1/*
2 * linux/fs/jbd2/transaction.c
3 *
4 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5 *
6 * Copyright 1998 Red Hat corp --- All Rights Reserved
7 *
8 * This file is part of the Linux kernel and is made available under
9 * the terms of the GNU General Public License, version 2, or at your
10 * option, any later version, incorporated herein by reference.
11 *
12 * Generic filesystem transaction handling code; part of the ext2fs
13 * journaling system.
14 *
15 * This file manages transactions (compound commits managed by the
16 * journaling code) and handles (individual atomic operations by the
17 * filesystem).
18 */
19
20#include <linux/time.h>
21#include <linux/fs.h>
22#include <linux/jbd2.h>
23#include <linux/errno.h>
24#include <linux/slab.h>
25#include <linux/timer.h>
26#include <linux/mm.h>
27#include <linux/highmem.h>
28#include <linux/hrtimer.h>
29#include <linux/backing-dev.h>
30#include <linux/bug.h>
31#include <linux/module.h>
32
33#include <trace/events/jbd2.h>
34
35static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
36static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
37
38static struct kmem_cache *transaction_cache;
39int __init jbd2_journal_init_transaction_cache(void)
40{
41	J_ASSERT(!transaction_cache);
42	transaction_cache = kmem_cache_create("jbd2_transaction_s",
43					sizeof(transaction_t),
44					0,
45					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
46					NULL);
47	if (transaction_cache)
48		return 0;
49	return -ENOMEM;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54	if (transaction_cache) {
55		kmem_cache_destroy(transaction_cache);
56		transaction_cache = NULL;
57	}
58}
59
60void jbd2_journal_free_transaction(transaction_t *transaction)
61{
62	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
63		return;
64	kmem_cache_free(transaction_cache, transaction);
65}
66
67/*
68 * jbd2_get_transaction: obtain a new transaction_t object.
69 *
70 * Simply allocate and initialise a new transaction.  Create it in
71 * RUNNING state and add it to the current journal (which should not
72 * have an existing running transaction: we only make a new transaction
73 * once we have started to commit the old one).
74 *
75 * Preconditions:
76 *	The journal MUST be locked.  We don't perform atomic mallocs on the
77 *	new transaction	and we can't block without protecting against other
78 *	processes trying to touch the journal while it is in transition.
79 *
80 */
81
82static transaction_t *
83jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
84{
85	transaction->t_journal = journal;
86	transaction->t_state = T_RUNNING;
87	transaction->t_start_time = ktime_get();
88	transaction->t_tid = journal->j_transaction_sequence++;
89	transaction->t_expires = jiffies + journal->j_commit_interval;
90	spin_lock_init(&transaction->t_handle_lock);
91	atomic_set(&transaction->t_updates, 0);
92	atomic_set(&transaction->t_outstanding_credits,
93		   atomic_read(&journal->j_reserved_credits));
94	atomic_set(&transaction->t_handle_count, 0);
95	INIT_LIST_HEAD(&transaction->t_inode_list);
96	INIT_LIST_HEAD(&transaction->t_private_list);
97
98	/* Set up the commit timer for the new transaction. */
99	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
100	add_timer(&journal->j_commit_timer);
101
102	J_ASSERT(journal->j_running_transaction == NULL);
103	journal->j_running_transaction = transaction;
104	transaction->t_max_wait = 0;
105	transaction->t_start = jiffies;
106	transaction->t_requested = 0;
107
108	return transaction;
109}
110
111/*
112 * Handle management.
113 *
114 * A handle_t is an object which represents a single atomic update to a
115 * filesystem, and which tracks all of the modifications which form part
116 * of that one update.
117 */
118
119/*
120 * Update transaction's maximum wait time, if debugging is enabled.
121 *
122 * In order for t_max_wait to be reliable, it must be protected by a
123 * lock.  But doing so will mean that start_this_handle() can not be
124 * run in parallel on SMP systems, which limits our scalability.  So
125 * unless debugging is enabled, we no longer update t_max_wait, which
126 * means that maximum wait time reported by the jbd2_run_stats
127 * tracepoint will always be zero.
128 */
129static inline void update_t_max_wait(transaction_t *transaction,
130				     unsigned long ts)
131{
132#ifdef CONFIG_JBD2_DEBUG
133	if (jbd2_journal_enable_debug &&
134	    time_after(transaction->t_start, ts)) {
135		ts = jbd2_time_diff(ts, transaction->t_start);
136		spin_lock(&transaction->t_handle_lock);
137		if (ts > transaction->t_max_wait)
138			transaction->t_max_wait = ts;
139		spin_unlock(&transaction->t_handle_lock);
140	}
141#endif
142}
143
144/*
145 * Wait until running transaction passes T_LOCKED state. Also starts the commit
146 * if needed. The function expects running transaction to exist and releases
147 * j_state_lock.
148 */
149static void wait_transaction_locked(journal_t *journal)
150	__releases(journal->j_state_lock)
151{
152	DEFINE_WAIT(wait);
153	int need_to_start;
154	tid_t tid = journal->j_running_transaction->t_tid;
155
156	prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
157			TASK_UNINTERRUPTIBLE);
158	need_to_start = !tid_geq(journal->j_commit_request, tid);
159	read_unlock(&journal->j_state_lock);
160	if (need_to_start)
161		jbd2_log_start_commit(journal, tid);
162	schedule();
163	finish_wait(&journal->j_wait_transaction_locked, &wait);
164}
165
166static void sub_reserved_credits(journal_t *journal, int blocks)
167{
168	atomic_sub(blocks, &journal->j_reserved_credits);
169	wake_up(&journal->j_wait_reserved);
170}
171
172/*
173 * Wait until we can add credits for handle to the running transaction.  Called
174 * with j_state_lock held for reading. Returns 0 if handle joined the running
175 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
176 * caller must retry.
177 */
178static int add_transaction_credits(journal_t *journal, int blocks,
179				   int rsv_blocks)
180{
181	transaction_t *t = journal->j_running_transaction;
182	int needed;
183	int total = blocks + rsv_blocks;
184
185	/*
186	 * If the current transaction is locked down for commit, wait
187	 * for the lock to be released.
188	 */
189	if (t->t_state == T_LOCKED) {
190		wait_transaction_locked(journal);
191		return 1;
192	}
193
194	/*
195	 * If there is not enough space left in the log to write all
196	 * potential buffers requested by this operation, we need to
197	 * stall pending a log checkpoint to free some more log space.
198	 */
199	needed = atomic_add_return(total, &t->t_outstanding_credits);
200	if (needed > journal->j_max_transaction_buffers) {
201		/*
202		 * If the current transaction is already too large,
203		 * then start to commit it: we can then go back and
204		 * attach this handle to a new transaction.
205		 */
206		atomic_sub(total, &t->t_outstanding_credits);
207		wait_transaction_locked(journal);
208		return 1;
209	}
210
211	/*
212	 * The commit code assumes that it can get enough log space
213	 * without forcing a checkpoint.  This is *critical* for
214	 * correctness: a checkpoint of a buffer which is also
215	 * associated with a committing transaction creates a deadlock,
216	 * so commit simply cannot force through checkpoints.
217	 *
218	 * We must therefore ensure the necessary space in the journal
219	 * *before* starting to dirty potentially checkpointed buffers
220	 * in the new transaction.
221	 */
222	if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
223		atomic_sub(total, &t->t_outstanding_credits);
224		read_unlock(&journal->j_state_lock);
225		write_lock(&journal->j_state_lock);
226		if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
227			__jbd2_log_wait_for_space(journal);
228		write_unlock(&journal->j_state_lock);
229		return 1;
230	}
231
232	/* No reservation? We are done... */
233	if (!rsv_blocks)
234		return 0;
235
236	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
237	/* We allow at most half of a transaction to be reserved */
238	if (needed > journal->j_max_transaction_buffers / 2) {
239		sub_reserved_credits(journal, rsv_blocks);
240		atomic_sub(total, &t->t_outstanding_credits);
241		read_unlock(&journal->j_state_lock);
242		wait_event(journal->j_wait_reserved,
243			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
244			 <= journal->j_max_transaction_buffers / 2);
245		return 1;
246	}
247	return 0;
248}
249
250/*
251 * start_this_handle: Given a handle, deal with any locking or stalling
252 * needed to make sure that there is enough journal space for the handle
253 * to begin.  Attach the handle to a transaction and set up the
254 * transaction's buffer credits.
255 */
256
257static int start_this_handle(journal_t *journal, handle_t *handle,
258			     gfp_t gfp_mask)
259{
260	transaction_t	*transaction, *new_transaction = NULL;
261	int		blocks = handle->h_buffer_credits;
262	int		rsv_blocks = 0;
263	unsigned long ts = jiffies;
264
265	/*
266	 * 1/2 of transaction can be reserved so we can practically handle
267	 * only 1/2 of maximum transaction size per operation
268	 */
269	if (WARN_ON(blocks > journal->j_max_transaction_buffers / 2)) {
270		printk(KERN_ERR "JBD2: %s wants too many credits (%d > %d)\n",
271		       current->comm, blocks,
272		       journal->j_max_transaction_buffers / 2);
273		return -ENOSPC;
274	}
275
276	if (handle->h_rsv_handle)
277		rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
278
279alloc_transaction:
280	if (!journal->j_running_transaction) {
281		new_transaction = kmem_cache_zalloc(transaction_cache,
282						    gfp_mask);
283		if (!new_transaction) {
284			/*
285			 * If __GFP_FS is not present, then we may be
286			 * being called from inside the fs writeback
287			 * layer, so we MUST NOT fail.  Since
288			 * __GFP_NOFAIL is going away, we will arrange
289			 * to retry the allocation ourselves.
290			 */
291			if ((gfp_mask & __GFP_FS) == 0) {
292				congestion_wait(BLK_RW_ASYNC, HZ/50);
293				goto alloc_transaction;
294			}
295			return -ENOMEM;
296		}
297	}
298
299	jbd_debug(3, "New handle %p going live.\n", handle);
300
301	/*
302	 * We need to hold j_state_lock until t_updates has been incremented,
303	 * for proper journal barrier handling
304	 */
305repeat:
306	read_lock(&journal->j_state_lock);
307	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
308	if (is_journal_aborted(journal) ||
309	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
310		read_unlock(&journal->j_state_lock);
311		jbd2_journal_free_transaction(new_transaction);
312		return -EROFS;
313	}
314
315	/*
316	 * Wait on the journal's transaction barrier if necessary. Specifically
317	 * we allow reserved handles to proceed because otherwise commit could
318	 * deadlock on page writeback not being able to complete.
319	 */
320	if (!handle->h_reserved && journal->j_barrier_count) {
321		read_unlock(&journal->j_state_lock);
322		wait_event(journal->j_wait_transaction_locked,
323				journal->j_barrier_count == 0);
324		goto repeat;
325	}
326
327	if (!journal->j_running_transaction) {
328		read_unlock(&journal->j_state_lock);
329		if (!new_transaction)
330			goto alloc_transaction;
331		write_lock(&journal->j_state_lock);
332		if (!journal->j_running_transaction &&
333		    (handle->h_reserved || !journal->j_barrier_count)) {
334			jbd2_get_transaction(journal, new_transaction);
335			new_transaction = NULL;
336		}
337		write_unlock(&journal->j_state_lock);
338		goto repeat;
339	}
340
341	transaction = journal->j_running_transaction;
342
343	if (!handle->h_reserved) {
344		/* We may have dropped j_state_lock - restart in that case */
345		if (add_transaction_credits(journal, blocks, rsv_blocks))
346			goto repeat;
347	} else {
348		/*
349		 * We have handle reserved so we are allowed to join T_LOCKED
350		 * transaction and we don't have to check for transaction size
351		 * and journal space.
352		 */
353		sub_reserved_credits(journal, blocks);
354		handle->h_reserved = 0;
355	}
356
357	/* OK, account for the buffers that this operation expects to
358	 * use and add the handle to the running transaction.
359	 */
360	update_t_max_wait(transaction, ts);
361	handle->h_transaction = transaction;
362	handle->h_requested_credits = blocks;
363	handle->h_start_jiffies = jiffies;
364	atomic_inc(&transaction->t_updates);
365	atomic_inc(&transaction->t_handle_count);
366	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
367		  handle, blocks,
368		  atomic_read(&transaction->t_outstanding_credits),
369		  jbd2_log_space_left(journal));
370	read_unlock(&journal->j_state_lock);
371	current->journal_info = handle;
372
373	lock_map_acquire(&handle->h_lockdep_map);
374	jbd2_journal_free_transaction(new_transaction);
375	return 0;
376}
377
378static struct lock_class_key jbd2_handle_key;
379
380/* Allocate a new handle.  This should probably be in a slab... */
381static handle_t *new_handle(int nblocks)
382{
383	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
384	if (!handle)
385		return NULL;
386	handle->h_buffer_credits = nblocks;
387	handle->h_ref = 1;
388
389	lockdep_init_map(&handle->h_lockdep_map, "jbd2_handle",
390						&jbd2_handle_key, 0);
391
392	return handle;
393}
394
395/**
396 * handle_t *jbd2_journal_start() - Obtain a new handle.
397 * @journal: Journal to start transaction on.
398 * @nblocks: number of block buffer we might modify
399 *
400 * We make sure that the transaction can guarantee at least nblocks of
401 * modified buffers in the log.  We block until the log can guarantee
402 * that much space. Additionally, if rsv_blocks > 0, we also create another
403 * handle with rsv_blocks reserved blocks in the journal. This handle is
404 * is stored in h_rsv_handle. It is not attached to any particular transaction
405 * and thus doesn't block transaction commit. If the caller uses this reserved
406 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
407 * on the parent handle will dispose the reserved one. Reserved handle has to
408 * be converted to a normal handle using jbd2_journal_start_reserved() before
409 * it can be used.
410 *
411 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
412 * on failure.
413 */
414handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
415			      gfp_t gfp_mask, unsigned int type,
416			      unsigned int line_no)
417{
418	handle_t *handle = journal_current_handle();
419	int err;
420
421	if (!journal)
422		return ERR_PTR(-EROFS);
423
424	if (handle) {
425		J_ASSERT(handle->h_transaction->t_journal == journal);
426		handle->h_ref++;
427		return handle;
428	}
429
430	handle = new_handle(nblocks);
431	if (!handle)
432		return ERR_PTR(-ENOMEM);
433	if (rsv_blocks) {
434		handle_t *rsv_handle;
435
436		rsv_handle = new_handle(rsv_blocks);
437		if (!rsv_handle) {
438			jbd2_free_handle(handle);
439			return ERR_PTR(-ENOMEM);
440		}
441		rsv_handle->h_reserved = 1;
442		rsv_handle->h_journal = journal;
443		handle->h_rsv_handle = rsv_handle;
444	}
445
446	err = start_this_handle(journal, handle, gfp_mask);
447	if (err < 0) {
448		if (handle->h_rsv_handle)
449			jbd2_free_handle(handle->h_rsv_handle);
450		jbd2_free_handle(handle);
451		return ERR_PTR(err);
452	}
453	handle->h_type = type;
454	handle->h_line_no = line_no;
455	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
456				handle->h_transaction->t_tid, type,
457				line_no, nblocks);
458	return handle;
459}
460EXPORT_SYMBOL(jbd2__journal_start);
461
462
463handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
464{
465	return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
466}
467EXPORT_SYMBOL(jbd2_journal_start);
468
469void jbd2_journal_free_reserved(handle_t *handle)
470{
471	journal_t *journal = handle->h_journal;
472
473	WARN_ON(!handle->h_reserved);
474	sub_reserved_credits(journal, handle->h_buffer_credits);
475	jbd2_free_handle(handle);
476}
477EXPORT_SYMBOL(jbd2_journal_free_reserved);
478
479/**
480 * int jbd2_journal_start_reserved(handle_t *handle) - start reserved handle
481 * @handle: handle to start
482 *
483 * Start handle that has been previously reserved with jbd2_journal_reserve().
484 * This attaches @handle to the running transaction (or creates one if there's
485 * not transaction running). Unlike jbd2_journal_start() this function cannot
486 * block on journal commit, checkpointing, or similar stuff. It can block on
487 * memory allocation or frozen journal though.
488 *
489 * Return 0 on success, non-zero on error - handle is freed in that case.
490 */
491int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
492				unsigned int line_no)
493{
494	journal_t *journal = handle->h_journal;
495	int ret = -EIO;
496
497	if (WARN_ON(!handle->h_reserved)) {
498		/* Someone passed in normal handle? Just stop it. */
499		jbd2_journal_stop(handle);
500		return ret;
501	}
502	/*
503	 * Usefulness of mixing of reserved and unreserved handles is
504	 * questionable. So far nobody seems to need it so just error out.
505	 */
506	if (WARN_ON(current->journal_info)) {
507		jbd2_journal_free_reserved(handle);
508		return ret;
509	}
510
511	handle->h_journal = NULL;
512	/*
513	 * GFP_NOFS is here because callers are likely from writeback or
514	 * similarly constrained call sites
515	 */
516	ret = start_this_handle(journal, handle, GFP_NOFS);
517	if (ret < 0) {
518		jbd2_journal_free_reserved(handle);
519		return ret;
520	}
521	handle->h_type = type;
522	handle->h_line_no = line_no;
523	return 0;
524}
525EXPORT_SYMBOL(jbd2_journal_start_reserved);
526
527/**
528 * int jbd2_journal_extend() - extend buffer credits.
529 * @handle:  handle to 'extend'
530 * @nblocks: nr blocks to try to extend by.
531 *
532 * Some transactions, such as large extends and truncates, can be done
533 * atomically all at once or in several stages.  The operation requests
534 * a credit for a number of buffer modications in advance, but can
535 * extend its credit if it needs more.
536 *
537 * jbd2_journal_extend tries to give the running handle more buffer credits.
538 * It does not guarantee that allocation - this is a best-effort only.
539 * The calling process MUST be able to deal cleanly with a failure to
540 * extend here.
541 *
542 * Return 0 on success, non-zero on failure.
543 *
544 * return code < 0 implies an error
545 * return code > 0 implies normal transaction-full status.
546 */
547int jbd2_journal_extend(handle_t *handle, int nblocks)
548{
549	transaction_t *transaction = handle->h_transaction;
550	journal_t *journal;
551	int result;
552	int wanted;
553
554	if (is_handle_aborted(handle))
555		return -EROFS;
556	journal = transaction->t_journal;
557
558	result = 1;
559
560	read_lock(&journal->j_state_lock);
561
562	/* Don't extend a locked-down transaction! */
563	if (transaction->t_state != T_RUNNING) {
564		jbd_debug(3, "denied handle %p %d blocks: "
565			  "transaction not running\n", handle, nblocks);
566		goto error_out;
567	}
568
569	spin_lock(&transaction->t_handle_lock);
570	wanted = atomic_add_return(nblocks,
571				   &transaction->t_outstanding_credits);
572
573	if (wanted > journal->j_max_transaction_buffers) {
574		jbd_debug(3, "denied handle %p %d blocks: "
575			  "transaction too large\n", handle, nblocks);
576		atomic_sub(nblocks, &transaction->t_outstanding_credits);
577		goto unlock;
578	}
579
580	if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
581	    jbd2_log_space_left(journal)) {
582		jbd_debug(3, "denied handle %p %d blocks: "
583			  "insufficient log space\n", handle, nblocks);
584		atomic_sub(nblocks, &transaction->t_outstanding_credits);
585		goto unlock;
586	}
587
588	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
589				 transaction->t_tid,
590				 handle->h_type, handle->h_line_no,
591				 handle->h_buffer_credits,
592				 nblocks);
593
594	handle->h_buffer_credits += nblocks;
595	handle->h_requested_credits += nblocks;
596	result = 0;
597
598	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
599unlock:
600	spin_unlock(&transaction->t_handle_lock);
601error_out:
602	read_unlock(&journal->j_state_lock);
603	return result;
604}
605
606
607/**
608 * int jbd2_journal_restart() - restart a handle .
609 * @handle:  handle to restart
610 * @nblocks: nr credits requested
611 *
612 * Restart a handle for a multi-transaction filesystem
613 * operation.
614 *
615 * If the jbd2_journal_extend() call above fails to grant new buffer credits
616 * to a running handle, a call to jbd2_journal_restart will commit the
617 * handle's transaction so far and reattach the handle to a new
618 * transaction capabable of guaranteeing the requested number of
619 * credits. We preserve reserved handle if there's any attached to the
620 * passed in handle.
621 */
622int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
623{
624	transaction_t *transaction = handle->h_transaction;
625	journal_t *journal;
626	tid_t		tid;
627	int		need_to_start, ret;
628
629	/* If we've had an abort of any type, don't even think about
630	 * actually doing the restart! */
631	if (is_handle_aborted(handle))
632		return 0;
633	journal = transaction->t_journal;
634
635	/*
636	 * First unlink the handle from its current transaction, and start the
637	 * commit on that.
638	 */
639	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
640	J_ASSERT(journal_current_handle() == handle);
641
642	read_lock(&journal->j_state_lock);
643	spin_lock(&transaction->t_handle_lock);
644	atomic_sub(handle->h_buffer_credits,
645		   &transaction->t_outstanding_credits);
646	if (handle->h_rsv_handle) {
647		sub_reserved_credits(journal,
648				     handle->h_rsv_handle->h_buffer_credits);
649	}
650	if (atomic_dec_and_test(&transaction->t_updates))
651		wake_up(&journal->j_wait_updates);
652	tid = transaction->t_tid;
653	spin_unlock(&transaction->t_handle_lock);
654	handle->h_transaction = NULL;
655	current->journal_info = NULL;
656
657	jbd_debug(2, "restarting handle %p\n", handle);
658	need_to_start = !tid_geq(journal->j_commit_request, tid);
659	read_unlock(&journal->j_state_lock);
660	if (need_to_start)
661		jbd2_log_start_commit(journal, tid);
662
663	lock_map_release(&handle->h_lockdep_map);
664	handle->h_buffer_credits = nblocks;
665	ret = start_this_handle(journal, handle, gfp_mask);
666	return ret;
667}
668EXPORT_SYMBOL(jbd2__journal_restart);
669
670
671int jbd2_journal_restart(handle_t *handle, int nblocks)
672{
673	return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
674}
675EXPORT_SYMBOL(jbd2_journal_restart);
676
677/**
678 * void jbd2_journal_lock_updates () - establish a transaction barrier.
679 * @journal:  Journal to establish a barrier on.
680 *
681 * This locks out any further updates from being started, and blocks
682 * until all existing updates have completed, returning only once the
683 * journal is in a quiescent state with no updates running.
684 *
685 * The journal lock should not be held on entry.
686 */
687void jbd2_journal_lock_updates(journal_t *journal)
688{
689	DEFINE_WAIT(wait);
690
691	write_lock(&journal->j_state_lock);
692	++journal->j_barrier_count;
693
694	/* Wait until there are no reserved handles */
695	if (atomic_read(&journal->j_reserved_credits)) {
696		write_unlock(&journal->j_state_lock);
697		wait_event(journal->j_wait_reserved,
698			   atomic_read(&journal->j_reserved_credits) == 0);
699		write_lock(&journal->j_state_lock);
700	}
701
702	/* Wait until there are no running updates */
703	while (1) {
704		transaction_t *transaction = journal->j_running_transaction;
705
706		if (!transaction)
707			break;
708
709		spin_lock(&transaction->t_handle_lock);
710		prepare_to_wait(&journal->j_wait_updates, &wait,
711				TASK_UNINTERRUPTIBLE);
712		if (!atomic_read(&transaction->t_updates)) {
713			spin_unlock(&transaction->t_handle_lock);
714			finish_wait(&journal->j_wait_updates, &wait);
715			break;
716		}
717		spin_unlock(&transaction->t_handle_lock);
718		write_unlock(&journal->j_state_lock);
719		schedule();
720		finish_wait(&journal->j_wait_updates, &wait);
721		write_lock(&journal->j_state_lock);
722	}
723	write_unlock(&journal->j_state_lock);
724
725	/*
726	 * We have now established a barrier against other normal updates, but
727	 * we also need to barrier against other jbd2_journal_lock_updates() calls
728	 * to make sure that we serialise special journal-locked operations
729	 * too.
730	 */
731	mutex_lock(&journal->j_barrier);
732}
733
734/**
735 * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
736 * @journal:  Journal to release the barrier on.
737 *
738 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
739 *
740 * Should be called without the journal lock held.
741 */
742void jbd2_journal_unlock_updates (journal_t *journal)
743{
744	J_ASSERT(journal->j_barrier_count != 0);
745
746	mutex_unlock(&journal->j_barrier);
747	write_lock(&journal->j_state_lock);
748	--journal->j_barrier_count;
749	write_unlock(&journal->j_state_lock);
750	wake_up(&journal->j_wait_transaction_locked);
751}
752
753static void warn_dirty_buffer(struct buffer_head *bh)
754{
755	char b[BDEVNAME_SIZE];
756
757	printk(KERN_WARNING
758	       "JBD2: Spotted dirty metadata buffer (dev = %s, blocknr = %llu). "
759	       "There's a risk of filesystem corruption in case of system "
760	       "crash.\n",
761	       bdevname(bh->b_bdev, b), (unsigned long long)bh->b_blocknr);
762}
763
764/*
765 * If the buffer is already part of the current transaction, then there
766 * is nothing we need to do.  If it is already part of a prior
767 * transaction which we are still committing to disk, then we need to
768 * make sure that we do not overwrite the old copy: we do copy-out to
769 * preserve the copy going to disk.  We also account the buffer against
770 * the handle's metadata buffer credits (unless the buffer is already
771 * part of the transaction, that is).
772 *
773 */
774static int
775do_get_write_access(handle_t *handle, struct journal_head *jh,
776			int force_copy)
777{
778	struct buffer_head *bh;
779	transaction_t *transaction = handle->h_transaction;
780	journal_t *journal;
781	int error;
782	char *frozen_buffer = NULL;
783	int need_copy = 0;
784	unsigned long start_lock, time_lock;
785
786	if (is_handle_aborted(handle))
787		return -EROFS;
788	journal = transaction->t_journal;
789
790	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
791
792	JBUFFER_TRACE(jh, "entry");
793repeat:
794	bh = jh2bh(jh);
795
796	/* @@@ Need to check for errors here at some point. */
797
798 	start_lock = jiffies;
799	lock_buffer(bh);
800	jbd_lock_bh_state(bh);
801
802	/* If it takes too long to lock the buffer, trace it */
803	time_lock = jbd2_time_diff(start_lock, jiffies);
804	if (time_lock > HZ/10)
805		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
806			jiffies_to_msecs(time_lock));
807
808	/* We now hold the buffer lock so it is safe to query the buffer
809	 * state.  Is the buffer dirty?
810	 *
811	 * If so, there are two possibilities.  The buffer may be
812	 * non-journaled, and undergoing a quite legitimate writeback.
813	 * Otherwise, it is journaled, and we don't expect dirty buffers
814	 * in that state (the buffers should be marked JBD_Dirty
815	 * instead.)  So either the IO is being done under our own
816	 * control and this is a bug, or it's a third party IO such as
817	 * dump(8) (which may leave the buffer scheduled for read ---
818	 * ie. locked but not dirty) or tune2fs (which may actually have
819	 * the buffer dirtied, ugh.)  */
820
821	if (buffer_dirty(bh)) {
822		/*
823		 * First question: is this buffer already part of the current
824		 * transaction or the existing committing transaction?
825		 */
826		if (jh->b_transaction) {
827			J_ASSERT_JH(jh,
828				jh->b_transaction == transaction ||
829				jh->b_transaction ==
830					journal->j_committing_transaction);
831			if (jh->b_next_transaction)
832				J_ASSERT_JH(jh, jh->b_next_transaction ==
833							transaction);
834			warn_dirty_buffer(bh);
835		}
836		/*
837		 * In any case we need to clean the dirty flag and we must
838		 * do it under the buffer lock to be sure we don't race
839		 * with running write-out.
840		 */
841		JBUFFER_TRACE(jh, "Journalling dirty buffer");
842		clear_buffer_dirty(bh);
843		set_buffer_jbddirty(bh);
844	}
845
846	unlock_buffer(bh);
847
848	error = -EROFS;
849	if (is_handle_aborted(handle)) {
850		jbd_unlock_bh_state(bh);
851		goto out;
852	}
853	error = 0;
854
855	/*
856	 * The buffer is already part of this transaction if b_transaction or
857	 * b_next_transaction points to it
858	 */
859	if (jh->b_transaction == transaction ||
860	    jh->b_next_transaction == transaction)
861		goto done;
862
863	/*
864	 * this is the first time this transaction is touching this buffer,
865	 * reset the modified flag
866	 */
867       jh->b_modified = 0;
868
869	/*
870	 * If there is already a copy-out version of this buffer, then we don't
871	 * need to make another one
872	 */
873	if (jh->b_frozen_data) {
874		JBUFFER_TRACE(jh, "has frozen data");
875		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
876		jh->b_next_transaction = transaction;
877		goto done;
878	}
879
880	/* Is there data here we need to preserve? */
881
882	if (jh->b_transaction && jh->b_transaction != transaction) {
883		JBUFFER_TRACE(jh, "owned by older transaction");
884		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
885		J_ASSERT_JH(jh, jh->b_transaction ==
886					journal->j_committing_transaction);
887
888		/* There is one case we have to be very careful about.
889		 * If the committing transaction is currently writing
890		 * this buffer out to disk and has NOT made a copy-out,
891		 * then we cannot modify the buffer contents at all
892		 * right now.  The essence of copy-out is that it is the
893		 * extra copy, not the primary copy, which gets
894		 * journaled.  If the primary copy is already going to
895		 * disk then we cannot do copy-out here. */
896
897		if (buffer_shadow(bh)) {
898			JBUFFER_TRACE(jh, "on shadow: sleep");
899			jbd_unlock_bh_state(bh);
900			wait_on_bit_io(&bh->b_state, BH_Shadow,
901				       TASK_UNINTERRUPTIBLE);
902			goto repeat;
903		}
904
905		/*
906		 * Only do the copy if the currently-owning transaction still
907		 * needs it. If buffer isn't on BJ_Metadata list, the
908		 * committing transaction is past that stage (here we use the
909		 * fact that BH_Shadow is set under bh_state lock together with
910		 * refiling to BJ_Shadow list and at this point we know the
911		 * buffer doesn't have BH_Shadow set).
912		 *
913		 * Subtle point, though: if this is a get_undo_access,
914		 * then we will be relying on the frozen_data to contain
915		 * the new value of the committed_data record after the
916		 * transaction, so we HAVE to force the frozen_data copy
917		 * in that case.
918		 */
919		if (jh->b_jlist == BJ_Metadata || force_copy) {
920			JBUFFER_TRACE(jh, "generate frozen data");
921			if (!frozen_buffer) {
922				JBUFFER_TRACE(jh, "allocate memory for buffer");
923				jbd_unlock_bh_state(bh);
924				frozen_buffer =
925					jbd2_alloc(jh2bh(jh)->b_size,
926							 GFP_NOFS);
927				if (!frozen_buffer) {
928					printk(KERN_ERR
929					       "%s: OOM for frozen_buffer\n",
930					       __func__);
931					JBUFFER_TRACE(jh, "oom!");
932					error = -ENOMEM;
933					jbd_lock_bh_state(bh);
934					goto done;
935				}
936				goto repeat;
937			}
938			jh->b_frozen_data = frozen_buffer;
939			frozen_buffer = NULL;
940			need_copy = 1;
941		}
942		jh->b_next_transaction = transaction;
943	}
944
945
946	/*
947	 * Finally, if the buffer is not journaled right now, we need to make
948	 * sure it doesn't get written to disk before the caller actually
949	 * commits the new data
950	 */
951	if (!jh->b_transaction) {
952		JBUFFER_TRACE(jh, "no transaction");
953		J_ASSERT_JH(jh, !jh->b_next_transaction);
954		JBUFFER_TRACE(jh, "file as BJ_Reserved");
955		spin_lock(&journal->j_list_lock);
956		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
957		spin_unlock(&journal->j_list_lock);
958	}
959
960done:
961	if (need_copy) {
962		struct page *page;
963		int offset;
964		char *source;
965
966		J_EXPECT_JH(jh, buffer_uptodate(jh2bh(jh)),
967			    "Possible IO failure.\n");
968		page = jh2bh(jh)->b_page;
969		offset = offset_in_page(jh2bh(jh)->b_data);
970		source = kmap_atomic(page);
971		/* Fire data frozen trigger just before we copy the data */
972		jbd2_buffer_frozen_trigger(jh, source + offset,
973					   jh->b_triggers);
974		memcpy(jh->b_frozen_data, source+offset, jh2bh(jh)->b_size);
975		kunmap_atomic(source);
976
977		/*
978		 * Now that the frozen data is saved off, we need to store
979		 * any matching triggers.
980		 */
981		jh->b_frozen_triggers = jh->b_triggers;
982	}
983	jbd_unlock_bh_state(bh);
984
985	/*
986	 * If we are about to journal a buffer, then any revoke pending on it is
987	 * no longer valid
988	 */
989	jbd2_journal_cancel_revoke(handle, jh);
990
991out:
992	if (unlikely(frozen_buffer))	/* It's usually NULL */
993		jbd2_free(frozen_buffer, bh->b_size);
994
995	JBUFFER_TRACE(jh, "exit");
996	return error;
997}
998
999/**
1000 * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1001 * @handle: transaction to add buffer modifications to
1002 * @bh:     bh to be used for metadata writes
1003 *
1004 * Returns an error code or 0 on success.
1005 *
1006 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1007 * because we're write()ing a buffer which is also part of a shared mapping.
1008 */
1009
1010int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1011{
1012	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1013	int rc;
1014
1015	/* We do not want to get caught playing with fields which the
1016	 * log thread also manipulates.  Make sure that the buffer
1017	 * completes any outstanding IO before proceeding. */
1018	rc = do_get_write_access(handle, jh, 0);
1019	jbd2_journal_put_journal_head(jh);
1020	return rc;
1021}
1022
1023
1024/*
1025 * When the user wants to journal a newly created buffer_head
1026 * (ie. getblk() returned a new buffer and we are going to populate it
1027 * manually rather than reading off disk), then we need to keep the
1028 * buffer_head locked until it has been completely filled with new
1029 * data.  In this case, we should be able to make the assertion that
1030 * the bh is not already part of an existing transaction.
1031 *
1032 * The buffer should already be locked by the caller by this point.
1033 * There is no lock ranking violation: it was a newly created,
1034 * unlocked buffer beforehand. */
1035
1036/**
1037 * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1038 * @handle: transaction to new buffer to
1039 * @bh: new buffer.
1040 *
1041 * Call this if you create a new bh.
1042 */
1043int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1044{
1045	transaction_t *transaction = handle->h_transaction;
1046	journal_t *journal;
1047	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1048	int err;
1049
1050	jbd_debug(5, "journal_head %p\n", jh);
1051	err = -EROFS;
1052	if (is_handle_aborted(handle))
1053		goto out;
1054	journal = transaction->t_journal;
1055	err = 0;
1056
1057	JBUFFER_TRACE(jh, "entry");
1058	/*
1059	 * The buffer may already belong to this transaction due to pre-zeroing
1060	 * in the filesystem's new_block code.  It may also be on the previous,
1061	 * committing transaction's lists, but it HAS to be in Forget state in
1062	 * that case: the transaction must have deleted the buffer for it to be
1063	 * reused here.
1064	 */
1065	jbd_lock_bh_state(bh);
1066	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1067		jh->b_transaction == NULL ||
1068		(jh->b_transaction == journal->j_committing_transaction &&
1069			  jh->b_jlist == BJ_Forget)));
1070
1071	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1072	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1073
1074	if (jh->b_transaction == NULL) {
1075		/*
1076		 * Previous jbd2_journal_forget() could have left the buffer
1077		 * with jbddirty bit set because it was being committed. When
1078		 * the commit finished, we've filed the buffer for
1079		 * checkpointing and marked it dirty. Now we are reallocating
1080		 * the buffer so the transaction freeing it must have
1081		 * committed and so it's safe to clear the dirty bit.
1082		 */
1083		clear_buffer_dirty(jh2bh(jh));
1084		/* first access by this transaction */
1085		jh->b_modified = 0;
1086
1087		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1088		spin_lock(&journal->j_list_lock);
1089		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1090	} else if (jh->b_transaction == journal->j_committing_transaction) {
1091		/* first access by this transaction */
1092		jh->b_modified = 0;
1093
1094		JBUFFER_TRACE(jh, "set next transaction");
1095		spin_lock(&journal->j_list_lock);
1096		jh->b_next_transaction = transaction;
1097	}
1098	spin_unlock(&journal->j_list_lock);
1099	jbd_unlock_bh_state(bh);
1100
1101	/*
1102	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1103	 * blocks which contain freed but then revoked metadata.  We need
1104	 * to cancel the revoke in case we end up freeing it yet again
1105	 * and the reallocating as data - this would cause a second revoke,
1106	 * which hits an assertion error.
1107	 */
1108	JBUFFER_TRACE(jh, "cancelling revoke");
1109	jbd2_journal_cancel_revoke(handle, jh);
1110out:
1111	jbd2_journal_put_journal_head(jh);
1112	return err;
1113}
1114
1115/**
1116 * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1117 *     non-rewindable consequences
1118 * @handle: transaction
1119 * @bh: buffer to undo
1120 *
1121 * Sometimes there is a need to distinguish between metadata which has
1122 * been committed to disk and that which has not.  The ext3fs code uses
1123 * this for freeing and allocating space, we have to make sure that we
1124 * do not reuse freed space until the deallocation has been committed,
1125 * since if we overwrote that space we would make the delete
1126 * un-rewindable in case of a crash.
1127 *
1128 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1129 * buffer for parts of non-rewindable operations such as delete
1130 * operations on the bitmaps.  The journaling code must keep a copy of
1131 * the buffer's contents prior to the undo_access call until such time
1132 * as we know that the buffer has definitely been committed to disk.
1133 *
1134 * We never need to know which transaction the committed data is part
1135 * of, buffers touched here are guaranteed to be dirtied later and so
1136 * will be committed to a new transaction in due course, at which point
1137 * we can discard the old committed data pointer.
1138 *
1139 * Returns error number or 0 on success.
1140 */
1141int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1142{
1143	int err;
1144	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1145	char *committed_data = NULL;
1146
1147	JBUFFER_TRACE(jh, "entry");
1148
1149	/*
1150	 * Do this first --- it can drop the journal lock, so we want to
1151	 * make sure that obtaining the committed_data is done
1152	 * atomically wrt. completion of any outstanding commits.
1153	 */
1154	err = do_get_write_access(handle, jh, 1);
1155	if (err)
1156		goto out;
1157
1158repeat:
1159	if (!jh->b_committed_data) {
1160		committed_data = jbd2_alloc(jh2bh(jh)->b_size, GFP_NOFS);
1161		if (!committed_data) {
1162			printk(KERN_ERR "%s: No memory for committed data\n",
1163				__func__);
1164			err = -ENOMEM;
1165			goto out;
1166		}
1167	}
1168
1169	jbd_lock_bh_state(bh);
1170	if (!jh->b_committed_data) {
1171		/* Copy out the current buffer contents into the
1172		 * preserved, committed copy. */
1173		JBUFFER_TRACE(jh, "generate b_committed data");
1174		if (!committed_data) {
1175			jbd_unlock_bh_state(bh);
1176			goto repeat;
1177		}
1178
1179		jh->b_committed_data = committed_data;
1180		committed_data = NULL;
1181		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1182	}
1183	jbd_unlock_bh_state(bh);
1184out:
1185	jbd2_journal_put_journal_head(jh);
1186	if (unlikely(committed_data))
1187		jbd2_free(committed_data, bh->b_size);
1188	return err;
1189}
1190
1191/**
1192 * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1193 * @bh: buffer to trigger on
1194 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1195 *
1196 * Set any triggers on this journal_head.  This is always safe, because
1197 * triggers for a committing buffer will be saved off, and triggers for
1198 * a running transaction will match the buffer in that transaction.
1199 *
1200 * Call with NULL to clear the triggers.
1201 */
1202void jbd2_journal_set_triggers(struct buffer_head *bh,
1203			       struct jbd2_buffer_trigger_type *type)
1204{
1205	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1206
1207	if (WARN_ON(!jh))
1208		return;
1209	jh->b_triggers = type;
1210	jbd2_journal_put_journal_head(jh);
1211}
1212
1213void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1214				struct jbd2_buffer_trigger_type *triggers)
1215{
1216	struct buffer_head *bh = jh2bh(jh);
1217
1218	if (!triggers || !triggers->t_frozen)
1219		return;
1220
1221	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1222}
1223
1224void jbd2_buffer_abort_trigger(struct journal_head *jh,
1225			       struct jbd2_buffer_trigger_type *triggers)
1226{
1227	if (!triggers || !triggers->t_abort)
1228		return;
1229
1230	triggers->t_abort(triggers, jh2bh(jh));
1231}
1232
1233
1234
1235/**
1236 * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1237 * @handle: transaction to add buffer to.
1238 * @bh: buffer to mark
1239 *
1240 * mark dirty metadata which needs to be journaled as part of the current
1241 * transaction.
1242 *
1243 * The buffer must have previously had jbd2_journal_get_write_access()
1244 * called so that it has a valid journal_head attached to the buffer
1245 * head.
1246 *
1247 * The buffer is placed on the transaction's metadata list and is marked
1248 * as belonging to the transaction.
1249 *
1250 * Returns error number or 0 on success.
1251 *
1252 * Special care needs to be taken if the buffer already belongs to the
1253 * current committing transaction (in which case we should have frozen
1254 * data present for that commit).  In that case, we don't relink the
1255 * buffer: that only gets done when the old transaction finally
1256 * completes its commit.
1257 */
1258int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1259{
1260	transaction_t *transaction = handle->h_transaction;
1261	journal_t *journal;
1262	struct journal_head *jh;
1263	int ret = 0;
1264
1265	if (is_handle_aborted(handle))
1266		return -EROFS;
1267	journal = transaction->t_journal;
1268	jh = jbd2_journal_grab_journal_head(bh);
1269	if (!jh) {
1270		ret = -EUCLEAN;
1271		goto out;
1272	}
1273	jbd_debug(5, "journal_head %p\n", jh);
1274	JBUFFER_TRACE(jh, "entry");
1275
1276	jbd_lock_bh_state(bh);
1277
1278	if (jh->b_modified == 0) {
1279		/*
1280		 * This buffer's got modified and becoming part
1281		 * of the transaction. This needs to be done
1282		 * once a transaction -bzzz
1283		 */
1284		jh->b_modified = 1;
1285		if (handle->h_buffer_credits <= 0) {
1286			ret = -ENOSPC;
1287			goto out_unlock_bh;
1288		}
1289		handle->h_buffer_credits--;
1290	}
1291
1292	/*
1293	 * fastpath, to avoid expensive locking.  If this buffer is already
1294	 * on the running transaction's metadata list there is nothing to do.
1295	 * Nobody can take it off again because there is a handle open.
1296	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1297	 * result in this test being false, so we go in and take the locks.
1298	 */
1299	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1300		JBUFFER_TRACE(jh, "fastpath");
1301		if (unlikely(jh->b_transaction !=
1302			     journal->j_running_transaction)) {
1303			printk(KERN_ERR "JBD2: %s: "
1304			       "jh->b_transaction (%llu, %p, %u) != "
1305			       "journal->j_running_transaction (%p, %u)\n",
1306			       journal->j_devname,
1307			       (unsigned long long) bh->b_blocknr,
1308			       jh->b_transaction,
1309			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1310			       journal->j_running_transaction,
1311			       journal->j_running_transaction ?
1312			       journal->j_running_transaction->t_tid : 0);
1313			ret = -EINVAL;
1314		}
1315		goto out_unlock_bh;
1316	}
1317
1318	set_buffer_jbddirty(bh);
1319
1320	/*
1321	 * Metadata already on the current transaction list doesn't
1322	 * need to be filed.  Metadata on another transaction's list must
1323	 * be committing, and will be refiled once the commit completes:
1324	 * leave it alone for now.
1325	 */
1326	if (jh->b_transaction != transaction) {
1327		JBUFFER_TRACE(jh, "already on other transaction");
1328		if (unlikely(((jh->b_transaction !=
1329			       journal->j_committing_transaction)) ||
1330			     (jh->b_next_transaction != transaction))) {
1331			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1332			       "bad jh for block %llu: "
1333			       "transaction (%p, %u), "
1334			       "jh->b_transaction (%p, %u), "
1335			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1336			       journal->j_devname,
1337			       (unsigned long long) bh->b_blocknr,
1338			       transaction, transaction->t_tid,
1339			       jh->b_transaction,
1340			       jh->b_transaction ?
1341			       jh->b_transaction->t_tid : 0,
1342			       jh->b_next_transaction,
1343			       jh->b_next_transaction ?
1344			       jh->b_next_transaction->t_tid : 0,
1345			       jh->b_jlist);
1346			WARN_ON(1);
1347			ret = -EINVAL;
1348		}
1349		/* And this case is illegal: we can't reuse another
1350		 * transaction's data buffer, ever. */
1351		goto out_unlock_bh;
1352	}
1353
1354	/* That test should have eliminated the following case: */
1355	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1356
1357	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1358	spin_lock(&journal->j_list_lock);
1359	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1360	spin_unlock(&journal->j_list_lock);
1361out_unlock_bh:
1362	jbd_unlock_bh_state(bh);
1363	jbd2_journal_put_journal_head(jh);
1364out:
1365	JBUFFER_TRACE(jh, "exit");
1366	return ret;
1367}
1368
1369/**
1370 * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1371 * @handle: transaction handle
1372 * @bh:     bh to 'forget'
1373 *
1374 * We can only do the bforget if there are no commits pending against the
1375 * buffer.  If the buffer is dirty in the current running transaction we
1376 * can safely unlink it.
1377 *
1378 * bh may not be a journalled buffer at all - it may be a non-JBD
1379 * buffer which came off the hashtable.  Check for this.
1380 *
1381 * Decrements bh->b_count by one.
1382 *
1383 * Allow this call even if the handle has aborted --- it may be part of
1384 * the caller's cleanup after an abort.
1385 */
1386int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1387{
1388	transaction_t *transaction = handle->h_transaction;
1389	journal_t *journal;
1390	struct journal_head *jh;
1391	int drop_reserve = 0;
1392	int err = 0;
1393	int was_modified = 0;
1394
1395	if (is_handle_aborted(handle))
1396		return -EROFS;
1397	journal = transaction->t_journal;
1398
1399	BUFFER_TRACE(bh, "entry");
1400
1401	jbd_lock_bh_state(bh);
1402
1403	if (!buffer_jbd(bh))
1404		goto not_jbd;
1405	jh = bh2jh(bh);
1406
1407	/* Critical error: attempting to delete a bitmap buffer, maybe?
1408	 * Don't do any jbd operations, and return an error. */
1409	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1410			 "inconsistent data on disk")) {
1411		err = -EIO;
1412		goto not_jbd;
1413	}
1414
1415	/* keep track of whether or not this transaction modified us */
1416	was_modified = jh->b_modified;
1417
1418	/*
1419	 * The buffer's going from the transaction, we must drop
1420	 * all references -bzzz
1421	 */
1422	jh->b_modified = 0;
1423
1424	if (jh->b_transaction == transaction) {
1425		J_ASSERT_JH(jh, !jh->b_frozen_data);
1426
1427		/* If we are forgetting a buffer which is already part
1428		 * of this transaction, then we can just drop it from
1429		 * the transaction immediately. */
1430		clear_buffer_dirty(bh);
1431		clear_buffer_jbddirty(bh);
1432
1433		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1434
1435		/*
1436		 * we only want to drop a reference if this transaction
1437		 * modified the buffer
1438		 */
1439		if (was_modified)
1440			drop_reserve = 1;
1441
1442		/*
1443		 * We are no longer going to journal this buffer.
1444		 * However, the commit of this transaction is still
1445		 * important to the buffer: the delete that we are now
1446		 * processing might obsolete an old log entry, so by
1447		 * committing, we can satisfy the buffer's checkpoint.
1448		 *
1449		 * So, if we have a checkpoint on the buffer, we should
1450		 * now refile the buffer on our BJ_Forget list so that
1451		 * we know to remove the checkpoint after we commit.
1452		 */
1453
1454		spin_lock(&journal->j_list_lock);
1455		if (jh->b_cp_transaction) {
1456			__jbd2_journal_temp_unlink_buffer(jh);
1457			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1458		} else {
1459			__jbd2_journal_unfile_buffer(jh);
1460			if (!buffer_jbd(bh)) {
1461				spin_unlock(&journal->j_list_lock);
1462				jbd_unlock_bh_state(bh);
1463				__bforget(bh);
1464				goto drop;
1465			}
1466		}
1467		spin_unlock(&journal->j_list_lock);
1468	} else if (jh->b_transaction) {
1469		J_ASSERT_JH(jh, (jh->b_transaction ==
1470				 journal->j_committing_transaction));
1471		/* However, if the buffer is still owned by a prior
1472		 * (committing) transaction, we can't drop it yet... */
1473		JBUFFER_TRACE(jh, "belongs to older transaction");
1474		/* ... but we CAN drop it from the new transaction if we
1475		 * have also modified it since the original commit. */
1476
1477		if (jh->b_next_transaction) {
1478			J_ASSERT(jh->b_next_transaction == transaction);
1479			spin_lock(&journal->j_list_lock);
1480			jh->b_next_transaction = NULL;
1481			spin_unlock(&journal->j_list_lock);
1482
1483			/*
1484			 * only drop a reference if this transaction modified
1485			 * the buffer
1486			 */
1487			if (was_modified)
1488				drop_reserve = 1;
1489		}
1490	}
1491
1492not_jbd:
1493	jbd_unlock_bh_state(bh);
1494	__brelse(bh);
1495drop:
1496	if (drop_reserve) {
1497		/* no need to reserve log space for this block -bzzz */
1498		handle->h_buffer_credits++;
1499	}
1500	return err;
1501}
1502
1503/**
1504 * int jbd2_journal_stop() - complete a transaction
1505 * @handle: tranaction to complete.
1506 *
1507 * All done for a particular handle.
1508 *
1509 * There is not much action needed here.  We just return any remaining
1510 * buffer credits to the transaction and remove the handle.  The only
1511 * complication is that we need to start a commit operation if the
1512 * filesystem is marked for synchronous update.
1513 *
1514 * jbd2_journal_stop itself will not usually return an error, but it may
1515 * do so in unusual circumstances.  In particular, expect it to
1516 * return -EIO if a jbd2_journal_abort has been executed since the
1517 * transaction began.
1518 */
1519int jbd2_journal_stop(handle_t *handle)
1520{
1521	transaction_t *transaction = handle->h_transaction;
1522	journal_t *journal;
1523	int err = 0, wait_for_commit = 0;
1524	tid_t tid;
1525	pid_t pid;
1526
1527	if (!transaction) {
1528		/*
1529		 * Handle is already detached from the transaction so
1530		 * there is nothing to do other than decrease a refcount,
1531		 * or free the handle if refcount drops to zero
1532		 */
1533		if (--handle->h_ref > 0) {
1534			jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1535							 handle->h_ref);
1536			return err;
1537		} else {
1538			if (handle->h_rsv_handle)
1539				jbd2_free_handle(handle->h_rsv_handle);
1540			goto free_and_exit;
1541		}
1542	}
1543	journal = transaction->t_journal;
1544
1545	J_ASSERT(journal_current_handle() == handle);
1546
1547	if (is_handle_aborted(handle))
1548		err = -EIO;
1549	else
1550		J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1551
1552	if (--handle->h_ref > 0) {
1553		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1554			  handle->h_ref);
1555		return err;
1556	}
1557
1558	jbd_debug(4, "Handle %p going down\n", handle);
1559	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1560				transaction->t_tid,
1561				handle->h_type, handle->h_line_no,
1562				jiffies - handle->h_start_jiffies,
1563				handle->h_sync, handle->h_requested_credits,
1564				(handle->h_requested_credits -
1565				 handle->h_buffer_credits));
1566
1567	/*
1568	 * Implement synchronous transaction batching.  If the handle
1569	 * was synchronous, don't force a commit immediately.  Let's
1570	 * yield and let another thread piggyback onto this
1571	 * transaction.  Keep doing that while new threads continue to
1572	 * arrive.  It doesn't cost much - we're about to run a commit
1573	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1574	 * operations by 30x or more...
1575	 *
1576	 * We try and optimize the sleep time against what the
1577	 * underlying disk can do, instead of having a static sleep
1578	 * time.  This is useful for the case where our storage is so
1579	 * fast that it is more optimal to go ahead and force a flush
1580	 * and wait for the transaction to be committed than it is to
1581	 * wait for an arbitrary amount of time for new writers to
1582	 * join the transaction.  We achieve this by measuring how
1583	 * long it takes to commit a transaction, and compare it with
1584	 * how long this transaction has been running, and if run time
1585	 * < commit time then we sleep for the delta and commit.  This
1586	 * greatly helps super fast disks that would see slowdowns as
1587	 * more threads started doing fsyncs.
1588	 *
1589	 * But don't do this if this process was the most recent one
1590	 * to perform a synchronous write.  We do this to detect the
1591	 * case where a single process is doing a stream of sync
1592	 * writes.  No point in waiting for joiners in that case.
1593	 *
1594	 * Setting max_batch_time to 0 disables this completely.
1595	 */
1596	pid = current->pid;
1597	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1598	    journal->j_max_batch_time) {
1599		u64 commit_time, trans_time;
1600
1601		journal->j_last_sync_writer = pid;
1602
1603		read_lock(&journal->j_state_lock);
1604		commit_time = journal->j_average_commit_time;
1605		read_unlock(&journal->j_state_lock);
1606
1607		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1608						   transaction->t_start_time));
1609
1610		commit_time = max_t(u64, commit_time,
1611				    1000*journal->j_min_batch_time);
1612		commit_time = min_t(u64, commit_time,
1613				    1000*journal->j_max_batch_time);
1614
1615		if (trans_time < commit_time) {
1616			ktime_t expires = ktime_add_ns(ktime_get(),
1617						       commit_time);
1618			set_current_state(TASK_UNINTERRUPTIBLE);
1619			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1620		}
1621	}
1622
1623	if (handle->h_sync)
1624		transaction->t_synchronous_commit = 1;
1625	current->journal_info = NULL;
1626	atomic_sub(handle->h_buffer_credits,
1627		   &transaction->t_outstanding_credits);
1628
1629	/*
1630	 * If the handle is marked SYNC, we need to set another commit
1631	 * going!  We also want to force a commit if the current
1632	 * transaction is occupying too much of the log, or if the
1633	 * transaction is too old now.
1634	 */
1635	if (handle->h_sync ||
1636	    (atomic_read(&transaction->t_outstanding_credits) >
1637	     journal->j_max_transaction_buffers) ||
1638	    time_after_eq(jiffies, transaction->t_expires)) {
1639		/* Do this even for aborted journals: an abort still
1640		 * completes the commit thread, it just doesn't write
1641		 * anything to disk. */
1642
1643		jbd_debug(2, "transaction too old, requesting commit for "
1644					"handle %p\n", handle);
1645		/* This is non-blocking */
1646		jbd2_log_start_commit(journal, transaction->t_tid);
1647
1648		/*
1649		 * Special case: JBD2_SYNC synchronous updates require us
1650		 * to wait for the commit to complete.
1651		 */
1652		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1653			wait_for_commit = 1;
1654	}
1655
1656	/*
1657	 * Once we drop t_updates, if it goes to zero the transaction
1658	 * could start committing on us and eventually disappear.  So
1659	 * once we do this, we must not dereference transaction
1660	 * pointer again.
1661	 */
1662	tid = transaction->t_tid;
1663	if (atomic_dec_and_test(&transaction->t_updates)) {
1664		wake_up(&journal->j_wait_updates);
1665		if (journal->j_barrier_count)
1666			wake_up(&journal->j_wait_transaction_locked);
1667	}
1668
1669	if (wait_for_commit)
1670		err = jbd2_log_wait_commit(journal, tid);
1671
1672	lock_map_release(&handle->h_lockdep_map);
1673
1674	if (handle->h_rsv_handle)
1675		jbd2_journal_free_reserved(handle->h_rsv_handle);
1676free_and_exit:
1677	jbd2_free_handle(handle);
1678	return err;
1679}
1680
1681/*
1682 *
1683 * List management code snippets: various functions for manipulating the
1684 * transaction buffer lists.
1685 *
1686 */
1687
1688/*
1689 * Append a buffer to a transaction list, given the transaction's list head
1690 * pointer.
1691 *
1692 * j_list_lock is held.
1693 *
1694 * jbd_lock_bh_state(jh2bh(jh)) is held.
1695 */
1696
1697static inline void
1698__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1699{
1700	if (!*list) {
1701		jh->b_tnext = jh->b_tprev = jh;
1702		*list = jh;
1703	} else {
1704		/* Insert at the tail of the list to preserve order */
1705		struct journal_head *first = *list, *last = first->b_tprev;
1706		jh->b_tprev = last;
1707		jh->b_tnext = first;
1708		last->b_tnext = first->b_tprev = jh;
1709	}
1710}
1711
1712/*
1713 * Remove a buffer from a transaction list, given the transaction's list
1714 * head pointer.
1715 *
1716 * Called with j_list_lock held, and the journal may not be locked.
1717 *
1718 * jbd_lock_bh_state(jh2bh(jh)) is held.
1719 */
1720
1721static inline void
1722__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1723{
1724	if (*list == jh) {
1725		*list = jh->b_tnext;
1726		if (*list == jh)
1727			*list = NULL;
1728	}
1729	jh->b_tprev->b_tnext = jh->b_tnext;
1730	jh->b_tnext->b_tprev = jh->b_tprev;
1731}
1732
1733/*
1734 * Remove a buffer from the appropriate transaction list.
1735 *
1736 * Note that this function can *change* the value of
1737 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1738 * t_reserved_list.  If the caller is holding onto a copy of one of these
1739 * pointers, it could go bad.  Generally the caller needs to re-read the
1740 * pointer from the transaction_t.
1741 *
1742 * Called under j_list_lock.
1743 */
1744static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1745{
1746	struct journal_head **list = NULL;
1747	transaction_t *transaction;
1748	struct buffer_head *bh = jh2bh(jh);
1749
1750	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1751	transaction = jh->b_transaction;
1752	if (transaction)
1753		assert_spin_locked(&transaction->t_journal->j_list_lock);
1754
1755	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1756	if (jh->b_jlist != BJ_None)
1757		J_ASSERT_JH(jh, transaction != NULL);
1758
1759	switch (jh->b_jlist) {
1760	case BJ_None:
1761		return;
1762	case BJ_Metadata:
1763		transaction->t_nr_buffers--;
1764		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1765		list = &transaction->t_buffers;
1766		break;
1767	case BJ_Forget:
1768		list = &transaction->t_forget;
1769		break;
1770	case BJ_Shadow:
1771		list = &transaction->t_shadow_list;
1772		break;
1773	case BJ_Reserved:
1774		list = &transaction->t_reserved_list;
1775		break;
1776	}
1777
1778	__blist_del_buffer(list, jh);
1779	jh->b_jlist = BJ_None;
1780	if (test_clear_buffer_jbddirty(bh))
1781		mark_buffer_dirty(bh);	/* Expose it to the VM */
1782}
1783
1784/*
1785 * Remove buffer from all transactions.
1786 *
1787 * Called with bh_state lock and j_list_lock
1788 *
1789 * jh and bh may be already freed when this function returns.
1790 */
1791static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1792{
1793	__jbd2_journal_temp_unlink_buffer(jh);
1794	jh->b_transaction = NULL;
1795	jbd2_journal_put_journal_head(jh);
1796}
1797
1798void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1799{
1800	struct buffer_head *bh = jh2bh(jh);
1801
1802	/* Get reference so that buffer cannot be freed before we unlock it */
1803	get_bh(bh);
1804	jbd_lock_bh_state(bh);
1805	spin_lock(&journal->j_list_lock);
1806	__jbd2_journal_unfile_buffer(jh);
1807	spin_unlock(&journal->j_list_lock);
1808	jbd_unlock_bh_state(bh);
1809	__brelse(bh);
1810}
1811
1812/*
1813 * Called from jbd2_journal_try_to_free_buffers().
1814 *
1815 * Called under jbd_lock_bh_state(bh)
1816 */
1817static void
1818__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1819{
1820	struct journal_head *jh;
1821
1822	jh = bh2jh(bh);
1823
1824	if (buffer_locked(bh) || buffer_dirty(bh))
1825		goto out;
1826
1827	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1828		goto out;
1829
1830	spin_lock(&journal->j_list_lock);
1831	if (jh->b_cp_transaction != NULL) {
1832		/* written-back checkpointed metadata buffer */
1833		JBUFFER_TRACE(jh, "remove from checkpoint list");
1834		__jbd2_journal_remove_checkpoint(jh);
1835	}
1836	spin_unlock(&journal->j_list_lock);
1837out:
1838	return;
1839}
1840
1841/**
1842 * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1843 * @journal: journal for operation
1844 * @page: to try and free
1845 * @gfp_mask: we use the mask to detect how hard should we try to release
1846 * buffers. If __GFP_WAIT and __GFP_FS is set, we wait for commit code to
1847 * release the buffers.
1848 *
1849 *
1850 * For all the buffers on this page,
1851 * if they are fully written out ordered data, move them onto BUF_CLEAN
1852 * so try_to_free_buffers() can reap them.
1853 *
1854 * This function returns non-zero if we wish try_to_free_buffers()
1855 * to be called. We do this if the page is releasable by try_to_free_buffers().
1856 * We also do it if the page has locked or dirty buffers and the caller wants
1857 * us to perform sync or async writeout.
1858 *
1859 * This complicates JBD locking somewhat.  We aren't protected by the
1860 * BKL here.  We wish to remove the buffer from its committing or
1861 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1862 *
1863 * This may *change* the value of transaction_t->t_datalist, so anyone
1864 * who looks at t_datalist needs to lock against this function.
1865 *
1866 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1867 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1868 * will come out of the lock with the buffer dirty, which makes it
1869 * ineligible for release here.
1870 *
1871 * Who else is affected by this?  hmm...  Really the only contender
1872 * is do_get_write_access() - it could be looking at the buffer while
1873 * journal_try_to_free_buffer() is changing its state.  But that
1874 * cannot happen because we never reallocate freed data as metadata
1875 * while the data is part of a transaction.  Yes?
1876 *
1877 * Return 0 on failure, 1 on success
1878 */
1879int jbd2_journal_try_to_free_buffers(journal_t *journal,
1880				struct page *page, gfp_t gfp_mask)
1881{
1882	struct buffer_head *head;
1883	struct buffer_head *bh;
1884	int ret = 0;
1885
1886	J_ASSERT(PageLocked(page));
1887
1888	head = page_buffers(page);
1889	bh = head;
1890	do {
1891		struct journal_head *jh;
1892
1893		/*
1894		 * We take our own ref against the journal_head here to avoid
1895		 * having to add tons of locking around each instance of
1896		 * jbd2_journal_put_journal_head().
1897		 */
1898		jh = jbd2_journal_grab_journal_head(bh);
1899		if (!jh)
1900			continue;
1901
1902		jbd_lock_bh_state(bh);
1903		__journal_try_to_free_buffer(journal, bh);
1904		jbd2_journal_put_journal_head(jh);
1905		jbd_unlock_bh_state(bh);
1906		if (buffer_jbd(bh))
1907			goto busy;
1908	} while ((bh = bh->b_this_page) != head);
1909
1910	ret = try_to_free_buffers(page);
1911
1912busy:
1913	return ret;
1914}
1915
1916/*
1917 * This buffer is no longer needed.  If it is on an older transaction's
1918 * checkpoint list we need to record it on this transaction's forget list
1919 * to pin this buffer (and hence its checkpointing transaction) down until
1920 * this transaction commits.  If the buffer isn't on a checkpoint list, we
1921 * release it.
1922 * Returns non-zero if JBD no longer has an interest in the buffer.
1923 *
1924 * Called under j_list_lock.
1925 *
1926 * Called under jbd_lock_bh_state(bh).
1927 */
1928static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
1929{
1930	int may_free = 1;
1931	struct buffer_head *bh = jh2bh(jh);
1932
1933	if (jh->b_cp_transaction) {
1934		JBUFFER_TRACE(jh, "on running+cp transaction");
1935		__jbd2_journal_temp_unlink_buffer(jh);
1936		/*
1937		 * We don't want to write the buffer anymore, clear the
1938		 * bit so that we don't confuse checks in
1939		 * __journal_file_buffer
1940		 */
1941		clear_buffer_dirty(bh);
1942		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1943		may_free = 0;
1944	} else {
1945		JBUFFER_TRACE(jh, "on running transaction");
1946		__jbd2_journal_unfile_buffer(jh);
1947	}
1948	return may_free;
1949}
1950
1951/*
1952 * jbd2_journal_invalidatepage
1953 *
1954 * This code is tricky.  It has a number of cases to deal with.
1955 *
1956 * There are two invariants which this code relies on:
1957 *
1958 * i_size must be updated on disk before we start calling invalidatepage on the
1959 * data.
1960 *
1961 *  This is done in ext3 by defining an ext3_setattr method which
1962 *  updates i_size before truncate gets going.  By maintaining this
1963 *  invariant, we can be sure that it is safe to throw away any buffers
1964 *  attached to the current transaction: once the transaction commits,
1965 *  we know that the data will not be needed.
1966 *
1967 *  Note however that we can *not* throw away data belonging to the
1968 *  previous, committing transaction!
1969 *
1970 * Any disk blocks which *are* part of the previous, committing
1971 * transaction (and which therefore cannot be discarded immediately) are
1972 * not going to be reused in the new running transaction
1973 *
1974 *  The bitmap committed_data images guarantee this: any block which is
1975 *  allocated in one transaction and removed in the next will be marked
1976 *  as in-use in the committed_data bitmap, so cannot be reused until
1977 *  the next transaction to delete the block commits.  This means that
1978 *  leaving committing buffers dirty is quite safe: the disk blocks
1979 *  cannot be reallocated to a different file and so buffer aliasing is
1980 *  not possible.
1981 *
1982 *
1983 * The above applies mainly to ordered data mode.  In writeback mode we
1984 * don't make guarantees about the order in which data hits disk --- in
1985 * particular we don't guarantee that new dirty data is flushed before
1986 * transaction commit --- so it is always safe just to discard data
1987 * immediately in that mode.  --sct
1988 */
1989
1990/*
1991 * The journal_unmap_buffer helper function returns zero if the buffer
1992 * concerned remains pinned as an anonymous buffer belonging to an older
1993 * transaction.
1994 *
1995 * We're outside-transaction here.  Either or both of j_running_transaction
1996 * and j_committing_transaction may be NULL.
1997 */
1998static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
1999				int partial_page)
2000{
2001	transaction_t *transaction;
2002	struct journal_head *jh;
2003	int may_free = 1;
2004
2005	BUFFER_TRACE(bh, "entry");
2006
2007	/*
2008	 * It is safe to proceed here without the j_list_lock because the
2009	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2010	 * holding the page lock. --sct
2011	 */
2012
2013	if (!buffer_jbd(bh))
2014		goto zap_buffer_unlocked;
2015
2016	/* OK, we have data buffer in journaled mode */
2017	write_lock(&journal->j_state_lock);
2018	jbd_lock_bh_state(bh);
2019	spin_lock(&journal->j_list_lock);
2020
2021	jh = jbd2_journal_grab_journal_head(bh);
2022	if (!jh)
2023		goto zap_buffer_no_jh;
2024
2025	/*
2026	 * We cannot remove the buffer from checkpoint lists until the
2027	 * transaction adding inode to orphan list (let's call it T)
2028	 * is committed.  Otherwise if the transaction changing the
2029	 * buffer would be cleaned from the journal before T is
2030	 * committed, a crash will cause that the correct contents of
2031	 * the buffer will be lost.  On the other hand we have to
2032	 * clear the buffer dirty bit at latest at the moment when the
2033	 * transaction marking the buffer as freed in the filesystem
2034	 * structures is committed because from that moment on the
2035	 * block can be reallocated and used by a different page.
2036	 * Since the block hasn't been freed yet but the inode has
2037	 * already been added to orphan list, it is safe for us to add
2038	 * the buffer to BJ_Forget list of the newest transaction.
2039	 *
2040	 * Also we have to clear buffer_mapped flag of a truncated buffer
2041	 * because the buffer_head may be attached to the page straddling
2042	 * i_size (can happen only when blocksize < pagesize) and thus the
2043	 * buffer_head can be reused when the file is extended again. So we end
2044	 * up keeping around invalidated buffers attached to transactions'
2045	 * BJ_Forget list just to stop checkpointing code from cleaning up
2046	 * the transaction this buffer was modified in.
2047	 */
2048	transaction = jh->b_transaction;
2049	if (transaction == NULL) {
2050		/* First case: not on any transaction.  If it
2051		 * has no checkpoint link, then we can zap it:
2052		 * it's a writeback-mode buffer so we don't care
2053		 * if it hits disk safely. */
2054		if (!jh->b_cp_transaction) {
2055			JBUFFER_TRACE(jh, "not on any transaction: zap");
2056			goto zap_buffer;
2057		}
2058
2059		if (!buffer_dirty(bh)) {
2060			/* bdflush has written it.  We can drop it now */
2061			goto zap_buffer;
2062		}
2063
2064		/* OK, it must be in the journal but still not
2065		 * written fully to disk: it's metadata or
2066		 * journaled data... */
2067
2068		if (journal->j_running_transaction) {
2069			/* ... and once the current transaction has
2070			 * committed, the buffer won't be needed any
2071			 * longer. */
2072			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2073			may_free = __dispose_buffer(jh,
2074					journal->j_running_transaction);
2075			goto zap_buffer;
2076		} else {
2077			/* There is no currently-running transaction. So the
2078			 * orphan record which we wrote for this file must have
2079			 * passed into commit.  We must attach this buffer to
2080			 * the committing transaction, if it exists. */
2081			if (journal->j_committing_transaction) {
2082				JBUFFER_TRACE(jh, "give to committing trans");
2083				may_free = __dispose_buffer(jh,
2084					journal->j_committing_transaction);
2085				goto zap_buffer;
2086			} else {
2087				/* The orphan record's transaction has
2088				 * committed.  We can cleanse this buffer */
2089				clear_buffer_jbddirty(bh);
2090				goto zap_buffer;
2091			}
2092		}
2093	} else if (transaction == journal->j_committing_transaction) {
2094		JBUFFER_TRACE(jh, "on committing transaction");
2095		/*
2096		 * The buffer is committing, we simply cannot touch
2097		 * it. If the page is straddling i_size we have to wait
2098		 * for commit and try again.
2099		 */
2100		if (partial_page) {
2101			jbd2_journal_put_journal_head(jh);
2102			spin_unlock(&journal->j_list_lock);
2103			jbd_unlock_bh_state(bh);
2104			write_unlock(&journal->j_state_lock);
2105			return -EBUSY;
2106		}
2107		/*
2108		 * OK, buffer won't be reachable after truncate. We just set
2109		 * j_next_transaction to the running transaction (if there is
2110		 * one) and mark buffer as freed so that commit code knows it
2111		 * should clear dirty bits when it is done with the buffer.
2112		 */
2113		set_buffer_freed(bh);
2114		if (journal->j_running_transaction && buffer_jbddirty(bh))
2115			jh->b_next_transaction = journal->j_running_transaction;
2116		jbd2_journal_put_journal_head(jh);
2117		spin_unlock(&journal->j_list_lock);
2118		jbd_unlock_bh_state(bh);
2119		write_unlock(&journal->j_state_lock);
2120		return 0;
2121	} else {
2122		/* Good, the buffer belongs to the running transaction.
2123		 * We are writing our own transaction's data, not any
2124		 * previous one's, so it is safe to throw it away
2125		 * (remember that we expect the filesystem to have set
2126		 * i_size already for this truncate so recovery will not
2127		 * expose the disk blocks we are discarding here.) */
2128		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2129		JBUFFER_TRACE(jh, "on running transaction");
2130		may_free = __dispose_buffer(jh, transaction);
2131	}
2132
2133zap_buffer:
2134	/*
2135	 * This is tricky. Although the buffer is truncated, it may be reused
2136	 * if blocksize < pagesize and it is attached to the page straddling
2137	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2138	 * running transaction, journal_get_write_access() won't clear
2139	 * b_modified and credit accounting gets confused. So clear b_modified
2140	 * here.
2141	 */
2142	jh->b_modified = 0;
2143	jbd2_journal_put_journal_head(jh);
2144zap_buffer_no_jh:
2145	spin_unlock(&journal->j_list_lock);
2146	jbd_unlock_bh_state(bh);
2147	write_unlock(&journal->j_state_lock);
2148zap_buffer_unlocked:
2149	clear_buffer_dirty(bh);
2150	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2151	clear_buffer_mapped(bh);
2152	clear_buffer_req(bh);
2153	clear_buffer_new(bh);
2154	clear_buffer_delay(bh);
2155	clear_buffer_unwritten(bh);
2156	bh->b_bdev = NULL;
2157	return may_free;
2158}
2159
2160/**
2161 * void jbd2_journal_invalidatepage()
2162 * @journal: journal to use for flush...
2163 * @page:    page to flush
2164 * @offset:  start of the range to invalidate
2165 * @length:  length of the range to invalidate
2166 *
2167 * Reap page buffers containing data after in the specified range in page.
2168 * Can return -EBUSY if buffers are part of the committing transaction and
2169 * the page is straddling i_size. Caller then has to wait for current commit
2170 * and try again.
2171 */
2172int jbd2_journal_invalidatepage(journal_t *journal,
2173				struct page *page,
2174				unsigned int offset,
2175				unsigned int length)
2176{
2177	struct buffer_head *head, *bh, *next;
2178	unsigned int stop = offset + length;
2179	unsigned int curr_off = 0;
2180	int partial_page = (offset || length < PAGE_CACHE_SIZE);
2181	int may_free = 1;
2182	int ret = 0;
2183
2184	if (!PageLocked(page))
2185		BUG();
2186	if (!page_has_buffers(page))
2187		return 0;
2188
2189	BUG_ON(stop > PAGE_CACHE_SIZE || stop < length);
2190
2191	/* We will potentially be playing with lists other than just the
2192	 * data lists (especially for journaled data mode), so be
2193	 * cautious in our locking. */
2194
2195	head = bh = page_buffers(page);
2196	do {
2197		unsigned int next_off = curr_off + bh->b_size;
2198		next = bh->b_this_page;
2199
2200		if (next_off > stop)
2201			return 0;
2202
2203		if (offset <= curr_off) {
2204			/* This block is wholly outside the truncation point */
2205			lock_buffer(bh);
2206			ret = journal_unmap_buffer(journal, bh, partial_page);
2207			unlock_buffer(bh);
2208			if (ret < 0)
2209				return ret;
2210			may_free &= ret;
2211		}
2212		curr_off = next_off;
2213		bh = next;
2214
2215	} while (bh != head);
2216
2217	if (!partial_page) {
2218		if (may_free && try_to_free_buffers(page))
2219			J_ASSERT(!page_has_buffers(page));
2220	}
2221	return 0;
2222}
2223
2224/*
2225 * File a buffer on the given transaction list.
2226 */
2227void __jbd2_journal_file_buffer(struct journal_head *jh,
2228			transaction_t *transaction, int jlist)
2229{
2230	struct journal_head **list = NULL;
2231	int was_dirty = 0;
2232	struct buffer_head *bh = jh2bh(jh);
2233
2234	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2235	assert_spin_locked(&transaction->t_journal->j_list_lock);
2236
2237	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2238	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2239				jh->b_transaction == NULL);
2240
2241	if (jh->b_transaction && jh->b_jlist == jlist)
2242		return;
2243
2244	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2245	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2246		/*
2247		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2248		 * instead of buffer_dirty. We should not see a dirty bit set
2249		 * here because we clear it in do_get_write_access but e.g.
2250		 * tune2fs can modify the sb and set the dirty bit at any time
2251		 * so we try to gracefully handle that.
2252		 */
2253		if (buffer_dirty(bh))
2254			warn_dirty_buffer(bh);
2255		if (test_clear_buffer_dirty(bh) ||
2256		    test_clear_buffer_jbddirty(bh))
2257			was_dirty = 1;
2258	}
2259
2260	if (jh->b_transaction)
2261		__jbd2_journal_temp_unlink_buffer(jh);
2262	else
2263		jbd2_journal_grab_journal_head(bh);
2264	jh->b_transaction = transaction;
2265
2266	switch (jlist) {
2267	case BJ_None:
2268		J_ASSERT_JH(jh, !jh->b_committed_data);
2269		J_ASSERT_JH(jh, !jh->b_frozen_data);
2270		return;
2271	case BJ_Metadata:
2272		transaction->t_nr_buffers++;
2273		list = &transaction->t_buffers;
2274		break;
2275	case BJ_Forget:
2276		list = &transaction->t_forget;
2277		break;
2278	case BJ_Shadow:
2279		list = &transaction->t_shadow_list;
2280		break;
2281	case BJ_Reserved:
2282		list = &transaction->t_reserved_list;
2283		break;
2284	}
2285
2286	__blist_add_buffer(list, jh);
2287	jh->b_jlist = jlist;
2288
2289	if (was_dirty)
2290		set_buffer_jbddirty(bh);
2291}
2292
2293void jbd2_journal_file_buffer(struct journal_head *jh,
2294				transaction_t *transaction, int jlist)
2295{
2296	jbd_lock_bh_state(jh2bh(jh));
2297	spin_lock(&transaction->t_journal->j_list_lock);
2298	__jbd2_journal_file_buffer(jh, transaction, jlist);
2299	spin_unlock(&transaction->t_journal->j_list_lock);
2300	jbd_unlock_bh_state(jh2bh(jh));
2301}
2302
2303/*
2304 * Remove a buffer from its current buffer list in preparation for
2305 * dropping it from its current transaction entirely.  If the buffer has
2306 * already started to be used by a subsequent transaction, refile the
2307 * buffer on that transaction's metadata list.
2308 *
2309 * Called under j_list_lock
2310 * Called under jbd_lock_bh_state(jh2bh(jh))
2311 *
2312 * jh and bh may be already free when this function returns
2313 */
2314void __jbd2_journal_refile_buffer(struct journal_head *jh)
2315{
2316	int was_dirty, jlist;
2317	struct buffer_head *bh = jh2bh(jh);
2318
2319	J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2320	if (jh->b_transaction)
2321		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2322
2323	/* If the buffer is now unused, just drop it. */
2324	if (jh->b_next_transaction == NULL) {
2325		__jbd2_journal_unfile_buffer(jh);
2326		return;
2327	}
2328
2329	/*
2330	 * It has been modified by a later transaction: add it to the new
2331	 * transaction's metadata list.
2332	 */
2333
2334	was_dirty = test_clear_buffer_jbddirty(bh);
2335	__jbd2_journal_temp_unlink_buffer(jh);
2336	/*
2337	 * We set b_transaction here because b_next_transaction will inherit
2338	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2339	 * take a new one.
2340	 */
2341	jh->b_transaction = jh->b_next_transaction;
2342	jh->b_next_transaction = NULL;
2343	if (buffer_freed(bh))
2344		jlist = BJ_Forget;
2345	else if (jh->b_modified)
2346		jlist = BJ_Metadata;
2347	else
2348		jlist = BJ_Reserved;
2349	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2350	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2351
2352	if (was_dirty)
2353		set_buffer_jbddirty(bh);
2354}
2355
2356/*
2357 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2358 * bh reference so that we can safely unlock bh.
2359 *
2360 * The jh and bh may be freed by this call.
2361 */
2362void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2363{
2364	struct buffer_head *bh = jh2bh(jh);
2365
2366	/* Get reference so that buffer cannot be freed before we unlock it */
2367	get_bh(bh);
2368	jbd_lock_bh_state(bh);
2369	spin_lock(&journal->j_list_lock);
2370	__jbd2_journal_refile_buffer(jh);
2371	jbd_unlock_bh_state(bh);
2372	spin_unlock(&journal->j_list_lock);
2373	__brelse(bh);
2374}
2375
2376/*
2377 * File inode in the inode list of the handle's transaction
2378 */
2379int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode)
2380{
2381	transaction_t *transaction = handle->h_transaction;
2382	journal_t *journal;
2383
2384	if (is_handle_aborted(handle))
2385		return -EROFS;
2386	journal = transaction->t_journal;
2387
2388	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2389			transaction->t_tid);
2390
2391	/*
2392	 * First check whether inode isn't already on the transaction's
2393	 * lists without taking the lock. Note that this check is safe
2394	 * without the lock as we cannot race with somebody removing inode
2395	 * from the transaction. The reason is that we remove inode from the
2396	 * transaction only in journal_release_jbd_inode() and when we commit
2397	 * the transaction. We are guarded from the first case by holding
2398	 * a reference to the inode. We are safe against the second case
2399	 * because if jinode->i_transaction == transaction, commit code
2400	 * cannot touch the transaction because we hold reference to it,
2401	 * and if jinode->i_next_transaction == transaction, commit code
2402	 * will only file the inode where we want it.
2403	 */
2404	if (jinode->i_transaction == transaction ||
2405	    jinode->i_next_transaction == transaction)
2406		return 0;
2407
2408	spin_lock(&journal->j_list_lock);
2409
2410	if (jinode->i_transaction == transaction ||
2411	    jinode->i_next_transaction == transaction)
2412		goto done;
2413
2414	/*
2415	 * We only ever set this variable to 1 so the test is safe. Since
2416	 * t_need_data_flush is likely to be set, we do the test to save some
2417	 * cacheline bouncing
2418	 */
2419	if (!transaction->t_need_data_flush)
2420		transaction->t_need_data_flush = 1;
2421	/* On some different transaction's list - should be
2422	 * the committing one */
2423	if (jinode->i_transaction) {
2424		J_ASSERT(jinode->i_next_transaction == NULL);
2425		J_ASSERT(jinode->i_transaction ==
2426					journal->j_committing_transaction);
2427		jinode->i_next_transaction = transaction;
2428		goto done;
2429	}
2430	/* Not on any transaction list... */
2431	J_ASSERT(!jinode->i_next_transaction);
2432	jinode->i_transaction = transaction;
2433	list_add(&jinode->i_list, &transaction->t_inode_list);
2434done:
2435	spin_unlock(&journal->j_list_lock);
2436
2437	return 0;
2438}
2439
2440/*
2441 * File truncate and transaction commit interact with each other in a
2442 * non-trivial way.  If a transaction writing data block A is
2443 * committing, we cannot discard the data by truncate until we have
2444 * written them.  Otherwise if we crashed after the transaction with
2445 * write has committed but before the transaction with truncate has
2446 * committed, we could see stale data in block A.  This function is a
2447 * helper to solve this problem.  It starts writeout of the truncated
2448 * part in case it is in the committing transaction.
2449 *
2450 * Filesystem code must call this function when inode is journaled in
2451 * ordered mode before truncation happens and after the inode has been
2452 * placed on orphan list with the new inode size. The second condition
2453 * avoids the race that someone writes new data and we start
2454 * committing the transaction after this function has been called but
2455 * before a transaction for truncate is started (and furthermore it
2456 * allows us to optimize the case where the addition to orphan list
2457 * happens in the same transaction as write --- we don't have to write
2458 * any data in such case).
2459 */
2460int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2461					struct jbd2_inode *jinode,
2462					loff_t new_size)
2463{
2464	transaction_t *inode_trans, *commit_trans;
2465	int ret = 0;
2466
2467	/* This is a quick check to avoid locking if not necessary */
2468	if (!jinode->i_transaction)
2469		goto out;
2470	/* Locks are here just to force reading of recent values, it is
2471	 * enough that the transaction was not committing before we started
2472	 * a transaction adding the inode to orphan list */
2473	read_lock(&journal->j_state_lock);
2474	commit_trans = journal->j_committing_transaction;
2475	read_unlock(&journal->j_state_lock);
2476	spin_lock(&journal->j_list_lock);
2477	inode_trans = jinode->i_transaction;
2478	spin_unlock(&journal->j_list_lock);
2479	if (inode_trans == commit_trans) {
2480		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2481			new_size, LLONG_MAX);
2482		if (ret)
2483			jbd2_journal_abort(journal, ret);
2484	}
2485out:
2486	return ret;
2487}
2488