1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
10
11#include <linux/sched.h>
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
21DEFINE_MUTEX(kernfs_mutex);
22static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by rename_lock */
24
25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
26
27static bool kernfs_active(struct kernfs_node *kn)
28{
29	lockdep_assert_held(&kernfs_mutex);
30	return atomic_read(&kn->active) >= 0;
31}
32
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36	return kn->flags & KERNFS_LOCKDEP;
37#else
38	return false;
39#endif
40}
41
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
44	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
45}
46
47static char * __must_check kernfs_path_locked(struct kernfs_node *kn, char *buf,
48					      size_t buflen)
49{
50	char *p = buf + buflen;
51	int len;
52
53	*--p = '\0';
54
55	do {
56		len = strlen(kn->name);
57		if (p - buf < len + 1) {
58			buf[0] = '\0';
59			p = NULL;
60			break;
61		}
62		p -= len;
63		memcpy(p, kn->name, len);
64		*--p = '/';
65		kn = kn->parent;
66	} while (kn && kn->parent);
67
68	return p;
69}
70
71/**
72 * kernfs_name - obtain the name of a given node
73 * @kn: kernfs_node of interest
74 * @buf: buffer to copy @kn's name into
75 * @buflen: size of @buf
76 *
77 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
78 * similar to strlcpy().  It returns the length of @kn's name and if @buf
79 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
80 *
81 * This function can be called from any context.
82 */
83int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
84{
85	unsigned long flags;
86	int ret;
87
88	spin_lock_irqsave(&kernfs_rename_lock, flags);
89	ret = kernfs_name_locked(kn, buf, buflen);
90	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
91	return ret;
92}
93
94/**
95 * kernfs_path - build full path of a given node
96 * @kn: kernfs_node of interest
97 * @buf: buffer to copy @kn's name into
98 * @buflen: size of @buf
99 *
100 * Builds and returns the full path of @kn in @buf of @buflen bytes.  The
101 * path is built from the end of @buf so the returned pointer usually
102 * doesn't match @buf.  If @buf isn't long enough, @buf is nul terminated
103 * and %NULL is returned.
104 */
105char *kernfs_path(struct kernfs_node *kn, char *buf, size_t buflen)
106{
107	unsigned long flags;
108	char *p;
109
110	spin_lock_irqsave(&kernfs_rename_lock, flags);
111	p = kernfs_path_locked(kn, buf, buflen);
112	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
113	return p;
114}
115EXPORT_SYMBOL_GPL(kernfs_path);
116
117/**
118 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
119 * @kn: kernfs_node of interest
120 *
121 * This function can be called from any context.
122 */
123void pr_cont_kernfs_name(struct kernfs_node *kn)
124{
125	unsigned long flags;
126
127	spin_lock_irqsave(&kernfs_rename_lock, flags);
128
129	kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
130	pr_cont("%s", kernfs_pr_cont_buf);
131
132	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
133}
134
135/**
136 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
137 * @kn: kernfs_node of interest
138 *
139 * This function can be called from any context.
140 */
141void pr_cont_kernfs_path(struct kernfs_node *kn)
142{
143	unsigned long flags;
144	char *p;
145
146	spin_lock_irqsave(&kernfs_rename_lock, flags);
147
148	p = kernfs_path_locked(kn, kernfs_pr_cont_buf,
149			       sizeof(kernfs_pr_cont_buf));
150	if (p)
151		pr_cont("%s", p);
152	else
153		pr_cont("<name too long>");
154
155	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
156}
157
158/**
159 * kernfs_get_parent - determine the parent node and pin it
160 * @kn: kernfs_node of interest
161 *
162 * Determines @kn's parent, pins and returns it.  This function can be
163 * called from any context.
164 */
165struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
166{
167	struct kernfs_node *parent;
168	unsigned long flags;
169
170	spin_lock_irqsave(&kernfs_rename_lock, flags);
171	parent = kn->parent;
172	kernfs_get(parent);
173	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
174
175	return parent;
176}
177
178/**
179 *	kernfs_name_hash
180 *	@name: Null terminated string to hash
181 *	@ns:   Namespace tag to hash
182 *
183 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
184 */
185static unsigned int kernfs_name_hash(const char *name, const void *ns)
186{
187	unsigned long hash = init_name_hash();
188	unsigned int len = strlen(name);
189	while (len--)
190		hash = partial_name_hash(*name++, hash);
191	hash = (end_name_hash(hash) ^ hash_ptr((void *)ns, 31));
192	hash &= 0x7fffffffU;
193	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
194	if (hash < 2)
195		hash += 2;
196	if (hash >= INT_MAX)
197		hash = INT_MAX - 1;
198	return hash;
199}
200
201static int kernfs_name_compare(unsigned int hash, const char *name,
202			       const void *ns, const struct kernfs_node *kn)
203{
204	if (hash < kn->hash)
205		return -1;
206	if (hash > kn->hash)
207		return 1;
208	if (ns < kn->ns)
209		return -1;
210	if (ns > kn->ns)
211		return 1;
212	return strcmp(name, kn->name);
213}
214
215static int kernfs_sd_compare(const struct kernfs_node *left,
216			     const struct kernfs_node *right)
217{
218	return kernfs_name_compare(left->hash, left->name, left->ns, right);
219}
220
221/**
222 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
223 *	@kn: kernfs_node of interest
224 *
225 *	Link @kn into its sibling rbtree which starts from
226 *	@kn->parent->dir.children.
227 *
228 *	Locking:
229 *	mutex_lock(kernfs_mutex)
230 *
231 *	RETURNS:
232 *	0 on susccess -EEXIST on failure.
233 */
234static int kernfs_link_sibling(struct kernfs_node *kn)
235{
236	struct rb_node **node = &kn->parent->dir.children.rb_node;
237	struct rb_node *parent = NULL;
238
239	while (*node) {
240		struct kernfs_node *pos;
241		int result;
242
243		pos = rb_to_kn(*node);
244		parent = *node;
245		result = kernfs_sd_compare(kn, pos);
246		if (result < 0)
247			node = &pos->rb.rb_left;
248		else if (result > 0)
249			node = &pos->rb.rb_right;
250		else
251			return -EEXIST;
252	}
253
254	/* add new node and rebalance the tree */
255	rb_link_node(&kn->rb, parent, node);
256	rb_insert_color(&kn->rb, &kn->parent->dir.children);
257
258	/* successfully added, account subdir number */
259	if (kernfs_type(kn) == KERNFS_DIR)
260		kn->parent->dir.subdirs++;
261
262	return 0;
263}
264
265/**
266 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
267 *	@kn: kernfs_node of interest
268 *
269 *	Try to unlink @kn from its sibling rbtree which starts from
270 *	kn->parent->dir.children.  Returns %true if @kn was actually
271 *	removed, %false if @kn wasn't on the rbtree.
272 *
273 *	Locking:
274 *	mutex_lock(kernfs_mutex)
275 */
276static bool kernfs_unlink_sibling(struct kernfs_node *kn)
277{
278	if (RB_EMPTY_NODE(&kn->rb))
279		return false;
280
281	if (kernfs_type(kn) == KERNFS_DIR)
282		kn->parent->dir.subdirs--;
283
284	rb_erase(&kn->rb, &kn->parent->dir.children);
285	RB_CLEAR_NODE(&kn->rb);
286	return true;
287}
288
289/**
290 *	kernfs_get_active - get an active reference to kernfs_node
291 *	@kn: kernfs_node to get an active reference to
292 *
293 *	Get an active reference of @kn.  This function is noop if @kn
294 *	is NULL.
295 *
296 *	RETURNS:
297 *	Pointer to @kn on success, NULL on failure.
298 */
299struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
300{
301	if (unlikely(!kn))
302		return NULL;
303
304	if (!atomic_inc_unless_negative(&kn->active))
305		return NULL;
306
307	if (kernfs_lockdep(kn))
308		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
309	return kn;
310}
311
312/**
313 *	kernfs_put_active - put an active reference to kernfs_node
314 *	@kn: kernfs_node to put an active reference to
315 *
316 *	Put an active reference to @kn.  This function is noop if @kn
317 *	is NULL.
318 */
319void kernfs_put_active(struct kernfs_node *kn)
320{
321	struct kernfs_root *root = kernfs_root(kn);
322	int v;
323
324	if (unlikely(!kn))
325		return;
326
327	if (kernfs_lockdep(kn))
328		rwsem_release(&kn->dep_map, 1, _RET_IP_);
329	v = atomic_dec_return(&kn->active);
330	if (likely(v != KN_DEACTIVATED_BIAS))
331		return;
332
333	wake_up_all(&root->deactivate_waitq);
334}
335
336/**
337 * kernfs_drain - drain kernfs_node
338 * @kn: kernfs_node to drain
339 *
340 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
341 * removers may invoke this function concurrently on @kn and all will
342 * return after draining is complete.
343 */
344static void kernfs_drain(struct kernfs_node *kn)
345	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
346{
347	struct kernfs_root *root = kernfs_root(kn);
348
349	lockdep_assert_held(&kernfs_mutex);
350	WARN_ON_ONCE(kernfs_active(kn));
351
352	mutex_unlock(&kernfs_mutex);
353
354	if (kernfs_lockdep(kn)) {
355		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
356		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
357			lock_contended(&kn->dep_map, _RET_IP_);
358	}
359
360	/* but everyone should wait for draining */
361	wait_event(root->deactivate_waitq,
362		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
363
364	if (kernfs_lockdep(kn)) {
365		lock_acquired(&kn->dep_map, _RET_IP_);
366		rwsem_release(&kn->dep_map, 1, _RET_IP_);
367	}
368
369	kernfs_unmap_bin_file(kn);
370
371	mutex_lock(&kernfs_mutex);
372}
373
374/**
375 * kernfs_get - get a reference count on a kernfs_node
376 * @kn: the target kernfs_node
377 */
378void kernfs_get(struct kernfs_node *kn)
379{
380	if (kn) {
381		WARN_ON(!atomic_read(&kn->count));
382		atomic_inc(&kn->count);
383	}
384}
385EXPORT_SYMBOL_GPL(kernfs_get);
386
387/**
388 * kernfs_put - put a reference count on a kernfs_node
389 * @kn: the target kernfs_node
390 *
391 * Put a reference count of @kn and destroy it if it reached zero.
392 */
393void kernfs_put(struct kernfs_node *kn)
394{
395	struct kernfs_node *parent;
396	struct kernfs_root *root;
397
398	if (!kn || !atomic_dec_and_test(&kn->count))
399		return;
400	root = kernfs_root(kn);
401 repeat:
402	/*
403	 * Moving/renaming is always done while holding reference.
404	 * kn->parent won't change beneath us.
405	 */
406	parent = kn->parent;
407
408	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
409		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
410		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
411
412	if (kernfs_type(kn) == KERNFS_LINK)
413		kernfs_put(kn->symlink.target_kn);
414
415	kfree_const(kn->name);
416
417	if (kn->iattr) {
418		if (kn->iattr->ia_secdata)
419			security_release_secctx(kn->iattr->ia_secdata,
420						kn->iattr->ia_secdata_len);
421		simple_xattrs_free(&kn->iattr->xattrs);
422	}
423	kfree(kn->iattr);
424	ida_simple_remove(&root->ino_ida, kn->ino);
425	kmem_cache_free(kernfs_node_cache, kn);
426
427	kn = parent;
428	if (kn) {
429		if (atomic_dec_and_test(&kn->count))
430			goto repeat;
431	} else {
432		/* just released the root kn, free @root too */
433		ida_destroy(&root->ino_ida);
434		kfree(root);
435	}
436}
437EXPORT_SYMBOL_GPL(kernfs_put);
438
439static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
440{
441	struct kernfs_node *kn;
442
443	if (flags & LOOKUP_RCU)
444		return -ECHILD;
445
446	/* Always perform fresh lookup for negatives */
447	if (d_really_is_negative(dentry))
448		goto out_bad_unlocked;
449
450	kn = dentry->d_fsdata;
451	mutex_lock(&kernfs_mutex);
452
453	/* The kernfs node has been deactivated */
454	if (!kernfs_active(kn))
455		goto out_bad;
456
457	/* The kernfs node has been moved? */
458	if (dentry->d_parent->d_fsdata != kn->parent)
459		goto out_bad;
460
461	/* The kernfs node has been renamed */
462	if (strcmp(dentry->d_name.name, kn->name) != 0)
463		goto out_bad;
464
465	/* The kernfs node has been moved to a different namespace */
466	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
467	    kernfs_info(dentry->d_sb)->ns != kn->ns)
468		goto out_bad;
469
470	mutex_unlock(&kernfs_mutex);
471	return 1;
472out_bad:
473	mutex_unlock(&kernfs_mutex);
474out_bad_unlocked:
475	return 0;
476}
477
478static void kernfs_dop_release(struct dentry *dentry)
479{
480	kernfs_put(dentry->d_fsdata);
481}
482
483const struct dentry_operations kernfs_dops = {
484	.d_revalidate	= kernfs_dop_revalidate,
485	.d_release	= kernfs_dop_release,
486};
487
488/**
489 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
490 * @dentry: the dentry in question
491 *
492 * Return the kernfs_node associated with @dentry.  If @dentry is not a
493 * kernfs one, %NULL is returned.
494 *
495 * While the returned kernfs_node will stay accessible as long as @dentry
496 * is accessible, the returned node can be in any state and the caller is
497 * fully responsible for determining what's accessible.
498 */
499struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
500{
501	if (dentry->d_sb->s_op == &kernfs_sops)
502		return dentry->d_fsdata;
503	return NULL;
504}
505
506static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
507					     const char *name, umode_t mode,
508					     unsigned flags)
509{
510	struct kernfs_node *kn;
511	int ret;
512
513	name = kstrdup_const(name, GFP_KERNEL);
514	if (!name)
515		return NULL;
516
517	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
518	if (!kn)
519		goto err_out1;
520
521	/*
522	 * If the ino of the sysfs entry created for a kmem cache gets
523	 * allocated from an ida layer, which is accounted to the memcg that
524	 * owns the cache, the memcg will get pinned forever. So do not account
525	 * ino ida allocations.
526	 */
527	ret = ida_simple_get(&root->ino_ida, 1, 0,
528			     GFP_KERNEL | __GFP_NOACCOUNT);
529	if (ret < 0)
530		goto err_out2;
531	kn->ino = ret;
532
533	atomic_set(&kn->count, 1);
534	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
535	RB_CLEAR_NODE(&kn->rb);
536
537	kn->name = name;
538	kn->mode = mode;
539	kn->flags = flags;
540
541	return kn;
542
543 err_out2:
544	kmem_cache_free(kernfs_node_cache, kn);
545 err_out1:
546	kfree_const(name);
547	return NULL;
548}
549
550struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
551				    const char *name, umode_t mode,
552				    unsigned flags)
553{
554	struct kernfs_node *kn;
555
556	kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
557	if (kn) {
558		kernfs_get(parent);
559		kn->parent = parent;
560	}
561	return kn;
562}
563
564/**
565 *	kernfs_add_one - add kernfs_node to parent without warning
566 *	@kn: kernfs_node to be added
567 *
568 *	The caller must already have initialized @kn->parent.  This
569 *	function increments nlink of the parent's inode if @kn is a
570 *	directory and link into the children list of the parent.
571 *
572 *	RETURNS:
573 *	0 on success, -EEXIST if entry with the given name already
574 *	exists.
575 */
576int kernfs_add_one(struct kernfs_node *kn)
577{
578	struct kernfs_node *parent = kn->parent;
579	struct kernfs_iattrs *ps_iattr;
580	bool has_ns;
581	int ret;
582
583	mutex_lock(&kernfs_mutex);
584
585	ret = -EINVAL;
586	has_ns = kernfs_ns_enabled(parent);
587	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
588		 has_ns ? "required" : "invalid", parent->name, kn->name))
589		goto out_unlock;
590
591	if (kernfs_type(parent) != KERNFS_DIR)
592		goto out_unlock;
593
594	ret = -ENOENT;
595	if (parent->flags & KERNFS_EMPTY_DIR)
596		goto out_unlock;
597
598	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
599		goto out_unlock;
600
601	kn->hash = kernfs_name_hash(kn->name, kn->ns);
602
603	ret = kernfs_link_sibling(kn);
604	if (ret)
605		goto out_unlock;
606
607	/* Update timestamps on the parent */
608	ps_iattr = parent->iattr;
609	if (ps_iattr) {
610		struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
611		ps_iattrs->ia_ctime = ps_iattrs->ia_mtime = CURRENT_TIME;
612	}
613
614	mutex_unlock(&kernfs_mutex);
615
616	/*
617	 * Activate the new node unless CREATE_DEACTIVATED is requested.
618	 * If not activated here, the kernfs user is responsible for
619	 * activating the node with kernfs_activate().  A node which hasn't
620	 * been activated is not visible to userland and its removal won't
621	 * trigger deactivation.
622	 */
623	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
624		kernfs_activate(kn);
625	return 0;
626
627out_unlock:
628	mutex_unlock(&kernfs_mutex);
629	return ret;
630}
631
632/**
633 * kernfs_find_ns - find kernfs_node with the given name
634 * @parent: kernfs_node to search under
635 * @name: name to look for
636 * @ns: the namespace tag to use
637 *
638 * Look for kernfs_node with name @name under @parent.  Returns pointer to
639 * the found kernfs_node on success, %NULL on failure.
640 */
641static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
642					  const unsigned char *name,
643					  const void *ns)
644{
645	struct rb_node *node = parent->dir.children.rb_node;
646	bool has_ns = kernfs_ns_enabled(parent);
647	unsigned int hash;
648
649	lockdep_assert_held(&kernfs_mutex);
650
651	if (has_ns != (bool)ns) {
652		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
653		     has_ns ? "required" : "invalid", parent->name, name);
654		return NULL;
655	}
656
657	hash = kernfs_name_hash(name, ns);
658	while (node) {
659		struct kernfs_node *kn;
660		int result;
661
662		kn = rb_to_kn(node);
663		result = kernfs_name_compare(hash, name, ns, kn);
664		if (result < 0)
665			node = node->rb_left;
666		else if (result > 0)
667			node = node->rb_right;
668		else
669			return kn;
670	}
671	return NULL;
672}
673
674/**
675 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
676 * @parent: kernfs_node to search under
677 * @name: name to look for
678 * @ns: the namespace tag to use
679 *
680 * Look for kernfs_node with name @name under @parent and get a reference
681 * if found.  This function may sleep and returns pointer to the found
682 * kernfs_node on success, %NULL on failure.
683 */
684struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
685					   const char *name, const void *ns)
686{
687	struct kernfs_node *kn;
688
689	mutex_lock(&kernfs_mutex);
690	kn = kernfs_find_ns(parent, name, ns);
691	kernfs_get(kn);
692	mutex_unlock(&kernfs_mutex);
693
694	return kn;
695}
696EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
697
698/**
699 * kernfs_create_root - create a new kernfs hierarchy
700 * @scops: optional syscall operations for the hierarchy
701 * @flags: KERNFS_ROOT_* flags
702 * @priv: opaque data associated with the new directory
703 *
704 * Returns the root of the new hierarchy on success, ERR_PTR() value on
705 * failure.
706 */
707struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
708				       unsigned int flags, void *priv)
709{
710	struct kernfs_root *root;
711	struct kernfs_node *kn;
712
713	root = kzalloc(sizeof(*root), GFP_KERNEL);
714	if (!root)
715		return ERR_PTR(-ENOMEM);
716
717	ida_init(&root->ino_ida);
718	INIT_LIST_HEAD(&root->supers);
719
720	kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
721			       KERNFS_DIR);
722	if (!kn) {
723		ida_destroy(&root->ino_ida);
724		kfree(root);
725		return ERR_PTR(-ENOMEM);
726	}
727
728	kn->priv = priv;
729	kn->dir.root = root;
730
731	root->syscall_ops = scops;
732	root->flags = flags;
733	root->kn = kn;
734	init_waitqueue_head(&root->deactivate_waitq);
735
736	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
737		kernfs_activate(kn);
738
739	return root;
740}
741
742/**
743 * kernfs_destroy_root - destroy a kernfs hierarchy
744 * @root: root of the hierarchy to destroy
745 *
746 * Destroy the hierarchy anchored at @root by removing all existing
747 * directories and destroying @root.
748 */
749void kernfs_destroy_root(struct kernfs_root *root)
750{
751	kernfs_remove(root->kn);	/* will also free @root */
752}
753
754/**
755 * kernfs_create_dir_ns - create a directory
756 * @parent: parent in which to create a new directory
757 * @name: name of the new directory
758 * @mode: mode of the new directory
759 * @priv: opaque data associated with the new directory
760 * @ns: optional namespace tag of the directory
761 *
762 * Returns the created node on success, ERR_PTR() value on failure.
763 */
764struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
765					 const char *name, umode_t mode,
766					 void *priv, const void *ns)
767{
768	struct kernfs_node *kn;
769	int rc;
770
771	/* allocate */
772	kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
773	if (!kn)
774		return ERR_PTR(-ENOMEM);
775
776	kn->dir.root = parent->dir.root;
777	kn->ns = ns;
778	kn->priv = priv;
779
780	/* link in */
781	rc = kernfs_add_one(kn);
782	if (!rc)
783		return kn;
784
785	kernfs_put(kn);
786	return ERR_PTR(rc);
787}
788
789/**
790 * kernfs_create_empty_dir - create an always empty directory
791 * @parent: parent in which to create a new directory
792 * @name: name of the new directory
793 *
794 * Returns the created node on success, ERR_PTR() value on failure.
795 */
796struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
797					    const char *name)
798{
799	struct kernfs_node *kn;
800	int rc;
801
802	/* allocate */
803	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
804	if (!kn)
805		return ERR_PTR(-ENOMEM);
806
807	kn->flags |= KERNFS_EMPTY_DIR;
808	kn->dir.root = parent->dir.root;
809	kn->ns = NULL;
810	kn->priv = NULL;
811
812	/* link in */
813	rc = kernfs_add_one(kn);
814	if (!rc)
815		return kn;
816
817	kernfs_put(kn);
818	return ERR_PTR(rc);
819}
820
821static struct dentry *kernfs_iop_lookup(struct inode *dir,
822					struct dentry *dentry,
823					unsigned int flags)
824{
825	struct dentry *ret;
826	struct kernfs_node *parent = dentry->d_parent->d_fsdata;
827	struct kernfs_node *kn;
828	struct inode *inode;
829	const void *ns = NULL;
830
831	mutex_lock(&kernfs_mutex);
832
833	if (kernfs_ns_enabled(parent))
834		ns = kernfs_info(dir->i_sb)->ns;
835
836	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
837
838	/* no such entry */
839	if (!kn || !kernfs_active(kn)) {
840		ret = NULL;
841		goto out_unlock;
842	}
843	kernfs_get(kn);
844	dentry->d_fsdata = kn;
845
846	/* attach dentry and inode */
847	inode = kernfs_get_inode(dir->i_sb, kn);
848	if (!inode) {
849		ret = ERR_PTR(-ENOMEM);
850		goto out_unlock;
851	}
852
853	/* instantiate and hash dentry */
854	ret = d_splice_alias(inode, dentry);
855 out_unlock:
856	mutex_unlock(&kernfs_mutex);
857	return ret;
858}
859
860static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
861			    umode_t mode)
862{
863	struct kernfs_node *parent = dir->i_private;
864	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
865	int ret;
866
867	if (!scops || !scops->mkdir)
868		return -EPERM;
869
870	if (!kernfs_get_active(parent))
871		return -ENODEV;
872
873	ret = scops->mkdir(parent, dentry->d_name.name, mode);
874
875	kernfs_put_active(parent);
876	return ret;
877}
878
879static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
880{
881	struct kernfs_node *kn  = dentry->d_fsdata;
882	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
883	int ret;
884
885	if (!scops || !scops->rmdir)
886		return -EPERM;
887
888	if (!kernfs_get_active(kn))
889		return -ENODEV;
890
891	ret = scops->rmdir(kn);
892
893	kernfs_put_active(kn);
894	return ret;
895}
896
897static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
898			     struct inode *new_dir, struct dentry *new_dentry)
899{
900	struct kernfs_node *kn  = old_dentry->d_fsdata;
901	struct kernfs_node *new_parent = new_dir->i_private;
902	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
903	int ret;
904
905	if (!scops || !scops->rename)
906		return -EPERM;
907
908	if (!kernfs_get_active(kn))
909		return -ENODEV;
910
911	if (!kernfs_get_active(new_parent)) {
912		kernfs_put_active(kn);
913		return -ENODEV;
914	}
915
916	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
917
918	kernfs_put_active(new_parent);
919	kernfs_put_active(kn);
920	return ret;
921}
922
923const struct inode_operations kernfs_dir_iops = {
924	.lookup		= kernfs_iop_lookup,
925	.permission	= kernfs_iop_permission,
926	.setattr	= kernfs_iop_setattr,
927	.getattr	= kernfs_iop_getattr,
928	.setxattr	= kernfs_iop_setxattr,
929	.removexattr	= kernfs_iop_removexattr,
930	.getxattr	= kernfs_iop_getxattr,
931	.listxattr	= kernfs_iop_listxattr,
932
933	.mkdir		= kernfs_iop_mkdir,
934	.rmdir		= kernfs_iop_rmdir,
935	.rename		= kernfs_iop_rename,
936};
937
938static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
939{
940	struct kernfs_node *last;
941
942	while (true) {
943		struct rb_node *rbn;
944
945		last = pos;
946
947		if (kernfs_type(pos) != KERNFS_DIR)
948			break;
949
950		rbn = rb_first(&pos->dir.children);
951		if (!rbn)
952			break;
953
954		pos = rb_to_kn(rbn);
955	}
956
957	return last;
958}
959
960/**
961 * kernfs_next_descendant_post - find the next descendant for post-order walk
962 * @pos: the current position (%NULL to initiate traversal)
963 * @root: kernfs_node whose descendants to walk
964 *
965 * Find the next descendant to visit for post-order traversal of @root's
966 * descendants.  @root is included in the iteration and the last node to be
967 * visited.
968 */
969static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
970						       struct kernfs_node *root)
971{
972	struct rb_node *rbn;
973
974	lockdep_assert_held(&kernfs_mutex);
975
976	/* if first iteration, visit leftmost descendant which may be root */
977	if (!pos)
978		return kernfs_leftmost_descendant(root);
979
980	/* if we visited @root, we're done */
981	if (pos == root)
982		return NULL;
983
984	/* if there's an unvisited sibling, visit its leftmost descendant */
985	rbn = rb_next(&pos->rb);
986	if (rbn)
987		return kernfs_leftmost_descendant(rb_to_kn(rbn));
988
989	/* no sibling left, visit parent */
990	return pos->parent;
991}
992
993/**
994 * kernfs_activate - activate a node which started deactivated
995 * @kn: kernfs_node whose subtree is to be activated
996 *
997 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
998 * needs to be explicitly activated.  A node which hasn't been activated
999 * isn't visible to userland and deactivation is skipped during its
1000 * removal.  This is useful to construct atomic init sequences where
1001 * creation of multiple nodes should either succeed or fail atomically.
1002 *
1003 * The caller is responsible for ensuring that this function is not called
1004 * after kernfs_remove*() is invoked on @kn.
1005 */
1006void kernfs_activate(struct kernfs_node *kn)
1007{
1008	struct kernfs_node *pos;
1009
1010	mutex_lock(&kernfs_mutex);
1011
1012	pos = NULL;
1013	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1014		if (!pos || (pos->flags & KERNFS_ACTIVATED))
1015			continue;
1016
1017		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1018		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1019
1020		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1021		pos->flags |= KERNFS_ACTIVATED;
1022	}
1023
1024	mutex_unlock(&kernfs_mutex);
1025}
1026
1027static void __kernfs_remove(struct kernfs_node *kn)
1028{
1029	struct kernfs_node *pos;
1030
1031	lockdep_assert_held(&kernfs_mutex);
1032
1033	/*
1034	 * Short-circuit if non-root @kn has already finished removal.
1035	 * This is for kernfs_remove_self() which plays with active ref
1036	 * after removal.
1037	 */
1038	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1039		return;
1040
1041	pr_debug("kernfs %s: removing\n", kn->name);
1042
1043	/* prevent any new usage under @kn by deactivating all nodes */
1044	pos = NULL;
1045	while ((pos = kernfs_next_descendant_post(pos, kn)))
1046		if (kernfs_active(pos))
1047			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1048
1049	/* deactivate and unlink the subtree node-by-node */
1050	do {
1051		pos = kernfs_leftmost_descendant(kn);
1052
1053		/*
1054		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1055		 * base ref could have been put by someone else by the time
1056		 * the function returns.  Make sure it doesn't go away
1057		 * underneath us.
1058		 */
1059		kernfs_get(pos);
1060
1061		/*
1062		 * Drain iff @kn was activated.  This avoids draining and
1063		 * its lockdep annotations for nodes which have never been
1064		 * activated and allows embedding kernfs_remove() in create
1065		 * error paths without worrying about draining.
1066		 */
1067		if (kn->flags & KERNFS_ACTIVATED)
1068			kernfs_drain(pos);
1069		else
1070			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1071
1072		/*
1073		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1074		 * to decide who's responsible for cleanups.
1075		 */
1076		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1077			struct kernfs_iattrs *ps_iattr =
1078				pos->parent ? pos->parent->iattr : NULL;
1079
1080			/* update timestamps on the parent */
1081			if (ps_iattr) {
1082				ps_iattr->ia_iattr.ia_ctime = CURRENT_TIME;
1083				ps_iattr->ia_iattr.ia_mtime = CURRENT_TIME;
1084			}
1085
1086			kernfs_put(pos);
1087		}
1088
1089		kernfs_put(pos);
1090	} while (pos != kn);
1091}
1092
1093/**
1094 * kernfs_remove - remove a kernfs_node recursively
1095 * @kn: the kernfs_node to remove
1096 *
1097 * Remove @kn along with all its subdirectories and files.
1098 */
1099void kernfs_remove(struct kernfs_node *kn)
1100{
1101	mutex_lock(&kernfs_mutex);
1102	__kernfs_remove(kn);
1103	mutex_unlock(&kernfs_mutex);
1104}
1105
1106/**
1107 * kernfs_break_active_protection - break out of active protection
1108 * @kn: the self kernfs_node
1109 *
1110 * The caller must be running off of a kernfs operation which is invoked
1111 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1112 * this function must also be matched with an invocation of
1113 * kernfs_unbreak_active_protection().
1114 *
1115 * This function releases the active reference of @kn the caller is
1116 * holding.  Once this function is called, @kn may be removed at any point
1117 * and the caller is solely responsible for ensuring that the objects it
1118 * dereferences are accessible.
1119 */
1120void kernfs_break_active_protection(struct kernfs_node *kn)
1121{
1122	/*
1123	 * Take out ourself out of the active ref dependency chain.  If
1124	 * we're called without an active ref, lockdep will complain.
1125	 */
1126	kernfs_put_active(kn);
1127}
1128
1129/**
1130 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1131 * @kn: the self kernfs_node
1132 *
1133 * If kernfs_break_active_protection() was called, this function must be
1134 * invoked before finishing the kernfs operation.  Note that while this
1135 * function restores the active reference, it doesn't and can't actually
1136 * restore the active protection - @kn may already or be in the process of
1137 * being removed.  Once kernfs_break_active_protection() is invoked, that
1138 * protection is irreversibly gone for the kernfs operation instance.
1139 *
1140 * While this function may be called at any point after
1141 * kernfs_break_active_protection() is invoked, its most useful location
1142 * would be right before the enclosing kernfs operation returns.
1143 */
1144void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1145{
1146	/*
1147	 * @kn->active could be in any state; however, the increment we do
1148	 * here will be undone as soon as the enclosing kernfs operation
1149	 * finishes and this temporary bump can't break anything.  If @kn
1150	 * is alive, nothing changes.  If @kn is being deactivated, the
1151	 * soon-to-follow put will either finish deactivation or restore
1152	 * deactivated state.  If @kn is already removed, the temporary
1153	 * bump is guaranteed to be gone before @kn is released.
1154	 */
1155	atomic_inc(&kn->active);
1156	if (kernfs_lockdep(kn))
1157		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1158}
1159
1160/**
1161 * kernfs_remove_self - remove a kernfs_node from its own method
1162 * @kn: the self kernfs_node to remove
1163 *
1164 * The caller must be running off of a kernfs operation which is invoked
1165 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1166 * implement a file operation which deletes itself.
1167 *
1168 * For example, the "delete" file for a sysfs device directory can be
1169 * implemented by invoking kernfs_remove_self() on the "delete" file
1170 * itself.  This function breaks the circular dependency of trying to
1171 * deactivate self while holding an active ref itself.  It isn't necessary
1172 * to modify the usual removal path to use kernfs_remove_self().  The
1173 * "delete" implementation can simply invoke kernfs_remove_self() on self
1174 * before proceeding with the usual removal path.  kernfs will ignore later
1175 * kernfs_remove() on self.
1176 *
1177 * kernfs_remove_self() can be called multiple times concurrently on the
1178 * same kernfs_node.  Only the first one actually performs removal and
1179 * returns %true.  All others will wait until the kernfs operation which
1180 * won self-removal finishes and return %false.  Note that the losers wait
1181 * for the completion of not only the winning kernfs_remove_self() but also
1182 * the whole kernfs_ops which won the arbitration.  This can be used to
1183 * guarantee, for example, all concurrent writes to a "delete" file to
1184 * finish only after the whole operation is complete.
1185 */
1186bool kernfs_remove_self(struct kernfs_node *kn)
1187{
1188	bool ret;
1189
1190	mutex_lock(&kernfs_mutex);
1191	kernfs_break_active_protection(kn);
1192
1193	/*
1194	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1195	 * the first one will actually perform removal.  When the removal
1196	 * is complete, SUICIDED is set and the active ref is restored
1197	 * while holding kernfs_mutex.  The ones which lost arbitration
1198	 * waits for SUICDED && drained which can happen only after the
1199	 * enclosing kernfs operation which executed the winning instance
1200	 * of kernfs_remove_self() finished.
1201	 */
1202	if (!(kn->flags & KERNFS_SUICIDAL)) {
1203		kn->flags |= KERNFS_SUICIDAL;
1204		__kernfs_remove(kn);
1205		kn->flags |= KERNFS_SUICIDED;
1206		ret = true;
1207	} else {
1208		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1209		DEFINE_WAIT(wait);
1210
1211		while (true) {
1212			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1213
1214			if ((kn->flags & KERNFS_SUICIDED) &&
1215			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1216				break;
1217
1218			mutex_unlock(&kernfs_mutex);
1219			schedule();
1220			mutex_lock(&kernfs_mutex);
1221		}
1222		finish_wait(waitq, &wait);
1223		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1224		ret = false;
1225	}
1226
1227	/*
1228	 * This must be done while holding kernfs_mutex; otherwise, waiting
1229	 * for SUICIDED && deactivated could finish prematurely.
1230	 */
1231	kernfs_unbreak_active_protection(kn);
1232
1233	mutex_unlock(&kernfs_mutex);
1234	return ret;
1235}
1236
1237/**
1238 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1239 * @parent: parent of the target
1240 * @name: name of the kernfs_node to remove
1241 * @ns: namespace tag of the kernfs_node to remove
1242 *
1243 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1244 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1245 */
1246int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1247			     const void *ns)
1248{
1249	struct kernfs_node *kn;
1250
1251	if (!parent) {
1252		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1253			name);
1254		return -ENOENT;
1255	}
1256
1257	mutex_lock(&kernfs_mutex);
1258
1259	kn = kernfs_find_ns(parent, name, ns);
1260	if (kn)
1261		__kernfs_remove(kn);
1262
1263	mutex_unlock(&kernfs_mutex);
1264
1265	if (kn)
1266		return 0;
1267	else
1268		return -ENOENT;
1269}
1270
1271/**
1272 * kernfs_rename_ns - move and rename a kernfs_node
1273 * @kn: target node
1274 * @new_parent: new parent to put @sd under
1275 * @new_name: new name
1276 * @new_ns: new namespace tag
1277 */
1278int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1279		     const char *new_name, const void *new_ns)
1280{
1281	struct kernfs_node *old_parent;
1282	const char *old_name = NULL;
1283	int error;
1284
1285	/* can't move or rename root */
1286	if (!kn->parent)
1287		return -EINVAL;
1288
1289	mutex_lock(&kernfs_mutex);
1290
1291	error = -ENOENT;
1292	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1293	    (new_parent->flags & KERNFS_EMPTY_DIR))
1294		goto out;
1295
1296	error = 0;
1297	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1298	    (strcmp(kn->name, new_name) == 0))
1299		goto out;	/* nothing to rename */
1300
1301	error = -EEXIST;
1302	if (kernfs_find_ns(new_parent, new_name, new_ns))
1303		goto out;
1304
1305	/* rename kernfs_node */
1306	if (strcmp(kn->name, new_name) != 0) {
1307		error = -ENOMEM;
1308		new_name = kstrdup_const(new_name, GFP_KERNEL);
1309		if (!new_name)
1310			goto out;
1311	} else {
1312		new_name = NULL;
1313	}
1314
1315	/*
1316	 * Move to the appropriate place in the appropriate directories rbtree.
1317	 */
1318	kernfs_unlink_sibling(kn);
1319	kernfs_get(new_parent);
1320
1321	/* rename_lock protects ->parent and ->name accessors */
1322	spin_lock_irq(&kernfs_rename_lock);
1323
1324	old_parent = kn->parent;
1325	kn->parent = new_parent;
1326
1327	kn->ns = new_ns;
1328	if (new_name) {
1329		old_name = kn->name;
1330		kn->name = new_name;
1331	}
1332
1333	spin_unlock_irq(&kernfs_rename_lock);
1334
1335	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1336	kernfs_link_sibling(kn);
1337
1338	kernfs_put(old_parent);
1339	kfree_const(old_name);
1340
1341	error = 0;
1342 out:
1343	mutex_unlock(&kernfs_mutex);
1344	return error;
1345}
1346
1347/* Relationship between s_mode and the DT_xxx types */
1348static inline unsigned char dt_type(struct kernfs_node *kn)
1349{
1350	return (kn->mode >> 12) & 15;
1351}
1352
1353static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1354{
1355	kernfs_put(filp->private_data);
1356	return 0;
1357}
1358
1359static struct kernfs_node *kernfs_dir_pos(const void *ns,
1360	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1361{
1362	if (pos) {
1363		int valid = kernfs_active(pos) &&
1364			pos->parent == parent && hash == pos->hash;
1365		kernfs_put(pos);
1366		if (!valid)
1367			pos = NULL;
1368	}
1369	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1370		struct rb_node *node = parent->dir.children.rb_node;
1371		while (node) {
1372			pos = rb_to_kn(node);
1373
1374			if (hash < pos->hash)
1375				node = node->rb_left;
1376			else if (hash > pos->hash)
1377				node = node->rb_right;
1378			else
1379				break;
1380		}
1381	}
1382	/* Skip over entries which are dying/dead or in the wrong namespace */
1383	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1384		struct rb_node *node = rb_next(&pos->rb);
1385		if (!node)
1386			pos = NULL;
1387		else
1388			pos = rb_to_kn(node);
1389	}
1390	return pos;
1391}
1392
1393static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1394	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1395{
1396	pos = kernfs_dir_pos(ns, parent, ino, pos);
1397	if (pos) {
1398		do {
1399			struct rb_node *node = rb_next(&pos->rb);
1400			if (!node)
1401				pos = NULL;
1402			else
1403				pos = rb_to_kn(node);
1404		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1405	}
1406	return pos;
1407}
1408
1409static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1410{
1411	struct dentry *dentry = file->f_path.dentry;
1412	struct kernfs_node *parent = dentry->d_fsdata;
1413	struct kernfs_node *pos = file->private_data;
1414	const void *ns = NULL;
1415
1416	if (!dir_emit_dots(file, ctx))
1417		return 0;
1418	mutex_lock(&kernfs_mutex);
1419
1420	if (kernfs_ns_enabled(parent))
1421		ns = kernfs_info(dentry->d_sb)->ns;
1422
1423	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1424	     pos;
1425	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1426		const char *name = pos->name;
1427		unsigned int type = dt_type(pos);
1428		int len = strlen(name);
1429		ino_t ino = pos->ino;
1430
1431		ctx->pos = pos->hash;
1432		file->private_data = pos;
1433		kernfs_get(pos);
1434
1435		mutex_unlock(&kernfs_mutex);
1436		if (!dir_emit(ctx, name, len, ino, type))
1437			return 0;
1438		mutex_lock(&kernfs_mutex);
1439	}
1440	mutex_unlock(&kernfs_mutex);
1441	file->private_data = NULL;
1442	ctx->pos = INT_MAX;
1443	return 0;
1444}
1445
1446static loff_t kernfs_dir_fop_llseek(struct file *file, loff_t offset,
1447				    int whence)
1448{
1449	struct inode *inode = file_inode(file);
1450	loff_t ret;
1451
1452	mutex_lock(&inode->i_mutex);
1453	ret = generic_file_llseek(file, offset, whence);
1454	mutex_unlock(&inode->i_mutex);
1455
1456	return ret;
1457}
1458
1459const struct file_operations kernfs_dir_fops = {
1460	.read		= generic_read_dir,
1461	.iterate	= kernfs_fop_readdir,
1462	.release	= kernfs_dir_fop_release,
1463	.llseek		= kernfs_dir_fop_llseek,
1464};
1465