1/*
2 * Copyright (C) Sistina Software, Inc.  1997-2003 All rights reserved.
3 * Copyright (C) 2004-2008 Red Hat, Inc.  All rights reserved.
4 *
5 * This copyrighted material is made available to anyone wishing to use,
6 * modify, copy, or redistribute it subject to the terms and conditions
7 * of the GNU General Public License version 2.
8 */
9
10#include <linux/sched.h>
11#include <linux/slab.h>
12#include <linux/spinlock.h>
13#include <linux/completion.h>
14#include <linux/buffer_head.h>
15#include <linux/pagemap.h>
16#include <linux/pagevec.h>
17#include <linux/mpage.h>
18#include <linux/fs.h>
19#include <linux/writeback.h>
20#include <linux/swap.h>
21#include <linux/gfs2_ondisk.h>
22#include <linux/backing-dev.h>
23#include <linux/uio.h>
24#include <trace/events/writeback.h>
25
26#include "gfs2.h"
27#include "incore.h"
28#include "bmap.h"
29#include "glock.h"
30#include "inode.h"
31#include "log.h"
32#include "meta_io.h"
33#include "quota.h"
34#include "trans.h"
35#include "rgrp.h"
36#include "super.h"
37#include "util.h"
38#include "glops.h"
39
40
41static void gfs2_page_add_databufs(struct gfs2_inode *ip, struct page *page,
42				   unsigned int from, unsigned int to)
43{
44	struct buffer_head *head = page_buffers(page);
45	unsigned int bsize = head->b_size;
46	struct buffer_head *bh;
47	unsigned int start, end;
48
49	for (bh = head, start = 0; bh != head || !start;
50	     bh = bh->b_this_page, start = end) {
51		end = start + bsize;
52		if (end <= from || start >= to)
53			continue;
54		if (gfs2_is_jdata(ip))
55			set_buffer_uptodate(bh);
56		gfs2_trans_add_data(ip->i_gl, bh);
57	}
58}
59
60/**
61 * gfs2_get_block_noalloc - Fills in a buffer head with details about a block
62 * @inode: The inode
63 * @lblock: The block number to look up
64 * @bh_result: The buffer head to return the result in
65 * @create: Non-zero if we may add block to the file
66 *
67 * Returns: errno
68 */
69
70static int gfs2_get_block_noalloc(struct inode *inode, sector_t lblock,
71				  struct buffer_head *bh_result, int create)
72{
73	int error;
74
75	error = gfs2_block_map(inode, lblock, bh_result, 0);
76	if (error)
77		return error;
78	if (!buffer_mapped(bh_result))
79		return -EIO;
80	return 0;
81}
82
83static int gfs2_get_block_direct(struct inode *inode, sector_t lblock,
84				 struct buffer_head *bh_result, int create)
85{
86	return gfs2_block_map(inode, lblock, bh_result, 0);
87}
88
89/**
90 * gfs2_writepage_common - Common bits of writepage
91 * @page: The page to be written
92 * @wbc: The writeback control
93 *
94 * Returns: 1 if writepage is ok, otherwise an error code or zero if no error.
95 */
96
97static int gfs2_writepage_common(struct page *page,
98				 struct writeback_control *wbc)
99{
100	struct inode *inode = page->mapping->host;
101	struct gfs2_inode *ip = GFS2_I(inode);
102	struct gfs2_sbd *sdp = GFS2_SB(inode);
103	loff_t i_size = i_size_read(inode);
104	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
105	unsigned offset;
106
107	if (gfs2_assert_withdraw(sdp, gfs2_glock_is_held_excl(ip->i_gl)))
108		goto out;
109	if (current->journal_info)
110		goto redirty;
111	/* Is the page fully outside i_size? (truncate in progress) */
112	offset = i_size & (PAGE_CACHE_SIZE-1);
113	if (page->index > end_index || (page->index == end_index && !offset)) {
114		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
115		goto out;
116	}
117	return 1;
118redirty:
119	redirty_page_for_writepage(wbc, page);
120out:
121	unlock_page(page);
122	return 0;
123}
124
125/**
126 * gfs2_writepage - Write page for writeback mappings
127 * @page: The page
128 * @wbc: The writeback control
129 *
130 */
131
132static int gfs2_writepage(struct page *page, struct writeback_control *wbc)
133{
134	int ret;
135
136	ret = gfs2_writepage_common(page, wbc);
137	if (ret <= 0)
138		return ret;
139
140	return nobh_writepage(page, gfs2_get_block_noalloc, wbc);
141}
142
143/**
144 * __gfs2_jdata_writepage - The core of jdata writepage
145 * @page: The page to write
146 * @wbc: The writeback control
147 *
148 * This is shared between writepage and writepages and implements the
149 * core of the writepage operation. If a transaction is required then
150 * PageChecked will have been set and the transaction will have
151 * already been started before this is called.
152 */
153
154static int __gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
155{
156	struct inode *inode = page->mapping->host;
157	struct gfs2_inode *ip = GFS2_I(inode);
158	struct gfs2_sbd *sdp = GFS2_SB(inode);
159
160	if (PageChecked(page)) {
161		ClearPageChecked(page);
162		if (!page_has_buffers(page)) {
163			create_empty_buffers(page, inode->i_sb->s_blocksize,
164					     (1 << BH_Dirty)|(1 << BH_Uptodate));
165		}
166		gfs2_page_add_databufs(ip, page, 0, sdp->sd_vfs->s_blocksize-1);
167	}
168	return block_write_full_page(page, gfs2_get_block_noalloc, wbc);
169}
170
171/**
172 * gfs2_jdata_writepage - Write complete page
173 * @page: Page to write
174 *
175 * Returns: errno
176 *
177 */
178
179static int gfs2_jdata_writepage(struct page *page, struct writeback_control *wbc)
180{
181	struct inode *inode = page->mapping->host;
182	struct gfs2_sbd *sdp = GFS2_SB(inode);
183	int ret;
184	int done_trans = 0;
185
186	if (PageChecked(page)) {
187		if (wbc->sync_mode != WB_SYNC_ALL)
188			goto out_ignore;
189		ret = gfs2_trans_begin(sdp, RES_DINODE + 1, 0);
190		if (ret)
191			goto out_ignore;
192		done_trans = 1;
193	}
194	ret = gfs2_writepage_common(page, wbc);
195	if (ret > 0)
196		ret = __gfs2_jdata_writepage(page, wbc);
197	if (done_trans)
198		gfs2_trans_end(sdp);
199	return ret;
200
201out_ignore:
202	redirty_page_for_writepage(wbc, page);
203	unlock_page(page);
204	return 0;
205}
206
207/**
208 * gfs2_writepages - Write a bunch of dirty pages back to disk
209 * @mapping: The mapping to write
210 * @wbc: Write-back control
211 *
212 * Used for both ordered and writeback modes.
213 */
214static int gfs2_writepages(struct address_space *mapping,
215			   struct writeback_control *wbc)
216{
217	return mpage_writepages(mapping, wbc, gfs2_get_block_noalloc);
218}
219
220/**
221 * gfs2_write_jdata_pagevec - Write back a pagevec's worth of pages
222 * @mapping: The mapping
223 * @wbc: The writeback control
224 * @writepage: The writepage function to call for each page
225 * @pvec: The vector of pages
226 * @nr_pages: The number of pages to write
227 *
228 * Returns: non-zero if loop should terminate, zero otherwise
229 */
230
231static int gfs2_write_jdata_pagevec(struct address_space *mapping,
232				    struct writeback_control *wbc,
233				    struct pagevec *pvec,
234				    int nr_pages, pgoff_t end,
235				    pgoff_t *done_index)
236{
237	struct inode *inode = mapping->host;
238	struct gfs2_sbd *sdp = GFS2_SB(inode);
239	unsigned nrblocks = nr_pages * (PAGE_CACHE_SIZE/inode->i_sb->s_blocksize);
240	int i;
241	int ret;
242
243	ret = gfs2_trans_begin(sdp, nrblocks, nrblocks);
244	if (ret < 0)
245		return ret;
246
247	for(i = 0; i < nr_pages; i++) {
248		struct page *page = pvec->pages[i];
249
250		/*
251		 * At this point, the page may be truncated or
252		 * invalidated (changing page->mapping to NULL), or
253		 * even swizzled back from swapper_space to tmpfs file
254		 * mapping. However, page->index will not change
255		 * because we have a reference on the page.
256		 */
257		if (page->index > end) {
258			/*
259			 * can't be range_cyclic (1st pass) because
260			 * end == -1 in that case.
261			 */
262			ret = 1;
263			break;
264		}
265
266		*done_index = page->index;
267
268		lock_page(page);
269
270		if (unlikely(page->mapping != mapping)) {
271continue_unlock:
272			unlock_page(page);
273			continue;
274		}
275
276		if (!PageDirty(page)) {
277			/* someone wrote it for us */
278			goto continue_unlock;
279		}
280
281		if (PageWriteback(page)) {
282			if (wbc->sync_mode != WB_SYNC_NONE)
283				wait_on_page_writeback(page);
284			else
285				goto continue_unlock;
286		}
287
288		BUG_ON(PageWriteback(page));
289		if (!clear_page_dirty_for_io(page))
290			goto continue_unlock;
291
292		trace_wbc_writepage(wbc, inode_to_bdi(inode));
293
294		ret = __gfs2_jdata_writepage(page, wbc);
295		if (unlikely(ret)) {
296			if (ret == AOP_WRITEPAGE_ACTIVATE) {
297				unlock_page(page);
298				ret = 0;
299			} else {
300
301				/*
302				 * done_index is set past this page,
303				 * so media errors will not choke
304				 * background writeout for the entire
305				 * file. This has consequences for
306				 * range_cyclic semantics (ie. it may
307				 * not be suitable for data integrity
308				 * writeout).
309				 */
310				*done_index = page->index + 1;
311				ret = 1;
312				break;
313			}
314		}
315
316		/*
317		 * We stop writing back only if we are not doing
318		 * integrity sync. In case of integrity sync we have to
319		 * keep going until we have written all the pages
320		 * we tagged for writeback prior to entering this loop.
321		 */
322		if (--wbc->nr_to_write <= 0 && wbc->sync_mode == WB_SYNC_NONE) {
323			ret = 1;
324			break;
325		}
326
327	}
328	gfs2_trans_end(sdp);
329	return ret;
330}
331
332/**
333 * gfs2_write_cache_jdata - Like write_cache_pages but different
334 * @mapping: The mapping to write
335 * @wbc: The writeback control
336 * @writepage: The writepage function to call
337 * @data: The data to pass to writepage
338 *
339 * The reason that we use our own function here is that we need to
340 * start transactions before we grab page locks. This allows us
341 * to get the ordering right.
342 */
343
344static int gfs2_write_cache_jdata(struct address_space *mapping,
345				  struct writeback_control *wbc)
346{
347	int ret = 0;
348	int done = 0;
349	struct pagevec pvec;
350	int nr_pages;
351	pgoff_t uninitialized_var(writeback_index);
352	pgoff_t index;
353	pgoff_t end;
354	pgoff_t done_index;
355	int cycled;
356	int range_whole = 0;
357	int tag;
358
359	pagevec_init(&pvec, 0);
360	if (wbc->range_cyclic) {
361		writeback_index = mapping->writeback_index; /* prev offset */
362		index = writeback_index;
363		if (index == 0)
364			cycled = 1;
365		else
366			cycled = 0;
367		end = -1;
368	} else {
369		index = wbc->range_start >> PAGE_CACHE_SHIFT;
370		end = wbc->range_end >> PAGE_CACHE_SHIFT;
371		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
372			range_whole = 1;
373		cycled = 1; /* ignore range_cyclic tests */
374	}
375	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
376		tag = PAGECACHE_TAG_TOWRITE;
377	else
378		tag = PAGECACHE_TAG_DIRTY;
379
380retry:
381	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
382		tag_pages_for_writeback(mapping, index, end);
383	done_index = index;
384	while (!done && (index <= end)) {
385		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
386			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
387		if (nr_pages == 0)
388			break;
389
390		ret = gfs2_write_jdata_pagevec(mapping, wbc, &pvec, nr_pages, end, &done_index);
391		if (ret)
392			done = 1;
393		if (ret > 0)
394			ret = 0;
395		pagevec_release(&pvec);
396		cond_resched();
397	}
398
399	if (!cycled && !done) {
400		/*
401		 * range_cyclic:
402		 * We hit the last page and there is more work to be done: wrap
403		 * back to the start of the file
404		 */
405		cycled = 1;
406		index = 0;
407		end = writeback_index - 1;
408		goto retry;
409	}
410
411	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
412		mapping->writeback_index = done_index;
413
414	return ret;
415}
416
417
418/**
419 * gfs2_jdata_writepages - Write a bunch of dirty pages back to disk
420 * @mapping: The mapping to write
421 * @wbc: The writeback control
422 *
423 */
424
425static int gfs2_jdata_writepages(struct address_space *mapping,
426				 struct writeback_control *wbc)
427{
428	struct gfs2_inode *ip = GFS2_I(mapping->host);
429	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
430	int ret;
431
432	ret = gfs2_write_cache_jdata(mapping, wbc);
433	if (ret == 0 && wbc->sync_mode == WB_SYNC_ALL) {
434		gfs2_log_flush(sdp, ip->i_gl, NORMAL_FLUSH);
435		ret = gfs2_write_cache_jdata(mapping, wbc);
436	}
437	return ret;
438}
439
440/**
441 * stuffed_readpage - Fill in a Linux page with stuffed file data
442 * @ip: the inode
443 * @page: the page
444 *
445 * Returns: errno
446 */
447
448static int stuffed_readpage(struct gfs2_inode *ip, struct page *page)
449{
450	struct buffer_head *dibh;
451	u64 dsize = i_size_read(&ip->i_inode);
452	void *kaddr;
453	int error;
454
455	/*
456	 * Due to the order of unstuffing files and ->fault(), we can be
457	 * asked for a zero page in the case of a stuffed file being extended,
458	 * so we need to supply one here. It doesn't happen often.
459	 */
460	if (unlikely(page->index)) {
461		zero_user(page, 0, PAGE_CACHE_SIZE);
462		SetPageUptodate(page);
463		return 0;
464	}
465
466	error = gfs2_meta_inode_buffer(ip, &dibh);
467	if (error)
468		return error;
469
470	kaddr = kmap_atomic(page);
471	if (dsize > (dibh->b_size - sizeof(struct gfs2_dinode)))
472		dsize = (dibh->b_size - sizeof(struct gfs2_dinode));
473	memcpy(kaddr, dibh->b_data + sizeof(struct gfs2_dinode), dsize);
474	memset(kaddr + dsize, 0, PAGE_CACHE_SIZE - dsize);
475	kunmap_atomic(kaddr);
476	flush_dcache_page(page);
477	brelse(dibh);
478	SetPageUptodate(page);
479
480	return 0;
481}
482
483
484/**
485 * __gfs2_readpage - readpage
486 * @file: The file to read a page for
487 * @page: The page to read
488 *
489 * This is the core of gfs2's readpage. Its used by the internal file
490 * reading code as in that case we already hold the glock. Also its
491 * called by gfs2_readpage() once the required lock has been granted.
492 *
493 */
494
495static int __gfs2_readpage(void *file, struct page *page)
496{
497	struct gfs2_inode *ip = GFS2_I(page->mapping->host);
498	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
499	int error;
500
501	if (gfs2_is_stuffed(ip)) {
502		error = stuffed_readpage(ip, page);
503		unlock_page(page);
504	} else {
505		error = mpage_readpage(page, gfs2_block_map);
506	}
507
508	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
509		return -EIO;
510
511	return error;
512}
513
514/**
515 * gfs2_readpage - read a page of a file
516 * @file: The file to read
517 * @page: The page of the file
518 *
519 * This deals with the locking required. We have to unlock and
520 * relock the page in order to get the locking in the right
521 * order.
522 */
523
524static int gfs2_readpage(struct file *file, struct page *page)
525{
526	struct address_space *mapping = page->mapping;
527	struct gfs2_inode *ip = GFS2_I(mapping->host);
528	struct gfs2_holder gh;
529	int error;
530
531	unlock_page(page);
532	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
533	error = gfs2_glock_nq(&gh);
534	if (unlikely(error))
535		goto out;
536	error = AOP_TRUNCATED_PAGE;
537	lock_page(page);
538	if (page->mapping == mapping && !PageUptodate(page))
539		error = __gfs2_readpage(file, page);
540	else
541		unlock_page(page);
542	gfs2_glock_dq(&gh);
543out:
544	gfs2_holder_uninit(&gh);
545	if (error && error != AOP_TRUNCATED_PAGE)
546		lock_page(page);
547	return error;
548}
549
550/**
551 * gfs2_internal_read - read an internal file
552 * @ip: The gfs2 inode
553 * @buf: The buffer to fill
554 * @pos: The file position
555 * @size: The amount to read
556 *
557 */
558
559int gfs2_internal_read(struct gfs2_inode *ip, char *buf, loff_t *pos,
560                       unsigned size)
561{
562	struct address_space *mapping = ip->i_inode.i_mapping;
563	unsigned long index = *pos / PAGE_CACHE_SIZE;
564	unsigned offset = *pos & (PAGE_CACHE_SIZE - 1);
565	unsigned copied = 0;
566	unsigned amt;
567	struct page *page;
568	void *p;
569
570	do {
571		amt = size - copied;
572		if (offset + size > PAGE_CACHE_SIZE)
573			amt = PAGE_CACHE_SIZE - offset;
574		page = read_cache_page(mapping, index, __gfs2_readpage, NULL);
575		if (IS_ERR(page))
576			return PTR_ERR(page);
577		p = kmap_atomic(page);
578		memcpy(buf + copied, p + offset, amt);
579		kunmap_atomic(p);
580		page_cache_release(page);
581		copied += amt;
582		index++;
583		offset = 0;
584	} while(copied < size);
585	(*pos) += size;
586	return size;
587}
588
589/**
590 * gfs2_readpages - Read a bunch of pages at once
591 *
592 * Some notes:
593 * 1. This is only for readahead, so we can simply ignore any things
594 *    which are slightly inconvenient (such as locking conflicts between
595 *    the page lock and the glock) and return having done no I/O. Its
596 *    obviously not something we'd want to do on too regular a basis.
597 *    Any I/O we ignore at this time will be done via readpage later.
598 * 2. We don't handle stuffed files here we let readpage do the honours.
599 * 3. mpage_readpages() does most of the heavy lifting in the common case.
600 * 4. gfs2_block_map() is relied upon to set BH_Boundary in the right places.
601 */
602
603static int gfs2_readpages(struct file *file, struct address_space *mapping,
604			  struct list_head *pages, unsigned nr_pages)
605{
606	struct inode *inode = mapping->host;
607	struct gfs2_inode *ip = GFS2_I(inode);
608	struct gfs2_sbd *sdp = GFS2_SB(inode);
609	struct gfs2_holder gh;
610	int ret;
611
612	gfs2_holder_init(ip->i_gl, LM_ST_SHARED, 0, &gh);
613	ret = gfs2_glock_nq(&gh);
614	if (unlikely(ret))
615		goto out_uninit;
616	if (!gfs2_is_stuffed(ip))
617		ret = mpage_readpages(mapping, pages, nr_pages, gfs2_block_map);
618	gfs2_glock_dq(&gh);
619out_uninit:
620	gfs2_holder_uninit(&gh);
621	if (unlikely(test_bit(SDF_SHUTDOWN, &sdp->sd_flags)))
622		ret = -EIO;
623	return ret;
624}
625
626/**
627 * gfs2_write_begin - Begin to write to a file
628 * @file: The file to write to
629 * @mapping: The mapping in which to write
630 * @pos: The file offset at which to start writing
631 * @len: Length of the write
632 * @flags: Various flags
633 * @pagep: Pointer to return the page
634 * @fsdata: Pointer to return fs data (unused by GFS2)
635 *
636 * Returns: errno
637 */
638
639static int gfs2_write_begin(struct file *file, struct address_space *mapping,
640			    loff_t pos, unsigned len, unsigned flags,
641			    struct page **pagep, void **fsdata)
642{
643	struct gfs2_inode *ip = GFS2_I(mapping->host);
644	struct gfs2_sbd *sdp = GFS2_SB(mapping->host);
645	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
646	unsigned int data_blocks = 0, ind_blocks = 0, rblocks;
647	unsigned requested = 0;
648	int alloc_required;
649	int error = 0;
650	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
651	unsigned from = pos & (PAGE_CACHE_SIZE - 1);
652	struct page *page;
653
654	gfs2_holder_init(ip->i_gl, LM_ST_EXCLUSIVE, 0, &ip->i_gh);
655	error = gfs2_glock_nq(&ip->i_gh);
656	if (unlikely(error))
657		goto out_uninit;
658	if (&ip->i_inode == sdp->sd_rindex) {
659		error = gfs2_glock_nq_init(m_ip->i_gl, LM_ST_EXCLUSIVE,
660					   GL_NOCACHE, &m_ip->i_gh);
661		if (unlikely(error)) {
662			gfs2_glock_dq(&ip->i_gh);
663			goto out_uninit;
664		}
665	}
666
667	alloc_required = gfs2_write_alloc_required(ip, pos, len);
668
669	if (alloc_required || gfs2_is_jdata(ip))
670		gfs2_write_calc_reserv(ip, len, &data_blocks, &ind_blocks);
671
672	if (alloc_required) {
673		struct gfs2_alloc_parms ap = { .aflags = 0, };
674		requested = data_blocks + ind_blocks;
675		ap.target = requested;
676		error = gfs2_quota_lock_check(ip, &ap);
677		if (error)
678			goto out_unlock;
679
680		error = gfs2_inplace_reserve(ip, &ap);
681		if (error)
682			goto out_qunlock;
683	}
684
685	rblocks = RES_DINODE + ind_blocks;
686	if (gfs2_is_jdata(ip))
687		rblocks += data_blocks ? data_blocks : 1;
688	if (ind_blocks || data_blocks)
689		rblocks += RES_STATFS + RES_QUOTA;
690	if (&ip->i_inode == sdp->sd_rindex)
691		rblocks += 2 * RES_STATFS;
692	if (alloc_required)
693		rblocks += gfs2_rg_blocks(ip, requested);
694
695	error = gfs2_trans_begin(sdp, rblocks,
696				 PAGE_CACHE_SIZE/sdp->sd_sb.sb_bsize);
697	if (error)
698		goto out_trans_fail;
699
700	error = -ENOMEM;
701	flags |= AOP_FLAG_NOFS;
702	page = grab_cache_page_write_begin(mapping, index, flags);
703	*pagep = page;
704	if (unlikely(!page))
705		goto out_endtrans;
706
707	if (gfs2_is_stuffed(ip)) {
708		error = 0;
709		if (pos + len > sdp->sd_sb.sb_bsize - sizeof(struct gfs2_dinode)) {
710			error = gfs2_unstuff_dinode(ip, page);
711			if (error == 0)
712				goto prepare_write;
713		} else if (!PageUptodate(page)) {
714			error = stuffed_readpage(ip, page);
715		}
716		goto out;
717	}
718
719prepare_write:
720	error = __block_write_begin(page, from, len, gfs2_block_map);
721out:
722	if (error == 0)
723		return 0;
724
725	unlock_page(page);
726	page_cache_release(page);
727
728	gfs2_trans_end(sdp);
729	if (pos + len > ip->i_inode.i_size)
730		gfs2_trim_blocks(&ip->i_inode);
731	goto out_trans_fail;
732
733out_endtrans:
734	gfs2_trans_end(sdp);
735out_trans_fail:
736	if (alloc_required) {
737		gfs2_inplace_release(ip);
738out_qunlock:
739		gfs2_quota_unlock(ip);
740	}
741out_unlock:
742	if (&ip->i_inode == sdp->sd_rindex) {
743		gfs2_glock_dq(&m_ip->i_gh);
744		gfs2_holder_uninit(&m_ip->i_gh);
745	}
746	gfs2_glock_dq(&ip->i_gh);
747out_uninit:
748	gfs2_holder_uninit(&ip->i_gh);
749	return error;
750}
751
752/**
753 * adjust_fs_space - Adjusts the free space available due to gfs2_grow
754 * @inode: the rindex inode
755 */
756static void adjust_fs_space(struct inode *inode)
757{
758	struct gfs2_sbd *sdp = inode->i_sb->s_fs_info;
759	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
760	struct gfs2_inode *l_ip = GFS2_I(sdp->sd_sc_inode);
761	struct gfs2_statfs_change_host *m_sc = &sdp->sd_statfs_master;
762	struct gfs2_statfs_change_host *l_sc = &sdp->sd_statfs_local;
763	struct buffer_head *m_bh, *l_bh;
764	u64 fs_total, new_free;
765
766	/* Total up the file system space, according to the latest rindex. */
767	fs_total = gfs2_ri_total(sdp);
768	if (gfs2_meta_inode_buffer(m_ip, &m_bh) != 0)
769		return;
770
771	spin_lock(&sdp->sd_statfs_spin);
772	gfs2_statfs_change_in(m_sc, m_bh->b_data +
773			      sizeof(struct gfs2_dinode));
774	if (fs_total > (m_sc->sc_total + l_sc->sc_total))
775		new_free = fs_total - (m_sc->sc_total + l_sc->sc_total);
776	else
777		new_free = 0;
778	spin_unlock(&sdp->sd_statfs_spin);
779	fs_warn(sdp, "File system extended by %llu blocks.\n",
780		(unsigned long long)new_free);
781	gfs2_statfs_change(sdp, new_free, new_free, 0);
782
783	if (gfs2_meta_inode_buffer(l_ip, &l_bh) != 0)
784		goto out;
785	update_statfs(sdp, m_bh, l_bh);
786	brelse(l_bh);
787out:
788	brelse(m_bh);
789}
790
791/**
792 * gfs2_stuffed_write_end - Write end for stuffed files
793 * @inode: The inode
794 * @dibh: The buffer_head containing the on-disk inode
795 * @pos: The file position
796 * @len: The length of the write
797 * @copied: How much was actually copied by the VFS
798 * @page: The page
799 *
800 * This copies the data from the page into the inode block after
801 * the inode data structure itself.
802 *
803 * Returns: errno
804 */
805static int gfs2_stuffed_write_end(struct inode *inode, struct buffer_head *dibh,
806				  loff_t pos, unsigned len, unsigned copied,
807				  struct page *page)
808{
809	struct gfs2_inode *ip = GFS2_I(inode);
810	struct gfs2_sbd *sdp = GFS2_SB(inode);
811	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
812	u64 to = pos + copied;
813	void *kaddr;
814	unsigned char *buf = dibh->b_data + sizeof(struct gfs2_dinode);
815
816	BUG_ON((pos + len) > (dibh->b_size - sizeof(struct gfs2_dinode)));
817	kaddr = kmap_atomic(page);
818	memcpy(buf + pos, kaddr + pos, copied);
819	memset(kaddr + pos + copied, 0, len - copied);
820	flush_dcache_page(page);
821	kunmap_atomic(kaddr);
822
823	if (!PageUptodate(page))
824		SetPageUptodate(page);
825	unlock_page(page);
826	page_cache_release(page);
827
828	if (copied) {
829		if (inode->i_size < to)
830			i_size_write(inode, to);
831		mark_inode_dirty(inode);
832	}
833
834	if (inode == sdp->sd_rindex) {
835		adjust_fs_space(inode);
836		sdp->sd_rindex_uptodate = 0;
837	}
838
839	brelse(dibh);
840	gfs2_trans_end(sdp);
841	if (inode == sdp->sd_rindex) {
842		gfs2_glock_dq(&m_ip->i_gh);
843		gfs2_holder_uninit(&m_ip->i_gh);
844	}
845	gfs2_glock_dq(&ip->i_gh);
846	gfs2_holder_uninit(&ip->i_gh);
847	return copied;
848}
849
850/**
851 * gfs2_write_end
852 * @file: The file to write to
853 * @mapping: The address space to write to
854 * @pos: The file position
855 * @len: The length of the data
856 * @copied:
857 * @page: The page that has been written
858 * @fsdata: The fsdata (unused in GFS2)
859 *
860 * The main write_end function for GFS2. We have a separate one for
861 * stuffed files as they are slightly different, otherwise we just
862 * put our locking around the VFS provided functions.
863 *
864 * Returns: errno
865 */
866
867static int gfs2_write_end(struct file *file, struct address_space *mapping,
868			  loff_t pos, unsigned len, unsigned copied,
869			  struct page *page, void *fsdata)
870{
871	struct inode *inode = page->mapping->host;
872	struct gfs2_inode *ip = GFS2_I(inode);
873	struct gfs2_sbd *sdp = GFS2_SB(inode);
874	struct gfs2_inode *m_ip = GFS2_I(sdp->sd_statfs_inode);
875	struct buffer_head *dibh;
876	unsigned int from = pos & (PAGE_CACHE_SIZE - 1);
877	unsigned int to = from + len;
878	int ret;
879	struct gfs2_trans *tr = current->journal_info;
880	BUG_ON(!tr);
881
882	BUG_ON(gfs2_glock_is_locked_by_me(ip->i_gl) == NULL);
883
884	ret = gfs2_meta_inode_buffer(ip, &dibh);
885	if (unlikely(ret)) {
886		unlock_page(page);
887		page_cache_release(page);
888		goto failed;
889	}
890
891	if (gfs2_is_stuffed(ip))
892		return gfs2_stuffed_write_end(inode, dibh, pos, len, copied, page);
893
894	if (!gfs2_is_writeback(ip))
895		gfs2_page_add_databufs(ip, page, from, to);
896
897	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
898	if (tr->tr_num_buf_new)
899		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
900	else
901		gfs2_trans_add_meta(ip->i_gl, dibh);
902
903
904	if (inode == sdp->sd_rindex) {
905		adjust_fs_space(inode);
906		sdp->sd_rindex_uptodate = 0;
907	}
908
909	brelse(dibh);
910failed:
911	gfs2_trans_end(sdp);
912	gfs2_inplace_release(ip);
913	if (ip->i_res->rs_qa_qd_num)
914		gfs2_quota_unlock(ip);
915	if (inode == sdp->sd_rindex) {
916		gfs2_glock_dq(&m_ip->i_gh);
917		gfs2_holder_uninit(&m_ip->i_gh);
918	}
919	gfs2_glock_dq(&ip->i_gh);
920	gfs2_holder_uninit(&ip->i_gh);
921	return ret;
922}
923
924/**
925 * gfs2_set_page_dirty - Page dirtying function
926 * @page: The page to dirty
927 *
928 * Returns: 1 if it dirtyed the page, or 0 otherwise
929 */
930
931static int gfs2_set_page_dirty(struct page *page)
932{
933	SetPageChecked(page);
934	return __set_page_dirty_buffers(page);
935}
936
937/**
938 * gfs2_bmap - Block map function
939 * @mapping: Address space info
940 * @lblock: The block to map
941 *
942 * Returns: The disk address for the block or 0 on hole or error
943 */
944
945static sector_t gfs2_bmap(struct address_space *mapping, sector_t lblock)
946{
947	struct gfs2_inode *ip = GFS2_I(mapping->host);
948	struct gfs2_holder i_gh;
949	sector_t dblock = 0;
950	int error;
951
952	error = gfs2_glock_nq_init(ip->i_gl, LM_ST_SHARED, LM_FLAG_ANY, &i_gh);
953	if (error)
954		return 0;
955
956	if (!gfs2_is_stuffed(ip))
957		dblock = generic_block_bmap(mapping, lblock, gfs2_block_map);
958
959	gfs2_glock_dq_uninit(&i_gh);
960
961	return dblock;
962}
963
964static void gfs2_discard(struct gfs2_sbd *sdp, struct buffer_head *bh)
965{
966	struct gfs2_bufdata *bd;
967
968	lock_buffer(bh);
969	gfs2_log_lock(sdp);
970	clear_buffer_dirty(bh);
971	bd = bh->b_private;
972	if (bd) {
973		if (!list_empty(&bd->bd_list) && !buffer_pinned(bh))
974			list_del_init(&bd->bd_list);
975		else
976			gfs2_remove_from_journal(bh, current->journal_info, 0);
977	}
978	bh->b_bdev = NULL;
979	clear_buffer_mapped(bh);
980	clear_buffer_req(bh);
981	clear_buffer_new(bh);
982	gfs2_log_unlock(sdp);
983	unlock_buffer(bh);
984}
985
986static void gfs2_invalidatepage(struct page *page, unsigned int offset,
987				unsigned int length)
988{
989	struct gfs2_sbd *sdp = GFS2_SB(page->mapping->host);
990	unsigned int stop = offset + length;
991	int partial_page = (offset || length < PAGE_CACHE_SIZE);
992	struct buffer_head *bh, *head;
993	unsigned long pos = 0;
994
995	BUG_ON(!PageLocked(page));
996	if (!partial_page)
997		ClearPageChecked(page);
998	if (!page_has_buffers(page))
999		goto out;
1000
1001	bh = head = page_buffers(page);
1002	do {
1003		if (pos + bh->b_size > stop)
1004			return;
1005
1006		if (offset <= pos)
1007			gfs2_discard(sdp, bh);
1008		pos += bh->b_size;
1009		bh = bh->b_this_page;
1010	} while (bh != head);
1011out:
1012	if (!partial_page)
1013		try_to_release_page(page, 0);
1014}
1015
1016/**
1017 * gfs2_ok_for_dio - check that dio is valid on this file
1018 * @ip: The inode
1019 * @offset: The offset at which we are reading or writing
1020 *
1021 * Returns: 0 (to ignore the i/o request and thus fall back to buffered i/o)
1022 *          1 (to accept the i/o request)
1023 */
1024static int gfs2_ok_for_dio(struct gfs2_inode *ip, loff_t offset)
1025{
1026	/*
1027	 * Should we return an error here? I can't see that O_DIRECT for
1028	 * a stuffed file makes any sense. For now we'll silently fall
1029	 * back to buffered I/O
1030	 */
1031	if (gfs2_is_stuffed(ip))
1032		return 0;
1033
1034	if (offset >= i_size_read(&ip->i_inode))
1035		return 0;
1036	return 1;
1037}
1038
1039
1040
1041static ssize_t gfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
1042			      loff_t offset)
1043{
1044	struct file *file = iocb->ki_filp;
1045	struct inode *inode = file->f_mapping->host;
1046	struct address_space *mapping = inode->i_mapping;
1047	struct gfs2_inode *ip = GFS2_I(inode);
1048	struct gfs2_holder gh;
1049	int rv;
1050
1051	/*
1052	 * Deferred lock, even if its a write, since we do no allocation
1053	 * on this path. All we need change is atime, and this lock mode
1054	 * ensures that other nodes have flushed their buffered read caches
1055	 * (i.e. their page cache entries for this inode). We do not,
1056	 * unfortunately have the option of only flushing a range like
1057	 * the VFS does.
1058	 */
1059	gfs2_holder_init(ip->i_gl, LM_ST_DEFERRED, 0, &gh);
1060	rv = gfs2_glock_nq(&gh);
1061	if (rv)
1062		return rv;
1063	rv = gfs2_ok_for_dio(ip, offset);
1064	if (rv != 1)
1065		goto out; /* dio not valid, fall back to buffered i/o */
1066
1067	/*
1068	 * Now since we are holding a deferred (CW) lock at this point, you
1069	 * might be wondering why this is ever needed. There is a case however
1070	 * where we've granted a deferred local lock against a cached exclusive
1071	 * glock. That is ok provided all granted local locks are deferred, but
1072	 * it also means that it is possible to encounter pages which are
1073	 * cached and possibly also mapped. So here we check for that and sort
1074	 * them out ahead of the dio. The glock state machine will take care of
1075	 * everything else.
1076	 *
1077	 * If in fact the cached glock state (gl->gl_state) is deferred (CW) in
1078	 * the first place, mapping->nr_pages will always be zero.
1079	 */
1080	if (mapping->nrpages) {
1081		loff_t lstart = offset & (PAGE_CACHE_SIZE - 1);
1082		loff_t len = iov_iter_count(iter);
1083		loff_t end = PAGE_ALIGN(offset + len) - 1;
1084
1085		rv = 0;
1086		if (len == 0)
1087			goto out;
1088		if (test_and_clear_bit(GIF_SW_PAGED, &ip->i_flags))
1089			unmap_shared_mapping_range(ip->i_inode.i_mapping, offset, len);
1090		rv = filemap_write_and_wait_range(mapping, lstart, end);
1091		if (rv)
1092			goto out;
1093		if (iov_iter_rw(iter) == WRITE)
1094			truncate_inode_pages_range(mapping, lstart, end);
1095	}
1096
1097	rv = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
1098				  offset, gfs2_get_block_direct, NULL, NULL, 0);
1099out:
1100	gfs2_glock_dq(&gh);
1101	gfs2_holder_uninit(&gh);
1102	return rv;
1103}
1104
1105/**
1106 * gfs2_releasepage - free the metadata associated with a page
1107 * @page: the page that's being released
1108 * @gfp_mask: passed from Linux VFS, ignored by us
1109 *
1110 * Call try_to_free_buffers() if the buffers in this page can be
1111 * released.
1112 *
1113 * Returns: 0
1114 */
1115
1116int gfs2_releasepage(struct page *page, gfp_t gfp_mask)
1117{
1118	struct address_space *mapping = page->mapping;
1119	struct gfs2_sbd *sdp = gfs2_mapping2sbd(mapping);
1120	struct buffer_head *bh, *head;
1121	struct gfs2_bufdata *bd;
1122
1123	if (!page_has_buffers(page))
1124		return 0;
1125
1126	gfs2_log_lock(sdp);
1127	spin_lock(&sdp->sd_ail_lock);
1128	head = bh = page_buffers(page);
1129	do {
1130		if (atomic_read(&bh->b_count))
1131			goto cannot_release;
1132		bd = bh->b_private;
1133		if (bd && bd->bd_tr)
1134			goto cannot_release;
1135		if (buffer_pinned(bh) || buffer_dirty(bh))
1136			goto not_possible;
1137		bh = bh->b_this_page;
1138	} while(bh != head);
1139	spin_unlock(&sdp->sd_ail_lock);
1140
1141	head = bh = page_buffers(page);
1142	do {
1143		bd = bh->b_private;
1144		if (bd) {
1145			gfs2_assert_warn(sdp, bd->bd_bh == bh);
1146			if (!list_empty(&bd->bd_list))
1147				list_del_init(&bd->bd_list);
1148			bd->bd_bh = NULL;
1149			bh->b_private = NULL;
1150			kmem_cache_free(gfs2_bufdata_cachep, bd);
1151		}
1152
1153		bh = bh->b_this_page;
1154	} while (bh != head);
1155	gfs2_log_unlock(sdp);
1156
1157	return try_to_free_buffers(page);
1158
1159not_possible: /* Should never happen */
1160	WARN_ON(buffer_dirty(bh));
1161	WARN_ON(buffer_pinned(bh));
1162cannot_release:
1163	spin_unlock(&sdp->sd_ail_lock);
1164	gfs2_log_unlock(sdp);
1165	return 0;
1166}
1167
1168static const struct address_space_operations gfs2_writeback_aops = {
1169	.writepage = gfs2_writepage,
1170	.writepages = gfs2_writepages,
1171	.readpage = gfs2_readpage,
1172	.readpages = gfs2_readpages,
1173	.write_begin = gfs2_write_begin,
1174	.write_end = gfs2_write_end,
1175	.bmap = gfs2_bmap,
1176	.invalidatepage = gfs2_invalidatepage,
1177	.releasepage = gfs2_releasepage,
1178	.direct_IO = gfs2_direct_IO,
1179	.migratepage = buffer_migrate_page,
1180	.is_partially_uptodate = block_is_partially_uptodate,
1181	.error_remove_page = generic_error_remove_page,
1182};
1183
1184static const struct address_space_operations gfs2_ordered_aops = {
1185	.writepage = gfs2_writepage,
1186	.writepages = gfs2_writepages,
1187	.readpage = gfs2_readpage,
1188	.readpages = gfs2_readpages,
1189	.write_begin = gfs2_write_begin,
1190	.write_end = gfs2_write_end,
1191	.set_page_dirty = gfs2_set_page_dirty,
1192	.bmap = gfs2_bmap,
1193	.invalidatepage = gfs2_invalidatepage,
1194	.releasepage = gfs2_releasepage,
1195	.direct_IO = gfs2_direct_IO,
1196	.migratepage = buffer_migrate_page,
1197	.is_partially_uptodate = block_is_partially_uptodate,
1198	.error_remove_page = generic_error_remove_page,
1199};
1200
1201static const struct address_space_operations gfs2_jdata_aops = {
1202	.writepage = gfs2_jdata_writepage,
1203	.writepages = gfs2_jdata_writepages,
1204	.readpage = gfs2_readpage,
1205	.readpages = gfs2_readpages,
1206	.write_begin = gfs2_write_begin,
1207	.write_end = gfs2_write_end,
1208	.set_page_dirty = gfs2_set_page_dirty,
1209	.bmap = gfs2_bmap,
1210	.invalidatepage = gfs2_invalidatepage,
1211	.releasepage = gfs2_releasepage,
1212	.is_partially_uptodate = block_is_partially_uptodate,
1213	.error_remove_page = generic_error_remove_page,
1214};
1215
1216void gfs2_set_aops(struct inode *inode)
1217{
1218	struct gfs2_inode *ip = GFS2_I(inode);
1219
1220	if (gfs2_is_writeback(ip))
1221		inode->i_mapping->a_ops = &gfs2_writeback_aops;
1222	else if (gfs2_is_ordered(ip))
1223		inode->i_mapping->a_ops = &gfs2_ordered_aops;
1224	else if (gfs2_is_jdata(ip))
1225		inode->i_mapping->a_ops = &gfs2_jdata_aops;
1226	else
1227		BUG();
1228}
1229
1230