1/*
2 *  linux/fs/namei.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 */
6
7/*
8 * Some corrections by tytso.
9 */
10
11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
13 */
14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
15 */
16
17#include <linux/init.h>
18#include <linux/export.h>
19#include <linux/kernel.h>
20#include <linux/slab.h>
21#include <linux/fs.h>
22#include <linux/namei.h>
23#include <linux/pagemap.h>
24#include <linux/fsnotify.h>
25#include <linux/personality.h>
26#include <linux/security.h>
27#include <linux/ima.h>
28#include <linux/syscalls.h>
29#include <linux/mount.h>
30#include <linux/audit.h>
31#include <linux/capability.h>
32#include <linux/file.h>
33#include <linux/fcntl.h>
34#include <linux/device_cgroup.h>
35#include <linux/fs_struct.h>
36#include <linux/posix_acl.h>
37#include <linux/hash.h>
38#include <asm/uaccess.h>
39
40#include "internal.h"
41#include "mount.h"
42
43/* [Feb-1997 T. Schoebel-Theuer]
44 * Fundamental changes in the pathname lookup mechanisms (namei)
45 * were necessary because of omirr.  The reason is that omirr needs
46 * to know the _real_ pathname, not the user-supplied one, in case
47 * of symlinks (and also when transname replacements occur).
48 *
49 * The new code replaces the old recursive symlink resolution with
50 * an iterative one (in case of non-nested symlink chains).  It does
51 * this with calls to <fs>_follow_link().
52 * As a side effect, dir_namei(), _namei() and follow_link() are now
53 * replaced with a single function lookup_dentry() that can handle all
54 * the special cases of the former code.
55 *
56 * With the new dcache, the pathname is stored at each inode, at least as
57 * long as the refcount of the inode is positive.  As a side effect, the
58 * size of the dcache depends on the inode cache and thus is dynamic.
59 *
60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
61 * resolution to correspond with current state of the code.
62 *
63 * Note that the symlink resolution is not *completely* iterative.
64 * There is still a significant amount of tail- and mid- recursion in
65 * the algorithm.  Also, note that <fs>_readlink() is not used in
66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
67 * may return different results than <fs>_follow_link().  Many virtual
68 * filesystems (including /proc) exhibit this behavior.
69 */
70
71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
73 * and the name already exists in form of a symlink, try to create the new
74 * name indicated by the symlink. The old code always complained that the
75 * name already exists, due to not following the symlink even if its target
76 * is nonexistent.  The new semantics affects also mknod() and link() when
77 * the name is a symlink pointing to a non-existent name.
78 *
79 * I don't know which semantics is the right one, since I have no access
80 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
82 * "old" one. Personally, I think the new semantics is much more logical.
83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
84 * file does succeed in both HP-UX and SunOs, but not in Solaris
85 * and in the old Linux semantics.
86 */
87
88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
89 * semantics.  See the comments in "open_namei" and "do_link" below.
90 *
91 * [10-Sep-98 Alan Modra] Another symlink change.
92 */
93
94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
95 *	inside the path - always follow.
96 *	in the last component in creation/removal/renaming - never follow.
97 *	if LOOKUP_FOLLOW passed - follow.
98 *	if the pathname has trailing slashes - follow.
99 *	otherwise - don't follow.
100 * (applied in that order).
101 *
102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
104 * During the 2.4 we need to fix the userland stuff depending on it -
105 * hopefully we will be able to get rid of that wart in 2.5. So far only
106 * XEmacs seems to be relying on it...
107 */
108/*
109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
110 * implemented.  Let's see if raised priority of ->s_vfs_rename_mutex gives
111 * any extra contention...
112 */
113
114/* In order to reduce some races, while at the same time doing additional
115 * checking and hopefully speeding things up, we copy filenames to the
116 * kernel data space before using them..
117 *
118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
119 * PATH_MAX includes the nul terminator --RR.
120 */
121
122#define EMBEDDED_NAME_MAX	(PATH_MAX - offsetof(struct filename, iname))
123
124struct filename *
125getname_flags(const char __user *filename, int flags, int *empty)
126{
127	struct filename *result;
128	char *kname;
129	int len;
130
131	result = audit_reusename(filename);
132	if (result)
133		return result;
134
135	result = __getname();
136	if (unlikely(!result))
137		return ERR_PTR(-ENOMEM);
138
139	/*
140	 * First, try to embed the struct filename inside the names_cache
141	 * allocation
142	 */
143	kname = (char *)result->iname;
144	result->name = kname;
145
146	len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX);
147	if (unlikely(len < 0)) {
148		__putname(result);
149		return ERR_PTR(len);
150	}
151
152	/*
153	 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a
154	 * separate struct filename so we can dedicate the entire
155	 * names_cache allocation for the pathname, and re-do the copy from
156	 * userland.
157	 */
158	if (unlikely(len == EMBEDDED_NAME_MAX)) {
159		const size_t size = offsetof(struct filename, iname[1]);
160		kname = (char *)result;
161
162		/*
163		 * size is chosen that way we to guarantee that
164		 * result->iname[0] is within the same object and that
165		 * kname can't be equal to result->iname, no matter what.
166		 */
167		result = kzalloc(size, GFP_KERNEL);
168		if (unlikely(!result)) {
169			__putname(kname);
170			return ERR_PTR(-ENOMEM);
171		}
172		result->name = kname;
173		len = strncpy_from_user(kname, filename, PATH_MAX);
174		if (unlikely(len < 0)) {
175			__putname(kname);
176			kfree(result);
177			return ERR_PTR(len);
178		}
179		if (unlikely(len == PATH_MAX)) {
180			__putname(kname);
181			kfree(result);
182			return ERR_PTR(-ENAMETOOLONG);
183		}
184	}
185
186	result->refcnt = 1;
187	/* The empty path is special. */
188	if (unlikely(!len)) {
189		if (empty)
190			*empty = 1;
191		if (!(flags & LOOKUP_EMPTY)) {
192			putname(result);
193			return ERR_PTR(-ENOENT);
194		}
195	}
196
197	result->uptr = filename;
198	result->aname = NULL;
199	audit_getname(result);
200	return result;
201}
202
203struct filename *
204getname(const char __user * filename)
205{
206	return getname_flags(filename, 0, NULL);
207}
208
209struct filename *
210getname_kernel(const char * filename)
211{
212	struct filename *result;
213	int len = strlen(filename) + 1;
214
215	result = __getname();
216	if (unlikely(!result))
217		return ERR_PTR(-ENOMEM);
218
219	if (len <= EMBEDDED_NAME_MAX) {
220		result->name = (char *)result->iname;
221	} else if (len <= PATH_MAX) {
222		struct filename *tmp;
223
224		tmp = kmalloc(sizeof(*tmp), GFP_KERNEL);
225		if (unlikely(!tmp)) {
226			__putname(result);
227			return ERR_PTR(-ENOMEM);
228		}
229		tmp->name = (char *)result;
230		result = tmp;
231	} else {
232		__putname(result);
233		return ERR_PTR(-ENAMETOOLONG);
234	}
235	memcpy((char *)result->name, filename, len);
236	result->uptr = NULL;
237	result->aname = NULL;
238	result->refcnt = 1;
239	audit_getname(result);
240
241	return result;
242}
243
244void putname(struct filename *name)
245{
246	BUG_ON(name->refcnt <= 0);
247
248	if (--name->refcnt > 0)
249		return;
250
251	if (name->name != name->iname) {
252		__putname(name->name);
253		kfree(name);
254	} else
255		__putname(name);
256}
257
258static int check_acl(struct inode *inode, int mask)
259{
260#ifdef CONFIG_FS_POSIX_ACL
261	struct posix_acl *acl;
262
263	if (mask & MAY_NOT_BLOCK) {
264		acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS);
265	        if (!acl)
266	                return -EAGAIN;
267		/* no ->get_acl() calls in RCU mode... */
268		if (acl == ACL_NOT_CACHED)
269			return -ECHILD;
270	        return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK);
271	}
272
273	acl = get_acl(inode, ACL_TYPE_ACCESS);
274	if (IS_ERR(acl))
275		return PTR_ERR(acl);
276	if (acl) {
277	        int error = posix_acl_permission(inode, acl, mask);
278	        posix_acl_release(acl);
279	        return error;
280	}
281#endif
282
283	return -EAGAIN;
284}
285
286/*
287 * This does the basic permission checking
288 */
289static int acl_permission_check(struct inode *inode, int mask)
290{
291	unsigned int mode = inode->i_mode;
292
293	if (likely(uid_eq(current_fsuid(), inode->i_uid)))
294		mode >>= 6;
295	else {
296		if (IS_POSIXACL(inode) && (mode & S_IRWXG)) {
297			int error = check_acl(inode, mask);
298			if (error != -EAGAIN)
299				return error;
300		}
301
302		if (in_group_p(inode->i_gid))
303			mode >>= 3;
304	}
305
306	/*
307	 * If the DACs are ok we don't need any capability check.
308	 */
309	if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
310		return 0;
311	return -EACCES;
312}
313
314/**
315 * generic_permission -  check for access rights on a Posix-like filesystem
316 * @inode:	inode to check access rights for
317 * @mask:	right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...)
318 *
319 * Used to check for read/write/execute permissions on a file.
320 * We use "fsuid" for this, letting us set arbitrary permissions
321 * for filesystem access without changing the "normal" uids which
322 * are used for other things.
323 *
324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk
325 * request cannot be satisfied (eg. requires blocking or too much complexity).
326 * It would then be called again in ref-walk mode.
327 */
328int generic_permission(struct inode *inode, int mask)
329{
330	int ret;
331
332	/*
333	 * Do the basic permission checks.
334	 */
335	ret = acl_permission_check(inode, mask);
336	if (ret != -EACCES)
337		return ret;
338
339	if (S_ISDIR(inode->i_mode)) {
340		/* DACs are overridable for directories */
341		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
342			return 0;
343		if (!(mask & MAY_WRITE))
344			if (capable_wrt_inode_uidgid(inode,
345						     CAP_DAC_READ_SEARCH))
346				return 0;
347		return -EACCES;
348	}
349	/*
350	 * Read/write DACs are always overridable.
351	 * Executable DACs are overridable when there is
352	 * at least one exec bit set.
353	 */
354	if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO))
355		if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE))
356			return 0;
357
358	/*
359	 * Searching includes executable on directories, else just read.
360	 */
361	mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
362	if (mask == MAY_READ)
363		if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH))
364			return 0;
365
366	return -EACCES;
367}
368EXPORT_SYMBOL(generic_permission);
369
370/*
371 * We _really_ want to just do "generic_permission()" without
372 * even looking at the inode->i_op values. So we keep a cache
373 * flag in inode->i_opflags, that says "this has not special
374 * permission function, use the fast case".
375 */
376static inline int do_inode_permission(struct inode *inode, int mask)
377{
378	if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) {
379		if (likely(inode->i_op->permission))
380			return inode->i_op->permission(inode, mask);
381
382		/* This gets set once for the inode lifetime */
383		spin_lock(&inode->i_lock);
384		inode->i_opflags |= IOP_FASTPERM;
385		spin_unlock(&inode->i_lock);
386	}
387	return generic_permission(inode, mask);
388}
389
390/**
391 * __inode_permission - Check for access rights to a given inode
392 * @inode: Inode to check permission on
393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
394 *
395 * Check for read/write/execute permissions on an inode.
396 *
397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
398 *
399 * This does not check for a read-only file system.  You probably want
400 * inode_permission().
401 */
402int __inode_permission(struct inode *inode, int mask)
403{
404	int retval;
405
406	if (unlikely(mask & MAY_WRITE)) {
407		/*
408		 * Nobody gets write access to an immutable file.
409		 */
410		if (IS_IMMUTABLE(inode))
411			return -EACCES;
412	}
413
414	retval = do_inode_permission(inode, mask);
415	if (retval)
416		return retval;
417
418	retval = devcgroup_inode_permission(inode, mask);
419	if (retval)
420		return retval;
421
422	return security_inode_permission(inode, mask);
423}
424EXPORT_SYMBOL(__inode_permission);
425
426/**
427 * sb_permission - Check superblock-level permissions
428 * @sb: Superblock of inode to check permission on
429 * @inode: Inode to check permission on
430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
431 *
432 * Separate out file-system wide checks from inode-specific permission checks.
433 */
434static int sb_permission(struct super_block *sb, struct inode *inode, int mask)
435{
436	if (unlikely(mask & MAY_WRITE)) {
437		umode_t mode = inode->i_mode;
438
439		/* Nobody gets write access to a read-only fs. */
440		if ((sb->s_flags & MS_RDONLY) &&
441		    (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
442			return -EROFS;
443	}
444	return 0;
445}
446
447/**
448 * inode_permission - Check for access rights to a given inode
449 * @inode: Inode to check permission on
450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
451 *
452 * Check for read/write/execute permissions on an inode.  We use fs[ug]id for
453 * this, letting us set arbitrary permissions for filesystem access without
454 * changing the "normal" UIDs which are used for other things.
455 *
456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask.
457 */
458int inode_permission(struct inode *inode, int mask)
459{
460	int retval;
461
462	retval = sb_permission(inode->i_sb, inode, mask);
463	if (retval)
464		return retval;
465	return __inode_permission(inode, mask);
466}
467EXPORT_SYMBOL(inode_permission);
468
469/**
470 * path_get - get a reference to a path
471 * @path: path to get the reference to
472 *
473 * Given a path increment the reference count to the dentry and the vfsmount.
474 */
475void path_get(const struct path *path)
476{
477	mntget(path->mnt);
478	dget(path->dentry);
479}
480EXPORT_SYMBOL(path_get);
481
482/**
483 * path_put - put a reference to a path
484 * @path: path to put the reference to
485 *
486 * Given a path decrement the reference count to the dentry and the vfsmount.
487 */
488void path_put(const struct path *path)
489{
490	dput(path->dentry);
491	mntput(path->mnt);
492}
493EXPORT_SYMBOL(path_put);
494
495struct nameidata {
496	struct path	path;
497	struct qstr	last;
498	struct path	root;
499	struct inode	*inode; /* path.dentry.d_inode */
500	unsigned int	flags;
501	unsigned	seq, m_seq;
502	int		last_type;
503	unsigned	depth;
504	struct file	*base;
505	char *saved_names[MAX_NESTED_LINKS + 1];
506};
507
508/**
509 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root
510 * @path: nameidate to verify
511 *
512 * Rename can sometimes move a file or directory outside of a bind
513 * mount, path_connected allows those cases to be detected.
514 */
515static bool path_connected(const struct path *path)
516{
517	struct vfsmount *mnt = path->mnt;
518
519	/* Only bind mounts can have disconnected paths */
520	if (mnt->mnt_root == mnt->mnt_sb->s_root)
521		return true;
522
523	return is_subdir(path->dentry, mnt->mnt_root);
524}
525
526/*
527 * Path walking has 2 modes, rcu-walk and ref-walk (see
528 * Documentation/filesystems/path-lookup.txt).  In situations when we can't
529 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab
530 * normal reference counts on dentries and vfsmounts to transition to rcu-walk
531 * mode.  Refcounts are grabbed at the last known good point before rcu-walk
532 * got stuck, so ref-walk may continue from there. If this is not successful
533 * (eg. a seqcount has changed), then failure is returned and it's up to caller
534 * to restart the path walk from the beginning in ref-walk mode.
535 */
536
537/**
538 * unlazy_walk - try to switch to ref-walk mode.
539 * @nd: nameidata pathwalk data
540 * @dentry: child of nd->path.dentry or NULL
541 * Returns: 0 on success, -ECHILD on failure
542 *
543 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry
544 * for ref-walk mode.  @dentry must be a path found by a do_lookup call on
545 * @nd or NULL.  Must be called from rcu-walk context.
546 */
547static int unlazy_walk(struct nameidata *nd, struct dentry *dentry)
548{
549	struct fs_struct *fs = current->fs;
550	struct dentry *parent = nd->path.dentry;
551
552	BUG_ON(!(nd->flags & LOOKUP_RCU));
553
554	/*
555	 * After legitimizing the bastards, terminate_walk()
556	 * will do the right thing for non-RCU mode, and all our
557	 * subsequent exit cases should rcu_read_unlock()
558	 * before returning.  Do vfsmount first; if dentry
559	 * can't be legitimized, just set nd->path.dentry to NULL
560	 * and rely on dput(NULL) being a no-op.
561	 */
562	if (!legitimize_mnt(nd->path.mnt, nd->m_seq))
563		return -ECHILD;
564	nd->flags &= ~LOOKUP_RCU;
565
566	if (!lockref_get_not_dead(&parent->d_lockref)) {
567		nd->path.dentry = NULL;
568		goto out;
569	}
570
571	/*
572	 * For a negative lookup, the lookup sequence point is the parents
573	 * sequence point, and it only needs to revalidate the parent dentry.
574	 *
575	 * For a positive lookup, we need to move both the parent and the
576	 * dentry from the RCU domain to be properly refcounted. And the
577	 * sequence number in the dentry validates *both* dentry counters,
578	 * since we checked the sequence number of the parent after we got
579	 * the child sequence number. So we know the parent must still
580	 * be valid if the child sequence number is still valid.
581	 */
582	if (!dentry) {
583		if (read_seqcount_retry(&parent->d_seq, nd->seq))
584			goto out;
585		BUG_ON(nd->inode != parent->d_inode);
586	} else {
587		if (!lockref_get_not_dead(&dentry->d_lockref))
588			goto out;
589		if (read_seqcount_retry(&dentry->d_seq, nd->seq))
590			goto drop_dentry;
591	}
592
593	/*
594	 * Sequence counts matched. Now make sure that the root is
595	 * still valid and get it if required.
596	 */
597	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
598		spin_lock(&fs->lock);
599		if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry)
600			goto unlock_and_drop_dentry;
601		path_get(&nd->root);
602		spin_unlock(&fs->lock);
603	}
604
605	rcu_read_unlock();
606	return 0;
607
608unlock_and_drop_dentry:
609	spin_unlock(&fs->lock);
610drop_dentry:
611	rcu_read_unlock();
612	dput(dentry);
613	goto drop_root_mnt;
614out:
615	rcu_read_unlock();
616drop_root_mnt:
617	if (!(nd->flags & LOOKUP_ROOT))
618		nd->root.mnt = NULL;
619	return -ECHILD;
620}
621
622static inline int d_revalidate(struct dentry *dentry, unsigned int flags)
623{
624	return dentry->d_op->d_revalidate(dentry, flags);
625}
626
627/**
628 * complete_walk - successful completion of path walk
629 * @nd:  pointer nameidata
630 *
631 * If we had been in RCU mode, drop out of it and legitimize nd->path.
632 * Revalidate the final result, unless we'd already done that during
633 * the path walk or the filesystem doesn't ask for it.  Return 0 on
634 * success, -error on failure.  In case of failure caller does not
635 * need to drop nd->path.
636 */
637static int complete_walk(struct nameidata *nd)
638{
639	struct dentry *dentry = nd->path.dentry;
640	int status;
641
642	if (nd->flags & LOOKUP_RCU) {
643		nd->flags &= ~LOOKUP_RCU;
644		if (!(nd->flags & LOOKUP_ROOT))
645			nd->root.mnt = NULL;
646
647		if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) {
648			rcu_read_unlock();
649			return -ECHILD;
650		}
651		if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) {
652			rcu_read_unlock();
653			mntput(nd->path.mnt);
654			return -ECHILD;
655		}
656		if (read_seqcount_retry(&dentry->d_seq, nd->seq)) {
657			rcu_read_unlock();
658			dput(dentry);
659			mntput(nd->path.mnt);
660			return -ECHILD;
661		}
662		rcu_read_unlock();
663	}
664
665	if (likely(!(nd->flags & LOOKUP_JUMPED)))
666		return 0;
667
668	if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE)))
669		return 0;
670
671	status = dentry->d_op->d_weak_revalidate(dentry, nd->flags);
672	if (status > 0)
673		return 0;
674
675	if (!status)
676		status = -ESTALE;
677
678	path_put(&nd->path);
679	return status;
680}
681
682static __always_inline void set_root(struct nameidata *nd)
683{
684	get_fs_root(current->fs, &nd->root);
685}
686
687static int link_path_walk(const char *, struct nameidata *);
688
689static __always_inline unsigned set_root_rcu(struct nameidata *nd)
690{
691	struct fs_struct *fs = current->fs;
692	unsigned seq, res;
693
694	do {
695		seq = read_seqcount_begin(&fs->seq);
696		nd->root = fs->root;
697		res = __read_seqcount_begin(&nd->root.dentry->d_seq);
698	} while (read_seqcount_retry(&fs->seq, seq));
699	return res;
700}
701
702static void path_put_conditional(struct path *path, struct nameidata *nd)
703{
704	dput(path->dentry);
705	if (path->mnt != nd->path.mnt)
706		mntput(path->mnt);
707}
708
709static inline void path_to_nameidata(const struct path *path,
710					struct nameidata *nd)
711{
712	if (!(nd->flags & LOOKUP_RCU)) {
713		dput(nd->path.dentry);
714		if (nd->path.mnt != path->mnt)
715			mntput(nd->path.mnt);
716	}
717	nd->path.mnt = path->mnt;
718	nd->path.dentry = path->dentry;
719}
720
721/*
722 * Helper to directly jump to a known parsed path from ->follow_link,
723 * caller must have taken a reference to path beforehand.
724 */
725void nd_jump_link(struct nameidata *nd, struct path *path)
726{
727	path_put(&nd->path);
728
729	nd->path = *path;
730	nd->inode = nd->path.dentry->d_inode;
731	nd->flags |= LOOKUP_JUMPED;
732}
733
734void nd_set_link(struct nameidata *nd, char *path)
735{
736	nd->saved_names[nd->depth] = path;
737}
738EXPORT_SYMBOL(nd_set_link);
739
740char *nd_get_link(struct nameidata *nd)
741{
742	return nd->saved_names[nd->depth];
743}
744EXPORT_SYMBOL(nd_get_link);
745
746static inline void put_link(struct nameidata *nd, struct path *link, void *cookie)
747{
748	struct inode *inode = link->dentry->d_inode;
749	if (inode->i_op->put_link)
750		inode->i_op->put_link(link->dentry, nd, cookie);
751	path_put(link);
752}
753
754int sysctl_protected_symlinks __read_mostly = 0;
755int sysctl_protected_hardlinks __read_mostly = 0;
756
757/**
758 * may_follow_link - Check symlink following for unsafe situations
759 * @link: The path of the symlink
760 * @nd: nameidata pathwalk data
761 *
762 * In the case of the sysctl_protected_symlinks sysctl being enabled,
763 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is
764 * in a sticky world-writable directory. This is to protect privileged
765 * processes from failing races against path names that may change out
766 * from under them by way of other users creating malicious symlinks.
767 * It will permit symlinks to be followed only when outside a sticky
768 * world-writable directory, or when the uid of the symlink and follower
769 * match, or when the directory owner matches the symlink's owner.
770 *
771 * Returns 0 if following the symlink is allowed, -ve on error.
772 */
773static inline int may_follow_link(struct path *link, struct nameidata *nd)
774{
775	const struct inode *inode;
776	const struct inode *parent;
777
778	if (!sysctl_protected_symlinks)
779		return 0;
780
781	/* Allowed if owner and follower match. */
782	inode = link->dentry->d_inode;
783	if (uid_eq(current_cred()->fsuid, inode->i_uid))
784		return 0;
785
786	/* Allowed if parent directory not sticky and world-writable. */
787	parent = nd->path.dentry->d_inode;
788	if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH))
789		return 0;
790
791	/* Allowed if parent directory and link owner match. */
792	if (uid_eq(parent->i_uid, inode->i_uid))
793		return 0;
794
795	audit_log_link_denied("follow_link", link);
796	path_put_conditional(link, nd);
797	path_put(&nd->path);
798	return -EACCES;
799}
800
801/**
802 * safe_hardlink_source - Check for safe hardlink conditions
803 * @inode: the source inode to hardlink from
804 *
805 * Return false if at least one of the following conditions:
806 *    - inode is not a regular file
807 *    - inode is setuid
808 *    - inode is setgid and group-exec
809 *    - access failure for read and write
810 *
811 * Otherwise returns true.
812 */
813static bool safe_hardlink_source(struct inode *inode)
814{
815	umode_t mode = inode->i_mode;
816
817	/* Special files should not get pinned to the filesystem. */
818	if (!S_ISREG(mode))
819		return false;
820
821	/* Setuid files should not get pinned to the filesystem. */
822	if (mode & S_ISUID)
823		return false;
824
825	/* Executable setgid files should not get pinned to the filesystem. */
826	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP))
827		return false;
828
829	/* Hardlinking to unreadable or unwritable sources is dangerous. */
830	if (inode_permission(inode, MAY_READ | MAY_WRITE))
831		return false;
832
833	return true;
834}
835
836/**
837 * may_linkat - Check permissions for creating a hardlink
838 * @link: the source to hardlink from
839 *
840 * Block hardlink when all of:
841 *  - sysctl_protected_hardlinks enabled
842 *  - fsuid does not match inode
843 *  - hardlink source is unsafe (see safe_hardlink_source() above)
844 *  - not CAP_FOWNER
845 *
846 * Returns 0 if successful, -ve on error.
847 */
848static int may_linkat(struct path *link)
849{
850	const struct cred *cred;
851	struct inode *inode;
852
853	if (!sysctl_protected_hardlinks)
854		return 0;
855
856	cred = current_cred();
857	inode = link->dentry->d_inode;
858
859	/* Source inode owner (or CAP_FOWNER) can hardlink all they like,
860	 * otherwise, it must be a safe source.
861	 */
862	if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) ||
863	    capable(CAP_FOWNER))
864		return 0;
865
866	audit_log_link_denied("linkat", link);
867	return -EPERM;
868}
869
870static __always_inline int
871follow_link(struct path *link, struct nameidata *nd, void **p)
872{
873	struct dentry *dentry = link->dentry;
874	int error;
875	char *s;
876
877	BUG_ON(nd->flags & LOOKUP_RCU);
878
879	if (link->mnt == nd->path.mnt)
880		mntget(link->mnt);
881
882	error = -ELOOP;
883	if (unlikely(current->total_link_count >= 40))
884		goto out_put_nd_path;
885
886	cond_resched();
887	current->total_link_count++;
888
889	touch_atime(link);
890	nd_set_link(nd, NULL);
891
892	error = security_inode_follow_link(link->dentry, nd);
893	if (error)
894		goto out_put_nd_path;
895
896	nd->last_type = LAST_BIND;
897	*p = dentry->d_inode->i_op->follow_link(dentry, nd);
898	error = PTR_ERR(*p);
899	if (IS_ERR(*p))
900		goto out_put_nd_path;
901
902	error = 0;
903	s = nd_get_link(nd);
904	if (s) {
905		if (unlikely(IS_ERR(s))) {
906			path_put(&nd->path);
907			put_link(nd, link, *p);
908			return PTR_ERR(s);
909		}
910		if (*s == '/') {
911			if (!nd->root.mnt)
912				set_root(nd);
913			path_put(&nd->path);
914			nd->path = nd->root;
915			path_get(&nd->root);
916			nd->flags |= LOOKUP_JUMPED;
917		}
918		nd->inode = nd->path.dentry->d_inode;
919		error = link_path_walk(s, nd);
920		if (unlikely(error))
921			put_link(nd, link, *p);
922	}
923
924	return error;
925
926out_put_nd_path:
927	*p = NULL;
928	path_put(&nd->path);
929	path_put(link);
930	return error;
931}
932
933static int follow_up_rcu(struct path *path)
934{
935	struct mount *mnt = real_mount(path->mnt);
936	struct mount *parent;
937	struct dentry *mountpoint;
938
939	parent = mnt->mnt_parent;
940	if (&parent->mnt == path->mnt)
941		return 0;
942	mountpoint = mnt->mnt_mountpoint;
943	path->dentry = mountpoint;
944	path->mnt = &parent->mnt;
945	return 1;
946}
947
948/*
949 * follow_up - Find the mountpoint of path's vfsmount
950 *
951 * Given a path, find the mountpoint of its source file system.
952 * Replace @path with the path of the mountpoint in the parent mount.
953 * Up is towards /.
954 *
955 * Return 1 if we went up a level and 0 if we were already at the
956 * root.
957 */
958int follow_up(struct path *path)
959{
960	struct mount *mnt = real_mount(path->mnt);
961	struct mount *parent;
962	struct dentry *mountpoint;
963
964	read_seqlock_excl(&mount_lock);
965	parent = mnt->mnt_parent;
966	if (parent == mnt) {
967		read_sequnlock_excl(&mount_lock);
968		return 0;
969	}
970	mntget(&parent->mnt);
971	mountpoint = dget(mnt->mnt_mountpoint);
972	read_sequnlock_excl(&mount_lock);
973	dput(path->dentry);
974	path->dentry = mountpoint;
975	mntput(path->mnt);
976	path->mnt = &parent->mnt;
977	return 1;
978}
979EXPORT_SYMBOL(follow_up);
980
981/*
982 * Perform an automount
983 * - return -EISDIR to tell follow_managed() to stop and return the path we
984 *   were called with.
985 */
986static int follow_automount(struct path *path, unsigned flags,
987			    bool *need_mntput)
988{
989	struct vfsmount *mnt;
990	int err;
991
992	if (!path->dentry->d_op || !path->dentry->d_op->d_automount)
993		return -EREMOTE;
994
995	/* We don't want to mount if someone's just doing a stat -
996	 * unless they're stat'ing a directory and appended a '/' to
997	 * the name.
998	 *
999	 * We do, however, want to mount if someone wants to open or
1000	 * create a file of any type under the mountpoint, wants to
1001	 * traverse through the mountpoint or wants to open the
1002	 * mounted directory.  Also, autofs may mark negative dentries
1003	 * as being automount points.  These will need the attentions
1004	 * of the daemon to instantiate them before they can be used.
1005	 */
1006	if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY |
1007		     LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) &&
1008	    path->dentry->d_inode)
1009		return -EISDIR;
1010
1011	current->total_link_count++;
1012	if (current->total_link_count >= 40)
1013		return -ELOOP;
1014
1015	mnt = path->dentry->d_op->d_automount(path);
1016	if (IS_ERR(mnt)) {
1017		/*
1018		 * The filesystem is allowed to return -EISDIR here to indicate
1019		 * it doesn't want to automount.  For instance, autofs would do
1020		 * this so that its userspace daemon can mount on this dentry.
1021		 *
1022		 * However, we can only permit this if it's a terminal point in
1023		 * the path being looked up; if it wasn't then the remainder of
1024		 * the path is inaccessible and we should say so.
1025		 */
1026		if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT))
1027			return -EREMOTE;
1028		return PTR_ERR(mnt);
1029	}
1030
1031	if (!mnt) /* mount collision */
1032		return 0;
1033
1034	if (!*need_mntput) {
1035		/* lock_mount() may release path->mnt on error */
1036		mntget(path->mnt);
1037		*need_mntput = true;
1038	}
1039	err = finish_automount(mnt, path);
1040
1041	switch (err) {
1042	case -EBUSY:
1043		/* Someone else made a mount here whilst we were busy */
1044		return 0;
1045	case 0:
1046		path_put(path);
1047		path->mnt = mnt;
1048		path->dentry = dget(mnt->mnt_root);
1049		return 0;
1050	default:
1051		return err;
1052	}
1053
1054}
1055
1056/*
1057 * Handle a dentry that is managed in some way.
1058 * - Flagged for transit management (autofs)
1059 * - Flagged as mountpoint
1060 * - Flagged as automount point
1061 *
1062 * This may only be called in refwalk mode.
1063 *
1064 * Serialization is taken care of in namespace.c
1065 */
1066static int follow_managed(struct path *path, unsigned flags)
1067{
1068	struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */
1069	unsigned managed;
1070	bool need_mntput = false;
1071	int ret = 0;
1072
1073	/* Given that we're not holding a lock here, we retain the value in a
1074	 * local variable for each dentry as we look at it so that we don't see
1075	 * the components of that value change under us */
1076	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1077	       managed &= DCACHE_MANAGED_DENTRY,
1078	       unlikely(managed != 0)) {
1079		/* Allow the filesystem to manage the transit without i_mutex
1080		 * being held. */
1081		if (managed & DCACHE_MANAGE_TRANSIT) {
1082			BUG_ON(!path->dentry->d_op);
1083			BUG_ON(!path->dentry->d_op->d_manage);
1084			ret = path->dentry->d_op->d_manage(path->dentry, false);
1085			if (ret < 0)
1086				break;
1087		}
1088
1089		/* Transit to a mounted filesystem. */
1090		if (managed & DCACHE_MOUNTED) {
1091			struct vfsmount *mounted = lookup_mnt(path);
1092			if (mounted) {
1093				dput(path->dentry);
1094				if (need_mntput)
1095					mntput(path->mnt);
1096				path->mnt = mounted;
1097				path->dentry = dget(mounted->mnt_root);
1098				need_mntput = true;
1099				continue;
1100			}
1101
1102			/* Something is mounted on this dentry in another
1103			 * namespace and/or whatever was mounted there in this
1104			 * namespace got unmounted before lookup_mnt() could
1105			 * get it */
1106		}
1107
1108		/* Handle an automount point */
1109		if (managed & DCACHE_NEED_AUTOMOUNT) {
1110			ret = follow_automount(path, flags, &need_mntput);
1111			if (ret < 0)
1112				break;
1113			continue;
1114		}
1115
1116		/* We didn't change the current path point */
1117		break;
1118	}
1119
1120	if (need_mntput && path->mnt == mnt)
1121		mntput(path->mnt);
1122	if (ret == -EISDIR)
1123		ret = 0;
1124	return ret < 0 ? ret : need_mntput;
1125}
1126
1127int follow_down_one(struct path *path)
1128{
1129	struct vfsmount *mounted;
1130
1131	mounted = lookup_mnt(path);
1132	if (mounted) {
1133		dput(path->dentry);
1134		mntput(path->mnt);
1135		path->mnt = mounted;
1136		path->dentry = dget(mounted->mnt_root);
1137		return 1;
1138	}
1139	return 0;
1140}
1141EXPORT_SYMBOL(follow_down_one);
1142
1143static inline int managed_dentry_rcu(struct dentry *dentry)
1144{
1145	return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ?
1146		dentry->d_op->d_manage(dentry, true) : 0;
1147}
1148
1149/*
1150 * Try to skip to top of mountpoint pile in rcuwalk mode.  Fail if
1151 * we meet a managed dentry that would need blocking.
1152 */
1153static bool __follow_mount_rcu(struct nameidata *nd, struct path *path,
1154			       struct inode **inode)
1155{
1156	for (;;) {
1157		struct mount *mounted;
1158		/*
1159		 * Don't forget we might have a non-mountpoint managed dentry
1160		 * that wants to block transit.
1161		 */
1162		switch (managed_dentry_rcu(path->dentry)) {
1163		case -ECHILD:
1164		default:
1165			return false;
1166		case -EISDIR:
1167			return true;
1168		case 0:
1169			break;
1170		}
1171
1172		if (!d_mountpoint(path->dentry))
1173			return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1174
1175		mounted = __lookup_mnt(path->mnt, path->dentry);
1176		if (!mounted)
1177			break;
1178		path->mnt = &mounted->mnt;
1179		path->dentry = mounted->mnt.mnt_root;
1180		nd->flags |= LOOKUP_JUMPED;
1181		nd->seq = read_seqcount_begin(&path->dentry->d_seq);
1182		/*
1183		 * Update the inode too. We don't need to re-check the
1184		 * dentry sequence number here after this d_inode read,
1185		 * because a mount-point is always pinned.
1186		 */
1187		*inode = path->dentry->d_inode;
1188	}
1189	return !read_seqretry(&mount_lock, nd->m_seq) &&
1190		!(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT);
1191}
1192
1193static int follow_dotdot_rcu(struct nameidata *nd)
1194{
1195	struct inode *inode = nd->inode;
1196	if (!nd->root.mnt)
1197		set_root_rcu(nd);
1198
1199	while (1) {
1200		if (nd->path.dentry == nd->root.dentry &&
1201		    nd->path.mnt == nd->root.mnt) {
1202			break;
1203		}
1204		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1205			struct dentry *old = nd->path.dentry;
1206			struct dentry *parent = old->d_parent;
1207			unsigned seq;
1208
1209			inode = parent->d_inode;
1210			seq = read_seqcount_begin(&parent->d_seq);
1211			if (read_seqcount_retry(&old->d_seq, nd->seq))
1212				goto failed;
1213			nd->path.dentry = parent;
1214			nd->seq = seq;
1215			if (unlikely(!path_connected(&nd->path)))
1216				goto failed;
1217			break;
1218		}
1219		if (!follow_up_rcu(&nd->path))
1220			break;
1221		inode = nd->path.dentry->d_inode;
1222		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1223	}
1224	while (d_mountpoint(nd->path.dentry)) {
1225		struct mount *mounted;
1226		mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry);
1227		if (!mounted)
1228			break;
1229		nd->path.mnt = &mounted->mnt;
1230		nd->path.dentry = mounted->mnt.mnt_root;
1231		inode = nd->path.dentry->d_inode;
1232		nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq);
1233		if (read_seqretry(&mount_lock, nd->m_seq))
1234			goto failed;
1235	}
1236	nd->inode = inode;
1237	return 0;
1238
1239failed:
1240	nd->flags &= ~LOOKUP_RCU;
1241	if (!(nd->flags & LOOKUP_ROOT))
1242		nd->root.mnt = NULL;
1243	rcu_read_unlock();
1244	return -ECHILD;
1245}
1246
1247/*
1248 * Follow down to the covering mount currently visible to userspace.  At each
1249 * point, the filesystem owning that dentry may be queried as to whether the
1250 * caller is permitted to proceed or not.
1251 */
1252int follow_down(struct path *path)
1253{
1254	unsigned managed;
1255	int ret;
1256
1257	while (managed = ACCESS_ONCE(path->dentry->d_flags),
1258	       unlikely(managed & DCACHE_MANAGED_DENTRY)) {
1259		/* Allow the filesystem to manage the transit without i_mutex
1260		 * being held.
1261		 *
1262		 * We indicate to the filesystem if someone is trying to mount
1263		 * something here.  This gives autofs the chance to deny anyone
1264		 * other than its daemon the right to mount on its
1265		 * superstructure.
1266		 *
1267		 * The filesystem may sleep at this point.
1268		 */
1269		if (managed & DCACHE_MANAGE_TRANSIT) {
1270			BUG_ON(!path->dentry->d_op);
1271			BUG_ON(!path->dentry->d_op->d_manage);
1272			ret = path->dentry->d_op->d_manage(
1273				path->dentry, false);
1274			if (ret < 0)
1275				return ret == -EISDIR ? 0 : ret;
1276		}
1277
1278		/* Transit to a mounted filesystem. */
1279		if (managed & DCACHE_MOUNTED) {
1280			struct vfsmount *mounted = lookup_mnt(path);
1281			if (!mounted)
1282				break;
1283			dput(path->dentry);
1284			mntput(path->mnt);
1285			path->mnt = mounted;
1286			path->dentry = dget(mounted->mnt_root);
1287			continue;
1288		}
1289
1290		/* Don't handle automount points here */
1291		break;
1292	}
1293	return 0;
1294}
1295EXPORT_SYMBOL(follow_down);
1296
1297/*
1298 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot()
1299 */
1300static void follow_mount(struct path *path)
1301{
1302	while (d_mountpoint(path->dentry)) {
1303		struct vfsmount *mounted = lookup_mnt(path);
1304		if (!mounted)
1305			break;
1306		dput(path->dentry);
1307		mntput(path->mnt);
1308		path->mnt = mounted;
1309		path->dentry = dget(mounted->mnt_root);
1310	}
1311}
1312
1313static int follow_dotdot(struct nameidata *nd)
1314{
1315	if (!nd->root.mnt)
1316		set_root(nd);
1317
1318	while(1) {
1319		struct dentry *old = nd->path.dentry;
1320
1321		if (nd->path.dentry == nd->root.dentry &&
1322		    nd->path.mnt == nd->root.mnt) {
1323			break;
1324		}
1325		if (nd->path.dentry != nd->path.mnt->mnt_root) {
1326			/* rare case of legitimate dget_parent()... */
1327			nd->path.dentry = dget_parent(nd->path.dentry);
1328			dput(old);
1329			if (unlikely(!path_connected(&nd->path))) {
1330				path_put(&nd->path);
1331				return -ENOENT;
1332			}
1333			break;
1334		}
1335		if (!follow_up(&nd->path))
1336			break;
1337	}
1338	follow_mount(&nd->path);
1339	nd->inode = nd->path.dentry->d_inode;
1340	return 0;
1341}
1342
1343/*
1344 * This looks up the name in dcache, possibly revalidates the old dentry and
1345 * allocates a new one if not found or not valid.  In the need_lookup argument
1346 * returns whether i_op->lookup is necessary.
1347 *
1348 * dir->d_inode->i_mutex must be held
1349 */
1350static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir,
1351				    unsigned int flags, bool *need_lookup)
1352{
1353	struct dentry *dentry;
1354	int error;
1355
1356	*need_lookup = false;
1357	dentry = d_lookup(dir, name);
1358	if (dentry) {
1359		if (dentry->d_flags & DCACHE_OP_REVALIDATE) {
1360			error = d_revalidate(dentry, flags);
1361			if (unlikely(error <= 0)) {
1362				if (error < 0) {
1363					dput(dentry);
1364					return ERR_PTR(error);
1365				} else {
1366					d_invalidate(dentry);
1367					dput(dentry);
1368					dentry = NULL;
1369				}
1370			}
1371		}
1372	}
1373
1374	if (!dentry) {
1375		dentry = d_alloc(dir, name);
1376		if (unlikely(!dentry))
1377			return ERR_PTR(-ENOMEM);
1378
1379		*need_lookup = true;
1380	}
1381	return dentry;
1382}
1383
1384/*
1385 * Call i_op->lookup on the dentry.  The dentry must be negative and
1386 * unhashed.
1387 *
1388 * dir->d_inode->i_mutex must be held
1389 */
1390static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry,
1391				  unsigned int flags)
1392{
1393	struct dentry *old;
1394
1395	/* Don't create child dentry for a dead directory. */
1396	if (unlikely(IS_DEADDIR(dir))) {
1397		dput(dentry);
1398		return ERR_PTR(-ENOENT);
1399	}
1400
1401	old = dir->i_op->lookup(dir, dentry, flags);
1402	if (unlikely(old)) {
1403		dput(dentry);
1404		dentry = old;
1405	}
1406	return dentry;
1407}
1408
1409static struct dentry *__lookup_hash(struct qstr *name,
1410		struct dentry *base, unsigned int flags)
1411{
1412	bool need_lookup;
1413	struct dentry *dentry;
1414
1415	dentry = lookup_dcache(name, base, flags, &need_lookup);
1416	if (!need_lookup)
1417		return dentry;
1418
1419	return lookup_real(base->d_inode, dentry, flags);
1420}
1421
1422/*
1423 *  It's more convoluted than I'd like it to be, but... it's still fairly
1424 *  small and for now I'd prefer to have fast path as straight as possible.
1425 *  It _is_ time-critical.
1426 */
1427static int lookup_fast(struct nameidata *nd,
1428		       struct path *path, struct inode **inode)
1429{
1430	struct vfsmount *mnt = nd->path.mnt;
1431	struct dentry *dentry, *parent = nd->path.dentry;
1432	int need_reval = 1;
1433	int status = 1;
1434	int err;
1435
1436	/*
1437	 * Rename seqlock is not required here because in the off chance
1438	 * of a false negative due to a concurrent rename, we're going to
1439	 * do the non-racy lookup, below.
1440	 */
1441	if (nd->flags & LOOKUP_RCU) {
1442		unsigned seq;
1443		bool negative;
1444		dentry = __d_lookup_rcu(parent, &nd->last, &seq);
1445		if (!dentry)
1446			goto unlazy;
1447
1448		/*
1449		 * This sequence count validates that the inode matches
1450		 * the dentry name information from lookup.
1451		 */
1452		*inode = dentry->d_inode;
1453		negative = d_is_negative(dentry);
1454		if (read_seqcount_retry(&dentry->d_seq, seq))
1455			return -ECHILD;
1456
1457		/*
1458		 * This sequence count validates that the parent had no
1459		 * changes while we did the lookup of the dentry above.
1460		 *
1461		 * The memory barrier in read_seqcount_begin of child is
1462		 *  enough, we can use __read_seqcount_retry here.
1463		 */
1464		if (__read_seqcount_retry(&parent->d_seq, nd->seq))
1465			return -ECHILD;
1466		nd->seq = seq;
1467
1468		if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) {
1469			status = d_revalidate(dentry, nd->flags);
1470			if (unlikely(status <= 0)) {
1471				if (status != -ECHILD)
1472					need_reval = 0;
1473				goto unlazy;
1474			}
1475		}
1476		/*
1477		 * Note: do negative dentry check after revalidation in
1478		 * case that drops it.
1479		 */
1480		if (negative)
1481			return -ENOENT;
1482		path->mnt = mnt;
1483		path->dentry = dentry;
1484		if (likely(__follow_mount_rcu(nd, path, inode)))
1485			return 0;
1486unlazy:
1487		if (unlazy_walk(nd, dentry))
1488			return -ECHILD;
1489	} else {
1490		dentry = __d_lookup(parent, &nd->last);
1491	}
1492
1493	if (unlikely(!dentry))
1494		goto need_lookup;
1495
1496	if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval)
1497		status = d_revalidate(dentry, nd->flags);
1498	if (unlikely(status <= 0)) {
1499		if (status < 0) {
1500			dput(dentry);
1501			return status;
1502		}
1503		d_invalidate(dentry);
1504		dput(dentry);
1505		goto need_lookup;
1506	}
1507
1508	if (unlikely(d_is_negative(dentry))) {
1509		dput(dentry);
1510		return -ENOENT;
1511	}
1512	path->mnt = mnt;
1513	path->dentry = dentry;
1514	err = follow_managed(path, nd->flags);
1515	if (unlikely(err < 0)) {
1516		path_put_conditional(path, nd);
1517		return err;
1518	}
1519	if (err)
1520		nd->flags |= LOOKUP_JUMPED;
1521	*inode = path->dentry->d_inode;
1522	return 0;
1523
1524need_lookup:
1525	return 1;
1526}
1527
1528/* Fast lookup failed, do it the slow way */
1529static int lookup_slow(struct nameidata *nd, struct path *path)
1530{
1531	struct dentry *dentry, *parent;
1532	int err;
1533
1534	parent = nd->path.dentry;
1535	BUG_ON(nd->inode != parent->d_inode);
1536
1537	mutex_lock(&parent->d_inode->i_mutex);
1538	dentry = __lookup_hash(&nd->last, parent, nd->flags);
1539	mutex_unlock(&parent->d_inode->i_mutex);
1540	if (IS_ERR(dentry))
1541		return PTR_ERR(dentry);
1542	path->mnt = nd->path.mnt;
1543	path->dentry = dentry;
1544	err = follow_managed(path, nd->flags);
1545	if (unlikely(err < 0)) {
1546		path_put_conditional(path, nd);
1547		return err;
1548	}
1549	if (err)
1550		nd->flags |= LOOKUP_JUMPED;
1551	return 0;
1552}
1553
1554static inline int may_lookup(struct nameidata *nd)
1555{
1556	if (nd->flags & LOOKUP_RCU) {
1557		int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK);
1558		if (err != -ECHILD)
1559			return err;
1560		if (unlazy_walk(nd, NULL))
1561			return -ECHILD;
1562	}
1563	return inode_permission(nd->inode, MAY_EXEC);
1564}
1565
1566static inline int handle_dots(struct nameidata *nd, int type)
1567{
1568	if (type == LAST_DOTDOT) {
1569		if (nd->flags & LOOKUP_RCU) {
1570			if (follow_dotdot_rcu(nd))
1571				return -ECHILD;
1572		} else
1573			return follow_dotdot(nd);
1574	}
1575	return 0;
1576}
1577
1578static void terminate_walk(struct nameidata *nd)
1579{
1580	if (!(nd->flags & LOOKUP_RCU)) {
1581		path_put(&nd->path);
1582	} else {
1583		nd->flags &= ~LOOKUP_RCU;
1584		if (!(nd->flags & LOOKUP_ROOT))
1585			nd->root.mnt = NULL;
1586		rcu_read_unlock();
1587	}
1588}
1589
1590/*
1591 * Do we need to follow links? We _really_ want to be able
1592 * to do this check without having to look at inode->i_op,
1593 * so we keep a cache of "no, this doesn't need follow_link"
1594 * for the common case.
1595 */
1596static inline int should_follow_link(struct dentry *dentry, int follow)
1597{
1598	return unlikely(d_is_symlink(dentry)) ? follow : 0;
1599}
1600
1601static inline int walk_component(struct nameidata *nd, struct path *path,
1602		int follow)
1603{
1604	struct inode *inode;
1605	int err;
1606	/*
1607	 * "." and ".." are special - ".." especially so because it has
1608	 * to be able to know about the current root directory and
1609	 * parent relationships.
1610	 */
1611	if (unlikely(nd->last_type != LAST_NORM))
1612		return handle_dots(nd, nd->last_type);
1613	err = lookup_fast(nd, path, &inode);
1614	if (unlikely(err)) {
1615		if (err < 0)
1616			goto out_err;
1617
1618		err = lookup_slow(nd, path);
1619		if (err < 0)
1620			goto out_err;
1621
1622		err = -ENOENT;
1623		if (d_is_negative(path->dentry))
1624			goto out_path_put;
1625		inode = path->dentry->d_inode;
1626	}
1627
1628	if (should_follow_link(path->dentry, follow)) {
1629		if (nd->flags & LOOKUP_RCU) {
1630			if (unlikely(nd->path.mnt != path->mnt ||
1631				     unlazy_walk(nd, path->dentry))) {
1632				err = -ECHILD;
1633				goto out_err;
1634			}
1635		}
1636		BUG_ON(inode != path->dentry->d_inode);
1637		return 1;
1638	}
1639	path_to_nameidata(path, nd);
1640	nd->inode = inode;
1641	return 0;
1642
1643out_path_put:
1644	path_to_nameidata(path, nd);
1645out_err:
1646	terminate_walk(nd);
1647	return err;
1648}
1649
1650/*
1651 * This limits recursive symlink follows to 8, while
1652 * limiting consecutive symlinks to 40.
1653 *
1654 * Without that kind of total limit, nasty chains of consecutive
1655 * symlinks can cause almost arbitrarily long lookups.
1656 */
1657static inline int nested_symlink(struct path *path, struct nameidata *nd)
1658{
1659	int res;
1660
1661	if (unlikely(current->link_count >= MAX_NESTED_LINKS)) {
1662		path_put_conditional(path, nd);
1663		path_put(&nd->path);
1664		return -ELOOP;
1665	}
1666	BUG_ON(nd->depth >= MAX_NESTED_LINKS);
1667
1668	nd->depth++;
1669	current->link_count++;
1670
1671	do {
1672		struct path link = *path;
1673		void *cookie;
1674
1675		res = follow_link(&link, nd, &cookie);
1676		if (res)
1677			break;
1678		res = walk_component(nd, path, LOOKUP_FOLLOW);
1679		put_link(nd, &link, cookie);
1680	} while (res > 0);
1681
1682	current->link_count--;
1683	nd->depth--;
1684	return res;
1685}
1686
1687/*
1688 * We can do the critical dentry name comparison and hashing
1689 * operations one word at a time, but we are limited to:
1690 *
1691 * - Architectures with fast unaligned word accesses. We could
1692 *   do a "get_unaligned()" if this helps and is sufficiently
1693 *   fast.
1694 *
1695 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we
1696 *   do not trap on the (extremely unlikely) case of a page
1697 *   crossing operation.
1698 *
1699 * - Furthermore, we need an efficient 64-bit compile for the
1700 *   64-bit case in order to generate the "number of bytes in
1701 *   the final mask". Again, that could be replaced with a
1702 *   efficient population count instruction or similar.
1703 */
1704#ifdef CONFIG_DCACHE_WORD_ACCESS
1705
1706#include <asm/word-at-a-time.h>
1707
1708#ifdef CONFIG_64BIT
1709
1710static inline unsigned int fold_hash(unsigned long hash)
1711{
1712	return hash_64(hash, 32);
1713}
1714
1715#else	/* 32-bit case */
1716
1717#define fold_hash(x) (x)
1718
1719#endif
1720
1721unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1722{
1723	unsigned long a, mask;
1724	unsigned long hash = 0;
1725
1726	for (;;) {
1727		a = load_unaligned_zeropad(name);
1728		if (len < sizeof(unsigned long))
1729			break;
1730		hash += a;
1731		hash *= 9;
1732		name += sizeof(unsigned long);
1733		len -= sizeof(unsigned long);
1734		if (!len)
1735			goto done;
1736	}
1737	mask = bytemask_from_count(len);
1738	hash += mask & a;
1739done:
1740	return fold_hash(hash);
1741}
1742EXPORT_SYMBOL(full_name_hash);
1743
1744/*
1745 * Calculate the length and hash of the path component, and
1746 * return the "hash_len" as the result.
1747 */
1748static inline u64 hash_name(const char *name)
1749{
1750	unsigned long a, b, adata, bdata, mask, hash, len;
1751	const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS;
1752
1753	hash = a = 0;
1754	len = -sizeof(unsigned long);
1755	do {
1756		hash = (hash + a) * 9;
1757		len += sizeof(unsigned long);
1758		a = load_unaligned_zeropad(name+len);
1759		b = a ^ REPEAT_BYTE('/');
1760	} while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants)));
1761
1762	adata = prep_zero_mask(a, adata, &constants);
1763	bdata = prep_zero_mask(b, bdata, &constants);
1764
1765	mask = create_zero_mask(adata | bdata);
1766
1767	hash += a & zero_bytemask(mask);
1768	len += find_zero(mask);
1769	return hashlen_create(fold_hash(hash), len);
1770}
1771
1772#else
1773
1774unsigned int full_name_hash(const unsigned char *name, unsigned int len)
1775{
1776	unsigned long hash = init_name_hash();
1777	while (len--)
1778		hash = partial_name_hash(*name++, hash);
1779	return end_name_hash(hash);
1780}
1781EXPORT_SYMBOL(full_name_hash);
1782
1783/*
1784 * We know there's a real path component here of at least
1785 * one character.
1786 */
1787static inline u64 hash_name(const char *name)
1788{
1789	unsigned long hash = init_name_hash();
1790	unsigned long len = 0, c;
1791
1792	c = (unsigned char)*name;
1793	do {
1794		len++;
1795		hash = partial_name_hash(c, hash);
1796		c = (unsigned char)name[len];
1797	} while (c && c != '/');
1798	return hashlen_create(end_name_hash(hash), len);
1799}
1800
1801#endif
1802
1803/*
1804 * Name resolution.
1805 * This is the basic name resolution function, turning a pathname into
1806 * the final dentry. We expect 'base' to be positive and a directory.
1807 *
1808 * Returns 0 and nd will have valid dentry and mnt on success.
1809 * Returns error and drops reference to input namei data on failure.
1810 */
1811static int link_path_walk(const char *name, struct nameidata *nd)
1812{
1813	struct path next;
1814	int err;
1815
1816	while (*name=='/')
1817		name++;
1818	if (!*name)
1819		return 0;
1820
1821	/* At this point we know we have a real path component. */
1822	for(;;) {
1823		u64 hash_len;
1824		int type;
1825
1826		err = may_lookup(nd);
1827 		if (err)
1828			break;
1829
1830		hash_len = hash_name(name);
1831
1832		type = LAST_NORM;
1833		if (name[0] == '.') switch (hashlen_len(hash_len)) {
1834			case 2:
1835				if (name[1] == '.') {
1836					type = LAST_DOTDOT;
1837					nd->flags |= LOOKUP_JUMPED;
1838				}
1839				break;
1840			case 1:
1841				type = LAST_DOT;
1842		}
1843		if (likely(type == LAST_NORM)) {
1844			struct dentry *parent = nd->path.dentry;
1845			nd->flags &= ~LOOKUP_JUMPED;
1846			if (unlikely(parent->d_flags & DCACHE_OP_HASH)) {
1847				struct qstr this = { { .hash_len = hash_len }, .name = name };
1848				err = parent->d_op->d_hash(parent, &this);
1849				if (err < 0)
1850					break;
1851				hash_len = this.hash_len;
1852				name = this.name;
1853			}
1854		}
1855
1856		nd->last.hash_len = hash_len;
1857		nd->last.name = name;
1858		nd->last_type = type;
1859
1860		name += hashlen_len(hash_len);
1861		if (!*name)
1862			return 0;
1863		/*
1864		 * If it wasn't NUL, we know it was '/'. Skip that
1865		 * slash, and continue until no more slashes.
1866		 */
1867		do {
1868			name++;
1869		} while (unlikely(*name == '/'));
1870		if (!*name)
1871			return 0;
1872
1873		err = walk_component(nd, &next, LOOKUP_FOLLOW);
1874		if (err < 0)
1875			return err;
1876
1877		if (err) {
1878			err = nested_symlink(&next, nd);
1879			if (err)
1880				return err;
1881		}
1882		if (!d_can_lookup(nd->path.dentry)) {
1883			err = -ENOTDIR;
1884			break;
1885		}
1886	}
1887	terminate_walk(nd);
1888	return err;
1889}
1890
1891static int path_init(int dfd, const struct filename *name, unsigned int flags,
1892		     struct nameidata *nd)
1893{
1894	int retval = 0;
1895	const char *s = name->name;
1896
1897	nd->last_type = LAST_ROOT; /* if there are only slashes... */
1898	nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT;
1899	nd->depth = 0;
1900	nd->base = NULL;
1901	if (flags & LOOKUP_ROOT) {
1902		struct dentry *root = nd->root.dentry;
1903		struct inode *inode = root->d_inode;
1904		if (*s) {
1905			if (!d_can_lookup(root))
1906				return -ENOTDIR;
1907			retval = inode_permission(inode, MAY_EXEC);
1908			if (retval)
1909				return retval;
1910		}
1911		nd->path = nd->root;
1912		nd->inode = inode;
1913		if (flags & LOOKUP_RCU) {
1914			rcu_read_lock();
1915			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1916			nd->m_seq = read_seqbegin(&mount_lock);
1917		} else {
1918			path_get(&nd->path);
1919		}
1920		goto done;
1921	}
1922
1923	nd->root.mnt = NULL;
1924
1925	nd->m_seq = read_seqbegin(&mount_lock);
1926	if (*s == '/') {
1927		if (flags & LOOKUP_RCU) {
1928			rcu_read_lock();
1929			nd->seq = set_root_rcu(nd);
1930		} else {
1931			set_root(nd);
1932			path_get(&nd->root);
1933		}
1934		nd->path = nd->root;
1935	} else if (dfd == AT_FDCWD) {
1936		if (flags & LOOKUP_RCU) {
1937			struct fs_struct *fs = current->fs;
1938			unsigned seq;
1939
1940			rcu_read_lock();
1941
1942			do {
1943				seq = read_seqcount_begin(&fs->seq);
1944				nd->path = fs->pwd;
1945				nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1946			} while (read_seqcount_retry(&fs->seq, seq));
1947		} else {
1948			get_fs_pwd(current->fs, &nd->path);
1949		}
1950	} else {
1951		/* Caller must check execute permissions on the starting path component */
1952		struct fd f = fdget_raw(dfd);
1953		struct dentry *dentry;
1954
1955		if (!f.file)
1956			return -EBADF;
1957
1958		dentry = f.file->f_path.dentry;
1959
1960		if (*s) {
1961			if (!d_can_lookup(dentry)) {
1962				fdput(f);
1963				return -ENOTDIR;
1964			}
1965		}
1966
1967		nd->path = f.file->f_path;
1968		if (flags & LOOKUP_RCU) {
1969			if (f.flags & FDPUT_FPUT)
1970				nd->base = f.file;
1971			nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq);
1972			rcu_read_lock();
1973		} else {
1974			path_get(&nd->path);
1975			fdput(f);
1976		}
1977	}
1978
1979	nd->inode = nd->path.dentry->d_inode;
1980	if (!(flags & LOOKUP_RCU))
1981		goto done;
1982	if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq)))
1983		goto done;
1984	if (!(nd->flags & LOOKUP_ROOT))
1985		nd->root.mnt = NULL;
1986	rcu_read_unlock();
1987	return -ECHILD;
1988done:
1989	current->total_link_count = 0;
1990	return link_path_walk(s, nd);
1991}
1992
1993static void path_cleanup(struct nameidata *nd)
1994{
1995	if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) {
1996		path_put(&nd->root);
1997		nd->root.mnt = NULL;
1998	}
1999	if (unlikely(nd->base))
2000		fput(nd->base);
2001}
2002
2003static inline int lookup_last(struct nameidata *nd, struct path *path)
2004{
2005	if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len])
2006		nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2007
2008	nd->flags &= ~LOOKUP_PARENT;
2009	return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW);
2010}
2011
2012/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
2013static int path_lookupat(int dfd, const struct filename *name,
2014				unsigned int flags, struct nameidata *nd)
2015{
2016	struct path path;
2017	int err;
2018
2019	/*
2020	 * Path walking is largely split up into 2 different synchronisation
2021	 * schemes, rcu-walk and ref-walk (explained in
2022	 * Documentation/filesystems/path-lookup.txt). These share much of the
2023	 * path walk code, but some things particularly setup, cleanup, and
2024	 * following mounts are sufficiently divergent that functions are
2025	 * duplicated. Typically there is a function foo(), and its RCU
2026	 * analogue, foo_rcu().
2027	 *
2028	 * -ECHILD is the error number of choice (just to avoid clashes) that
2029	 * is returned if some aspect of an rcu-walk fails. Such an error must
2030	 * be handled by restarting a traditional ref-walk (which will always
2031	 * be able to complete).
2032	 */
2033	err = path_init(dfd, name, flags, nd);
2034	if (!err && !(flags & LOOKUP_PARENT)) {
2035		err = lookup_last(nd, &path);
2036		while (err > 0) {
2037			void *cookie;
2038			struct path link = path;
2039			err = may_follow_link(&link, nd);
2040			if (unlikely(err))
2041				break;
2042			nd->flags |= LOOKUP_PARENT;
2043			err = follow_link(&link, nd, &cookie);
2044			if (err)
2045				break;
2046			err = lookup_last(nd, &path);
2047			put_link(nd, &link, cookie);
2048		}
2049	}
2050
2051	if (!err)
2052		err = complete_walk(nd);
2053
2054	if (!err && nd->flags & LOOKUP_DIRECTORY) {
2055		if (!d_can_lookup(nd->path.dentry)) {
2056			path_put(&nd->path);
2057			err = -ENOTDIR;
2058		}
2059	}
2060
2061	path_cleanup(nd);
2062	return err;
2063}
2064
2065static int filename_lookup(int dfd, struct filename *name,
2066				unsigned int flags, struct nameidata *nd)
2067{
2068	int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd);
2069	if (unlikely(retval == -ECHILD))
2070		retval = path_lookupat(dfd, name, flags, nd);
2071	if (unlikely(retval == -ESTALE))
2072		retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd);
2073
2074	if (likely(!retval))
2075		audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT);
2076	return retval;
2077}
2078
2079/* does lookup, returns the object with parent locked */
2080struct dentry *kern_path_locked(const char *name, struct path *path)
2081{
2082	struct filename *filename = getname_kernel(name);
2083	struct nameidata nd;
2084	struct dentry *d;
2085	int err;
2086
2087	if (IS_ERR(filename))
2088		return ERR_CAST(filename);
2089
2090	err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd);
2091	if (err) {
2092		d = ERR_PTR(err);
2093		goto out;
2094	}
2095	if (nd.last_type != LAST_NORM) {
2096		path_put(&nd.path);
2097		d = ERR_PTR(-EINVAL);
2098		goto out;
2099	}
2100	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2101	d = __lookup_hash(&nd.last, nd.path.dentry, 0);
2102	if (IS_ERR(d)) {
2103		mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2104		path_put(&nd.path);
2105		goto out;
2106	}
2107	*path = nd.path;
2108out:
2109	putname(filename);
2110	return d;
2111}
2112
2113int kern_path(const char *name, unsigned int flags, struct path *path)
2114{
2115	struct nameidata nd;
2116	struct filename *filename = getname_kernel(name);
2117	int res = PTR_ERR(filename);
2118
2119	if (!IS_ERR(filename)) {
2120		res = filename_lookup(AT_FDCWD, filename, flags, &nd);
2121		putname(filename);
2122		if (!res)
2123			*path = nd.path;
2124	}
2125	return res;
2126}
2127EXPORT_SYMBOL(kern_path);
2128
2129/**
2130 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
2131 * @dentry:  pointer to dentry of the base directory
2132 * @mnt: pointer to vfs mount of the base directory
2133 * @name: pointer to file name
2134 * @flags: lookup flags
2135 * @path: pointer to struct path to fill
2136 */
2137int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
2138		    const char *name, unsigned int flags,
2139		    struct path *path)
2140{
2141	struct filename *filename = getname_kernel(name);
2142	int err = PTR_ERR(filename);
2143
2144	BUG_ON(flags & LOOKUP_PARENT);
2145
2146	/* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */
2147	if (!IS_ERR(filename)) {
2148		struct nameidata nd;
2149		nd.root.dentry = dentry;
2150		nd.root.mnt = mnt;
2151		err = filename_lookup(AT_FDCWD, filename,
2152				      flags | LOOKUP_ROOT, &nd);
2153		if (!err)
2154			*path = nd.path;
2155		putname(filename);
2156	}
2157	return err;
2158}
2159EXPORT_SYMBOL(vfs_path_lookup);
2160
2161/*
2162 * Restricted form of lookup. Doesn't follow links, single-component only,
2163 * needs parent already locked. Doesn't follow mounts.
2164 * SMP-safe.
2165 */
2166static struct dentry *lookup_hash(struct nameidata *nd)
2167{
2168	return __lookup_hash(&nd->last, nd->path.dentry, nd->flags);
2169}
2170
2171/**
2172 * lookup_one_len - filesystem helper to lookup single pathname component
2173 * @name:	pathname component to lookup
2174 * @base:	base directory to lookup from
2175 * @len:	maximum length @len should be interpreted to
2176 *
2177 * Note that this routine is purely a helper for filesystem usage and should
2178 * not be called by generic code.
2179 */
2180struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
2181{
2182	struct qstr this;
2183	unsigned int c;
2184	int err;
2185
2186	WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
2187
2188	this.name = name;
2189	this.len = len;
2190	this.hash = full_name_hash(name, len);
2191	if (!len)
2192		return ERR_PTR(-EACCES);
2193
2194	if (unlikely(name[0] == '.')) {
2195		if (len < 2 || (len == 2 && name[1] == '.'))
2196			return ERR_PTR(-EACCES);
2197	}
2198
2199	while (len--) {
2200		c = *(const unsigned char *)name++;
2201		if (c == '/' || c == '\0')
2202			return ERR_PTR(-EACCES);
2203	}
2204	/*
2205	 * See if the low-level filesystem might want
2206	 * to use its own hash..
2207	 */
2208	if (base->d_flags & DCACHE_OP_HASH) {
2209		int err = base->d_op->d_hash(base, &this);
2210		if (err < 0)
2211			return ERR_PTR(err);
2212	}
2213
2214	err = inode_permission(base->d_inode, MAY_EXEC);
2215	if (err)
2216		return ERR_PTR(err);
2217
2218	return __lookup_hash(&this, base, 0);
2219}
2220EXPORT_SYMBOL(lookup_one_len);
2221
2222int user_path_at_empty(int dfd, const char __user *name, unsigned flags,
2223		 struct path *path, int *empty)
2224{
2225	struct nameidata nd;
2226	struct filename *tmp = getname_flags(name, flags, empty);
2227	int err = PTR_ERR(tmp);
2228	if (!IS_ERR(tmp)) {
2229
2230		BUG_ON(flags & LOOKUP_PARENT);
2231
2232		err = filename_lookup(dfd, tmp, flags, &nd);
2233		putname(tmp);
2234		if (!err)
2235			*path = nd.path;
2236	}
2237	return err;
2238}
2239
2240int user_path_at(int dfd, const char __user *name, unsigned flags,
2241		 struct path *path)
2242{
2243	return user_path_at_empty(dfd, name, flags, path, NULL);
2244}
2245EXPORT_SYMBOL(user_path_at);
2246
2247/*
2248 * NB: most callers don't do anything directly with the reference to the
2249 *     to struct filename, but the nd->last pointer points into the name string
2250 *     allocated by getname. So we must hold the reference to it until all
2251 *     path-walking is complete.
2252 */
2253static struct filename *
2254user_path_parent(int dfd, const char __user *path, struct nameidata *nd,
2255		 unsigned int flags)
2256{
2257	struct filename *s = getname(path);
2258	int error;
2259
2260	/* only LOOKUP_REVAL is allowed in extra flags */
2261	flags &= LOOKUP_REVAL;
2262
2263	if (IS_ERR(s))
2264		return s;
2265
2266	error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd);
2267	if (error) {
2268		putname(s);
2269		return ERR_PTR(error);
2270	}
2271
2272	return s;
2273}
2274
2275/**
2276 * mountpoint_last - look up last component for umount
2277 * @nd:   pathwalk nameidata - currently pointing at parent directory of "last"
2278 * @path: pointer to container for result
2279 *
2280 * This is a special lookup_last function just for umount. In this case, we
2281 * need to resolve the path without doing any revalidation.
2282 *
2283 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since
2284 * mountpoints are always pinned in the dcache, their ancestors are too. Thus,
2285 * in almost all cases, this lookup will be served out of the dcache. The only
2286 * cases where it won't are if nd->last refers to a symlink or the path is
2287 * bogus and it doesn't exist.
2288 *
2289 * Returns:
2290 * -error: if there was an error during lookup. This includes -ENOENT if the
2291 *         lookup found a negative dentry. The nd->path reference will also be
2292 *         put in this case.
2293 *
2294 * 0:      if we successfully resolved nd->path and found it to not to be a
2295 *         symlink that needs to be followed. "path" will also be populated.
2296 *         The nd->path reference will also be put.
2297 *
2298 * 1:      if we successfully resolved nd->last and found it to be a symlink
2299 *         that needs to be followed. "path" will be populated with the path
2300 *         to the link, and nd->path will *not* be put.
2301 */
2302static int
2303mountpoint_last(struct nameidata *nd, struct path *path)
2304{
2305	int error = 0;
2306	struct dentry *dentry;
2307	struct dentry *dir = nd->path.dentry;
2308
2309	/* If we're in rcuwalk, drop out of it to handle last component */
2310	if (nd->flags & LOOKUP_RCU) {
2311		if (unlazy_walk(nd, NULL)) {
2312			error = -ECHILD;
2313			goto out;
2314		}
2315	}
2316
2317	nd->flags &= ~LOOKUP_PARENT;
2318
2319	if (unlikely(nd->last_type != LAST_NORM)) {
2320		error = handle_dots(nd, nd->last_type);
2321		if (error)
2322			return error;
2323		dentry = dget(nd->path.dentry);
2324		goto done;
2325	}
2326
2327	mutex_lock(&dir->d_inode->i_mutex);
2328	dentry = d_lookup(dir, &nd->last);
2329	if (!dentry) {
2330		/*
2331		 * No cached dentry. Mounted dentries are pinned in the cache,
2332		 * so that means that this dentry is probably a symlink or the
2333		 * path doesn't actually point to a mounted dentry.
2334		 */
2335		dentry = d_alloc(dir, &nd->last);
2336		if (!dentry) {
2337			error = -ENOMEM;
2338			mutex_unlock(&dir->d_inode->i_mutex);
2339			goto out;
2340		}
2341		dentry = lookup_real(dir->d_inode, dentry, nd->flags);
2342		error = PTR_ERR(dentry);
2343		if (IS_ERR(dentry)) {
2344			mutex_unlock(&dir->d_inode->i_mutex);
2345			goto out;
2346		}
2347	}
2348	mutex_unlock(&dir->d_inode->i_mutex);
2349
2350done:
2351	if (d_is_negative(dentry)) {
2352		error = -ENOENT;
2353		dput(dentry);
2354		goto out;
2355	}
2356	path->dentry = dentry;
2357	path->mnt = nd->path.mnt;
2358	if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW))
2359		return 1;
2360	mntget(path->mnt);
2361	follow_mount(path);
2362	error = 0;
2363out:
2364	terminate_walk(nd);
2365	return error;
2366}
2367
2368/**
2369 * path_mountpoint - look up a path to be umounted
2370 * @dfd:	directory file descriptor to start walk from
2371 * @name:	full pathname to walk
2372 * @path:	pointer to container for result
2373 * @flags:	lookup flags
2374 *
2375 * Look up the given name, but don't attempt to revalidate the last component.
2376 * Returns 0 and "path" will be valid on success; Returns error otherwise.
2377 */
2378static int
2379path_mountpoint(int dfd, const struct filename *name, struct path *path,
2380		unsigned int flags)
2381{
2382	struct nameidata nd;
2383	int err;
2384
2385	err = path_init(dfd, name, flags, &nd);
2386	if (unlikely(err))
2387		goto out;
2388
2389	err = mountpoint_last(&nd, path);
2390	while (err > 0) {
2391		void *cookie;
2392		struct path link = *path;
2393		err = may_follow_link(&link, &nd);
2394		if (unlikely(err))
2395			break;
2396		nd.flags |= LOOKUP_PARENT;
2397		err = follow_link(&link, &nd, &cookie);
2398		if (err)
2399			break;
2400		err = mountpoint_last(&nd, path);
2401		put_link(&nd, &link, cookie);
2402	}
2403out:
2404	path_cleanup(&nd);
2405	return err;
2406}
2407
2408static int
2409filename_mountpoint(int dfd, struct filename *name, struct path *path,
2410			unsigned int flags)
2411{
2412	int error;
2413	if (IS_ERR(name))
2414		return PTR_ERR(name);
2415	error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU);
2416	if (unlikely(error == -ECHILD))
2417		error = path_mountpoint(dfd, name, path, flags);
2418	if (unlikely(error == -ESTALE))
2419		error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL);
2420	if (likely(!error))
2421		audit_inode(name, path->dentry, 0);
2422	putname(name);
2423	return error;
2424}
2425
2426/**
2427 * user_path_mountpoint_at - lookup a path from userland in order to umount it
2428 * @dfd:	directory file descriptor
2429 * @name:	pathname from userland
2430 * @flags:	lookup flags
2431 * @path:	pointer to container to hold result
2432 *
2433 * A umount is a special case for path walking. We're not actually interested
2434 * in the inode in this situation, and ESTALE errors can be a problem. We
2435 * simply want track down the dentry and vfsmount attached at the mountpoint
2436 * and avoid revalidating the last component.
2437 *
2438 * Returns 0 and populates "path" on success.
2439 */
2440int
2441user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags,
2442			struct path *path)
2443{
2444	return filename_mountpoint(dfd, getname(name), path, flags);
2445}
2446
2447int
2448kern_path_mountpoint(int dfd, const char *name, struct path *path,
2449			unsigned int flags)
2450{
2451	return filename_mountpoint(dfd, getname_kernel(name), path, flags);
2452}
2453EXPORT_SYMBOL(kern_path_mountpoint);
2454
2455int __check_sticky(struct inode *dir, struct inode *inode)
2456{
2457	kuid_t fsuid = current_fsuid();
2458
2459	if (uid_eq(inode->i_uid, fsuid))
2460		return 0;
2461	if (uid_eq(dir->i_uid, fsuid))
2462		return 0;
2463	return !capable_wrt_inode_uidgid(inode, CAP_FOWNER);
2464}
2465EXPORT_SYMBOL(__check_sticky);
2466
2467/*
2468 *	Check whether we can remove a link victim from directory dir, check
2469 *  whether the type of victim is right.
2470 *  1. We can't do it if dir is read-only (done in permission())
2471 *  2. We should have write and exec permissions on dir
2472 *  3. We can't remove anything from append-only dir
2473 *  4. We can't do anything with immutable dir (done in permission())
2474 *  5. If the sticky bit on dir is set we should either
2475 *	a. be owner of dir, or
2476 *	b. be owner of victim, or
2477 *	c. have CAP_FOWNER capability
2478 *  6. If the victim is append-only or immutable we can't do antyhing with
2479 *     links pointing to it.
2480 *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
2481 *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
2482 *  9. We can't remove a root or mountpoint.
2483 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
2484 *     nfs_async_unlink().
2485 */
2486static int may_delete(struct inode *dir, struct dentry *victim, bool isdir)
2487{
2488	struct inode *inode = victim->d_inode;
2489	int error;
2490
2491	if (d_is_negative(victim))
2492		return -ENOENT;
2493	BUG_ON(!inode);
2494
2495	BUG_ON(victim->d_parent->d_inode != dir);
2496	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
2497
2498	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
2499	if (error)
2500		return error;
2501	if (IS_APPEND(dir))
2502		return -EPERM;
2503
2504	if (check_sticky(dir, inode) || IS_APPEND(inode) ||
2505	    IS_IMMUTABLE(inode) || IS_SWAPFILE(inode))
2506		return -EPERM;
2507	if (isdir) {
2508		if (!d_is_dir(victim))
2509			return -ENOTDIR;
2510		if (IS_ROOT(victim))
2511			return -EBUSY;
2512	} else if (d_is_dir(victim))
2513		return -EISDIR;
2514	if (IS_DEADDIR(dir))
2515		return -ENOENT;
2516	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
2517		return -EBUSY;
2518	return 0;
2519}
2520
2521/*	Check whether we can create an object with dentry child in directory
2522 *  dir.
2523 *  1. We can't do it if child already exists (open has special treatment for
2524 *     this case, but since we are inlined it's OK)
2525 *  2. We can't do it if dir is read-only (done in permission())
2526 *  3. We should have write and exec permissions on dir
2527 *  4. We can't do it if dir is immutable (done in permission())
2528 */
2529static inline int may_create(struct inode *dir, struct dentry *child)
2530{
2531	audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE);
2532	if (child->d_inode)
2533		return -EEXIST;
2534	if (IS_DEADDIR(dir))
2535		return -ENOENT;
2536	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
2537}
2538
2539/*
2540 * p1 and p2 should be directories on the same fs.
2541 */
2542struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
2543{
2544	struct dentry *p;
2545
2546	if (p1 == p2) {
2547		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2548		return NULL;
2549	}
2550
2551	mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2552
2553	p = d_ancestor(p2, p1);
2554	if (p) {
2555		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
2556		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
2557		return p;
2558	}
2559
2560	p = d_ancestor(p1, p2);
2561	if (p) {
2562		mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2563		mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
2564		return p;
2565	}
2566
2567	mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
2568	mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2);
2569	return NULL;
2570}
2571EXPORT_SYMBOL(lock_rename);
2572
2573void unlock_rename(struct dentry *p1, struct dentry *p2)
2574{
2575	mutex_unlock(&p1->d_inode->i_mutex);
2576	if (p1 != p2) {
2577		mutex_unlock(&p2->d_inode->i_mutex);
2578		mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
2579	}
2580}
2581EXPORT_SYMBOL(unlock_rename);
2582
2583int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2584		bool want_excl)
2585{
2586	int error = may_create(dir, dentry);
2587	if (error)
2588		return error;
2589
2590	if (!dir->i_op->create)
2591		return -EACCES;	/* shouldn't it be ENOSYS? */
2592	mode &= S_IALLUGO;
2593	mode |= S_IFREG;
2594	error = security_inode_create(dir, dentry, mode);
2595	if (error)
2596		return error;
2597	error = dir->i_op->create(dir, dentry, mode, want_excl);
2598	if (!error)
2599		fsnotify_create(dir, dentry);
2600	return error;
2601}
2602EXPORT_SYMBOL(vfs_create);
2603
2604static int may_open(struct path *path, int acc_mode, int flag)
2605{
2606	struct dentry *dentry = path->dentry;
2607	struct inode *inode = dentry->d_inode;
2608	int error;
2609
2610	/* O_PATH? */
2611	if (!acc_mode)
2612		return 0;
2613
2614	if (!inode)
2615		return -ENOENT;
2616
2617	switch (inode->i_mode & S_IFMT) {
2618	case S_IFLNK:
2619		return -ELOOP;
2620	case S_IFDIR:
2621		if (acc_mode & MAY_WRITE)
2622			return -EISDIR;
2623		break;
2624	case S_IFBLK:
2625	case S_IFCHR:
2626		if (path->mnt->mnt_flags & MNT_NODEV)
2627			return -EACCES;
2628		/*FALLTHRU*/
2629	case S_IFIFO:
2630	case S_IFSOCK:
2631		flag &= ~O_TRUNC;
2632		break;
2633	}
2634
2635	error = inode_permission(inode, acc_mode);
2636	if (error)
2637		return error;
2638
2639	/*
2640	 * An append-only file must be opened in append mode for writing.
2641	 */
2642	if (IS_APPEND(inode)) {
2643		if  ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND))
2644			return -EPERM;
2645		if (flag & O_TRUNC)
2646			return -EPERM;
2647	}
2648
2649	/* O_NOATIME can only be set by the owner or superuser */
2650	if (flag & O_NOATIME && !inode_owner_or_capable(inode))
2651		return -EPERM;
2652
2653	return 0;
2654}
2655
2656static int handle_truncate(struct file *filp)
2657{
2658	struct path *path = &filp->f_path;
2659	struct inode *inode = path->dentry->d_inode;
2660	int error = get_write_access(inode);
2661	if (error)
2662		return error;
2663	/*
2664	 * Refuse to truncate files with mandatory locks held on them.
2665	 */
2666	error = locks_verify_locked(filp);
2667	if (!error)
2668		error = security_path_truncate(path);
2669	if (!error) {
2670		error = do_truncate(path->dentry, 0,
2671				    ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
2672				    filp);
2673	}
2674	put_write_access(inode);
2675	return error;
2676}
2677
2678static inline int open_to_namei_flags(int flag)
2679{
2680	if ((flag & O_ACCMODE) == 3)
2681		flag--;
2682	return flag;
2683}
2684
2685static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode)
2686{
2687	int error = security_path_mknod(dir, dentry, mode, 0);
2688	if (error)
2689		return error;
2690
2691	error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC);
2692	if (error)
2693		return error;
2694
2695	return security_inode_create(dir->dentry->d_inode, dentry, mode);
2696}
2697
2698/*
2699 * Attempt to atomically look up, create and open a file from a negative
2700 * dentry.
2701 *
2702 * Returns 0 if successful.  The file will have been created and attached to
2703 * @file by the filesystem calling finish_open().
2704 *
2705 * Returns 1 if the file was looked up only or didn't need creating.  The
2706 * caller will need to perform the open themselves.  @path will have been
2707 * updated to point to the new dentry.  This may be negative.
2708 *
2709 * Returns an error code otherwise.
2710 */
2711static int atomic_open(struct nameidata *nd, struct dentry *dentry,
2712			struct path *path, struct file *file,
2713			const struct open_flags *op,
2714			bool got_write, bool need_lookup,
2715			int *opened)
2716{
2717	struct inode *dir =  nd->path.dentry->d_inode;
2718	unsigned open_flag = open_to_namei_flags(op->open_flag);
2719	umode_t mode;
2720	int error;
2721	int acc_mode;
2722	int create_error = 0;
2723	struct dentry *const DENTRY_NOT_SET = (void *) -1UL;
2724	bool excl;
2725
2726	BUG_ON(dentry->d_inode);
2727
2728	/* Don't create child dentry for a dead directory. */
2729	if (unlikely(IS_DEADDIR(dir))) {
2730		error = -ENOENT;
2731		goto out;
2732	}
2733
2734	mode = op->mode;
2735	if ((open_flag & O_CREAT) && !IS_POSIXACL(dir))
2736		mode &= ~current_umask();
2737
2738	excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT);
2739	if (excl)
2740		open_flag &= ~O_TRUNC;
2741
2742	/*
2743	 * Checking write permission is tricky, bacuse we don't know if we are
2744	 * going to actually need it: O_CREAT opens should work as long as the
2745	 * file exists.  But checking existence breaks atomicity.  The trick is
2746	 * to check access and if not granted clear O_CREAT from the flags.
2747	 *
2748	 * Another problem is returing the "right" error value (e.g. for an
2749	 * O_EXCL open we want to return EEXIST not EROFS).
2750	 */
2751	if (((open_flag & (O_CREAT | O_TRUNC)) ||
2752	    (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) {
2753		if (!(open_flag & O_CREAT)) {
2754			/*
2755			 * No O_CREATE -> atomicity not a requirement -> fall
2756			 * back to lookup + open
2757			 */
2758			goto no_open;
2759		} else if (open_flag & (O_EXCL | O_TRUNC)) {
2760			/* Fall back and fail with the right error */
2761			create_error = -EROFS;
2762			goto no_open;
2763		} else {
2764			/* No side effects, safe to clear O_CREAT */
2765			create_error = -EROFS;
2766			open_flag &= ~O_CREAT;
2767		}
2768	}
2769
2770	if (open_flag & O_CREAT) {
2771		error = may_o_create(&nd->path, dentry, mode);
2772		if (error) {
2773			create_error = error;
2774			if (open_flag & O_EXCL)
2775				goto no_open;
2776			open_flag &= ~O_CREAT;
2777		}
2778	}
2779
2780	if (nd->flags & LOOKUP_DIRECTORY)
2781		open_flag |= O_DIRECTORY;
2782
2783	file->f_path.dentry = DENTRY_NOT_SET;
2784	file->f_path.mnt = nd->path.mnt;
2785	error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode,
2786				      opened);
2787	if (error < 0) {
2788		if (create_error && error == -ENOENT)
2789			error = create_error;
2790		goto out;
2791	}
2792
2793	if (error) {	/* returned 1, that is */
2794		if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) {
2795			error = -EIO;
2796			goto out;
2797		}
2798		if (file->f_path.dentry) {
2799			dput(dentry);
2800			dentry = file->f_path.dentry;
2801		}
2802		if (*opened & FILE_CREATED)
2803			fsnotify_create(dir, dentry);
2804		if (!dentry->d_inode) {
2805			WARN_ON(*opened & FILE_CREATED);
2806			if (create_error) {
2807				error = create_error;
2808				goto out;
2809			}
2810		} else {
2811			if (excl && !(*opened & FILE_CREATED)) {
2812				error = -EEXIST;
2813				goto out;
2814			}
2815		}
2816		goto looked_up;
2817	}
2818
2819	/*
2820	 * We didn't have the inode before the open, so check open permission
2821	 * here.
2822	 */
2823	acc_mode = op->acc_mode;
2824	if (*opened & FILE_CREATED) {
2825		WARN_ON(!(open_flag & O_CREAT));
2826		fsnotify_create(dir, dentry);
2827		acc_mode = MAY_OPEN;
2828	}
2829	error = may_open(&file->f_path, acc_mode, open_flag);
2830	if (error)
2831		fput(file);
2832
2833out:
2834	dput(dentry);
2835	return error;
2836
2837no_open:
2838	if (need_lookup) {
2839		dentry = lookup_real(dir, dentry, nd->flags);
2840		if (IS_ERR(dentry))
2841			return PTR_ERR(dentry);
2842	}
2843	if (create_error && !dentry->d_inode) {
2844		error = create_error;
2845		goto out;
2846	}
2847looked_up:
2848	path->dentry = dentry;
2849	path->mnt = nd->path.mnt;
2850	return 1;
2851}
2852
2853/*
2854 * Look up and maybe create and open the last component.
2855 *
2856 * Must be called with i_mutex held on parent.
2857 *
2858 * Returns 0 if the file was successfully atomically created (if necessary) and
2859 * opened.  In this case the file will be returned attached to @file.
2860 *
2861 * Returns 1 if the file was not completely opened at this time, though lookups
2862 * and creations will have been performed and the dentry returned in @path will
2863 * be positive upon return if O_CREAT was specified.  If O_CREAT wasn't
2864 * specified then a negative dentry may be returned.
2865 *
2866 * An error code is returned otherwise.
2867 *
2868 * FILE_CREATE will be set in @*opened if the dentry was created and will be
2869 * cleared otherwise prior to returning.
2870 */
2871static int lookup_open(struct nameidata *nd, struct path *path,
2872			struct file *file,
2873			const struct open_flags *op,
2874			bool got_write, int *opened)
2875{
2876	struct dentry *dir = nd->path.dentry;
2877	struct inode *dir_inode = dir->d_inode;
2878	struct dentry *dentry;
2879	int error;
2880	bool need_lookup;
2881
2882	*opened &= ~FILE_CREATED;
2883	dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup);
2884	if (IS_ERR(dentry))
2885		return PTR_ERR(dentry);
2886
2887	/* Cached positive dentry: will open in f_op->open */
2888	if (!need_lookup && dentry->d_inode)
2889		goto out_no_open;
2890
2891	if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) {
2892		return atomic_open(nd, dentry, path, file, op, got_write,
2893				   need_lookup, opened);
2894	}
2895
2896	if (need_lookup) {
2897		BUG_ON(dentry->d_inode);
2898
2899		dentry = lookup_real(dir_inode, dentry, nd->flags);
2900		if (IS_ERR(dentry))
2901			return PTR_ERR(dentry);
2902	}
2903
2904	/* Negative dentry, just create the file */
2905	if (!dentry->d_inode && (op->open_flag & O_CREAT)) {
2906		umode_t mode = op->mode;
2907		if (!IS_POSIXACL(dir->d_inode))
2908			mode &= ~current_umask();
2909		/*
2910		 * This write is needed to ensure that a
2911		 * rw->ro transition does not occur between
2912		 * the time when the file is created and when
2913		 * a permanent write count is taken through
2914		 * the 'struct file' in finish_open().
2915		 */
2916		if (!got_write) {
2917			error = -EROFS;
2918			goto out_dput;
2919		}
2920		*opened |= FILE_CREATED;
2921		error = security_path_mknod(&nd->path, dentry, mode, 0);
2922		if (error)
2923			goto out_dput;
2924		error = vfs_create(dir->d_inode, dentry, mode,
2925				   nd->flags & LOOKUP_EXCL);
2926		if (error)
2927			goto out_dput;
2928	}
2929out_no_open:
2930	path->dentry = dentry;
2931	path->mnt = nd->path.mnt;
2932	return 1;
2933
2934out_dput:
2935	dput(dentry);
2936	return error;
2937}
2938
2939/*
2940 * Handle the last step of open()
2941 */
2942static int do_last(struct nameidata *nd, struct path *path,
2943		   struct file *file, const struct open_flags *op,
2944		   int *opened, struct filename *name)
2945{
2946	struct dentry *dir = nd->path.dentry;
2947	int open_flag = op->open_flag;
2948	bool will_truncate = (open_flag & O_TRUNC) != 0;
2949	bool got_write = false;
2950	int acc_mode = op->acc_mode;
2951	struct inode *inode;
2952	bool symlink_ok = false;
2953	struct path save_parent = { .dentry = NULL, .mnt = NULL };
2954	bool retried = false;
2955	int error;
2956
2957	nd->flags &= ~LOOKUP_PARENT;
2958	nd->flags |= op->intent;
2959
2960	if (nd->last_type != LAST_NORM) {
2961		error = handle_dots(nd, nd->last_type);
2962		if (error)
2963			return error;
2964		goto finish_open;
2965	}
2966
2967	if (!(open_flag & O_CREAT)) {
2968		if (nd->last.name[nd->last.len])
2969			nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
2970		if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW))
2971			symlink_ok = true;
2972		/* we _can_ be in RCU mode here */
2973		error = lookup_fast(nd, path, &inode);
2974		if (likely(!error))
2975			goto finish_lookup;
2976
2977		if (error < 0)
2978			goto out;
2979
2980		BUG_ON(nd->inode != dir->d_inode);
2981	} else {
2982		/* create side of things */
2983		/*
2984		 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED
2985		 * has been cleared when we got to the last component we are
2986		 * about to look up
2987		 */
2988		error = complete_walk(nd);
2989		if (error)
2990			return error;
2991
2992		audit_inode(name, dir, LOOKUP_PARENT);
2993		error = -EISDIR;
2994		/* trailing slashes? */
2995		if (nd->last.name[nd->last.len])
2996			goto out;
2997	}
2998
2999retry_lookup:
3000	if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) {
3001		error = mnt_want_write(nd->path.mnt);
3002		if (!error)
3003			got_write = true;
3004		/*
3005		 * do _not_ fail yet - we might not need that or fail with
3006		 * a different error; let lookup_open() decide; we'll be
3007		 * dropping this one anyway.
3008		 */
3009	}
3010	mutex_lock(&dir->d_inode->i_mutex);
3011	error = lookup_open(nd, path, file, op, got_write, opened);
3012	mutex_unlock(&dir->d_inode->i_mutex);
3013
3014	if (error <= 0) {
3015		if (error)
3016			goto out;
3017
3018		if ((*opened & FILE_CREATED) ||
3019		    !S_ISREG(file_inode(file)->i_mode))
3020			will_truncate = false;
3021
3022		audit_inode(name, file->f_path.dentry, 0);
3023		goto opened;
3024	}
3025
3026	if (*opened & FILE_CREATED) {
3027		/* Don't check for write permission, don't truncate */
3028		open_flag &= ~O_TRUNC;
3029		will_truncate = false;
3030		acc_mode = MAY_OPEN;
3031		path_to_nameidata(path, nd);
3032		goto finish_open_created;
3033	}
3034
3035	/*
3036	 * create/update audit record if it already exists.
3037	 */
3038	if (d_is_positive(path->dentry))
3039		audit_inode(name, path->dentry, 0);
3040
3041	/*
3042	 * If atomic_open() acquired write access it is dropped now due to
3043	 * possible mount and symlink following (this might be optimized away if
3044	 * necessary...)
3045	 */
3046	if (got_write) {
3047		mnt_drop_write(nd->path.mnt);
3048		got_write = false;
3049	}
3050
3051	error = -EEXIST;
3052	if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT))
3053		goto exit_dput;
3054
3055	error = follow_managed(path, nd->flags);
3056	if (error < 0)
3057		goto exit_dput;
3058
3059	if (error)
3060		nd->flags |= LOOKUP_JUMPED;
3061
3062	BUG_ON(nd->flags & LOOKUP_RCU);
3063	inode = path->dentry->d_inode;
3064	error = -ENOENT;
3065	if (d_is_negative(path->dentry)) {
3066		path_to_nameidata(path, nd);
3067		goto out;
3068	}
3069	inode = path->dentry->d_inode;
3070finish_lookup:
3071	/* we _can_ be in RCU mode here */
3072	if (should_follow_link(path->dentry, !symlink_ok)) {
3073		if (nd->flags & LOOKUP_RCU) {
3074			if (unlikely(nd->path.mnt != path->mnt ||
3075				     unlazy_walk(nd, path->dentry))) {
3076				error = -ECHILD;
3077				goto out;
3078			}
3079		}
3080		BUG_ON(inode != path->dentry->d_inode);
3081		return 1;
3082	}
3083
3084	if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) {
3085		path_to_nameidata(path, nd);
3086	} else {
3087		save_parent.dentry = nd->path.dentry;
3088		save_parent.mnt = mntget(path->mnt);
3089		nd->path.dentry = path->dentry;
3090
3091	}
3092	nd->inode = inode;
3093	/* Why this, you ask?  _Now_ we might have grown LOOKUP_JUMPED... */
3094finish_open:
3095	error = complete_walk(nd);
3096	if (error) {
3097		path_put(&save_parent);
3098		return error;
3099	}
3100	audit_inode(name, nd->path.dentry, 0);
3101	error = -EISDIR;
3102	if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry))
3103		goto out;
3104	error = -ENOTDIR;
3105	if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry))
3106		goto out;
3107	if (!d_is_reg(nd->path.dentry))
3108		will_truncate = false;
3109
3110	if (will_truncate) {
3111		error = mnt_want_write(nd->path.mnt);
3112		if (error)
3113			goto out;
3114		got_write = true;
3115	}
3116finish_open_created:
3117	error = may_open(&nd->path, acc_mode, open_flag);
3118	if (error)
3119		goto out;
3120
3121	BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */
3122	error = vfs_open(&nd->path, file, current_cred());
3123	if (!error) {
3124		*opened |= FILE_OPENED;
3125	} else {
3126		if (error == -EOPENSTALE)
3127			goto stale_open;
3128		goto out;
3129	}
3130opened:
3131	error = open_check_o_direct(file);
3132	if (error)
3133		goto exit_fput;
3134	error = ima_file_check(file, op->acc_mode, *opened);
3135	if (error)
3136		goto exit_fput;
3137
3138	if (will_truncate) {
3139		error = handle_truncate(file);
3140		if (error)
3141			goto exit_fput;
3142	}
3143out:
3144	if (unlikely(error > 0)) {
3145		WARN_ON(1);
3146		error = -EINVAL;
3147	}
3148	if (got_write)
3149		mnt_drop_write(nd->path.mnt);
3150	path_put(&save_parent);
3151	terminate_walk(nd);
3152	return error;
3153
3154exit_dput:
3155	path_put_conditional(path, nd);
3156	goto out;
3157exit_fput:
3158	fput(file);
3159	goto out;
3160
3161stale_open:
3162	/* If no saved parent or already retried then can't retry */
3163	if (!save_parent.dentry || retried)
3164		goto out;
3165
3166	BUG_ON(save_parent.dentry != dir);
3167	path_put(&nd->path);
3168	nd->path = save_parent;
3169	nd->inode = dir->d_inode;
3170	save_parent.mnt = NULL;
3171	save_parent.dentry = NULL;
3172	if (got_write) {
3173		mnt_drop_write(nd->path.mnt);
3174		got_write = false;
3175	}
3176	retried = true;
3177	goto retry_lookup;
3178}
3179
3180static int do_tmpfile(int dfd, struct filename *pathname,
3181		struct nameidata *nd, int flags,
3182		const struct open_flags *op,
3183		struct file *file, int *opened)
3184{
3185	static const struct qstr name = QSTR_INIT("/", 1);
3186	struct dentry *dentry, *child;
3187	struct inode *dir;
3188	int error = path_lookupat(dfd, pathname,
3189				  flags | LOOKUP_DIRECTORY, nd);
3190	if (unlikely(error))
3191		return error;
3192	error = mnt_want_write(nd->path.mnt);
3193	if (unlikely(error))
3194		goto out;
3195	/* we want directory to be writable */
3196	error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC);
3197	if (error)
3198		goto out2;
3199	dentry = nd->path.dentry;
3200	dir = dentry->d_inode;
3201	if (!dir->i_op->tmpfile) {
3202		error = -EOPNOTSUPP;
3203		goto out2;
3204	}
3205	child = d_alloc(dentry, &name);
3206	if (unlikely(!child)) {
3207		error = -ENOMEM;
3208		goto out2;
3209	}
3210	nd->flags &= ~LOOKUP_DIRECTORY;
3211	nd->flags |= op->intent;
3212	dput(nd->path.dentry);
3213	nd->path.dentry = child;
3214	error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode);
3215	if (error)
3216		goto out2;
3217	audit_inode(pathname, nd->path.dentry, 0);
3218	/* Don't check for other permissions, the inode was just created */
3219	error = may_open(&nd->path, MAY_OPEN, op->open_flag);
3220	if (error)
3221		goto out2;
3222	file->f_path.mnt = nd->path.mnt;
3223	error = finish_open(file, nd->path.dentry, NULL, opened);
3224	if (error)
3225		goto out2;
3226	error = open_check_o_direct(file);
3227	if (error) {
3228		fput(file);
3229	} else if (!(op->open_flag & O_EXCL)) {
3230		struct inode *inode = file_inode(file);
3231		spin_lock(&inode->i_lock);
3232		inode->i_state |= I_LINKABLE;
3233		spin_unlock(&inode->i_lock);
3234	}
3235out2:
3236	mnt_drop_write(nd->path.mnt);
3237out:
3238	path_put(&nd->path);
3239	return error;
3240}
3241
3242static struct file *path_openat(int dfd, struct filename *pathname,
3243		struct nameidata *nd, const struct open_flags *op, int flags)
3244{
3245	struct file *file;
3246	struct path path;
3247	int opened = 0;
3248	int error;
3249
3250	file = get_empty_filp();
3251	if (IS_ERR(file))
3252		return file;
3253
3254	file->f_flags = op->open_flag;
3255
3256	if (unlikely(file->f_flags & __O_TMPFILE)) {
3257		error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened);
3258		goto out2;
3259	}
3260
3261	error = path_init(dfd, pathname, flags, nd);
3262	if (unlikely(error))
3263		goto out;
3264
3265	error = do_last(nd, &path, file, op, &opened, pathname);
3266	while (unlikely(error > 0)) { /* trailing symlink */
3267		struct path link = path;
3268		void *cookie;
3269		if (!(nd->flags & LOOKUP_FOLLOW)) {
3270			path_put_conditional(&path, nd);
3271			path_put(&nd->path);
3272			error = -ELOOP;
3273			break;
3274		}
3275		error = may_follow_link(&link, nd);
3276		if (unlikely(error))
3277			break;
3278		nd->flags |= LOOKUP_PARENT;
3279		nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL);
3280		error = follow_link(&link, nd, &cookie);
3281		if (unlikely(error))
3282			break;
3283		error = do_last(nd, &path, file, op, &opened, pathname);
3284		put_link(nd, &link, cookie);
3285	}
3286out:
3287	path_cleanup(nd);
3288out2:
3289	if (!(opened & FILE_OPENED)) {
3290		BUG_ON(!error);
3291		put_filp(file);
3292	}
3293	if (unlikely(error)) {
3294		if (error == -EOPENSTALE) {
3295			if (flags & LOOKUP_RCU)
3296				error = -ECHILD;
3297			else
3298				error = -ESTALE;
3299		}
3300		file = ERR_PTR(error);
3301	}
3302	return file;
3303}
3304
3305struct file *do_filp_open(int dfd, struct filename *pathname,
3306		const struct open_flags *op)
3307{
3308	struct nameidata nd;
3309	int flags = op->lookup_flags;
3310	struct file *filp;
3311
3312	filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU);
3313	if (unlikely(filp == ERR_PTR(-ECHILD)))
3314		filp = path_openat(dfd, pathname, &nd, op, flags);
3315	if (unlikely(filp == ERR_PTR(-ESTALE)))
3316		filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL);
3317	return filp;
3318}
3319
3320struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt,
3321		const char *name, const struct open_flags *op)
3322{
3323	struct nameidata nd;
3324	struct file *file;
3325	struct filename *filename;
3326	int flags = op->lookup_flags | LOOKUP_ROOT;
3327
3328	nd.root.mnt = mnt;
3329	nd.root.dentry = dentry;
3330
3331	if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN)
3332		return ERR_PTR(-ELOOP);
3333
3334	filename = getname_kernel(name);
3335	if (unlikely(IS_ERR(filename)))
3336		return ERR_CAST(filename);
3337
3338	file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU);
3339	if (unlikely(file == ERR_PTR(-ECHILD)))
3340		file = path_openat(-1, filename, &nd, op, flags);
3341	if (unlikely(file == ERR_PTR(-ESTALE)))
3342		file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL);
3343	putname(filename);
3344	return file;
3345}
3346
3347static struct dentry *filename_create(int dfd, struct filename *name,
3348				struct path *path, unsigned int lookup_flags)
3349{
3350	struct dentry *dentry = ERR_PTR(-EEXIST);
3351	struct nameidata nd;
3352	int err2;
3353	int error;
3354	bool is_dir = (lookup_flags & LOOKUP_DIRECTORY);
3355
3356	/*
3357	 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any
3358	 * other flags passed in are ignored!
3359	 */
3360	lookup_flags &= LOOKUP_REVAL;
3361
3362	error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd);
3363	if (error)
3364		return ERR_PTR(error);
3365
3366	/*
3367	 * Yucky last component or no last component at all?
3368	 * (foo/., foo/.., /////)
3369	 */
3370	if (nd.last_type != LAST_NORM)
3371		goto out;
3372	nd.flags &= ~LOOKUP_PARENT;
3373	nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL;
3374
3375	/* don't fail immediately if it's r/o, at least try to report other errors */
3376	err2 = mnt_want_write(nd.path.mnt);
3377	/*
3378	 * Do the final lookup.
3379	 */
3380	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3381	dentry = lookup_hash(&nd);
3382	if (IS_ERR(dentry))
3383		goto unlock;
3384
3385	error = -EEXIST;
3386	if (d_is_positive(dentry))
3387		goto fail;
3388
3389	/*
3390	 * Special case - lookup gave negative, but... we had foo/bar/
3391	 * From the vfs_mknod() POV we just have a negative dentry -
3392	 * all is fine. Let's be bastards - you had / on the end, you've
3393	 * been asking for (non-existent) directory. -ENOENT for you.
3394	 */
3395	if (unlikely(!is_dir && nd.last.name[nd.last.len])) {
3396		error = -ENOENT;
3397		goto fail;
3398	}
3399	if (unlikely(err2)) {
3400		error = err2;
3401		goto fail;
3402	}
3403	*path = nd.path;
3404	return dentry;
3405fail:
3406	dput(dentry);
3407	dentry = ERR_PTR(error);
3408unlock:
3409	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3410	if (!err2)
3411		mnt_drop_write(nd.path.mnt);
3412out:
3413	path_put(&nd.path);
3414	return dentry;
3415}
3416
3417struct dentry *kern_path_create(int dfd, const char *pathname,
3418				struct path *path, unsigned int lookup_flags)
3419{
3420	struct filename *filename = getname_kernel(pathname);
3421	struct dentry *res;
3422
3423	if (IS_ERR(filename))
3424		return ERR_CAST(filename);
3425	res = filename_create(dfd, filename, path, lookup_flags);
3426	putname(filename);
3427	return res;
3428}
3429EXPORT_SYMBOL(kern_path_create);
3430
3431void done_path_create(struct path *path, struct dentry *dentry)
3432{
3433	dput(dentry);
3434	mutex_unlock(&path->dentry->d_inode->i_mutex);
3435	mnt_drop_write(path->mnt);
3436	path_put(path);
3437}
3438EXPORT_SYMBOL(done_path_create);
3439
3440struct dentry *user_path_create(int dfd, const char __user *pathname,
3441				struct path *path, unsigned int lookup_flags)
3442{
3443	struct filename *tmp = getname(pathname);
3444	struct dentry *res;
3445	if (IS_ERR(tmp))
3446		return ERR_CAST(tmp);
3447	res = filename_create(dfd, tmp, path, lookup_flags);
3448	putname(tmp);
3449	return res;
3450}
3451EXPORT_SYMBOL(user_path_create);
3452
3453int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3454{
3455	int error = may_create(dir, dentry);
3456
3457	if (error)
3458		return error;
3459
3460	if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
3461		return -EPERM;
3462
3463	if (!dir->i_op->mknod)
3464		return -EPERM;
3465
3466	error = devcgroup_inode_mknod(mode, dev);
3467	if (error)
3468		return error;
3469
3470	error = security_inode_mknod(dir, dentry, mode, dev);
3471	if (error)
3472		return error;
3473
3474	error = dir->i_op->mknod(dir, dentry, mode, dev);
3475	if (!error)
3476		fsnotify_create(dir, dentry);
3477	return error;
3478}
3479EXPORT_SYMBOL(vfs_mknod);
3480
3481static int may_mknod(umode_t mode)
3482{
3483	switch (mode & S_IFMT) {
3484	case S_IFREG:
3485	case S_IFCHR:
3486	case S_IFBLK:
3487	case S_IFIFO:
3488	case S_IFSOCK:
3489	case 0: /* zero mode translates to S_IFREG */
3490		return 0;
3491	case S_IFDIR:
3492		return -EPERM;
3493	default:
3494		return -EINVAL;
3495	}
3496}
3497
3498SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode,
3499		unsigned, dev)
3500{
3501	struct dentry *dentry;
3502	struct path path;
3503	int error;
3504	unsigned int lookup_flags = 0;
3505
3506	error = may_mknod(mode);
3507	if (error)
3508		return error;
3509retry:
3510	dentry = user_path_create(dfd, filename, &path, lookup_flags);
3511	if (IS_ERR(dentry))
3512		return PTR_ERR(dentry);
3513
3514	if (!IS_POSIXACL(path.dentry->d_inode))
3515		mode &= ~current_umask();
3516	error = security_path_mknod(&path, dentry, mode, dev);
3517	if (error)
3518		goto out;
3519	switch (mode & S_IFMT) {
3520		case 0: case S_IFREG:
3521			error = vfs_create(path.dentry->d_inode,dentry,mode,true);
3522			break;
3523		case S_IFCHR: case S_IFBLK:
3524			error = vfs_mknod(path.dentry->d_inode,dentry,mode,
3525					new_decode_dev(dev));
3526			break;
3527		case S_IFIFO: case S_IFSOCK:
3528			error = vfs_mknod(path.dentry->d_inode,dentry,mode,0);
3529			break;
3530	}
3531out:
3532	done_path_create(&path, dentry);
3533	if (retry_estale(error, lookup_flags)) {
3534		lookup_flags |= LOOKUP_REVAL;
3535		goto retry;
3536	}
3537	return error;
3538}
3539
3540SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev)
3541{
3542	return sys_mknodat(AT_FDCWD, filename, mode, dev);
3543}
3544
3545int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
3546{
3547	int error = may_create(dir, dentry);
3548	unsigned max_links = dir->i_sb->s_max_links;
3549
3550	if (error)
3551		return error;
3552
3553	if (!dir->i_op->mkdir)
3554		return -EPERM;
3555
3556	mode &= (S_IRWXUGO|S_ISVTX);
3557	error = security_inode_mkdir(dir, dentry, mode);
3558	if (error)
3559		return error;
3560
3561	if (max_links && dir->i_nlink >= max_links)
3562		return -EMLINK;
3563
3564	error = dir->i_op->mkdir(dir, dentry, mode);
3565	if (!error)
3566		fsnotify_mkdir(dir, dentry);
3567	return error;
3568}
3569EXPORT_SYMBOL(vfs_mkdir);
3570
3571SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode)
3572{
3573	struct dentry *dentry;
3574	struct path path;
3575	int error;
3576	unsigned int lookup_flags = LOOKUP_DIRECTORY;
3577
3578retry:
3579	dentry = user_path_create(dfd, pathname, &path, lookup_flags);
3580	if (IS_ERR(dentry))
3581		return PTR_ERR(dentry);
3582
3583	if (!IS_POSIXACL(path.dentry->d_inode))
3584		mode &= ~current_umask();
3585	error = security_path_mkdir(&path, dentry, mode);
3586	if (!error)
3587		error = vfs_mkdir(path.dentry->d_inode, dentry, mode);
3588	done_path_create(&path, dentry);
3589	if (retry_estale(error, lookup_flags)) {
3590		lookup_flags |= LOOKUP_REVAL;
3591		goto retry;
3592	}
3593	return error;
3594}
3595
3596SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode)
3597{
3598	return sys_mkdirat(AT_FDCWD, pathname, mode);
3599}
3600
3601/*
3602 * The dentry_unhash() helper will try to drop the dentry early: we
3603 * should have a usage count of 1 if we're the only user of this
3604 * dentry, and if that is true (possibly after pruning the dcache),
3605 * then we drop the dentry now.
3606 *
3607 * A low-level filesystem can, if it choses, legally
3608 * do a
3609 *
3610 *	if (!d_unhashed(dentry))
3611 *		return -EBUSY;
3612 *
3613 * if it cannot handle the case of removing a directory
3614 * that is still in use by something else..
3615 */
3616void dentry_unhash(struct dentry *dentry)
3617{
3618	shrink_dcache_parent(dentry);
3619	spin_lock(&dentry->d_lock);
3620	if (dentry->d_lockref.count == 1)
3621		__d_drop(dentry);
3622	spin_unlock(&dentry->d_lock);
3623}
3624EXPORT_SYMBOL(dentry_unhash);
3625
3626int vfs_rmdir(struct inode *dir, struct dentry *dentry)
3627{
3628	int error = may_delete(dir, dentry, 1);
3629
3630	if (error)
3631		return error;
3632
3633	if (!dir->i_op->rmdir)
3634		return -EPERM;
3635
3636	dget(dentry);
3637	mutex_lock(&dentry->d_inode->i_mutex);
3638
3639	error = -EBUSY;
3640	if (is_local_mountpoint(dentry))
3641		goto out;
3642
3643	error = security_inode_rmdir(dir, dentry);
3644	if (error)
3645		goto out;
3646
3647	shrink_dcache_parent(dentry);
3648	error = dir->i_op->rmdir(dir, dentry);
3649	if (error)
3650		goto out;
3651
3652	dentry->d_inode->i_flags |= S_DEAD;
3653	dont_mount(dentry);
3654	detach_mounts(dentry);
3655
3656out:
3657	mutex_unlock(&dentry->d_inode->i_mutex);
3658	dput(dentry);
3659	if (!error)
3660		d_delete(dentry);
3661	return error;
3662}
3663EXPORT_SYMBOL(vfs_rmdir);
3664
3665static long do_rmdir(int dfd, const char __user *pathname)
3666{
3667	int error = 0;
3668	struct filename *name;
3669	struct dentry *dentry;
3670	struct nameidata nd;
3671	unsigned int lookup_flags = 0;
3672retry:
3673	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3674	if (IS_ERR(name))
3675		return PTR_ERR(name);
3676
3677	switch(nd.last_type) {
3678	case LAST_DOTDOT:
3679		error = -ENOTEMPTY;
3680		goto exit1;
3681	case LAST_DOT:
3682		error = -EINVAL;
3683		goto exit1;
3684	case LAST_ROOT:
3685		error = -EBUSY;
3686		goto exit1;
3687	}
3688
3689	nd.flags &= ~LOOKUP_PARENT;
3690	error = mnt_want_write(nd.path.mnt);
3691	if (error)
3692		goto exit1;
3693
3694	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3695	dentry = lookup_hash(&nd);
3696	error = PTR_ERR(dentry);
3697	if (IS_ERR(dentry))
3698		goto exit2;
3699	if (!dentry->d_inode) {
3700		error = -ENOENT;
3701		goto exit3;
3702	}
3703	error = security_path_rmdir(&nd.path, dentry);
3704	if (error)
3705		goto exit3;
3706	error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
3707exit3:
3708	dput(dentry);
3709exit2:
3710	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3711	mnt_drop_write(nd.path.mnt);
3712exit1:
3713	path_put(&nd.path);
3714	putname(name);
3715	if (retry_estale(error, lookup_flags)) {
3716		lookup_flags |= LOOKUP_REVAL;
3717		goto retry;
3718	}
3719	return error;
3720}
3721
3722SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
3723{
3724	return do_rmdir(AT_FDCWD, pathname);
3725}
3726
3727/**
3728 * vfs_unlink - unlink a filesystem object
3729 * @dir:	parent directory
3730 * @dentry:	victim
3731 * @delegated_inode: returns victim inode, if the inode is delegated.
3732 *
3733 * The caller must hold dir->i_mutex.
3734 *
3735 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and
3736 * return a reference to the inode in delegated_inode.  The caller
3737 * should then break the delegation on that inode and retry.  Because
3738 * breaking a delegation may take a long time, the caller should drop
3739 * dir->i_mutex before doing so.
3740 *
3741 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3742 * be appropriate for callers that expect the underlying filesystem not
3743 * to be NFS exported.
3744 */
3745int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode)
3746{
3747	struct inode *target = dentry->d_inode;
3748	int error = may_delete(dir, dentry, 0);
3749
3750	if (error)
3751		return error;
3752
3753	if (!dir->i_op->unlink)
3754		return -EPERM;
3755
3756	mutex_lock(&target->i_mutex);
3757	if (is_local_mountpoint(dentry))
3758		error = -EBUSY;
3759	else {
3760		error = security_inode_unlink(dir, dentry);
3761		if (!error) {
3762			error = try_break_deleg(target, delegated_inode);
3763			if (error)
3764				goto out;
3765			error = dir->i_op->unlink(dir, dentry);
3766			if (!error) {
3767				dont_mount(dentry);
3768				detach_mounts(dentry);
3769			}
3770		}
3771	}
3772out:
3773	mutex_unlock(&target->i_mutex);
3774
3775	/* We don't d_delete() NFS sillyrenamed files--they still exist. */
3776	if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
3777		fsnotify_link_count(target);
3778		d_delete(dentry);
3779	}
3780
3781	return error;
3782}
3783EXPORT_SYMBOL(vfs_unlink);
3784
3785/*
3786 * Make sure that the actual truncation of the file will occur outside its
3787 * directory's i_mutex.  Truncate can take a long time if there is a lot of
3788 * writeout happening, and we don't want to prevent access to the directory
3789 * while waiting on the I/O.
3790 */
3791static long do_unlinkat(int dfd, const char __user *pathname)
3792{
3793	int error;
3794	struct filename *name;
3795	struct dentry *dentry;
3796	struct nameidata nd;
3797	struct inode *inode = NULL;
3798	struct inode *delegated_inode = NULL;
3799	unsigned int lookup_flags = 0;
3800retry:
3801	name = user_path_parent(dfd, pathname, &nd, lookup_flags);
3802	if (IS_ERR(name))
3803		return PTR_ERR(name);
3804
3805	error = -EISDIR;
3806	if (nd.last_type != LAST_NORM)
3807		goto exit1;
3808
3809	nd.flags &= ~LOOKUP_PARENT;
3810	error = mnt_want_write(nd.path.mnt);
3811	if (error)
3812		goto exit1;
3813retry_deleg:
3814	mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
3815	dentry = lookup_hash(&nd);
3816	error = PTR_ERR(dentry);
3817	if (!IS_ERR(dentry)) {
3818		/* Why not before? Because we want correct error value */
3819		if (nd.last.name[nd.last.len])
3820			goto slashes;
3821		inode = dentry->d_inode;
3822		if (d_is_negative(dentry))
3823			goto slashes;
3824		ihold(inode);
3825		error = security_path_unlink(&nd.path, dentry);
3826		if (error)
3827			goto exit2;
3828		error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode);
3829exit2:
3830		dput(dentry);
3831	}
3832	mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
3833	if (inode)
3834		iput(inode);	/* truncate the inode here */
3835	inode = NULL;
3836	if (delegated_inode) {
3837		error = break_deleg_wait(&delegated_inode);
3838		if (!error)
3839			goto retry_deleg;
3840	}
3841	mnt_drop_write(nd.path.mnt);
3842exit1:
3843	path_put(&nd.path);
3844	putname(name);
3845	if (retry_estale(error, lookup_flags)) {
3846		lookup_flags |= LOOKUP_REVAL;
3847		inode = NULL;
3848		goto retry;
3849	}
3850	return error;
3851
3852slashes:
3853	if (d_is_negative(dentry))
3854		error = -ENOENT;
3855	else if (d_is_dir(dentry))
3856		error = -EISDIR;
3857	else
3858		error = -ENOTDIR;
3859	goto exit2;
3860}
3861
3862SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
3863{
3864	if ((flag & ~AT_REMOVEDIR) != 0)
3865		return -EINVAL;
3866
3867	if (flag & AT_REMOVEDIR)
3868		return do_rmdir(dfd, pathname);
3869
3870	return do_unlinkat(dfd, pathname);
3871}
3872
3873SYSCALL_DEFINE1(unlink, const char __user *, pathname)
3874{
3875	return do_unlinkat(AT_FDCWD, pathname);
3876}
3877
3878int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
3879{
3880	int error = may_create(dir, dentry);
3881
3882	if (error)
3883		return error;
3884
3885	if (!dir->i_op->symlink)
3886		return -EPERM;
3887
3888	error = security_inode_symlink(dir, dentry, oldname);
3889	if (error)
3890		return error;
3891
3892	error = dir->i_op->symlink(dir, dentry, oldname);
3893	if (!error)
3894		fsnotify_create(dir, dentry);
3895	return error;
3896}
3897EXPORT_SYMBOL(vfs_symlink);
3898
3899SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
3900		int, newdfd, const char __user *, newname)
3901{
3902	int error;
3903	struct filename *from;
3904	struct dentry *dentry;
3905	struct path path;
3906	unsigned int lookup_flags = 0;
3907
3908	from = getname(oldname);
3909	if (IS_ERR(from))
3910		return PTR_ERR(from);
3911retry:
3912	dentry = user_path_create(newdfd, newname, &path, lookup_flags);
3913	error = PTR_ERR(dentry);
3914	if (IS_ERR(dentry))
3915		goto out_putname;
3916
3917	error = security_path_symlink(&path, dentry, from->name);
3918	if (!error)
3919		error = vfs_symlink(path.dentry->d_inode, dentry, from->name);
3920	done_path_create(&path, dentry);
3921	if (retry_estale(error, lookup_flags)) {
3922		lookup_flags |= LOOKUP_REVAL;
3923		goto retry;
3924	}
3925out_putname:
3926	putname(from);
3927	return error;
3928}
3929
3930SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
3931{
3932	return sys_symlinkat(oldname, AT_FDCWD, newname);
3933}
3934
3935/**
3936 * vfs_link - create a new link
3937 * @old_dentry:	object to be linked
3938 * @dir:	new parent
3939 * @new_dentry:	where to create the new link
3940 * @delegated_inode: returns inode needing a delegation break
3941 *
3942 * The caller must hold dir->i_mutex
3943 *
3944 * If vfs_link discovers a delegation on the to-be-linked file in need
3945 * of breaking, it will return -EWOULDBLOCK and return a reference to the
3946 * inode in delegated_inode.  The caller should then break the delegation
3947 * and retry.  Because breaking a delegation may take a long time, the
3948 * caller should drop the i_mutex before doing so.
3949 *
3950 * Alternatively, a caller may pass NULL for delegated_inode.  This may
3951 * be appropriate for callers that expect the underlying filesystem not
3952 * to be NFS exported.
3953 */
3954int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode)
3955{
3956	struct inode *inode = old_dentry->d_inode;
3957	unsigned max_links = dir->i_sb->s_max_links;
3958	int error;
3959
3960	if (!inode)
3961		return -ENOENT;
3962
3963	error = may_create(dir, new_dentry);
3964	if (error)
3965		return error;
3966
3967	if (dir->i_sb != inode->i_sb)
3968		return -EXDEV;
3969
3970	/*
3971	 * A link to an append-only or immutable file cannot be created.
3972	 */
3973	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
3974		return -EPERM;
3975	if (!dir->i_op->link)
3976		return -EPERM;
3977	if (S_ISDIR(inode->i_mode))
3978		return -EPERM;
3979
3980	error = security_inode_link(old_dentry, dir, new_dentry);
3981	if (error)
3982		return error;
3983
3984	mutex_lock(&inode->i_mutex);
3985	/* Make sure we don't allow creating hardlink to an unlinked file */
3986	if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE))
3987		error =  -ENOENT;
3988	else if (max_links && inode->i_nlink >= max_links)
3989		error = -EMLINK;
3990	else {
3991		error = try_break_deleg(inode, delegated_inode);
3992		if (!error)
3993			error = dir->i_op->link(old_dentry, dir, new_dentry);
3994	}
3995
3996	if (!error && (inode->i_state & I_LINKABLE)) {
3997		spin_lock(&inode->i_lock);
3998		inode->i_state &= ~I_LINKABLE;
3999		spin_unlock(&inode->i_lock);
4000	}
4001	mutex_unlock(&inode->i_mutex);
4002	if (!error)
4003		fsnotify_link(dir, inode, new_dentry);
4004	return error;
4005}
4006EXPORT_SYMBOL(vfs_link);
4007
4008/*
4009 * Hardlinks are often used in delicate situations.  We avoid
4010 * security-related surprises by not following symlinks on the
4011 * newname.  --KAB
4012 *
4013 * We don't follow them on the oldname either to be compatible
4014 * with linux 2.0, and to avoid hard-linking to directories
4015 * and other special files.  --ADM
4016 */
4017SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
4018		int, newdfd, const char __user *, newname, int, flags)
4019{
4020	struct dentry *new_dentry;
4021	struct path old_path, new_path;
4022	struct inode *delegated_inode = NULL;
4023	int how = 0;
4024	int error;
4025
4026	if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0)
4027		return -EINVAL;
4028	/*
4029	 * To use null names we require CAP_DAC_READ_SEARCH
4030	 * This ensures that not everyone will be able to create
4031	 * handlink using the passed filedescriptor.
4032	 */
4033	if (flags & AT_EMPTY_PATH) {
4034		if (!capable(CAP_DAC_READ_SEARCH))
4035			return -ENOENT;
4036		how = LOOKUP_EMPTY;
4037	}
4038
4039	if (flags & AT_SYMLINK_FOLLOW)
4040		how |= LOOKUP_FOLLOW;
4041retry:
4042	error = user_path_at(olddfd, oldname, how, &old_path);
4043	if (error)
4044		return error;
4045
4046	new_dentry = user_path_create(newdfd, newname, &new_path,
4047					(how & LOOKUP_REVAL));
4048	error = PTR_ERR(new_dentry);
4049	if (IS_ERR(new_dentry))
4050		goto out;
4051
4052	error = -EXDEV;
4053	if (old_path.mnt != new_path.mnt)
4054		goto out_dput;
4055	error = may_linkat(&old_path);
4056	if (unlikely(error))
4057		goto out_dput;
4058	error = security_path_link(old_path.dentry, &new_path, new_dentry);
4059	if (error)
4060		goto out_dput;
4061	error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode);
4062out_dput:
4063	done_path_create(&new_path, new_dentry);
4064	if (delegated_inode) {
4065		error = break_deleg_wait(&delegated_inode);
4066		if (!error) {
4067			path_put(&old_path);
4068			goto retry;
4069		}
4070	}
4071	if (retry_estale(error, how)) {
4072		path_put(&old_path);
4073		how |= LOOKUP_REVAL;
4074		goto retry;
4075	}
4076out:
4077	path_put(&old_path);
4078
4079	return error;
4080}
4081
4082SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
4083{
4084	return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4085}
4086
4087/**
4088 * vfs_rename - rename a filesystem object
4089 * @old_dir:	parent of source
4090 * @old_dentry:	source
4091 * @new_dir:	parent of destination
4092 * @new_dentry:	destination
4093 * @delegated_inode: returns an inode needing a delegation break
4094 * @flags:	rename flags
4095 *
4096 * The caller must hold multiple mutexes--see lock_rename()).
4097 *
4098 * If vfs_rename discovers a delegation in need of breaking at either
4099 * the source or destination, it will return -EWOULDBLOCK and return a
4100 * reference to the inode in delegated_inode.  The caller should then
4101 * break the delegation and retry.  Because breaking a delegation may
4102 * take a long time, the caller should drop all locks before doing
4103 * so.
4104 *
4105 * Alternatively, a caller may pass NULL for delegated_inode.  This may
4106 * be appropriate for callers that expect the underlying filesystem not
4107 * to be NFS exported.
4108 *
4109 * The worst of all namespace operations - renaming directory. "Perverted"
4110 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
4111 * Problems:
4112 *	a) we can get into loop creation.
4113 *	b) race potential - two innocent renames can create a loop together.
4114 *	   That's where 4.4 screws up. Current fix: serialization on
4115 *	   sb->s_vfs_rename_mutex. We might be more accurate, but that's another
4116 *	   story.
4117 *	c) we have to lock _four_ objects - parents and victim (if it exists),
4118 *	   and source (if it is not a directory).
4119 *	   And that - after we got ->i_mutex on parents (until then we don't know
4120 *	   whether the target exists).  Solution: try to be smart with locking
4121 *	   order for inodes.  We rely on the fact that tree topology may change
4122 *	   only under ->s_vfs_rename_mutex _and_ that parent of the object we
4123 *	   move will be locked.  Thus we can rank directories by the tree
4124 *	   (ancestors first) and rank all non-directories after them.
4125 *	   That works since everybody except rename does "lock parent, lookup,
4126 *	   lock child" and rename is under ->s_vfs_rename_mutex.
4127 *	   HOWEVER, it relies on the assumption that any object with ->lookup()
4128 *	   has no more than 1 dentry.  If "hybrid" objects will ever appear,
4129 *	   we'd better make sure that there's no link(2) for them.
4130 *	d) conversion from fhandle to dentry may come in the wrong moment - when
4131 *	   we are removing the target. Solution: we will have to grab ->i_mutex
4132 *	   in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
4133 *	   ->i_mutex on parents, which works but leads to some truly excessive
4134 *	   locking].
4135 */
4136int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
4137	       struct inode *new_dir, struct dentry *new_dentry,
4138	       struct inode **delegated_inode, unsigned int flags)
4139{
4140	int error;
4141	bool is_dir = d_is_dir(old_dentry);
4142	const unsigned char *old_name;
4143	struct inode *source = old_dentry->d_inode;
4144	struct inode *target = new_dentry->d_inode;
4145	bool new_is_dir = false;
4146	unsigned max_links = new_dir->i_sb->s_max_links;
4147
4148	if (source == target)
4149		return 0;
4150
4151	error = may_delete(old_dir, old_dentry, is_dir);
4152	if (error)
4153		return error;
4154
4155	if (!target) {
4156		error = may_create(new_dir, new_dentry);
4157	} else {
4158		new_is_dir = d_is_dir(new_dentry);
4159
4160		if (!(flags & RENAME_EXCHANGE))
4161			error = may_delete(new_dir, new_dentry, is_dir);
4162		else
4163			error = may_delete(new_dir, new_dentry, new_is_dir);
4164	}
4165	if (error)
4166		return error;
4167
4168	if (!old_dir->i_op->rename && !old_dir->i_op->rename2)
4169		return -EPERM;
4170
4171	if (flags && !old_dir->i_op->rename2)
4172		return -EINVAL;
4173
4174	/*
4175	 * If we are going to change the parent - check write permissions,
4176	 * we'll need to flip '..'.
4177	 */
4178	if (new_dir != old_dir) {
4179		if (is_dir) {
4180			error = inode_permission(source, MAY_WRITE);
4181			if (error)
4182				return error;
4183		}
4184		if ((flags & RENAME_EXCHANGE) && new_is_dir) {
4185			error = inode_permission(target, MAY_WRITE);
4186			if (error)
4187				return error;
4188		}
4189	}
4190
4191	error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry,
4192				      flags);
4193	if (error)
4194		return error;
4195
4196	old_name = fsnotify_oldname_init(old_dentry->d_name.name);
4197	dget(new_dentry);
4198	if (!is_dir || (flags & RENAME_EXCHANGE))
4199		lock_two_nondirectories(source, target);
4200	else if (target)
4201		mutex_lock(&target->i_mutex);
4202
4203	error = -EBUSY;
4204	if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry))
4205		goto out;
4206
4207	if (max_links && new_dir != old_dir) {
4208		error = -EMLINK;
4209		if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links)
4210			goto out;
4211		if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir &&
4212		    old_dir->i_nlink >= max_links)
4213			goto out;
4214	}
4215	if (is_dir && !(flags & RENAME_EXCHANGE) && target)
4216		shrink_dcache_parent(new_dentry);
4217	if (!is_dir) {
4218		error = try_break_deleg(source, delegated_inode);
4219		if (error)
4220			goto out;
4221	}
4222	if (target && !new_is_dir) {
4223		error = try_break_deleg(target, delegated_inode);
4224		if (error)
4225			goto out;
4226	}
4227	if (!old_dir->i_op->rename2) {
4228		error = old_dir->i_op->rename(old_dir, old_dentry,
4229					      new_dir, new_dentry);
4230	} else {
4231		WARN_ON(old_dir->i_op->rename != NULL);
4232		error = old_dir->i_op->rename2(old_dir, old_dentry,
4233					       new_dir, new_dentry, flags);
4234	}
4235	if (error)
4236		goto out;
4237
4238	if (!(flags & RENAME_EXCHANGE) && target) {
4239		if (is_dir)
4240			target->i_flags |= S_DEAD;
4241		dont_mount(new_dentry);
4242		detach_mounts(new_dentry);
4243	}
4244	if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) {
4245		if (!(flags & RENAME_EXCHANGE))
4246			d_move(old_dentry, new_dentry);
4247		else
4248			d_exchange(old_dentry, new_dentry);
4249	}
4250out:
4251	if (!is_dir || (flags & RENAME_EXCHANGE))
4252		unlock_two_nondirectories(source, target);
4253	else if (target)
4254		mutex_unlock(&target->i_mutex);
4255	dput(new_dentry);
4256	if (!error) {
4257		fsnotify_move(old_dir, new_dir, old_name, is_dir,
4258			      !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry);
4259		if (flags & RENAME_EXCHANGE) {
4260			fsnotify_move(new_dir, old_dir, old_dentry->d_name.name,
4261				      new_is_dir, NULL, new_dentry);
4262		}
4263	}
4264	fsnotify_oldname_free(old_name);
4265
4266	return error;
4267}
4268EXPORT_SYMBOL(vfs_rename);
4269
4270SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname,
4271		int, newdfd, const char __user *, newname, unsigned int, flags)
4272{
4273	struct dentry *old_dir, *new_dir;
4274	struct dentry *old_dentry, *new_dentry;
4275	struct dentry *trap;
4276	struct nameidata oldnd, newnd;
4277	struct inode *delegated_inode = NULL;
4278	struct filename *from;
4279	struct filename *to;
4280	unsigned int lookup_flags = 0;
4281	bool should_retry = false;
4282	int error;
4283
4284	if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
4285		return -EINVAL;
4286
4287	if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) &&
4288	    (flags & RENAME_EXCHANGE))
4289		return -EINVAL;
4290
4291	if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD))
4292		return -EPERM;
4293
4294retry:
4295	from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags);
4296	if (IS_ERR(from)) {
4297		error = PTR_ERR(from);
4298		goto exit;
4299	}
4300
4301	to = user_path_parent(newdfd, newname, &newnd, lookup_flags);
4302	if (IS_ERR(to)) {
4303		error = PTR_ERR(to);
4304		goto exit1;
4305	}
4306
4307	error = -EXDEV;
4308	if (oldnd.path.mnt != newnd.path.mnt)
4309		goto exit2;
4310
4311	old_dir = oldnd.path.dentry;
4312	error = -EBUSY;
4313	if (oldnd.last_type != LAST_NORM)
4314		goto exit2;
4315
4316	new_dir = newnd.path.dentry;
4317	if (flags & RENAME_NOREPLACE)
4318		error = -EEXIST;
4319	if (newnd.last_type != LAST_NORM)
4320		goto exit2;
4321
4322	error = mnt_want_write(oldnd.path.mnt);
4323	if (error)
4324		goto exit2;
4325
4326	oldnd.flags &= ~LOOKUP_PARENT;
4327	newnd.flags &= ~LOOKUP_PARENT;
4328	if (!(flags & RENAME_EXCHANGE))
4329		newnd.flags |= LOOKUP_RENAME_TARGET;
4330
4331retry_deleg:
4332	trap = lock_rename(new_dir, old_dir);
4333
4334	old_dentry = lookup_hash(&oldnd);
4335	error = PTR_ERR(old_dentry);
4336	if (IS_ERR(old_dentry))
4337		goto exit3;
4338	/* source must exist */
4339	error = -ENOENT;
4340	if (d_is_negative(old_dentry))
4341		goto exit4;
4342	new_dentry = lookup_hash(&newnd);
4343	error = PTR_ERR(new_dentry);
4344	if (IS_ERR(new_dentry))
4345		goto exit4;
4346	error = -EEXIST;
4347	if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry))
4348		goto exit5;
4349	if (flags & RENAME_EXCHANGE) {
4350		error = -ENOENT;
4351		if (d_is_negative(new_dentry))
4352			goto exit5;
4353
4354		if (!d_is_dir(new_dentry)) {
4355			error = -ENOTDIR;
4356			if (newnd.last.name[newnd.last.len])
4357				goto exit5;
4358		}
4359	}
4360	/* unless the source is a directory trailing slashes give -ENOTDIR */
4361	if (!d_is_dir(old_dentry)) {
4362		error = -ENOTDIR;
4363		if (oldnd.last.name[oldnd.last.len])
4364			goto exit5;
4365		if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len])
4366			goto exit5;
4367	}
4368	/* source should not be ancestor of target */
4369	error = -EINVAL;
4370	if (old_dentry == trap)
4371		goto exit5;
4372	/* target should not be an ancestor of source */
4373	if (!(flags & RENAME_EXCHANGE))
4374		error = -ENOTEMPTY;
4375	if (new_dentry == trap)
4376		goto exit5;
4377
4378	error = security_path_rename(&oldnd.path, old_dentry,
4379				     &newnd.path, new_dentry, flags);
4380	if (error)
4381		goto exit5;
4382	error = vfs_rename(old_dir->d_inode, old_dentry,
4383			   new_dir->d_inode, new_dentry,
4384			   &delegated_inode, flags);
4385exit5:
4386	dput(new_dentry);
4387exit4:
4388	dput(old_dentry);
4389exit3:
4390	unlock_rename(new_dir, old_dir);
4391	if (delegated_inode) {
4392		error = break_deleg_wait(&delegated_inode);
4393		if (!error)
4394			goto retry_deleg;
4395	}
4396	mnt_drop_write(oldnd.path.mnt);
4397exit2:
4398	if (retry_estale(error, lookup_flags))
4399		should_retry = true;
4400	path_put(&newnd.path);
4401	putname(to);
4402exit1:
4403	path_put(&oldnd.path);
4404	putname(from);
4405	if (should_retry) {
4406		should_retry = false;
4407		lookup_flags |= LOOKUP_REVAL;
4408		goto retry;
4409	}
4410exit:
4411	return error;
4412}
4413
4414SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
4415		int, newdfd, const char __user *, newname)
4416{
4417	return sys_renameat2(olddfd, oldname, newdfd, newname, 0);
4418}
4419
4420SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
4421{
4422	return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
4423}
4424
4425int vfs_whiteout(struct inode *dir, struct dentry *dentry)
4426{
4427	int error = may_create(dir, dentry);
4428	if (error)
4429		return error;
4430
4431	if (!dir->i_op->mknod)
4432		return -EPERM;
4433
4434	return dir->i_op->mknod(dir, dentry,
4435				S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
4436}
4437EXPORT_SYMBOL(vfs_whiteout);
4438
4439int readlink_copy(char __user *buffer, int buflen, const char *link)
4440{
4441	int len = PTR_ERR(link);
4442	if (IS_ERR(link))
4443		goto out;
4444
4445	len = strlen(link);
4446	if (len > (unsigned) buflen)
4447		len = buflen;
4448	if (copy_to_user(buffer, link, len))
4449		len = -EFAULT;
4450out:
4451	return len;
4452}
4453EXPORT_SYMBOL(readlink_copy);
4454
4455/*
4456 * A helper for ->readlink().  This should be used *ONLY* for symlinks that
4457 * have ->follow_link() touching nd only in nd_set_link().  Using (or not
4458 * using) it for any given inode is up to filesystem.
4459 */
4460int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4461{
4462	struct nameidata nd;
4463	void *cookie;
4464	int res;
4465
4466	nd.depth = 0;
4467	cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
4468	if (IS_ERR(cookie))
4469		return PTR_ERR(cookie);
4470
4471	res = readlink_copy(buffer, buflen, nd_get_link(&nd));
4472	if (dentry->d_inode->i_op->put_link)
4473		dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
4474	return res;
4475}
4476EXPORT_SYMBOL(generic_readlink);
4477
4478/* get the link contents into pagecache */
4479static char *page_getlink(struct dentry * dentry, struct page **ppage)
4480{
4481	char *kaddr;
4482	struct page *page;
4483	struct address_space *mapping = dentry->d_inode->i_mapping;
4484	page = read_mapping_page(mapping, 0, NULL);
4485	if (IS_ERR(page))
4486		return (char*)page;
4487	*ppage = page;
4488	kaddr = kmap(page);
4489	nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
4490	return kaddr;
4491}
4492
4493int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
4494{
4495	struct page *page = NULL;
4496	int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page));
4497	if (page) {
4498		kunmap(page);
4499		page_cache_release(page);
4500	}
4501	return res;
4502}
4503EXPORT_SYMBOL(page_readlink);
4504
4505void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
4506{
4507	struct page *page = NULL;
4508	nd_set_link(nd, page_getlink(dentry, &page));
4509	return page;
4510}
4511EXPORT_SYMBOL(page_follow_link_light);
4512
4513void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
4514{
4515	struct page *page = cookie;
4516
4517	if (page) {
4518		kunmap(page);
4519		page_cache_release(page);
4520	}
4521}
4522EXPORT_SYMBOL(page_put_link);
4523
4524/*
4525 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
4526 */
4527int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
4528{
4529	struct address_space *mapping = inode->i_mapping;
4530	struct page *page;
4531	void *fsdata;
4532	int err;
4533	char *kaddr;
4534	unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
4535	if (nofs)
4536		flags |= AOP_FLAG_NOFS;
4537
4538retry:
4539	err = pagecache_write_begin(NULL, mapping, 0, len-1,
4540				flags, &page, &fsdata);
4541	if (err)
4542		goto fail;
4543
4544	kaddr = kmap_atomic(page);
4545	memcpy(kaddr, symname, len-1);
4546	kunmap_atomic(kaddr);
4547
4548	err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
4549							page, fsdata);
4550	if (err < 0)
4551		goto fail;
4552	if (err < len-1)
4553		goto retry;
4554
4555	mark_inode_dirty(inode);
4556	return 0;
4557fail:
4558	return err;
4559}
4560EXPORT_SYMBOL(__page_symlink);
4561
4562int page_symlink(struct inode *inode, const char *symname, int len)
4563{
4564	return __page_symlink(inode, symname, len,
4565			!(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
4566}
4567EXPORT_SYMBOL(page_symlink);
4568
4569const struct inode_operations page_symlink_inode_operations = {
4570	.readlink	= generic_readlink,
4571	.follow_link	= page_follow_link_light,
4572	.put_link	= page_put_link,
4573};
4574EXPORT_SYMBOL(page_symlink_inode_operations);
4575