1/*
2 * linux/fs/jbd2/revoke.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 2000
5 *
6 * Copyright 2000 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Journal revoke routines for the generic filesystem journaling code;
13 * part of the ext2fs journaling system.
14 *
15 * Revoke is the mechanism used to prevent old log records for deleted
16 * metadata from being replayed on top of newer data using the same
17 * blocks.  The revoke mechanism is used in two separate places:
18 *
19 * + Commit: during commit we write the entire list of the current
20 *   transaction's revoked blocks to the journal
21 *
22 * + Recovery: during recovery we record the transaction ID of all
23 *   revoked blocks.  If there are multiple revoke records in the log
24 *   for a single block, only the last one counts, and if there is a log
25 *   entry for a block beyond the last revoke, then that log entry still
26 *   gets replayed.
27 *
28 * We can get interactions between revokes and new log data within a
29 * single transaction:
30 *
31 * Block is revoked and then journaled:
32 *   The desired end result is the journaling of the new block, so we
33 *   cancel the revoke before the transaction commits.
34 *
35 * Block is journaled and then revoked:
36 *   The revoke must take precedence over the write of the block, so we
37 *   need either to cancel the journal entry or to write the revoke
38 *   later in the log than the log block.  In this case, we choose the
39 *   latter: journaling a block cancels any revoke record for that block
40 *   in the current transaction, so any revoke for that block in the
41 *   transaction must have happened after the block was journaled and so
42 *   the revoke must take precedence.
43 *
44 * Block is revoked and then written as data:
45 *   The data write is allowed to succeed, but the revoke is _not_
46 *   cancelled.  We still need to prevent old log records from
47 *   overwriting the new data.  We don't even need to clear the revoke
48 *   bit here.
49 *
50 * We cache revoke status of a buffer in the current transaction in b_states
51 * bits.  As the name says, revokevalid flag indicates that the cached revoke
52 * status of a buffer is valid and we can rely on the cached status.
53 *
54 * Revoke information on buffers is a tri-state value:
55 *
56 * RevokeValid clear:	no cached revoke status, need to look it up
57 * RevokeValid set, Revoked clear:
58 *			buffer has not been revoked, and cancel_revoke
59 *			need do nothing.
60 * RevokeValid set, Revoked set:
61 *			buffer has been revoked.
62 *
63 * Locking rules:
64 * We keep two hash tables of revoke records. One hashtable belongs to the
65 * running transaction (is pointed to by journal->j_revoke), the other one
66 * belongs to the committing transaction. Accesses to the second hash table
67 * happen only from the kjournald and no other thread touches this table.  Also
68 * journal_switch_revoke_table() which switches which hashtable belongs to the
69 * running and which to the committing transaction is called only from
70 * kjournald. Therefore we need no locks when accessing the hashtable belonging
71 * to the committing transaction.
72 *
73 * All users operating on the hash table belonging to the running transaction
74 * have a handle to the transaction. Therefore they are safe from kjournald
75 * switching hash tables under them. For operations on the lists of entries in
76 * the hash table j_revoke_lock is used.
77 *
78 * Finally, also replay code uses the hash tables but at this moment no one else
79 * can touch them (filesystem isn't mounted yet) and hence no locking is
80 * needed.
81 */
82
83#ifndef __KERNEL__
84#include "jfs_user.h"
85#else
86#include <linux/time.h>
87#include <linux/fs.h>
88#include <linux/jbd2.h>
89#include <linux/errno.h>
90#include <linux/slab.h>
91#include <linux/list.h>
92#include <linux/init.h>
93#include <linux/bio.h>
94#include <linux/log2.h>
95#include <linux/hash.h>
96#endif
97
98static struct kmem_cache *jbd2_revoke_record_cache;
99static struct kmem_cache *jbd2_revoke_table_cache;
100
101/* Each revoke record represents one single revoked block.  During
102   journal replay, this involves recording the transaction ID of the
103   last transaction to revoke this block. */
104
105struct jbd2_revoke_record_s
106{
107	struct list_head  hash;
108	tid_t		  sequence;	/* Used for recovery only */
109	unsigned long long	  blocknr;
110};
111
112
113/* The revoke table is just a simple hash table of revoke records. */
114struct jbd2_revoke_table_s
115{
116	/* It is conceivable that we might want a larger hash table
117	 * for recovery.  Must be a power of two. */
118	int		  hash_size;
119	int		  hash_shift;
120	struct list_head *hash_table;
121};
122
123
124#ifdef __KERNEL__
125static void write_one_revoke_record(journal_t *, transaction_t *,
126				    struct list_head *,
127				    struct buffer_head **, int *,
128				    struct jbd2_revoke_record_s *, int);
129static void flush_descriptor(journal_t *, struct buffer_head *, int, int);
130#endif
131
132/* Utility functions to maintain the revoke table */
133
134static inline int hash(journal_t *journal, unsigned long long block)
135{
136	return hash_64(block, journal->j_revoke->hash_shift);
137}
138
139static int insert_revoke_hash(journal_t *journal, unsigned long long blocknr,
140			      tid_t seq)
141{
142	struct list_head *hash_list;
143	struct jbd2_revoke_record_s *record;
144
145repeat:
146	record = kmem_cache_alloc(jbd2_revoke_record_cache, GFP_NOFS);
147	if (!record)
148		goto oom;
149
150	record->sequence = seq;
151	record->blocknr = blocknr;
152	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
153	spin_lock(&journal->j_revoke_lock);
154	list_add(&record->hash, hash_list);
155	spin_unlock(&journal->j_revoke_lock);
156	return 0;
157
158oom:
159	if (!journal_oom_retry)
160		return -ENOMEM;
161	jbd_debug(1, "ENOMEM in %s, retrying\n", __func__);
162	yield();
163	goto repeat;
164}
165
166/* Find a revoke record in the journal's hash table. */
167
168static struct jbd2_revoke_record_s *find_revoke_record(journal_t *journal,
169						      unsigned long long blocknr)
170{
171	struct list_head *hash_list;
172	struct jbd2_revoke_record_s *record;
173
174	hash_list = &journal->j_revoke->hash_table[hash(journal, blocknr)];
175
176	spin_lock(&journal->j_revoke_lock);
177	record = (struct jbd2_revoke_record_s *) hash_list->next;
178	while (&(record->hash) != hash_list) {
179		if (record->blocknr == blocknr) {
180			spin_unlock(&journal->j_revoke_lock);
181			return record;
182		}
183		record = (struct jbd2_revoke_record_s *) record->hash.next;
184	}
185	spin_unlock(&journal->j_revoke_lock);
186	return NULL;
187}
188
189void jbd2_journal_destroy_revoke_caches(void)
190{
191	if (jbd2_revoke_record_cache) {
192		kmem_cache_destroy(jbd2_revoke_record_cache);
193		jbd2_revoke_record_cache = NULL;
194	}
195	if (jbd2_revoke_table_cache) {
196		kmem_cache_destroy(jbd2_revoke_table_cache);
197		jbd2_revoke_table_cache = NULL;
198	}
199}
200
201int __init jbd2_journal_init_revoke_caches(void)
202{
203	J_ASSERT(!jbd2_revoke_record_cache);
204	J_ASSERT(!jbd2_revoke_table_cache);
205
206	jbd2_revoke_record_cache = KMEM_CACHE(jbd2_revoke_record_s,
207					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY);
208	if (!jbd2_revoke_record_cache)
209		goto record_cache_failure;
210
211	jbd2_revoke_table_cache = KMEM_CACHE(jbd2_revoke_table_s,
212					     SLAB_TEMPORARY);
213	if (!jbd2_revoke_table_cache)
214		goto table_cache_failure;
215	return 0;
216table_cache_failure:
217	jbd2_journal_destroy_revoke_caches();
218record_cache_failure:
219		return -ENOMEM;
220}
221
222static struct jbd2_revoke_table_s *jbd2_journal_init_revoke_table(int hash_size)
223{
224	int shift = 0;
225	int tmp = hash_size;
226	struct jbd2_revoke_table_s *table;
227
228	table = kmem_cache_alloc(jbd2_revoke_table_cache, GFP_KERNEL);
229	if (!table)
230		goto out;
231
232	while((tmp >>= 1UL) != 0UL)
233		shift++;
234
235	table->hash_size = hash_size;
236	table->hash_shift = shift;
237	table->hash_table =
238		kmalloc(hash_size * sizeof(struct list_head), GFP_KERNEL);
239	if (!table->hash_table) {
240		kmem_cache_free(jbd2_revoke_table_cache, table);
241		table = NULL;
242		goto out;
243	}
244
245	for (tmp = 0; tmp < hash_size; tmp++)
246		INIT_LIST_HEAD(&table->hash_table[tmp]);
247
248out:
249	return table;
250}
251
252static void jbd2_journal_destroy_revoke_table(struct jbd2_revoke_table_s *table)
253{
254	int i;
255	struct list_head *hash_list;
256
257	for (i = 0; i < table->hash_size; i++) {
258		hash_list = &table->hash_table[i];
259		J_ASSERT(list_empty(hash_list));
260	}
261
262	kfree(table->hash_table);
263	kmem_cache_free(jbd2_revoke_table_cache, table);
264}
265
266/* Initialise the revoke table for a given journal to a given size. */
267int jbd2_journal_init_revoke(journal_t *journal, int hash_size)
268{
269	J_ASSERT(journal->j_revoke_table[0] == NULL);
270	J_ASSERT(is_power_of_2(hash_size));
271
272	journal->j_revoke_table[0] = jbd2_journal_init_revoke_table(hash_size);
273	if (!journal->j_revoke_table[0])
274		goto fail0;
275
276	journal->j_revoke_table[1] = jbd2_journal_init_revoke_table(hash_size);
277	if (!journal->j_revoke_table[1])
278		goto fail1;
279
280	journal->j_revoke = journal->j_revoke_table[1];
281
282	spin_lock_init(&journal->j_revoke_lock);
283
284	return 0;
285
286fail1:
287	jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
288fail0:
289	return -ENOMEM;
290}
291
292/* Destroy a journal's revoke table.  The table must already be empty! */
293void jbd2_journal_destroy_revoke(journal_t *journal)
294{
295	journal->j_revoke = NULL;
296	if (journal->j_revoke_table[0])
297		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[0]);
298	if (journal->j_revoke_table[1])
299		jbd2_journal_destroy_revoke_table(journal->j_revoke_table[1]);
300}
301
302
303#ifdef __KERNEL__
304
305/*
306 * jbd2_journal_revoke: revoke a given buffer_head from the journal.  This
307 * prevents the block from being replayed during recovery if we take a
308 * crash after this current transaction commits.  Any subsequent
309 * metadata writes of the buffer in this transaction cancel the
310 * revoke.
311 *
312 * Note that this call may block --- it is up to the caller to make
313 * sure that there are no further calls to journal_write_metadata
314 * before the revoke is complete.  In ext3, this implies calling the
315 * revoke before clearing the block bitmap when we are deleting
316 * metadata.
317 *
318 * Revoke performs a jbd2_journal_forget on any buffer_head passed in as a
319 * parameter, but does _not_ forget the buffer_head if the bh was only
320 * found implicitly.
321 *
322 * bh_in may not be a journalled buffer - it may have come off
323 * the hash tables without an attached journal_head.
324 *
325 * If bh_in is non-zero, jbd2_journal_revoke() will decrement its b_count
326 * by one.
327 */
328
329int jbd2_journal_revoke(handle_t *handle, unsigned long long blocknr,
330		   struct buffer_head *bh_in)
331{
332	struct buffer_head *bh = NULL;
333	journal_t *journal;
334	struct block_device *bdev;
335	int err;
336
337	might_sleep();
338	if (bh_in)
339		BUFFER_TRACE(bh_in, "enter");
340
341	journal = handle->h_transaction->t_journal;
342	if (!jbd2_journal_set_features(journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)){
343		J_ASSERT (!"Cannot set revoke feature!");
344		return -EINVAL;
345	}
346
347	bdev = journal->j_fs_dev;
348	bh = bh_in;
349
350	if (!bh) {
351		bh = __find_get_block(bdev, blocknr, journal->j_blocksize);
352		if (bh)
353			BUFFER_TRACE(bh, "found on hash");
354	}
355#ifdef JBD2_EXPENSIVE_CHECKING
356	else {
357		struct buffer_head *bh2;
358
359		/* If there is a different buffer_head lying around in
360		 * memory anywhere... */
361		bh2 = __find_get_block(bdev, blocknr, journal->j_blocksize);
362		if (bh2) {
363			/* ... and it has RevokeValid status... */
364			if (bh2 != bh && buffer_revokevalid(bh2))
365				/* ...then it better be revoked too,
366				 * since it's illegal to create a revoke
367				 * record against a buffer_head which is
368				 * not marked revoked --- that would
369				 * risk missing a subsequent revoke
370				 * cancel. */
371				J_ASSERT_BH(bh2, buffer_revoked(bh2));
372			put_bh(bh2);
373		}
374	}
375#endif
376
377	/* We really ought not ever to revoke twice in a row without
378           first having the revoke cancelled: it's illegal to free a
379           block twice without allocating it in between! */
380	if (bh) {
381		if (!J_EXPECT_BH(bh, !buffer_revoked(bh),
382				 "inconsistent data on disk")) {
383			if (!bh_in)
384				brelse(bh);
385			return -EIO;
386		}
387		set_buffer_revoked(bh);
388		set_buffer_revokevalid(bh);
389		if (bh_in) {
390			BUFFER_TRACE(bh_in, "call jbd2_journal_forget");
391			jbd2_journal_forget(handle, bh_in);
392		} else {
393			BUFFER_TRACE(bh, "call brelse");
394			__brelse(bh);
395		}
396	}
397
398	jbd_debug(2, "insert revoke for block %llu, bh_in=%p\n",blocknr, bh_in);
399	err = insert_revoke_hash(journal, blocknr,
400				handle->h_transaction->t_tid);
401	BUFFER_TRACE(bh_in, "exit");
402	return err;
403}
404
405/*
406 * Cancel an outstanding revoke.  For use only internally by the
407 * journaling code (called from jbd2_journal_get_write_access).
408 *
409 * We trust buffer_revoked() on the buffer if the buffer is already
410 * being journaled: if there is no revoke pending on the buffer, then we
411 * don't do anything here.
412 *
413 * This would break if it were possible for a buffer to be revoked and
414 * discarded, and then reallocated within the same transaction.  In such
415 * a case we would have lost the revoked bit, but when we arrived here
416 * the second time we would still have a pending revoke to cancel.  So,
417 * do not trust the Revoked bit on buffers unless RevokeValid is also
418 * set.
419 */
420int jbd2_journal_cancel_revoke(handle_t *handle, struct journal_head *jh)
421{
422	struct jbd2_revoke_record_s *record;
423	journal_t *journal = handle->h_transaction->t_journal;
424	int need_cancel;
425	int did_revoke = 0;	/* akpm: debug */
426	struct buffer_head *bh = jh2bh(jh);
427
428	jbd_debug(4, "journal_head %p, cancelling revoke\n", jh);
429
430	/* Is the existing Revoke bit valid?  If so, we trust it, and
431	 * only perform the full cancel if the revoke bit is set.  If
432	 * not, we can't trust the revoke bit, and we need to do the
433	 * full search for a revoke record. */
434	if (test_set_buffer_revokevalid(bh)) {
435		need_cancel = test_clear_buffer_revoked(bh);
436	} else {
437		need_cancel = 1;
438		clear_buffer_revoked(bh);
439	}
440
441	if (need_cancel) {
442		record = find_revoke_record(journal, bh->b_blocknr);
443		if (record) {
444			jbd_debug(4, "cancelled existing revoke on "
445				  "blocknr %llu\n", (unsigned long long)bh->b_blocknr);
446			spin_lock(&journal->j_revoke_lock);
447			list_del(&record->hash);
448			spin_unlock(&journal->j_revoke_lock);
449			kmem_cache_free(jbd2_revoke_record_cache, record);
450			did_revoke = 1;
451		}
452	}
453
454#ifdef JBD2_EXPENSIVE_CHECKING
455	/* There better not be one left behind by now! */
456	record = find_revoke_record(journal, bh->b_blocknr);
457	J_ASSERT_JH(jh, record == NULL);
458#endif
459
460	/* Finally, have we just cleared revoke on an unhashed
461	 * buffer_head?  If so, we'd better make sure we clear the
462	 * revoked status on any hashed alias too, otherwise the revoke
463	 * state machine will get very upset later on. */
464	if (need_cancel) {
465		struct buffer_head *bh2;
466		bh2 = __find_get_block(bh->b_bdev, bh->b_blocknr, bh->b_size);
467		if (bh2) {
468			if (bh2 != bh)
469				clear_buffer_revoked(bh2);
470			__brelse(bh2);
471		}
472	}
473	return did_revoke;
474}
475
476/*
477 * journal_clear_revoked_flag clears revoked flag of buffers in
478 * revoke table to reflect there is no revoked buffers in the next
479 * transaction which is going to be started.
480 */
481void jbd2_clear_buffer_revoked_flags(journal_t *journal)
482{
483	struct jbd2_revoke_table_s *revoke = journal->j_revoke;
484	int i = 0;
485
486	for (i = 0; i < revoke->hash_size; i++) {
487		struct list_head *hash_list;
488		struct list_head *list_entry;
489		hash_list = &revoke->hash_table[i];
490
491		list_for_each(list_entry, hash_list) {
492			struct jbd2_revoke_record_s *record;
493			struct buffer_head *bh;
494			record = (struct jbd2_revoke_record_s *)list_entry;
495			bh = __find_get_block(journal->j_fs_dev,
496					      record->blocknr,
497					      journal->j_blocksize);
498			if (bh) {
499				clear_buffer_revoked(bh);
500				__brelse(bh);
501			}
502		}
503	}
504}
505
506/* journal_switch_revoke table select j_revoke for next transaction
507 * we do not want to suspend any processing until all revokes are
508 * written -bzzz
509 */
510void jbd2_journal_switch_revoke_table(journal_t *journal)
511{
512	int i;
513
514	if (journal->j_revoke == journal->j_revoke_table[0])
515		journal->j_revoke = journal->j_revoke_table[1];
516	else
517		journal->j_revoke = journal->j_revoke_table[0];
518
519	for (i = 0; i < journal->j_revoke->hash_size; i++)
520		INIT_LIST_HEAD(&journal->j_revoke->hash_table[i]);
521}
522
523/*
524 * Write revoke records to the journal for all entries in the current
525 * revoke hash, deleting the entries as we go.
526 */
527void jbd2_journal_write_revoke_records(journal_t *journal,
528				       transaction_t *transaction,
529				       struct list_head *log_bufs,
530				       int write_op)
531{
532	struct buffer_head *descriptor;
533	struct jbd2_revoke_record_s *record;
534	struct jbd2_revoke_table_s *revoke;
535	struct list_head *hash_list;
536	int i, offset, count;
537
538	descriptor = NULL;
539	offset = 0;
540	count = 0;
541
542	/* select revoke table for committing transaction */
543	revoke = journal->j_revoke == journal->j_revoke_table[0] ?
544		journal->j_revoke_table[1] : journal->j_revoke_table[0];
545
546	for (i = 0; i < revoke->hash_size; i++) {
547		hash_list = &revoke->hash_table[i];
548
549		while (!list_empty(hash_list)) {
550			record = (struct jbd2_revoke_record_s *)
551				hash_list->next;
552			write_one_revoke_record(journal, transaction, log_bufs,
553						&descriptor, &offset,
554						record, write_op);
555			count++;
556			list_del(&record->hash);
557			kmem_cache_free(jbd2_revoke_record_cache, record);
558		}
559	}
560	if (descriptor)
561		flush_descriptor(journal, descriptor, offset, write_op);
562	jbd_debug(1, "Wrote %d revoke records\n", count);
563}
564
565/*
566 * Write out one revoke record.  We need to create a new descriptor
567 * block if the old one is full or if we have not already created one.
568 */
569
570static void write_one_revoke_record(journal_t *journal,
571				    transaction_t *transaction,
572				    struct list_head *log_bufs,
573				    struct buffer_head **descriptorp,
574				    int *offsetp,
575				    struct jbd2_revoke_record_s *record,
576				    int write_op)
577{
578	int csum_size = 0;
579	struct buffer_head *descriptor;
580	int sz, offset;
581	journal_header_t *header;
582
583	/* If we are already aborting, this all becomes a noop.  We
584           still need to go round the loop in
585           jbd2_journal_write_revoke_records in order to free all of the
586           revoke records: only the IO to the journal is omitted. */
587	if (is_journal_aborted(journal))
588		return;
589
590	descriptor = *descriptorp;
591	offset = *offsetp;
592
593	/* Do we need to leave space at the end for a checksum? */
594	if (jbd2_journal_has_csum_v2or3(journal))
595		csum_size = sizeof(struct jbd2_journal_revoke_tail);
596
597	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
598		sz = 8;
599	else
600		sz = 4;
601
602	/* Make sure we have a descriptor with space left for the record */
603	if (descriptor) {
604		if (offset + sz > journal->j_blocksize - csum_size) {
605			flush_descriptor(journal, descriptor, offset, write_op);
606			descriptor = NULL;
607		}
608	}
609
610	if (!descriptor) {
611		descriptor = jbd2_journal_get_descriptor_buffer(journal);
612		if (!descriptor)
613			return;
614		header = (journal_header_t *)descriptor->b_data;
615		header->h_magic     = cpu_to_be32(JBD2_MAGIC_NUMBER);
616		header->h_blocktype = cpu_to_be32(JBD2_REVOKE_BLOCK);
617		header->h_sequence  = cpu_to_be32(transaction->t_tid);
618
619		/* Record it so that we can wait for IO completion later */
620		BUFFER_TRACE(descriptor, "file in log_bufs");
621		jbd2_file_log_bh(log_bufs, descriptor);
622
623		offset = sizeof(jbd2_journal_revoke_header_t);
624		*descriptorp = descriptor;
625	}
626
627	if (JBD2_HAS_INCOMPAT_FEATURE(journal, JBD2_FEATURE_INCOMPAT_64BIT))
628		* ((__be64 *)(&descriptor->b_data[offset])) =
629			cpu_to_be64(record->blocknr);
630	else
631		* ((__be32 *)(&descriptor->b_data[offset])) =
632			cpu_to_be32(record->blocknr);
633	offset += sz;
634
635	*offsetp = offset;
636}
637
638static void jbd2_revoke_csum_set(journal_t *j, struct buffer_head *bh)
639{
640	struct jbd2_journal_revoke_tail *tail;
641	__u32 csum;
642
643	if (!jbd2_journal_has_csum_v2or3(j))
644		return;
645
646	tail = (struct jbd2_journal_revoke_tail *)(bh->b_data + j->j_blocksize -
647			sizeof(struct jbd2_journal_revoke_tail));
648	tail->r_checksum = 0;
649	csum = jbd2_chksum(j, j->j_csum_seed, bh->b_data, j->j_blocksize);
650	tail->r_checksum = cpu_to_be32(csum);
651}
652
653/*
654 * Flush a revoke descriptor out to the journal.  If we are aborting,
655 * this is a noop; otherwise we are generating a buffer which needs to
656 * be waited for during commit, so it has to go onto the appropriate
657 * journal buffer list.
658 */
659
660static void flush_descriptor(journal_t *journal,
661			     struct buffer_head *descriptor,
662			     int offset, int write_op)
663{
664	jbd2_journal_revoke_header_t *header;
665
666	if (is_journal_aborted(journal)) {
667		put_bh(descriptor);
668		return;
669	}
670
671	header = (jbd2_journal_revoke_header_t *)descriptor->b_data;
672	header->r_count = cpu_to_be32(offset);
673	jbd2_revoke_csum_set(journal, descriptor);
674
675	set_buffer_jwrite(descriptor);
676	BUFFER_TRACE(descriptor, "write");
677	set_buffer_dirty(descriptor);
678	write_dirty_buffer(descriptor, write_op);
679}
680#endif
681
682/*
683 * Revoke support for recovery.
684 *
685 * Recovery needs to be able to:
686 *
687 *  record all revoke records, including the tid of the latest instance
688 *  of each revoke in the journal
689 *
690 *  check whether a given block in a given transaction should be replayed
691 *  (ie. has not been revoked by a revoke record in that or a subsequent
692 *  transaction)
693 *
694 *  empty the revoke table after recovery.
695 */
696
697/*
698 * First, setting revoke records.  We create a new revoke record for
699 * every block ever revoked in the log as we scan it for recovery, and
700 * we update the existing records if we find multiple revokes for a
701 * single block.
702 */
703
704int jbd2_journal_set_revoke(journal_t *journal,
705		       unsigned long long blocknr,
706		       tid_t sequence)
707{
708	struct jbd2_revoke_record_s *record;
709
710	record = find_revoke_record(journal, blocknr);
711	if (record) {
712		/* If we have multiple occurrences, only record the
713		 * latest sequence number in the hashed record */
714		if (tid_gt(sequence, record->sequence))
715			record->sequence = sequence;
716		return 0;
717	}
718	return insert_revoke_hash(journal, blocknr, sequence);
719}
720
721/*
722 * Test revoke records.  For a given block referenced in the log, has
723 * that block been revoked?  A revoke record with a given transaction
724 * sequence number revokes all blocks in that transaction and earlier
725 * ones, but later transactions still need replayed.
726 */
727
728int jbd2_journal_test_revoke(journal_t *journal,
729			unsigned long long blocknr,
730			tid_t sequence)
731{
732	struct jbd2_revoke_record_s *record;
733
734	record = find_revoke_record(journal, blocknr);
735	if (!record)
736		return 0;
737	if (tid_gt(sequence, record->sequence))
738		return 0;
739	return 1;
740}
741
742/*
743 * Finally, once recovery is over, we need to clear the revoke table so
744 * that it can be reused by the running filesystem.
745 */
746
747void jbd2_journal_clear_revoke(journal_t *journal)
748{
749	int i;
750	struct list_head *hash_list;
751	struct jbd2_revoke_record_s *record;
752	struct jbd2_revoke_table_s *revoke;
753
754	revoke = journal->j_revoke;
755
756	for (i = 0; i < revoke->hash_size; i++) {
757		hash_list = &revoke->hash_table[i];
758		while (!list_empty(hash_list)) {
759			record = (struct jbd2_revoke_record_s*) hash_list->next;
760			list_del(&record->hash);
761			kmem_cache_free(jbd2_revoke_record_cache, record);
762		}
763	}
764}
765