAX_BIO_BLOCKS(sbi);
725	else
726		return 0;
727}
728
729/*
730 * When writing pages, it'd better align nr_to_write for segment size.
731 */
732static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
733					struct writeback_control *wbc)
734{
735	long nr_to_write, desired;
736
737	if (wbc->sync_mode != WB_SYNC_NONE)
738		return 0;
739
740	nr_to_write = wbc->nr_to_write;
741
742	if (type == DATA)
743		desired = 4096;
744	else if (type == NODE)
745		desired = 3 * max_hw_blocks(sbi);
746	else
747		desired = MAX_BIO_BLOCKS(sbi);
748
749	wbc->nr_to_write = desired;
750	return desired - nr_to_write;
751}
752