1/* 2 * linux/fs/namei.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7/* 8 * Some corrections by tytso. 9 */ 10 11/* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname 12 * lookup logic. 13 */ 14/* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture. 15 */ 16 17#include <linux/init.h> 18#include <linux/export.h> 19#include <linux/kernel.h> 20#include <linux/slab.h> 21#include <linux/fs.h> 22#include <linux/namei.h> 23#include <linux/pagemap.h> 24#include <linux/fsnotify.h> 25#include <linux/personality.h> 26#include <linux/security.h> 27#include <linux/ima.h> 28#include <linux/syscalls.h> 29#include <linux/mount.h> 30#include <linux/audit.h> 31#include <linux/capability.h> 32#include <linux/file.h> 33#include <linux/fcntl.h> 34#include <linux/device_cgroup.h> 35#include <linux/fs_struct.h> 36#include <linux/posix_acl.h> 37#include <linux/hash.h> 38#include <asm/uaccess.h> 39 40#include "internal.h" 41#include "mount.h" 42 43/* [Feb-1997 T. Schoebel-Theuer] 44 * Fundamental changes in the pathname lookup mechanisms (namei) 45 * were necessary because of omirr. The reason is that omirr needs 46 * to know the _real_ pathname, not the user-supplied one, in case 47 * of symlinks (and also when transname replacements occur). 48 * 49 * The new code replaces the old recursive symlink resolution with 50 * an iterative one (in case of non-nested symlink chains). It does 51 * this with calls to <fs>_follow_link(). 52 * As a side effect, dir_namei(), _namei() and follow_link() are now 53 * replaced with a single function lookup_dentry() that can handle all 54 * the special cases of the former code. 55 * 56 * With the new dcache, the pathname is stored at each inode, at least as 57 * long as the refcount of the inode is positive. As a side effect, the 58 * size of the dcache depends on the inode cache and thus is dynamic. 59 * 60 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink 61 * resolution to correspond with current state of the code. 62 * 63 * Note that the symlink resolution is not *completely* iterative. 64 * There is still a significant amount of tail- and mid- recursion in 65 * the algorithm. Also, note that <fs>_readlink() is not used in 66 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink() 67 * may return different results than <fs>_follow_link(). Many virtual 68 * filesystems (including /proc) exhibit this behavior. 69 */ 70 71/* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation: 72 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL 73 * and the name already exists in form of a symlink, try to create the new 74 * name indicated by the symlink. The old code always complained that the 75 * name already exists, due to not following the symlink even if its target 76 * is nonexistent. The new semantics affects also mknod() and link() when 77 * the name is a symlink pointing to a non-existent name. 78 * 79 * I don't know which semantics is the right one, since I have no access 80 * to standards. But I found by trial that HP-UX 9.0 has the full "new" 81 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the 82 * "old" one. Personally, I think the new semantics is much more logical. 83 * Note that "ln old new" where "new" is a symlink pointing to a non-existing 84 * file does succeed in both HP-UX and SunOs, but not in Solaris 85 * and in the old Linux semantics. 86 */ 87 88/* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink 89 * semantics. See the comments in "open_namei" and "do_link" below. 90 * 91 * [10-Sep-98 Alan Modra] Another symlink change. 92 */ 93 94/* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks: 95 * inside the path - always follow. 96 * in the last component in creation/removal/renaming - never follow. 97 * if LOOKUP_FOLLOW passed - follow. 98 * if the pathname has trailing slashes - follow. 99 * otherwise - don't follow. 100 * (applied in that order). 101 * 102 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT 103 * restored for 2.4. This is the last surviving part of old 4.2BSD bug. 104 * During the 2.4 we need to fix the userland stuff depending on it - 105 * hopefully we will be able to get rid of that wart in 2.5. So far only 106 * XEmacs seems to be relying on it... 107 */ 108/* 109 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland) 110 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives 111 * any extra contention... 112 */ 113 114/* In order to reduce some races, while at the same time doing additional 115 * checking and hopefully speeding things up, we copy filenames to the 116 * kernel data space before using them.. 117 * 118 * POSIX.1 2.4: an empty pathname is invalid (ENOENT). 119 * PATH_MAX includes the nul terminator --RR. 120 */ 121 122#define EMBEDDED_NAME_MAX (PATH_MAX - offsetof(struct filename, iname)) 123 124struct filename * 125getname_flags(const char __user *filename, int flags, int *empty) 126{ 127 struct filename *result; 128 char *kname; 129 int len; 130 131 result = audit_reusename(filename); 132 if (result) 133 return result; 134 135 result = __getname(); 136 if (unlikely(!result)) 137 return ERR_PTR(-ENOMEM); 138 139 /* 140 * First, try to embed the struct filename inside the names_cache 141 * allocation 142 */ 143 kname = (char *)result->iname; 144 result->name = kname; 145 146 len = strncpy_from_user(kname, filename, EMBEDDED_NAME_MAX); 147 if (unlikely(len < 0)) { 148 __putname(result); 149 return ERR_PTR(len); 150 } 151 152 /* 153 * Uh-oh. We have a name that's approaching PATH_MAX. Allocate a 154 * separate struct filename so we can dedicate the entire 155 * names_cache allocation for the pathname, and re-do the copy from 156 * userland. 157 */ 158 if (unlikely(len == EMBEDDED_NAME_MAX)) { 159 const size_t size = offsetof(struct filename, iname[1]); 160 kname = (char *)result; 161 162 /* 163 * size is chosen that way we to guarantee that 164 * result->iname[0] is within the same object and that 165 * kname can't be equal to result->iname, no matter what. 166 */ 167 result = kzalloc(size, GFP_KERNEL); 168 if (unlikely(!result)) { 169 __putname(kname); 170 return ERR_PTR(-ENOMEM); 171 } 172 result->name = kname; 173 len = strncpy_from_user(kname, filename, PATH_MAX); 174 if (unlikely(len < 0)) { 175 __putname(kname); 176 kfree(result); 177 return ERR_PTR(len); 178 } 179 if (unlikely(len == PATH_MAX)) { 180 __putname(kname); 181 kfree(result); 182 return ERR_PTR(-ENAMETOOLONG); 183 } 184 } 185 186 result->refcnt = 1; 187 /* The empty path is special. */ 188 if (unlikely(!len)) { 189 if (empty) 190 *empty = 1; 191 if (!(flags & LOOKUP_EMPTY)) { 192 putname(result); 193 return ERR_PTR(-ENOENT); 194 } 195 } 196 197 result->uptr = filename; 198 result->aname = NULL; 199 audit_getname(result); 200 return result; 201} 202 203struct filename * 204getname(const char __user * filename) 205{ 206 return getname_flags(filename, 0, NULL); 207} 208 209struct filename * 210getname_kernel(const char * filename) 211{ 212 struct filename *result; 213 int len = strlen(filename) + 1; 214 215 result = __getname(); 216 if (unlikely(!result)) 217 return ERR_PTR(-ENOMEM); 218 219 if (len <= EMBEDDED_NAME_MAX) { 220 result->name = (char *)result->iname; 221 } else if (len <= PATH_MAX) { 222 struct filename *tmp; 223 224 tmp = kmalloc(sizeof(*tmp), GFP_KERNEL); 225 if (unlikely(!tmp)) { 226 __putname(result); 227 return ERR_PTR(-ENOMEM); 228 } 229 tmp->name = (char *)result; 230 result = tmp; 231 } else { 232 __putname(result); 233 return ERR_PTR(-ENAMETOOLONG); 234 } 235 memcpy((char *)result->name, filename, len); 236 result->uptr = NULL; 237 result->aname = NULL; 238 result->refcnt = 1; 239 audit_getname(result); 240 241 return result; 242} 243 244void putname(struct filename *name) 245{ 246 BUG_ON(name->refcnt <= 0); 247 248 if (--name->refcnt > 0) 249 return; 250 251 if (name->name != name->iname) { 252 __putname(name->name); 253 kfree(name); 254 } else 255 __putname(name); 256} 257 258static int check_acl(struct inode *inode, int mask) 259{ 260#ifdef CONFIG_FS_POSIX_ACL 261 struct posix_acl *acl; 262 263 if (mask & MAY_NOT_BLOCK) { 264 acl = get_cached_acl_rcu(inode, ACL_TYPE_ACCESS); 265 if (!acl) 266 return -EAGAIN; 267 /* no ->get_acl() calls in RCU mode... */ 268 if (acl == ACL_NOT_CACHED) 269 return -ECHILD; 270 return posix_acl_permission(inode, acl, mask & ~MAY_NOT_BLOCK); 271 } 272 273 acl = get_acl(inode, ACL_TYPE_ACCESS); 274 if (IS_ERR(acl)) 275 return PTR_ERR(acl); 276 if (acl) { 277 int error = posix_acl_permission(inode, acl, mask); 278 posix_acl_release(acl); 279 return error; 280 } 281#endif 282 283 return -EAGAIN; 284} 285 286/* 287 * This does the basic permission checking 288 */ 289static int acl_permission_check(struct inode *inode, int mask) 290{ 291 unsigned int mode = inode->i_mode; 292 293 if (likely(uid_eq(current_fsuid(), inode->i_uid))) 294 mode >>= 6; 295 else { 296 if (IS_POSIXACL(inode) && (mode & S_IRWXG)) { 297 int error = check_acl(inode, mask); 298 if (error != -EAGAIN) 299 return error; 300 } 301 302 if (in_group_p(inode->i_gid)) 303 mode >>= 3; 304 } 305 306 /* 307 * If the DACs are ok we don't need any capability check. 308 */ 309 if ((mask & ~mode & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 310 return 0; 311 return -EACCES; 312} 313 314/** 315 * generic_permission - check for access rights on a Posix-like filesystem 316 * @inode: inode to check access rights for 317 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC, ...) 318 * 319 * Used to check for read/write/execute permissions on a file. 320 * We use "fsuid" for this, letting us set arbitrary permissions 321 * for filesystem access without changing the "normal" uids which 322 * are used for other things. 323 * 324 * generic_permission is rcu-walk aware. It returns -ECHILD in case an rcu-walk 325 * request cannot be satisfied (eg. requires blocking or too much complexity). 326 * It would then be called again in ref-walk mode. 327 */ 328int generic_permission(struct inode *inode, int mask) 329{ 330 int ret; 331 332 /* 333 * Do the basic permission checks. 334 */ 335 ret = acl_permission_check(inode, mask); 336 if (ret != -EACCES) 337 return ret; 338 339 if (S_ISDIR(inode->i_mode)) { 340 /* DACs are overridable for directories */ 341 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 342 return 0; 343 if (!(mask & MAY_WRITE)) 344 if (capable_wrt_inode_uidgid(inode, 345 CAP_DAC_READ_SEARCH)) 346 return 0; 347 return -EACCES; 348 } 349 /* 350 * Read/write DACs are always overridable. 351 * Executable DACs are overridable when there is 352 * at least one exec bit set. 353 */ 354 if (!(mask & MAY_EXEC) || (inode->i_mode & S_IXUGO)) 355 if (capable_wrt_inode_uidgid(inode, CAP_DAC_OVERRIDE)) 356 return 0; 357 358 /* 359 * Searching includes executable on directories, else just read. 360 */ 361 mask &= MAY_READ | MAY_WRITE | MAY_EXEC; 362 if (mask == MAY_READ) 363 if (capable_wrt_inode_uidgid(inode, CAP_DAC_READ_SEARCH)) 364 return 0; 365 366 return -EACCES; 367} 368EXPORT_SYMBOL(generic_permission); 369 370/* 371 * We _really_ want to just do "generic_permission()" without 372 * even looking at the inode->i_op values. So we keep a cache 373 * flag in inode->i_opflags, that says "this has not special 374 * permission function, use the fast case". 375 */ 376static inline int do_inode_permission(struct inode *inode, int mask) 377{ 378 if (unlikely(!(inode->i_opflags & IOP_FASTPERM))) { 379 if (likely(inode->i_op->permission)) 380 return inode->i_op->permission(inode, mask); 381 382 /* This gets set once for the inode lifetime */ 383 spin_lock(&inode->i_lock); 384 inode->i_opflags |= IOP_FASTPERM; 385 spin_unlock(&inode->i_lock); 386 } 387 return generic_permission(inode, mask); 388} 389 390/** 391 * __inode_permission - Check for access rights to a given inode 392 * @inode: Inode to check permission on 393 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 394 * 395 * Check for read/write/execute permissions on an inode. 396 * 397 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 398 * 399 * This does not check for a read-only file system. You probably want 400 * inode_permission(). 401 */ 402int __inode_permission(struct inode *inode, int mask) 403{ 404 int retval; 405 406 if (unlikely(mask & MAY_WRITE)) { 407 /* 408 * Nobody gets write access to an immutable file. 409 */ 410 if (IS_IMMUTABLE(inode)) 411 return -EACCES; 412 } 413 414 retval = do_inode_permission(inode, mask); 415 if (retval) 416 return retval; 417 418 retval = devcgroup_inode_permission(inode, mask); 419 if (retval) 420 return retval; 421 422 return security_inode_permission(inode, mask); 423} 424EXPORT_SYMBOL(__inode_permission); 425 426/** 427 * sb_permission - Check superblock-level permissions 428 * @sb: Superblock of inode to check permission on 429 * @inode: Inode to check permission on 430 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 431 * 432 * Separate out file-system wide checks from inode-specific permission checks. 433 */ 434static int sb_permission(struct super_block *sb, struct inode *inode, int mask) 435{ 436 if (unlikely(mask & MAY_WRITE)) { 437 umode_t mode = inode->i_mode; 438 439 /* Nobody gets write access to a read-only fs. */ 440 if ((sb->s_flags & MS_RDONLY) && 441 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) 442 return -EROFS; 443 } 444 return 0; 445} 446 447/** 448 * inode_permission - Check for access rights to a given inode 449 * @inode: Inode to check permission on 450 * @mask: Right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC) 451 * 452 * Check for read/write/execute permissions on an inode. We use fs[ug]id for 453 * this, letting us set arbitrary permissions for filesystem access without 454 * changing the "normal" UIDs which are used for other things. 455 * 456 * When checking for MAY_APPEND, MAY_WRITE must also be set in @mask. 457 */ 458int inode_permission(struct inode *inode, int mask) 459{ 460 int retval; 461 462 retval = sb_permission(inode->i_sb, inode, mask); 463 if (retval) 464 return retval; 465 return __inode_permission(inode, mask); 466} 467EXPORT_SYMBOL(inode_permission); 468 469/** 470 * path_get - get a reference to a path 471 * @path: path to get the reference to 472 * 473 * Given a path increment the reference count to the dentry and the vfsmount. 474 */ 475void path_get(const struct path *path) 476{ 477 mntget(path->mnt); 478 dget(path->dentry); 479} 480EXPORT_SYMBOL(path_get); 481 482/** 483 * path_put - put a reference to a path 484 * @path: path to put the reference to 485 * 486 * Given a path decrement the reference count to the dentry and the vfsmount. 487 */ 488void path_put(const struct path *path) 489{ 490 dput(path->dentry); 491 mntput(path->mnt); 492} 493EXPORT_SYMBOL(path_put); 494 495struct nameidata { 496 struct path path; 497 struct qstr last; 498 struct path root; 499 struct inode *inode; /* path.dentry.d_inode */ 500 unsigned int flags; 501 unsigned seq, m_seq; 502 int last_type; 503 unsigned depth; 504 struct file *base; 505 char *saved_names[MAX_NESTED_LINKS + 1]; 506}; 507 508/** 509 * path_connected - Verify that a path->dentry is below path->mnt.mnt_root 510 * @path: nameidate to verify 511 * 512 * Rename can sometimes move a file or directory outside of a bind 513 * mount, path_connected allows those cases to be detected. 514 */ 515static bool path_connected(const struct path *path) 516{ 517 struct vfsmount *mnt = path->mnt; 518 519 /* Only bind mounts can have disconnected paths */ 520 if (mnt->mnt_root == mnt->mnt_sb->s_root) 521 return true; 522 523 return is_subdir(path->dentry, mnt->mnt_root); 524} 525 526/* 527 * Path walking has 2 modes, rcu-walk and ref-walk (see 528 * Documentation/filesystems/path-lookup.txt). In situations when we can't 529 * continue in RCU mode, we attempt to drop out of rcu-walk mode and grab 530 * normal reference counts on dentries and vfsmounts to transition to rcu-walk 531 * mode. Refcounts are grabbed at the last known good point before rcu-walk 532 * got stuck, so ref-walk may continue from there. If this is not successful 533 * (eg. a seqcount has changed), then failure is returned and it's up to caller 534 * to restart the path walk from the beginning in ref-walk mode. 535 */ 536 537/** 538 * unlazy_walk - try to switch to ref-walk mode. 539 * @nd: nameidata pathwalk data 540 * @dentry: child of nd->path.dentry or NULL 541 * Returns: 0 on success, -ECHILD on failure 542 * 543 * unlazy_walk attempts to legitimize the current nd->path, nd->root and dentry 544 * for ref-walk mode. @dentry must be a path found by a do_lookup call on 545 * @nd or NULL. Must be called from rcu-walk context. 546 */ 547static int unlazy_walk(struct nameidata *nd, struct dentry *dentry) 548{ 549 struct fs_struct *fs = current->fs; 550 struct dentry *parent = nd->path.dentry; 551 552 BUG_ON(!(nd->flags & LOOKUP_RCU)); 553 554 /* 555 * After legitimizing the bastards, terminate_walk() 556 * will do the right thing for non-RCU mode, and all our 557 * subsequent exit cases should rcu_read_unlock() 558 * before returning. Do vfsmount first; if dentry 559 * can't be legitimized, just set nd->path.dentry to NULL 560 * and rely on dput(NULL) being a no-op. 561 */ 562 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) 563 return -ECHILD; 564 nd->flags &= ~LOOKUP_RCU; 565 566 if (!lockref_get_not_dead(&parent->d_lockref)) { 567 nd->path.dentry = NULL; 568 goto out; 569 } 570 571 /* 572 * For a negative lookup, the lookup sequence point is the parents 573 * sequence point, and it only needs to revalidate the parent dentry. 574 * 575 * For a positive lookup, we need to move both the parent and the 576 * dentry from the RCU domain to be properly refcounted. And the 577 * sequence number in the dentry validates *both* dentry counters, 578 * since we checked the sequence number of the parent after we got 579 * the child sequence number. So we know the parent must still 580 * be valid if the child sequence number is still valid. 581 */ 582 if (!dentry) { 583 if (read_seqcount_retry(&parent->d_seq, nd->seq)) 584 goto out; 585 BUG_ON(nd->inode != parent->d_inode); 586 } else { 587 if (!lockref_get_not_dead(&dentry->d_lockref)) 588 goto out; 589 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) 590 goto drop_dentry; 591 } 592 593 /* 594 * Sequence counts matched. Now make sure that the root is 595 * still valid and get it if required. 596 */ 597 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 598 spin_lock(&fs->lock); 599 if (nd->root.mnt != fs->root.mnt || nd->root.dentry != fs->root.dentry) 600 goto unlock_and_drop_dentry; 601 path_get(&nd->root); 602 spin_unlock(&fs->lock); 603 } 604 605 rcu_read_unlock(); 606 return 0; 607 608unlock_and_drop_dentry: 609 spin_unlock(&fs->lock); 610drop_dentry: 611 rcu_read_unlock(); 612 dput(dentry); 613 goto drop_root_mnt; 614out: 615 rcu_read_unlock(); 616drop_root_mnt: 617 if (!(nd->flags & LOOKUP_ROOT)) 618 nd->root.mnt = NULL; 619 return -ECHILD; 620} 621 622static inline int d_revalidate(struct dentry *dentry, unsigned int flags) 623{ 624 return dentry->d_op->d_revalidate(dentry, flags); 625} 626 627/** 628 * complete_walk - successful completion of path walk 629 * @nd: pointer nameidata 630 * 631 * If we had been in RCU mode, drop out of it and legitimize nd->path. 632 * Revalidate the final result, unless we'd already done that during 633 * the path walk or the filesystem doesn't ask for it. Return 0 on 634 * success, -error on failure. In case of failure caller does not 635 * need to drop nd->path. 636 */ 637static int complete_walk(struct nameidata *nd) 638{ 639 struct dentry *dentry = nd->path.dentry; 640 int status; 641 642 if (nd->flags & LOOKUP_RCU) { 643 nd->flags &= ~LOOKUP_RCU; 644 if (!(nd->flags & LOOKUP_ROOT)) 645 nd->root.mnt = NULL; 646 647 if (!legitimize_mnt(nd->path.mnt, nd->m_seq)) { 648 rcu_read_unlock(); 649 return -ECHILD; 650 } 651 if (unlikely(!lockref_get_not_dead(&dentry->d_lockref))) { 652 rcu_read_unlock(); 653 mntput(nd->path.mnt); 654 return -ECHILD; 655 } 656 if (read_seqcount_retry(&dentry->d_seq, nd->seq)) { 657 rcu_read_unlock(); 658 dput(dentry); 659 mntput(nd->path.mnt); 660 return -ECHILD; 661 } 662 rcu_read_unlock(); 663 } 664 665 if (likely(!(nd->flags & LOOKUP_JUMPED))) 666 return 0; 667 668 if (likely(!(dentry->d_flags & DCACHE_OP_WEAK_REVALIDATE))) 669 return 0; 670 671 status = dentry->d_op->d_weak_revalidate(dentry, nd->flags); 672 if (status > 0) 673 return 0; 674 675 if (!status) 676 status = -ESTALE; 677 678 path_put(&nd->path); 679 return status; 680} 681 682static __always_inline void set_root(struct nameidata *nd) 683{ 684 get_fs_root(current->fs, &nd->root); 685} 686 687static int link_path_walk(const char *, struct nameidata *); 688 689static __always_inline unsigned set_root_rcu(struct nameidata *nd) 690{ 691 struct fs_struct *fs = current->fs; 692 unsigned seq, res; 693 694 do { 695 seq = read_seqcount_begin(&fs->seq); 696 nd->root = fs->root; 697 res = __read_seqcount_begin(&nd->root.dentry->d_seq); 698 } while (read_seqcount_retry(&fs->seq, seq)); 699 return res; 700} 701 702static void path_put_conditional(struct path *path, struct nameidata *nd) 703{ 704 dput(path->dentry); 705 if (path->mnt != nd->path.mnt) 706 mntput(path->mnt); 707} 708 709static inline void path_to_nameidata(const struct path *path, 710 struct nameidata *nd) 711{ 712 if (!(nd->flags & LOOKUP_RCU)) { 713 dput(nd->path.dentry); 714 if (nd->path.mnt != path->mnt) 715 mntput(nd->path.mnt); 716 } 717 nd->path.mnt = path->mnt; 718 nd->path.dentry = path->dentry; 719} 720 721/* 722 * Helper to directly jump to a known parsed path from ->follow_link, 723 * caller must have taken a reference to path beforehand. 724 */ 725void nd_jump_link(struct nameidata *nd, struct path *path) 726{ 727 path_put(&nd->path); 728 729 nd->path = *path; 730 nd->inode = nd->path.dentry->d_inode; 731 nd->flags |= LOOKUP_JUMPED; 732} 733 734void nd_set_link(struct nameidata *nd, char *path) 735{ 736 nd->saved_names[nd->depth] = path; 737} 738EXPORT_SYMBOL(nd_set_link); 739 740char *nd_get_link(struct nameidata *nd) 741{ 742 return nd->saved_names[nd->depth]; 743} 744EXPORT_SYMBOL(nd_get_link); 745 746static inline void put_link(struct nameidata *nd, struct path *link, void *cookie) 747{ 748 struct inode *inode = link->dentry->d_inode; 749 if (inode->i_op->put_link) 750 inode->i_op->put_link(link->dentry, nd, cookie); 751 path_put(link); 752} 753 754int sysctl_protected_symlinks __read_mostly = 0; 755int sysctl_protected_hardlinks __read_mostly = 0; 756 757/** 758 * may_follow_link - Check symlink following for unsafe situations 759 * @link: The path of the symlink 760 * @nd: nameidata pathwalk data 761 * 762 * In the case of the sysctl_protected_symlinks sysctl being enabled, 763 * CAP_DAC_OVERRIDE needs to be specifically ignored if the symlink is 764 * in a sticky world-writable directory. This is to protect privileged 765 * processes from failing races against path names that may change out 766 * from under them by way of other users creating malicious symlinks. 767 * It will permit symlinks to be followed only when outside a sticky 768 * world-writable directory, or when the uid of the symlink and follower 769 * match, or when the directory owner matches the symlink's owner. 770 * 771 * Returns 0 if following the symlink is allowed, -ve on error. 772 */ 773static inline int may_follow_link(struct path *link, struct nameidata *nd) 774{ 775 const struct inode *inode; 776 const struct inode *parent; 777 778 if (!sysctl_protected_symlinks) 779 return 0; 780 781 /* Allowed if owner and follower match. */ 782 inode = link->dentry->d_inode; 783 if (uid_eq(current_cred()->fsuid, inode->i_uid)) 784 return 0; 785 786 /* Allowed if parent directory not sticky and world-writable. */ 787 parent = nd->path.dentry->d_inode; 788 if ((parent->i_mode & (S_ISVTX|S_IWOTH)) != (S_ISVTX|S_IWOTH)) 789 return 0; 790 791 /* Allowed if parent directory and link owner match. */ 792 if (uid_eq(parent->i_uid, inode->i_uid)) 793 return 0; 794 795 audit_log_link_denied("follow_link", link); 796 path_put_conditional(link, nd); 797 path_put(&nd->path); 798 return -EACCES; 799} 800 801/** 802 * safe_hardlink_source - Check for safe hardlink conditions 803 * @inode: the source inode to hardlink from 804 * 805 * Return false if at least one of the following conditions: 806 * - inode is not a regular file 807 * - inode is setuid 808 * - inode is setgid and group-exec 809 * - access failure for read and write 810 * 811 * Otherwise returns true. 812 */ 813static bool safe_hardlink_source(struct inode *inode) 814{ 815 umode_t mode = inode->i_mode; 816 817 /* Special files should not get pinned to the filesystem. */ 818 if (!S_ISREG(mode)) 819 return false; 820 821 /* Setuid files should not get pinned to the filesystem. */ 822 if (mode & S_ISUID) 823 return false; 824 825 /* Executable setgid files should not get pinned to the filesystem. */ 826 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) 827 return false; 828 829 /* Hardlinking to unreadable or unwritable sources is dangerous. */ 830 if (inode_permission(inode, MAY_READ | MAY_WRITE)) 831 return false; 832 833 return true; 834} 835 836/** 837 * may_linkat - Check permissions for creating a hardlink 838 * @link: the source to hardlink from 839 * 840 * Block hardlink when all of: 841 * - sysctl_protected_hardlinks enabled 842 * - fsuid does not match inode 843 * - hardlink source is unsafe (see safe_hardlink_source() above) 844 * - not CAP_FOWNER 845 * 846 * Returns 0 if successful, -ve on error. 847 */ 848static int may_linkat(struct path *link) 849{ 850 const struct cred *cred; 851 struct inode *inode; 852 853 if (!sysctl_protected_hardlinks) 854 return 0; 855 856 cred = current_cred(); 857 inode = link->dentry->d_inode; 858 859 /* Source inode owner (or CAP_FOWNER) can hardlink all they like, 860 * otherwise, it must be a safe source. 861 */ 862 if (uid_eq(cred->fsuid, inode->i_uid) || safe_hardlink_source(inode) || 863 capable(CAP_FOWNER)) 864 return 0; 865 866 audit_log_link_denied("linkat", link); 867 return -EPERM; 868} 869 870static __always_inline int 871follow_link(struct path *link, struct nameidata *nd, void **p) 872{ 873 struct dentry *dentry = link->dentry; 874 int error; 875 char *s; 876 877 BUG_ON(nd->flags & LOOKUP_RCU); 878 879 if (link->mnt == nd->path.mnt) 880 mntget(link->mnt); 881 882 error = -ELOOP; 883 if (unlikely(current->total_link_count >= 40)) 884 goto out_put_nd_path; 885 886 cond_resched(); 887 current->total_link_count++; 888 889 touch_atime(link); 890 nd_set_link(nd, NULL); 891 892 error = security_inode_follow_link(link->dentry, nd); 893 if (error) 894 goto out_put_nd_path; 895 896 nd->last_type = LAST_BIND; 897 *p = dentry->d_inode->i_op->follow_link(dentry, nd); 898 error = PTR_ERR(*p); 899 if (IS_ERR(*p)) 900 goto out_put_nd_path; 901 902 error = 0; 903 s = nd_get_link(nd); 904 if (s) { 905 if (unlikely(IS_ERR(s))) { 906 path_put(&nd->path); 907 put_link(nd, link, *p); 908 return PTR_ERR(s); 909 } 910 if (*s == '/') { 911 if (!nd->root.mnt) 912 set_root(nd); 913 path_put(&nd->path); 914 nd->path = nd->root; 915 path_get(&nd->root); 916 nd->flags |= LOOKUP_JUMPED; 917 } 918 nd->inode = nd->path.dentry->d_inode; 919 error = link_path_walk(s, nd); 920 if (unlikely(error)) 921 put_link(nd, link, *p); 922 } 923 924 return error; 925 926out_put_nd_path: 927 *p = NULL; 928 path_put(&nd->path); 929 path_put(link); 930 return error; 931} 932 933static int follow_up_rcu(struct path *path) 934{ 935 struct mount *mnt = real_mount(path->mnt); 936 struct mount *parent; 937 struct dentry *mountpoint; 938 939 parent = mnt->mnt_parent; 940 if (&parent->mnt == path->mnt) 941 return 0; 942 mountpoint = mnt->mnt_mountpoint; 943 path->dentry = mountpoint; 944 path->mnt = &parent->mnt; 945 return 1; 946} 947 948/* 949 * follow_up - Find the mountpoint of path's vfsmount 950 * 951 * Given a path, find the mountpoint of its source file system. 952 * Replace @path with the path of the mountpoint in the parent mount. 953 * Up is towards /. 954 * 955 * Return 1 if we went up a level and 0 if we were already at the 956 * root. 957 */ 958int follow_up(struct path *path) 959{ 960 struct mount *mnt = real_mount(path->mnt); 961 struct mount *parent; 962 struct dentry *mountpoint; 963 964 read_seqlock_excl(&mount_lock); 965 parent = mnt->mnt_parent; 966 if (parent == mnt) { 967 read_sequnlock_excl(&mount_lock); 968 return 0; 969 } 970 mntget(&parent->mnt); 971 mountpoint = dget(mnt->mnt_mountpoint); 972 read_sequnlock_excl(&mount_lock); 973 dput(path->dentry); 974 path->dentry = mountpoint; 975 mntput(path->mnt); 976 path->mnt = &parent->mnt; 977 return 1; 978} 979EXPORT_SYMBOL(follow_up); 980 981/* 982 * Perform an automount 983 * - return -EISDIR to tell follow_managed() to stop and return the path we 984 * were called with. 985 */ 986static int follow_automount(struct path *path, unsigned flags, 987 bool *need_mntput) 988{ 989 struct vfsmount *mnt; 990 int err; 991 992 if (!path->dentry->d_op || !path->dentry->d_op->d_automount) 993 return -EREMOTE; 994 995 /* We don't want to mount if someone's just doing a stat - 996 * unless they're stat'ing a directory and appended a '/' to 997 * the name. 998 * 999 * We do, however, want to mount if someone wants to open or 1000 * create a file of any type under the mountpoint, wants to 1001 * traverse through the mountpoint or wants to open the 1002 * mounted directory. Also, autofs may mark negative dentries 1003 * as being automount points. These will need the attentions 1004 * of the daemon to instantiate them before they can be used. 1005 */ 1006 if (!(flags & (LOOKUP_PARENT | LOOKUP_DIRECTORY | 1007 LOOKUP_OPEN | LOOKUP_CREATE | LOOKUP_AUTOMOUNT)) && 1008 path->dentry->d_inode) 1009 return -EISDIR; 1010 1011 current->total_link_count++; 1012 if (current->total_link_count >= 40) 1013 return -ELOOP; 1014 1015 mnt = path->dentry->d_op->d_automount(path); 1016 if (IS_ERR(mnt)) { 1017 /* 1018 * The filesystem is allowed to return -EISDIR here to indicate 1019 * it doesn't want to automount. For instance, autofs would do 1020 * this so that its userspace daemon can mount on this dentry. 1021 * 1022 * However, we can only permit this if it's a terminal point in 1023 * the path being looked up; if it wasn't then the remainder of 1024 * the path is inaccessible and we should say so. 1025 */ 1026 if (PTR_ERR(mnt) == -EISDIR && (flags & LOOKUP_PARENT)) 1027 return -EREMOTE; 1028 return PTR_ERR(mnt); 1029 } 1030 1031 if (!mnt) /* mount collision */ 1032 return 0; 1033 1034 if (!*need_mntput) { 1035 /* lock_mount() may release path->mnt on error */ 1036 mntget(path->mnt); 1037 *need_mntput = true; 1038 } 1039 err = finish_automount(mnt, path); 1040 1041 switch (err) { 1042 case -EBUSY: 1043 /* Someone else made a mount here whilst we were busy */ 1044 return 0; 1045 case 0: 1046 path_put(path); 1047 path->mnt = mnt; 1048 path->dentry = dget(mnt->mnt_root); 1049 return 0; 1050 default: 1051 return err; 1052 } 1053 1054} 1055 1056/* 1057 * Handle a dentry that is managed in some way. 1058 * - Flagged for transit management (autofs) 1059 * - Flagged as mountpoint 1060 * - Flagged as automount point 1061 * 1062 * This may only be called in refwalk mode. 1063 * 1064 * Serialization is taken care of in namespace.c 1065 */ 1066static int follow_managed(struct path *path, unsigned flags) 1067{ 1068 struct vfsmount *mnt = path->mnt; /* held by caller, must be left alone */ 1069 unsigned managed; 1070 bool need_mntput = false; 1071 int ret = 0; 1072 1073 /* Given that we're not holding a lock here, we retain the value in a 1074 * local variable for each dentry as we look at it so that we don't see 1075 * the components of that value change under us */ 1076 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1077 managed &= DCACHE_MANAGED_DENTRY, 1078 unlikely(managed != 0)) { 1079 /* Allow the filesystem to manage the transit without i_mutex 1080 * being held. */ 1081 if (managed & DCACHE_MANAGE_TRANSIT) { 1082 BUG_ON(!path->dentry->d_op); 1083 BUG_ON(!path->dentry->d_op->d_manage); 1084 ret = path->dentry->d_op->d_manage(path->dentry, false); 1085 if (ret < 0) 1086 break; 1087 } 1088 1089 /* Transit to a mounted filesystem. */ 1090 if (managed & DCACHE_MOUNTED) { 1091 struct vfsmount *mounted = lookup_mnt(path); 1092 if (mounted) { 1093 dput(path->dentry); 1094 if (need_mntput) 1095 mntput(path->mnt); 1096 path->mnt = mounted; 1097 path->dentry = dget(mounted->mnt_root); 1098 need_mntput = true; 1099 continue; 1100 } 1101 1102 /* Something is mounted on this dentry in another 1103 * namespace and/or whatever was mounted there in this 1104 * namespace got unmounted before lookup_mnt() could 1105 * get it */ 1106 } 1107 1108 /* Handle an automount point */ 1109 if (managed & DCACHE_NEED_AUTOMOUNT) { 1110 ret = follow_automount(path, flags, &need_mntput); 1111 if (ret < 0) 1112 break; 1113 continue; 1114 } 1115 1116 /* We didn't change the current path point */ 1117 break; 1118 } 1119 1120 if (need_mntput && path->mnt == mnt) 1121 mntput(path->mnt); 1122 if (ret == -EISDIR) 1123 ret = 0; 1124 return ret < 0 ? ret : need_mntput; 1125} 1126 1127int follow_down_one(struct path *path) 1128{ 1129 struct vfsmount *mounted; 1130 1131 mounted = lookup_mnt(path); 1132 if (mounted) { 1133 dput(path->dentry); 1134 mntput(path->mnt); 1135 path->mnt = mounted; 1136 path->dentry = dget(mounted->mnt_root); 1137 return 1; 1138 } 1139 return 0; 1140} 1141EXPORT_SYMBOL(follow_down_one); 1142 1143static inline int managed_dentry_rcu(struct dentry *dentry) 1144{ 1145 return (dentry->d_flags & DCACHE_MANAGE_TRANSIT) ? 1146 dentry->d_op->d_manage(dentry, true) : 0; 1147} 1148 1149/* 1150 * Try to skip to top of mountpoint pile in rcuwalk mode. Fail if 1151 * we meet a managed dentry that would need blocking. 1152 */ 1153static bool __follow_mount_rcu(struct nameidata *nd, struct path *path, 1154 struct inode **inode) 1155{ 1156 for (;;) { 1157 struct mount *mounted; 1158 /* 1159 * Don't forget we might have a non-mountpoint managed dentry 1160 * that wants to block transit. 1161 */ 1162 switch (managed_dentry_rcu(path->dentry)) { 1163 case -ECHILD: 1164 default: 1165 return false; 1166 case -EISDIR: 1167 return true; 1168 case 0: 1169 break; 1170 } 1171 1172 if (!d_mountpoint(path->dentry)) 1173 return !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1174 1175 mounted = __lookup_mnt(path->mnt, path->dentry); 1176 if (!mounted) 1177 break; 1178 path->mnt = &mounted->mnt; 1179 path->dentry = mounted->mnt.mnt_root; 1180 nd->flags |= LOOKUP_JUMPED; 1181 nd->seq = read_seqcount_begin(&path->dentry->d_seq); 1182 /* 1183 * Update the inode too. We don't need to re-check the 1184 * dentry sequence number here after this d_inode read, 1185 * because a mount-point is always pinned. 1186 */ 1187 *inode = path->dentry->d_inode; 1188 } 1189 return !read_seqretry(&mount_lock, nd->m_seq) && 1190 !(path->dentry->d_flags & DCACHE_NEED_AUTOMOUNT); 1191} 1192 1193static int follow_dotdot_rcu(struct nameidata *nd) 1194{ 1195 struct inode *inode = nd->inode; 1196 if (!nd->root.mnt) 1197 set_root_rcu(nd); 1198 1199 while (1) { 1200 if (nd->path.dentry == nd->root.dentry && 1201 nd->path.mnt == nd->root.mnt) { 1202 break; 1203 } 1204 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1205 struct dentry *old = nd->path.dentry; 1206 struct dentry *parent = old->d_parent; 1207 unsigned seq; 1208 1209 inode = parent->d_inode; 1210 seq = read_seqcount_begin(&parent->d_seq); 1211 if (read_seqcount_retry(&old->d_seq, nd->seq)) 1212 goto failed; 1213 nd->path.dentry = parent; 1214 nd->seq = seq; 1215 if (unlikely(!path_connected(&nd->path))) 1216 goto failed; 1217 break; 1218 } 1219 if (!follow_up_rcu(&nd->path)) 1220 break; 1221 inode = nd->path.dentry->d_inode; 1222 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1223 } 1224 while (d_mountpoint(nd->path.dentry)) { 1225 struct mount *mounted; 1226 mounted = __lookup_mnt(nd->path.mnt, nd->path.dentry); 1227 if (!mounted) 1228 break; 1229 nd->path.mnt = &mounted->mnt; 1230 nd->path.dentry = mounted->mnt.mnt_root; 1231 inode = nd->path.dentry->d_inode; 1232 nd->seq = read_seqcount_begin(&nd->path.dentry->d_seq); 1233 if (read_seqretry(&mount_lock, nd->m_seq)) 1234 goto failed; 1235 } 1236 nd->inode = inode; 1237 return 0; 1238 1239failed: 1240 nd->flags &= ~LOOKUP_RCU; 1241 if (!(nd->flags & LOOKUP_ROOT)) 1242 nd->root.mnt = NULL; 1243 rcu_read_unlock(); 1244 return -ECHILD; 1245} 1246 1247/* 1248 * Follow down to the covering mount currently visible to userspace. At each 1249 * point, the filesystem owning that dentry may be queried as to whether the 1250 * caller is permitted to proceed or not. 1251 */ 1252int follow_down(struct path *path) 1253{ 1254 unsigned managed; 1255 int ret; 1256 1257 while (managed = ACCESS_ONCE(path->dentry->d_flags), 1258 unlikely(managed & DCACHE_MANAGED_DENTRY)) { 1259 /* Allow the filesystem to manage the transit without i_mutex 1260 * being held. 1261 * 1262 * We indicate to the filesystem if someone is trying to mount 1263 * something here. This gives autofs the chance to deny anyone 1264 * other than its daemon the right to mount on its 1265 * superstructure. 1266 * 1267 * The filesystem may sleep at this point. 1268 */ 1269 if (managed & DCACHE_MANAGE_TRANSIT) { 1270 BUG_ON(!path->dentry->d_op); 1271 BUG_ON(!path->dentry->d_op->d_manage); 1272 ret = path->dentry->d_op->d_manage( 1273 path->dentry, false); 1274 if (ret < 0) 1275 return ret == -EISDIR ? 0 : ret; 1276 } 1277 1278 /* Transit to a mounted filesystem. */ 1279 if (managed & DCACHE_MOUNTED) { 1280 struct vfsmount *mounted = lookup_mnt(path); 1281 if (!mounted) 1282 break; 1283 dput(path->dentry); 1284 mntput(path->mnt); 1285 path->mnt = mounted; 1286 path->dentry = dget(mounted->mnt_root); 1287 continue; 1288 } 1289 1290 /* Don't handle automount points here */ 1291 break; 1292 } 1293 return 0; 1294} 1295EXPORT_SYMBOL(follow_down); 1296 1297/* 1298 * Skip to top of mountpoint pile in refwalk mode for follow_dotdot() 1299 */ 1300static void follow_mount(struct path *path) 1301{ 1302 while (d_mountpoint(path->dentry)) { 1303 struct vfsmount *mounted = lookup_mnt(path); 1304 if (!mounted) 1305 break; 1306 dput(path->dentry); 1307 mntput(path->mnt); 1308 path->mnt = mounted; 1309 path->dentry = dget(mounted->mnt_root); 1310 } 1311} 1312 1313static int follow_dotdot(struct nameidata *nd) 1314{ 1315 if (!nd->root.mnt) 1316 set_root(nd); 1317 1318 while(1) { 1319 struct dentry *old = nd->path.dentry; 1320 1321 if (nd->path.dentry == nd->root.dentry && 1322 nd->path.mnt == nd->root.mnt) { 1323 break; 1324 } 1325 if (nd->path.dentry != nd->path.mnt->mnt_root) { 1326 /* rare case of legitimate dget_parent()... */ 1327 nd->path.dentry = dget_parent(nd->path.dentry); 1328 dput(old); 1329 if (unlikely(!path_connected(&nd->path))) { 1330 path_put(&nd->path); 1331 return -ENOENT; 1332 } 1333 break; 1334 } 1335 if (!follow_up(&nd->path)) 1336 break; 1337 } 1338 follow_mount(&nd->path); 1339 nd->inode = nd->path.dentry->d_inode; 1340 return 0; 1341} 1342 1343/* 1344 * This looks up the name in dcache, possibly revalidates the old dentry and 1345 * allocates a new one if not found or not valid. In the need_lookup argument 1346 * returns whether i_op->lookup is necessary. 1347 * 1348 * dir->d_inode->i_mutex must be held 1349 */ 1350static struct dentry *lookup_dcache(struct qstr *name, struct dentry *dir, 1351 unsigned int flags, bool *need_lookup) 1352{ 1353 struct dentry *dentry; 1354 int error; 1355 1356 *need_lookup = false; 1357 dentry = d_lookup(dir, name); 1358 if (dentry) { 1359 if (dentry->d_flags & DCACHE_OP_REVALIDATE) { 1360 error = d_revalidate(dentry, flags); 1361 if (unlikely(error <= 0)) { 1362 if (error < 0) { 1363 dput(dentry); 1364 return ERR_PTR(error); 1365 } else { 1366 d_invalidate(dentry); 1367 dput(dentry); 1368 dentry = NULL; 1369 } 1370 } 1371 } 1372 } 1373 1374 if (!dentry) { 1375 dentry = d_alloc(dir, name); 1376 if (unlikely(!dentry)) 1377 return ERR_PTR(-ENOMEM); 1378 1379 *need_lookup = true; 1380 } 1381 return dentry; 1382} 1383 1384/* 1385 * Call i_op->lookup on the dentry. The dentry must be negative and 1386 * unhashed. 1387 * 1388 * dir->d_inode->i_mutex must be held 1389 */ 1390static struct dentry *lookup_real(struct inode *dir, struct dentry *dentry, 1391 unsigned int flags) 1392{ 1393 struct dentry *old; 1394 1395 /* Don't create child dentry for a dead directory. */ 1396 if (unlikely(IS_DEADDIR(dir))) { 1397 dput(dentry); 1398 return ERR_PTR(-ENOENT); 1399 } 1400 1401 old = dir->i_op->lookup(dir, dentry, flags); 1402 if (unlikely(old)) { 1403 dput(dentry); 1404 dentry = old; 1405 } 1406 return dentry; 1407} 1408 1409static struct dentry *__lookup_hash(struct qstr *name, 1410 struct dentry *base, unsigned int flags) 1411{ 1412 bool need_lookup; 1413 struct dentry *dentry; 1414 1415 dentry = lookup_dcache(name, base, flags, &need_lookup); 1416 if (!need_lookup) 1417 return dentry; 1418 1419 return lookup_real(base->d_inode, dentry, flags); 1420} 1421 1422/* 1423 * It's more convoluted than I'd like it to be, but... it's still fairly 1424 * small and for now I'd prefer to have fast path as straight as possible. 1425 * It _is_ time-critical. 1426 */ 1427static int lookup_fast(struct nameidata *nd, 1428 struct path *path, struct inode **inode) 1429{ 1430 struct vfsmount *mnt = nd->path.mnt; 1431 struct dentry *dentry, *parent = nd->path.dentry; 1432 int need_reval = 1; 1433 int status = 1; 1434 int err; 1435 1436 /* 1437 * Rename seqlock is not required here because in the off chance 1438 * of a false negative due to a concurrent rename, we're going to 1439 * do the non-racy lookup, below. 1440 */ 1441 if (nd->flags & LOOKUP_RCU) { 1442 unsigned seq; 1443 bool negative; 1444 dentry = __d_lookup_rcu(parent, &nd->last, &seq); 1445 if (!dentry) 1446 goto unlazy; 1447 1448 /* 1449 * This sequence count validates that the inode matches 1450 * the dentry name information from lookup. 1451 */ 1452 *inode = dentry->d_inode; 1453 negative = d_is_negative(dentry); 1454 if (read_seqcount_retry(&dentry->d_seq, seq)) 1455 return -ECHILD; 1456 1457 /* 1458 * This sequence count validates that the parent had no 1459 * changes while we did the lookup of the dentry above. 1460 * 1461 * The memory barrier in read_seqcount_begin of child is 1462 * enough, we can use __read_seqcount_retry here. 1463 */ 1464 if (__read_seqcount_retry(&parent->d_seq, nd->seq)) 1465 return -ECHILD; 1466 nd->seq = seq; 1467 1468 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE)) { 1469 status = d_revalidate(dentry, nd->flags); 1470 if (unlikely(status <= 0)) { 1471 if (status != -ECHILD) 1472 need_reval = 0; 1473 goto unlazy; 1474 } 1475 } 1476 /* 1477 * Note: do negative dentry check after revalidation in 1478 * case that drops it. 1479 */ 1480 if (negative) 1481 return -ENOENT; 1482 path->mnt = mnt; 1483 path->dentry = dentry; 1484 if (likely(__follow_mount_rcu(nd, path, inode))) 1485 return 0; 1486unlazy: 1487 if (unlazy_walk(nd, dentry)) 1488 return -ECHILD; 1489 } else { 1490 dentry = __d_lookup(parent, &nd->last); 1491 } 1492 1493 if (unlikely(!dentry)) 1494 goto need_lookup; 1495 1496 if (unlikely(dentry->d_flags & DCACHE_OP_REVALIDATE) && need_reval) 1497 status = d_revalidate(dentry, nd->flags); 1498 if (unlikely(status <= 0)) { 1499 if (status < 0) { 1500 dput(dentry); 1501 return status; 1502 } 1503 d_invalidate(dentry); 1504 dput(dentry); 1505 goto need_lookup; 1506 } 1507 1508 if (unlikely(d_is_negative(dentry))) { 1509 dput(dentry); 1510 return -ENOENT; 1511 } 1512 path->mnt = mnt; 1513 path->dentry = dentry; 1514 err = follow_managed(path, nd->flags); 1515 if (unlikely(err < 0)) { 1516 path_put_conditional(path, nd); 1517 return err; 1518 } 1519 if (err) 1520 nd->flags |= LOOKUP_JUMPED; 1521 *inode = path->dentry->d_inode; 1522 return 0; 1523 1524need_lookup: 1525 return 1; 1526} 1527 1528/* Fast lookup failed, do it the slow way */ 1529static int lookup_slow(struct nameidata *nd, struct path *path) 1530{ 1531 struct dentry *dentry, *parent; 1532 int err; 1533 1534 parent = nd->path.dentry; 1535 BUG_ON(nd->inode != parent->d_inode); 1536 1537 mutex_lock(&parent->d_inode->i_mutex); 1538 dentry = __lookup_hash(&nd->last, parent, nd->flags); 1539 mutex_unlock(&parent->d_inode->i_mutex); 1540 if (IS_ERR(dentry)) 1541 return PTR_ERR(dentry); 1542 path->mnt = nd->path.mnt; 1543 path->dentry = dentry; 1544 err = follow_managed(path, nd->flags); 1545 if (unlikely(err < 0)) { 1546 path_put_conditional(path, nd); 1547 return err; 1548 } 1549 if (err) 1550 nd->flags |= LOOKUP_JUMPED; 1551 return 0; 1552} 1553 1554static inline int may_lookup(struct nameidata *nd) 1555{ 1556 if (nd->flags & LOOKUP_RCU) { 1557 int err = inode_permission(nd->inode, MAY_EXEC|MAY_NOT_BLOCK); 1558 if (err != -ECHILD) 1559 return err; 1560 if (unlazy_walk(nd, NULL)) 1561 return -ECHILD; 1562 } 1563 return inode_permission(nd->inode, MAY_EXEC); 1564} 1565 1566static inline int handle_dots(struct nameidata *nd, int type) 1567{ 1568 if (type == LAST_DOTDOT) { 1569 if (nd->flags & LOOKUP_RCU) { 1570 if (follow_dotdot_rcu(nd)) 1571 return -ECHILD; 1572 } else 1573 return follow_dotdot(nd); 1574 } 1575 return 0; 1576} 1577 1578static void terminate_walk(struct nameidata *nd) 1579{ 1580 if (!(nd->flags & LOOKUP_RCU)) { 1581 path_put(&nd->path); 1582 } else { 1583 nd->flags &= ~LOOKUP_RCU; 1584 if (!(nd->flags & LOOKUP_ROOT)) 1585 nd->root.mnt = NULL; 1586 rcu_read_unlock(); 1587 } 1588} 1589 1590/* 1591 * Do we need to follow links? We _really_ want to be able 1592 * to do this check without having to look at inode->i_op, 1593 * so we keep a cache of "no, this doesn't need follow_link" 1594 * for the common case. 1595 */ 1596static inline int should_follow_link(struct dentry *dentry, int follow) 1597{ 1598 return unlikely(d_is_symlink(dentry)) ? follow : 0; 1599} 1600 1601static inline int walk_component(struct nameidata *nd, struct path *path, 1602 int follow) 1603{ 1604 struct inode *inode; 1605 int err; 1606 /* 1607 * "." and ".." are special - ".." especially so because it has 1608 * to be able to know about the current root directory and 1609 * parent relationships. 1610 */ 1611 if (unlikely(nd->last_type != LAST_NORM)) 1612 return handle_dots(nd, nd->last_type); 1613 err = lookup_fast(nd, path, &inode); 1614 if (unlikely(err)) { 1615 if (err < 0) 1616 goto out_err; 1617 1618 err = lookup_slow(nd, path); 1619 if (err < 0) 1620 goto out_err; 1621 1622 err = -ENOENT; 1623 if (d_is_negative(path->dentry)) 1624 goto out_path_put; 1625 inode = path->dentry->d_inode; 1626 } 1627 1628 if (should_follow_link(path->dentry, follow)) { 1629 if (nd->flags & LOOKUP_RCU) { 1630 if (unlikely(nd->path.mnt != path->mnt || 1631 unlazy_walk(nd, path->dentry))) { 1632 err = -ECHILD; 1633 goto out_err; 1634 } 1635 } 1636 BUG_ON(inode != path->dentry->d_inode); 1637 return 1; 1638 } 1639 path_to_nameidata(path, nd); 1640 nd->inode = inode; 1641 return 0; 1642 1643out_path_put: 1644 path_to_nameidata(path, nd); 1645out_err: 1646 terminate_walk(nd); 1647 return err; 1648} 1649 1650/* 1651 * This limits recursive symlink follows to 8, while 1652 * limiting consecutive symlinks to 40. 1653 * 1654 * Without that kind of total limit, nasty chains of consecutive 1655 * symlinks can cause almost arbitrarily long lookups. 1656 */ 1657static inline int nested_symlink(struct path *path, struct nameidata *nd) 1658{ 1659 int res; 1660 1661 if (unlikely(current->link_count >= MAX_NESTED_LINKS)) { 1662 path_put_conditional(path, nd); 1663 path_put(&nd->path); 1664 return -ELOOP; 1665 } 1666 BUG_ON(nd->depth >= MAX_NESTED_LINKS); 1667 1668 nd->depth++; 1669 current->link_count++; 1670 1671 do { 1672 struct path link = *path; 1673 void *cookie; 1674 1675 res = follow_link(&link, nd, &cookie); 1676 if (res) 1677 break; 1678 res = walk_component(nd, path, LOOKUP_FOLLOW); 1679 put_link(nd, &link, cookie); 1680 } while (res > 0); 1681 1682 current->link_count--; 1683 nd->depth--; 1684 return res; 1685} 1686 1687/* 1688 * We can do the critical dentry name comparison and hashing 1689 * operations one word at a time, but we are limited to: 1690 * 1691 * - Architectures with fast unaligned word accesses. We could 1692 * do a "get_unaligned()" if this helps and is sufficiently 1693 * fast. 1694 * 1695 * - non-CONFIG_DEBUG_PAGEALLOC configurations (so that we 1696 * do not trap on the (extremely unlikely) case of a page 1697 * crossing operation. 1698 * 1699 * - Furthermore, we need an efficient 64-bit compile for the 1700 * 64-bit case in order to generate the "number of bytes in 1701 * the final mask". Again, that could be replaced with a 1702 * efficient population count instruction or similar. 1703 */ 1704#ifdef CONFIG_DCACHE_WORD_ACCESS 1705 1706#include <asm/word-at-a-time.h> 1707 1708#ifdef CONFIG_64BIT 1709 1710static inline unsigned int fold_hash(unsigned long hash) 1711{ 1712 return hash_64(hash, 32); 1713} 1714 1715#else /* 32-bit case */ 1716 1717#define fold_hash(x) (x) 1718 1719#endif 1720 1721unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1722{ 1723 unsigned long a, mask; 1724 unsigned long hash = 0; 1725 1726 for (;;) { 1727 a = load_unaligned_zeropad(name); 1728 if (len < sizeof(unsigned long)) 1729 break; 1730 hash += a; 1731 hash *= 9; 1732 name += sizeof(unsigned long); 1733 len -= sizeof(unsigned long); 1734 if (!len) 1735 goto done; 1736 } 1737 mask = bytemask_from_count(len); 1738 hash += mask & a; 1739done: 1740 return fold_hash(hash); 1741} 1742EXPORT_SYMBOL(full_name_hash); 1743 1744/* 1745 * Calculate the length and hash of the path component, and 1746 * return the "hash_len" as the result. 1747 */ 1748static inline u64 hash_name(const char *name) 1749{ 1750 unsigned long a, b, adata, bdata, mask, hash, len; 1751 const struct word_at_a_time constants = WORD_AT_A_TIME_CONSTANTS; 1752 1753 hash = a = 0; 1754 len = -sizeof(unsigned long); 1755 do { 1756 hash = (hash + a) * 9; 1757 len += sizeof(unsigned long); 1758 a = load_unaligned_zeropad(name+len); 1759 b = a ^ REPEAT_BYTE('/'); 1760 } while (!(has_zero(a, &adata, &constants) | has_zero(b, &bdata, &constants))); 1761 1762 adata = prep_zero_mask(a, adata, &constants); 1763 bdata = prep_zero_mask(b, bdata, &constants); 1764 1765 mask = create_zero_mask(adata | bdata); 1766 1767 hash += a & zero_bytemask(mask); 1768 len += find_zero(mask); 1769 return hashlen_create(fold_hash(hash), len); 1770} 1771 1772#else 1773 1774unsigned int full_name_hash(const unsigned char *name, unsigned int len) 1775{ 1776 unsigned long hash = init_name_hash(); 1777 while (len--) 1778 hash = partial_name_hash(*name++, hash); 1779 return end_name_hash(hash); 1780} 1781EXPORT_SYMBOL(full_name_hash); 1782 1783/* 1784 * We know there's a real path component here of at least 1785 * one character. 1786 */ 1787static inline u64 hash_name(const char *name) 1788{ 1789 unsigned long hash = init_name_hash(); 1790 unsigned long len = 0, c; 1791 1792 c = (unsigned char)*name; 1793 do { 1794 len++; 1795 hash = partial_name_hash(c, hash); 1796 c = (unsigned char)name[len]; 1797 } while (c && c != '/'); 1798 return hashlen_create(end_name_hash(hash), len); 1799} 1800 1801#endif 1802 1803/* 1804 * Name resolution. 1805 * This is the basic name resolution function, turning a pathname into 1806 * the final dentry. We expect 'base' to be positive and a directory. 1807 * 1808 * Returns 0 and nd will have valid dentry and mnt on success. 1809 * Returns error and drops reference to input namei data on failure. 1810 */ 1811static int link_path_walk(const char *name, struct nameidata *nd) 1812{ 1813 struct path next; 1814 int err; 1815 1816 while (*name=='/') 1817 name++; 1818 if (!*name) 1819 return 0; 1820 1821 /* At this point we know we have a real path component. */ 1822 for(;;) { 1823 u64 hash_len; 1824 int type; 1825 1826 err = may_lookup(nd); 1827 if (err) 1828 break; 1829 1830 hash_len = hash_name(name); 1831 1832 type = LAST_NORM; 1833 if (name[0] == '.') switch (hashlen_len(hash_len)) { 1834 case 2: 1835 if (name[1] == '.') { 1836 type = LAST_DOTDOT; 1837 nd->flags |= LOOKUP_JUMPED; 1838 } 1839 break; 1840 case 1: 1841 type = LAST_DOT; 1842 } 1843 if (likely(type == LAST_NORM)) { 1844 struct dentry *parent = nd->path.dentry; 1845 nd->flags &= ~LOOKUP_JUMPED; 1846 if (unlikely(parent->d_flags & DCACHE_OP_HASH)) { 1847 struct qstr this = { { .hash_len = hash_len }, .name = name }; 1848 err = parent->d_op->d_hash(parent, &this); 1849 if (err < 0) 1850 break; 1851 hash_len = this.hash_len; 1852 name = this.name; 1853 } 1854 } 1855 1856 nd->last.hash_len = hash_len; 1857 nd->last.name = name; 1858 nd->last_type = type; 1859 1860 name += hashlen_len(hash_len); 1861 if (!*name) 1862 return 0; 1863 /* 1864 * If it wasn't NUL, we know it was '/'. Skip that 1865 * slash, and continue until no more slashes. 1866 */ 1867 do { 1868 name++; 1869 } while (unlikely(*name == '/')); 1870 if (!*name) 1871 return 0; 1872 1873 err = walk_component(nd, &next, LOOKUP_FOLLOW); 1874 if (err < 0) 1875 return err; 1876 1877 if (err) { 1878 err = nested_symlink(&next, nd); 1879 if (err) 1880 return err; 1881 } 1882 if (!d_can_lookup(nd->path.dentry)) { 1883 err = -ENOTDIR; 1884 break; 1885 } 1886 } 1887 terminate_walk(nd); 1888 return err; 1889} 1890 1891static int path_init(int dfd, const struct filename *name, unsigned int flags, 1892 struct nameidata *nd) 1893{ 1894 int retval = 0; 1895 const char *s = name->name; 1896 1897 nd->last_type = LAST_ROOT; /* if there are only slashes... */ 1898 nd->flags = flags | LOOKUP_JUMPED | LOOKUP_PARENT; 1899 nd->depth = 0; 1900 nd->base = NULL; 1901 if (flags & LOOKUP_ROOT) { 1902 struct dentry *root = nd->root.dentry; 1903 struct inode *inode = root->d_inode; 1904 if (*s) { 1905 if (!d_can_lookup(root)) 1906 return -ENOTDIR; 1907 retval = inode_permission(inode, MAY_EXEC); 1908 if (retval) 1909 return retval; 1910 } 1911 nd->path = nd->root; 1912 nd->inode = inode; 1913 if (flags & LOOKUP_RCU) { 1914 rcu_read_lock(); 1915 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1916 nd->m_seq = read_seqbegin(&mount_lock); 1917 } else { 1918 path_get(&nd->path); 1919 } 1920 goto done; 1921 } 1922 1923 nd->root.mnt = NULL; 1924 1925 nd->m_seq = read_seqbegin(&mount_lock); 1926 if (*s == '/') { 1927 if (flags & LOOKUP_RCU) { 1928 rcu_read_lock(); 1929 nd->seq = set_root_rcu(nd); 1930 } else { 1931 set_root(nd); 1932 path_get(&nd->root); 1933 } 1934 nd->path = nd->root; 1935 } else if (dfd == AT_FDCWD) { 1936 if (flags & LOOKUP_RCU) { 1937 struct fs_struct *fs = current->fs; 1938 unsigned seq; 1939 1940 rcu_read_lock(); 1941 1942 do { 1943 seq = read_seqcount_begin(&fs->seq); 1944 nd->path = fs->pwd; 1945 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1946 } while (read_seqcount_retry(&fs->seq, seq)); 1947 } else { 1948 get_fs_pwd(current->fs, &nd->path); 1949 } 1950 } else { 1951 /* Caller must check execute permissions on the starting path component */ 1952 struct fd f = fdget_raw(dfd); 1953 struct dentry *dentry; 1954 1955 if (!f.file) 1956 return -EBADF; 1957 1958 dentry = f.file->f_path.dentry; 1959 1960 if (*s) { 1961 if (!d_can_lookup(dentry)) { 1962 fdput(f); 1963 return -ENOTDIR; 1964 } 1965 } 1966 1967 nd->path = f.file->f_path; 1968 if (flags & LOOKUP_RCU) { 1969 if (f.flags & FDPUT_FPUT) 1970 nd->base = f.file; 1971 nd->seq = __read_seqcount_begin(&nd->path.dentry->d_seq); 1972 rcu_read_lock(); 1973 } else { 1974 path_get(&nd->path); 1975 fdput(f); 1976 } 1977 } 1978 1979 nd->inode = nd->path.dentry->d_inode; 1980 if (!(flags & LOOKUP_RCU)) 1981 goto done; 1982 if (likely(!read_seqcount_retry(&nd->path.dentry->d_seq, nd->seq))) 1983 goto done; 1984 if (!(nd->flags & LOOKUP_ROOT)) 1985 nd->root.mnt = NULL; 1986 rcu_read_unlock(); 1987 return -ECHILD; 1988done: 1989 current->total_link_count = 0; 1990 return link_path_walk(s, nd); 1991} 1992 1993static void path_cleanup(struct nameidata *nd) 1994{ 1995 if (nd->root.mnt && !(nd->flags & LOOKUP_ROOT)) { 1996 path_put(&nd->root); 1997 nd->root.mnt = NULL; 1998 } 1999 if (unlikely(nd->base)) 2000 fput(nd->base); 2001} 2002 2003static inline int lookup_last(struct nameidata *nd, struct path *path) 2004{ 2005 if (nd->last_type == LAST_NORM && nd->last.name[nd->last.len]) 2006 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2007 2008 nd->flags &= ~LOOKUP_PARENT; 2009 return walk_component(nd, path, nd->flags & LOOKUP_FOLLOW); 2010} 2011 2012/* Returns 0 and nd will be valid on success; Retuns error, otherwise. */ 2013static int path_lookupat(int dfd, const struct filename *name, 2014 unsigned int flags, struct nameidata *nd) 2015{ 2016 struct path path; 2017 int err; 2018 2019 /* 2020 * Path walking is largely split up into 2 different synchronisation 2021 * schemes, rcu-walk and ref-walk (explained in 2022 * Documentation/filesystems/path-lookup.txt). These share much of the 2023 * path walk code, but some things particularly setup, cleanup, and 2024 * following mounts are sufficiently divergent that functions are 2025 * duplicated. Typically there is a function foo(), and its RCU 2026 * analogue, foo_rcu(). 2027 * 2028 * -ECHILD is the error number of choice (just to avoid clashes) that 2029 * is returned if some aspect of an rcu-walk fails. Such an error must 2030 * be handled by restarting a traditional ref-walk (which will always 2031 * be able to complete). 2032 */ 2033 err = path_init(dfd, name, flags, nd); 2034 if (!err && !(flags & LOOKUP_PARENT)) { 2035 err = lookup_last(nd, &path); 2036 while (err > 0) { 2037 void *cookie; 2038 struct path link = path; 2039 err = may_follow_link(&link, nd); 2040 if (unlikely(err)) 2041 break; 2042 nd->flags |= LOOKUP_PARENT; 2043 err = follow_link(&link, nd, &cookie); 2044 if (err) 2045 break; 2046 err = lookup_last(nd, &path); 2047 put_link(nd, &link, cookie); 2048 } 2049 } 2050 2051 if (!err) 2052 err = complete_walk(nd); 2053 2054 if (!err && nd->flags & LOOKUP_DIRECTORY) { 2055 if (!d_can_lookup(nd->path.dentry)) { 2056 path_put(&nd->path); 2057 err = -ENOTDIR; 2058 } 2059 } 2060 2061 path_cleanup(nd); 2062 return err; 2063} 2064 2065static int filename_lookup(int dfd, struct filename *name, 2066 unsigned int flags, struct nameidata *nd) 2067{ 2068 int retval = path_lookupat(dfd, name, flags | LOOKUP_RCU, nd); 2069 if (unlikely(retval == -ECHILD)) 2070 retval = path_lookupat(dfd, name, flags, nd); 2071 if (unlikely(retval == -ESTALE)) 2072 retval = path_lookupat(dfd, name, flags | LOOKUP_REVAL, nd); 2073 2074 if (likely(!retval)) 2075 audit_inode(name, nd->path.dentry, flags & LOOKUP_PARENT); 2076 return retval; 2077} 2078 2079/* does lookup, returns the object with parent locked */ 2080struct dentry *kern_path_locked(const char *name, struct path *path) 2081{ 2082 struct filename *filename = getname_kernel(name); 2083 struct nameidata nd; 2084 struct dentry *d; 2085 int err; 2086 2087 if (IS_ERR(filename)) 2088 return ERR_CAST(filename); 2089 2090 err = filename_lookup(AT_FDCWD, filename, LOOKUP_PARENT, &nd); 2091 if (err) { 2092 d = ERR_PTR(err); 2093 goto out; 2094 } 2095 if (nd.last_type != LAST_NORM) { 2096 path_put(&nd.path); 2097 d = ERR_PTR(-EINVAL); 2098 goto out; 2099 } 2100 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 2101 d = __lookup_hash(&nd.last, nd.path.dentry, 0); 2102 if (IS_ERR(d)) { 2103 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 2104 path_put(&nd.path); 2105 goto out; 2106 } 2107 *path = nd.path; 2108out: 2109 putname(filename); 2110 return d; 2111} 2112 2113int kern_path(const char *name, unsigned int flags, struct path *path) 2114{ 2115 struct nameidata nd; 2116 struct filename *filename = getname_kernel(name); 2117 int res = PTR_ERR(filename); 2118 2119 if (!IS_ERR(filename)) { 2120 res = filename_lookup(AT_FDCWD, filename, flags, &nd); 2121 putname(filename); 2122 if (!res) 2123 *path = nd.path; 2124 } 2125 return res; 2126} 2127EXPORT_SYMBOL(kern_path); 2128 2129/** 2130 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair 2131 * @dentry: pointer to dentry of the base directory 2132 * @mnt: pointer to vfs mount of the base directory 2133 * @name: pointer to file name 2134 * @flags: lookup flags 2135 * @path: pointer to struct path to fill 2136 */ 2137int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt, 2138 const char *name, unsigned int flags, 2139 struct path *path) 2140{ 2141 struct filename *filename = getname_kernel(name); 2142 int err = PTR_ERR(filename); 2143 2144 BUG_ON(flags & LOOKUP_PARENT); 2145 2146 /* the first argument of filename_lookup() is ignored with LOOKUP_ROOT */ 2147 if (!IS_ERR(filename)) { 2148 struct nameidata nd; 2149 nd.root.dentry = dentry; 2150 nd.root.mnt = mnt; 2151 err = filename_lookup(AT_FDCWD, filename, 2152 flags | LOOKUP_ROOT, &nd); 2153 if (!err) 2154 *path = nd.path; 2155 putname(filename); 2156 } 2157 return err; 2158} 2159EXPORT_SYMBOL(vfs_path_lookup); 2160 2161/* 2162 * Restricted form of lookup. Doesn't follow links, single-component only, 2163 * needs parent already locked. Doesn't follow mounts. 2164 * SMP-safe. 2165 */ 2166static struct dentry *lookup_hash(struct nameidata *nd) 2167{ 2168 return __lookup_hash(&nd->last, nd->path.dentry, nd->flags); 2169} 2170 2171/** 2172 * lookup_one_len - filesystem helper to lookup single pathname component 2173 * @name: pathname component to lookup 2174 * @base: base directory to lookup from 2175 * @len: maximum length @len should be interpreted to 2176 * 2177 * Note that this routine is purely a helper for filesystem usage and should 2178 * not be called by generic code. 2179 */ 2180struct dentry *lookup_one_len(const char *name, struct dentry *base, int len) 2181{ 2182 struct qstr this; 2183 unsigned int c; 2184 int err; 2185 2186 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex)); 2187 2188 this.name = name; 2189 this.len = len; 2190 this.hash = full_name_hash(name, len); 2191 if (!len) 2192 return ERR_PTR(-EACCES); 2193 2194 if (unlikely(name[0] == '.')) { 2195 if (len < 2 || (len == 2 && name[1] == '.')) 2196 return ERR_PTR(-EACCES); 2197 } 2198 2199 while (len--) { 2200 c = *(const unsigned char *)name++; 2201 if (c == '/' || c == '\0') 2202 return ERR_PTR(-EACCES); 2203 } 2204 /* 2205 * See if the low-level filesystem might want 2206 * to use its own hash.. 2207 */ 2208 if (base->d_flags & DCACHE_OP_HASH) { 2209 int err = base->d_op->d_hash(base, &this); 2210 if (err < 0) 2211 return ERR_PTR(err); 2212 } 2213 2214 err = inode_permission(base->d_inode, MAY_EXEC); 2215 if (err) 2216 return ERR_PTR(err); 2217 2218 return __lookup_hash(&this, base, 0); 2219} 2220EXPORT_SYMBOL(lookup_one_len); 2221 2222int user_path_at_empty(int dfd, const char __user *name, unsigned flags, 2223 struct path *path, int *empty) 2224{ 2225 struct nameidata nd; 2226 struct filename *tmp = getname_flags(name, flags, empty); 2227 int err = PTR_ERR(tmp); 2228 if (!IS_ERR(tmp)) { 2229 2230 BUG_ON(flags & LOOKUP_PARENT); 2231 2232 err = filename_lookup(dfd, tmp, flags, &nd); 2233 putname(tmp); 2234 if (!err) 2235 *path = nd.path; 2236 } 2237 return err; 2238} 2239 2240int user_path_at(int dfd, const char __user *name, unsigned flags, 2241 struct path *path) 2242{ 2243 return user_path_at_empty(dfd, name, flags, path, NULL); 2244} 2245EXPORT_SYMBOL(user_path_at); 2246 2247/* 2248 * NB: most callers don't do anything directly with the reference to the 2249 * to struct filename, but the nd->last pointer points into the name string 2250 * allocated by getname. So we must hold the reference to it until all 2251 * path-walking is complete. 2252 */ 2253static struct filename * 2254user_path_parent(int dfd, const char __user *path, struct nameidata *nd, 2255 unsigned int flags) 2256{ 2257 struct filename *s = getname(path); 2258 int error; 2259 2260 /* only LOOKUP_REVAL is allowed in extra flags */ 2261 flags &= LOOKUP_REVAL; 2262 2263 if (IS_ERR(s)) 2264 return s; 2265 2266 error = filename_lookup(dfd, s, flags | LOOKUP_PARENT, nd); 2267 if (error) { 2268 putname(s); 2269 return ERR_PTR(error); 2270 } 2271 2272 return s; 2273} 2274 2275/** 2276 * mountpoint_last - look up last component for umount 2277 * @nd: pathwalk nameidata - currently pointing at parent directory of "last" 2278 * @path: pointer to container for result 2279 * 2280 * This is a special lookup_last function just for umount. In this case, we 2281 * need to resolve the path without doing any revalidation. 2282 * 2283 * The nameidata should be the result of doing a LOOKUP_PARENT pathwalk. Since 2284 * mountpoints are always pinned in the dcache, their ancestors are too. Thus, 2285 * in almost all cases, this lookup will be served out of the dcache. The only 2286 * cases where it won't are if nd->last refers to a symlink or the path is 2287 * bogus and it doesn't exist. 2288 * 2289 * Returns: 2290 * -error: if there was an error during lookup. This includes -ENOENT if the 2291 * lookup found a negative dentry. The nd->path reference will also be 2292 * put in this case. 2293 * 2294 * 0: if we successfully resolved nd->path and found it to not to be a 2295 * symlink that needs to be followed. "path" will also be populated. 2296 * The nd->path reference will also be put. 2297 * 2298 * 1: if we successfully resolved nd->last and found it to be a symlink 2299 * that needs to be followed. "path" will be populated with the path 2300 * to the link, and nd->path will *not* be put. 2301 */ 2302static int 2303mountpoint_last(struct nameidata *nd, struct path *path) 2304{ 2305 int error = 0; 2306 struct dentry *dentry; 2307 struct dentry *dir = nd->path.dentry; 2308 2309 /* If we're in rcuwalk, drop out of it to handle last component */ 2310 if (nd->flags & LOOKUP_RCU) { 2311 if (unlazy_walk(nd, NULL)) { 2312 error = -ECHILD; 2313 goto out; 2314 } 2315 } 2316 2317 nd->flags &= ~LOOKUP_PARENT; 2318 2319 if (unlikely(nd->last_type != LAST_NORM)) { 2320 error = handle_dots(nd, nd->last_type); 2321 if (error) 2322 return error; 2323 dentry = dget(nd->path.dentry); 2324 goto done; 2325 } 2326 2327 mutex_lock(&dir->d_inode->i_mutex); 2328 dentry = d_lookup(dir, &nd->last); 2329 if (!dentry) { 2330 /* 2331 * No cached dentry. Mounted dentries are pinned in the cache, 2332 * so that means that this dentry is probably a symlink or the 2333 * path doesn't actually point to a mounted dentry. 2334 */ 2335 dentry = d_alloc(dir, &nd->last); 2336 if (!dentry) { 2337 error = -ENOMEM; 2338 mutex_unlock(&dir->d_inode->i_mutex); 2339 goto out; 2340 } 2341 dentry = lookup_real(dir->d_inode, dentry, nd->flags); 2342 error = PTR_ERR(dentry); 2343 if (IS_ERR(dentry)) { 2344 mutex_unlock(&dir->d_inode->i_mutex); 2345 goto out; 2346 } 2347 } 2348 mutex_unlock(&dir->d_inode->i_mutex); 2349 2350done: 2351 if (d_is_negative(dentry)) { 2352 error = -ENOENT; 2353 dput(dentry); 2354 goto out; 2355 } 2356 path->dentry = dentry; 2357 path->mnt = nd->path.mnt; 2358 if (should_follow_link(dentry, nd->flags & LOOKUP_FOLLOW)) 2359 return 1; 2360 mntget(path->mnt); 2361 follow_mount(path); 2362 error = 0; 2363out: 2364 terminate_walk(nd); 2365 return error; 2366} 2367 2368/** 2369 * path_mountpoint - look up a path to be umounted 2370 * @dfd: directory file descriptor to start walk from 2371 * @name: full pathname to walk 2372 * @path: pointer to container for result 2373 * @flags: lookup flags 2374 * 2375 * Look up the given name, but don't attempt to revalidate the last component. 2376 * Returns 0 and "path" will be valid on success; Returns error otherwise. 2377 */ 2378static int 2379path_mountpoint(int dfd, const struct filename *name, struct path *path, 2380 unsigned int flags) 2381{ 2382 struct nameidata nd; 2383 int err; 2384 2385 err = path_init(dfd, name, flags, &nd); 2386 if (unlikely(err)) 2387 goto out; 2388 2389 err = mountpoint_last(&nd, path); 2390 while (err > 0) { 2391 void *cookie; 2392 struct path link = *path; 2393 err = may_follow_link(&link, &nd); 2394 if (unlikely(err)) 2395 break; 2396 nd.flags |= LOOKUP_PARENT; 2397 err = follow_link(&link, &nd, &cookie); 2398 if (err) 2399 break; 2400 err = mountpoint_last(&nd, path); 2401 put_link(&nd, &link, cookie); 2402 } 2403out: 2404 path_cleanup(&nd); 2405 return err; 2406} 2407 2408static int 2409filename_mountpoint(int dfd, struct filename *name, struct path *path, 2410 unsigned int flags) 2411{ 2412 int error; 2413 if (IS_ERR(name)) 2414 return PTR_ERR(name); 2415 error = path_mountpoint(dfd, name, path, flags | LOOKUP_RCU); 2416 if (unlikely(error == -ECHILD)) 2417 error = path_mountpoint(dfd, name, path, flags); 2418 if (unlikely(error == -ESTALE)) 2419 error = path_mountpoint(dfd, name, path, flags | LOOKUP_REVAL); 2420 if (likely(!error)) 2421 audit_inode(name, path->dentry, 0); 2422 putname(name); 2423 return error; 2424} 2425 2426/** 2427 * user_path_mountpoint_at - lookup a path from userland in order to umount it 2428 * @dfd: directory file descriptor 2429 * @name: pathname from userland 2430 * @flags: lookup flags 2431 * @path: pointer to container to hold result 2432 * 2433 * A umount is a special case for path walking. We're not actually interested 2434 * in the inode in this situation, and ESTALE errors can be a problem. We 2435 * simply want track down the dentry and vfsmount attached at the mountpoint 2436 * and avoid revalidating the last component. 2437 * 2438 * Returns 0 and populates "path" on success. 2439 */ 2440int 2441user_path_mountpoint_at(int dfd, const char __user *name, unsigned int flags, 2442 struct path *path) 2443{ 2444 return filename_mountpoint(dfd, getname(name), path, flags); 2445} 2446 2447int 2448kern_path_mountpoint(int dfd, const char *name, struct path *path, 2449 unsigned int flags) 2450{ 2451 return filename_mountpoint(dfd, getname_kernel(name), path, flags); 2452} 2453EXPORT_SYMBOL(kern_path_mountpoint); 2454 2455int __check_sticky(struct inode *dir, struct inode *inode) 2456{ 2457 kuid_t fsuid = current_fsuid(); 2458 2459 if (uid_eq(inode->i_uid, fsuid)) 2460 return 0; 2461 if (uid_eq(dir->i_uid, fsuid)) 2462 return 0; 2463 return !capable_wrt_inode_uidgid(inode, CAP_FOWNER); 2464} 2465EXPORT_SYMBOL(__check_sticky); 2466 2467/* 2468 * Check whether we can remove a link victim from directory dir, check 2469 * whether the type of victim is right. 2470 * 1. We can't do it if dir is read-only (done in permission()) 2471 * 2. We should have write and exec permissions on dir 2472 * 3. We can't remove anything from append-only dir 2473 * 4. We can't do anything with immutable dir (done in permission()) 2474 * 5. If the sticky bit on dir is set we should either 2475 * a. be owner of dir, or 2476 * b. be owner of victim, or 2477 * c. have CAP_FOWNER capability 2478 * 6. If the victim is append-only or immutable we can't do antyhing with 2479 * links pointing to it. 2480 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 2481 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 2482 * 9. We can't remove a root or mountpoint. 2483 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 2484 * nfs_async_unlink(). 2485 */ 2486static int may_delete(struct inode *dir, struct dentry *victim, bool isdir) 2487{ 2488 struct inode *inode = victim->d_inode; 2489 int error; 2490 2491 if (d_is_negative(victim)) 2492 return -ENOENT; 2493 BUG_ON(!inode); 2494 2495 BUG_ON(victim->d_parent->d_inode != dir); 2496 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 2497 2498 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 2499 if (error) 2500 return error; 2501 if (IS_APPEND(dir)) 2502 return -EPERM; 2503 2504 if (check_sticky(dir, inode) || IS_APPEND(inode) || 2505 IS_IMMUTABLE(inode) || IS_SWAPFILE(inode)) 2506 return -EPERM; 2507 if (isdir) { 2508 if (!d_is_dir(victim)) 2509 return -ENOTDIR; 2510 if (IS_ROOT(victim)) 2511 return -EBUSY; 2512 } else if (d_is_dir(victim)) 2513 return -EISDIR; 2514 if (IS_DEADDIR(dir)) 2515 return -ENOENT; 2516 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 2517 return -EBUSY; 2518 return 0; 2519} 2520 2521/* Check whether we can create an object with dentry child in directory 2522 * dir. 2523 * 1. We can't do it if child already exists (open has special treatment for 2524 * this case, but since we are inlined it's OK) 2525 * 2. We can't do it if dir is read-only (done in permission()) 2526 * 3. We should have write and exec permissions on dir 2527 * 4. We can't do it if dir is immutable (done in permission()) 2528 */ 2529static inline int may_create(struct inode *dir, struct dentry *child) 2530{ 2531 audit_inode_child(dir, child, AUDIT_TYPE_CHILD_CREATE); 2532 if (child->d_inode) 2533 return -EEXIST; 2534 if (IS_DEADDIR(dir)) 2535 return -ENOENT; 2536 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 2537} 2538 2539/* 2540 * p1 and p2 should be directories on the same fs. 2541 */ 2542struct dentry *lock_rename(struct dentry *p1, struct dentry *p2) 2543{ 2544 struct dentry *p; 2545 2546 if (p1 == p2) { 2547 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2548 return NULL; 2549 } 2550 2551 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2552 2553 p = d_ancestor(p2, p1); 2554 if (p) { 2555 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT); 2556 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD); 2557 return p; 2558 } 2559 2560 p = d_ancestor(p1, p2); 2561 if (p) { 2562 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2563 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD); 2564 return p; 2565 } 2566 2567 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT); 2568 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT2); 2569 return NULL; 2570} 2571EXPORT_SYMBOL(lock_rename); 2572 2573void unlock_rename(struct dentry *p1, struct dentry *p2) 2574{ 2575 mutex_unlock(&p1->d_inode->i_mutex); 2576 if (p1 != p2) { 2577 mutex_unlock(&p2->d_inode->i_mutex); 2578 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex); 2579 } 2580} 2581EXPORT_SYMBOL(unlock_rename); 2582 2583int vfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, 2584 bool want_excl) 2585{ 2586 int error = may_create(dir, dentry); 2587 if (error) 2588 return error; 2589 2590 if (!dir->i_op->create) 2591 return -EACCES; /* shouldn't it be ENOSYS? */ 2592 mode &= S_IALLUGO; 2593 mode |= S_IFREG; 2594 error = security_inode_create(dir, dentry, mode); 2595 if (error) 2596 return error; 2597 error = dir->i_op->create(dir, dentry, mode, want_excl); 2598 if (!error) 2599 fsnotify_create(dir, dentry); 2600 return error; 2601} 2602EXPORT_SYMBOL(vfs_create); 2603 2604static int may_open(struct path *path, int acc_mode, int flag) 2605{ 2606 struct dentry *dentry = path->dentry; 2607 struct inode *inode = dentry->d_inode; 2608 int error; 2609 2610 /* O_PATH? */ 2611 if (!acc_mode) 2612 return 0; 2613 2614 if (!inode) 2615 return -ENOENT; 2616 2617 switch (inode->i_mode & S_IFMT) { 2618 case S_IFLNK: 2619 return -ELOOP; 2620 case S_IFDIR: 2621 if (acc_mode & MAY_WRITE) 2622 return -EISDIR; 2623 break; 2624 case S_IFBLK: 2625 case S_IFCHR: 2626 if (path->mnt->mnt_flags & MNT_NODEV) 2627 return -EACCES; 2628 /*FALLTHRU*/ 2629 case S_IFIFO: 2630 case S_IFSOCK: 2631 flag &= ~O_TRUNC; 2632 break; 2633 } 2634 2635 error = inode_permission(inode, acc_mode); 2636 if (error) 2637 return error; 2638 2639 /* 2640 * An append-only file must be opened in append mode for writing. 2641 */ 2642 if (IS_APPEND(inode)) { 2643 if ((flag & O_ACCMODE) != O_RDONLY && !(flag & O_APPEND)) 2644 return -EPERM; 2645 if (flag & O_TRUNC) 2646 return -EPERM; 2647 } 2648 2649 /* O_NOATIME can only be set by the owner or superuser */ 2650 if (flag & O_NOATIME && !inode_owner_or_capable(inode)) 2651 return -EPERM; 2652 2653 return 0; 2654} 2655 2656static int handle_truncate(struct file *filp) 2657{ 2658 struct path *path = &filp->f_path; 2659 struct inode *inode = path->dentry->d_inode; 2660 int error = get_write_access(inode); 2661 if (error) 2662 return error; 2663 /* 2664 * Refuse to truncate files with mandatory locks held on them. 2665 */ 2666 error = locks_verify_locked(filp); 2667 if (!error) 2668 error = security_path_truncate(path); 2669 if (!error) { 2670 error = do_truncate(path->dentry, 0, 2671 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN, 2672 filp); 2673 } 2674 put_write_access(inode); 2675 return error; 2676} 2677 2678static inline int open_to_namei_flags(int flag) 2679{ 2680 if ((flag & O_ACCMODE) == 3) 2681 flag--; 2682 return flag; 2683} 2684 2685static int may_o_create(struct path *dir, struct dentry *dentry, umode_t mode) 2686{ 2687 int error = security_path_mknod(dir, dentry, mode, 0); 2688 if (error) 2689 return error; 2690 2691 error = inode_permission(dir->dentry->d_inode, MAY_WRITE | MAY_EXEC); 2692 if (error) 2693 return error; 2694 2695 return security_inode_create(dir->dentry->d_inode, dentry, mode); 2696} 2697 2698/* 2699 * Attempt to atomically look up, create and open a file from a negative 2700 * dentry. 2701 * 2702 * Returns 0 if successful. The file will have been created and attached to 2703 * @file by the filesystem calling finish_open(). 2704 * 2705 * Returns 1 if the file was looked up only or didn't need creating. The 2706 * caller will need to perform the open themselves. @path will have been 2707 * updated to point to the new dentry. This may be negative. 2708 * 2709 * Returns an error code otherwise. 2710 */ 2711static int atomic_open(struct nameidata *nd, struct dentry *dentry, 2712 struct path *path, struct file *file, 2713 const struct open_flags *op, 2714 bool got_write, bool need_lookup, 2715 int *opened) 2716{ 2717 struct inode *dir = nd->path.dentry->d_inode; 2718 unsigned open_flag = open_to_namei_flags(op->open_flag); 2719 umode_t mode; 2720 int error; 2721 int acc_mode; 2722 int create_error = 0; 2723 struct dentry *const DENTRY_NOT_SET = (void *) -1UL; 2724 bool excl; 2725 2726 BUG_ON(dentry->d_inode); 2727 2728 /* Don't create child dentry for a dead directory. */ 2729 if (unlikely(IS_DEADDIR(dir))) { 2730 error = -ENOENT; 2731 goto out; 2732 } 2733 2734 mode = op->mode; 2735 if ((open_flag & O_CREAT) && !IS_POSIXACL(dir)) 2736 mode &= ~current_umask(); 2737 2738 excl = (open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT); 2739 if (excl) 2740 open_flag &= ~O_TRUNC; 2741 2742 /* 2743 * Checking write permission is tricky, bacuse we don't know if we are 2744 * going to actually need it: O_CREAT opens should work as long as the 2745 * file exists. But checking existence breaks atomicity. The trick is 2746 * to check access and if not granted clear O_CREAT from the flags. 2747 * 2748 * Another problem is returing the "right" error value (e.g. for an 2749 * O_EXCL open we want to return EEXIST not EROFS). 2750 */ 2751 if (((open_flag & (O_CREAT | O_TRUNC)) || 2752 (open_flag & O_ACCMODE) != O_RDONLY) && unlikely(!got_write)) { 2753 if (!(open_flag & O_CREAT)) { 2754 /* 2755 * No O_CREATE -> atomicity not a requirement -> fall 2756 * back to lookup + open 2757 */ 2758 goto no_open; 2759 } else if (open_flag & (O_EXCL | O_TRUNC)) { 2760 /* Fall back and fail with the right error */ 2761 create_error = -EROFS; 2762 goto no_open; 2763 } else { 2764 /* No side effects, safe to clear O_CREAT */ 2765 create_error = -EROFS; 2766 open_flag &= ~O_CREAT; 2767 } 2768 } 2769 2770 if (open_flag & O_CREAT) { 2771 error = may_o_create(&nd->path, dentry, mode); 2772 if (error) { 2773 create_error = error; 2774 if (open_flag & O_EXCL) 2775 goto no_open; 2776 open_flag &= ~O_CREAT; 2777 } 2778 } 2779 2780 if (nd->flags & LOOKUP_DIRECTORY) 2781 open_flag |= O_DIRECTORY; 2782 2783 file->f_path.dentry = DENTRY_NOT_SET; 2784 file->f_path.mnt = nd->path.mnt; 2785 error = dir->i_op->atomic_open(dir, dentry, file, open_flag, mode, 2786 opened); 2787 if (error < 0) { 2788 if (create_error && error == -ENOENT) 2789 error = create_error; 2790 goto out; 2791 } 2792 2793 if (error) { /* returned 1, that is */ 2794 if (WARN_ON(file->f_path.dentry == DENTRY_NOT_SET)) { 2795 error = -EIO; 2796 goto out; 2797 } 2798 if (file->f_path.dentry) { 2799 dput(dentry); 2800 dentry = file->f_path.dentry; 2801 } 2802 if (*opened & FILE_CREATED) 2803 fsnotify_create(dir, dentry); 2804 if (!dentry->d_inode) { 2805 WARN_ON(*opened & FILE_CREATED); 2806 if (create_error) { 2807 error = create_error; 2808 goto out; 2809 } 2810 } else { 2811 if (excl && !(*opened & FILE_CREATED)) { 2812 error = -EEXIST; 2813 goto out; 2814 } 2815 } 2816 goto looked_up; 2817 } 2818 2819 /* 2820 * We didn't have the inode before the open, so check open permission 2821 * here. 2822 */ 2823 acc_mode = op->acc_mode; 2824 if (*opened & FILE_CREATED) { 2825 WARN_ON(!(open_flag & O_CREAT)); 2826 fsnotify_create(dir, dentry); 2827 acc_mode = MAY_OPEN; 2828 } 2829 error = may_open(&file->f_path, acc_mode, open_flag); 2830 if (error) 2831 fput(file); 2832 2833out: 2834 dput(dentry); 2835 return error; 2836 2837no_open: 2838 if (need_lookup) { 2839 dentry = lookup_real(dir, dentry, nd->flags); 2840 if (IS_ERR(dentry)) 2841 return PTR_ERR(dentry); 2842 } 2843 if (create_error && !dentry->d_inode) { 2844 error = create_error; 2845 goto out; 2846 } 2847looked_up: 2848 path->dentry = dentry; 2849 path->mnt = nd->path.mnt; 2850 return 1; 2851} 2852 2853/* 2854 * Look up and maybe create and open the last component. 2855 * 2856 * Must be called with i_mutex held on parent. 2857 * 2858 * Returns 0 if the file was successfully atomically created (if necessary) and 2859 * opened. In this case the file will be returned attached to @file. 2860 * 2861 * Returns 1 if the file was not completely opened at this time, though lookups 2862 * and creations will have been performed and the dentry returned in @path will 2863 * be positive upon return if O_CREAT was specified. If O_CREAT wasn't 2864 * specified then a negative dentry may be returned. 2865 * 2866 * An error code is returned otherwise. 2867 * 2868 * FILE_CREATE will be set in @*opened if the dentry was created and will be 2869 * cleared otherwise prior to returning. 2870 */ 2871static int lookup_open(struct nameidata *nd, struct path *path, 2872 struct file *file, 2873 const struct open_flags *op, 2874 bool got_write, int *opened) 2875{ 2876 struct dentry *dir = nd->path.dentry; 2877 struct inode *dir_inode = dir->d_inode; 2878 struct dentry *dentry; 2879 int error; 2880 bool need_lookup; 2881 2882 *opened &= ~FILE_CREATED; 2883 dentry = lookup_dcache(&nd->last, dir, nd->flags, &need_lookup); 2884 if (IS_ERR(dentry)) 2885 return PTR_ERR(dentry); 2886 2887 /* Cached positive dentry: will open in f_op->open */ 2888 if (!need_lookup && dentry->d_inode) 2889 goto out_no_open; 2890 2891 if ((nd->flags & LOOKUP_OPEN) && dir_inode->i_op->atomic_open) { 2892 return atomic_open(nd, dentry, path, file, op, got_write, 2893 need_lookup, opened); 2894 } 2895 2896 if (need_lookup) { 2897 BUG_ON(dentry->d_inode); 2898 2899 dentry = lookup_real(dir_inode, dentry, nd->flags); 2900 if (IS_ERR(dentry)) 2901 return PTR_ERR(dentry); 2902 } 2903 2904 /* Negative dentry, just create the file */ 2905 if (!dentry->d_inode && (op->open_flag & O_CREAT)) { 2906 umode_t mode = op->mode; 2907 if (!IS_POSIXACL(dir->d_inode)) 2908 mode &= ~current_umask(); 2909 /* 2910 * This write is needed to ensure that a 2911 * rw->ro transition does not occur between 2912 * the time when the file is created and when 2913 * a permanent write count is taken through 2914 * the 'struct file' in finish_open(). 2915 */ 2916 if (!got_write) { 2917 error = -EROFS; 2918 goto out_dput; 2919 } 2920 *opened |= FILE_CREATED; 2921 error = security_path_mknod(&nd->path, dentry, mode, 0); 2922 if (error) 2923 goto out_dput; 2924 error = vfs_create(dir->d_inode, dentry, mode, 2925 nd->flags & LOOKUP_EXCL); 2926 if (error) 2927 goto out_dput; 2928 } 2929out_no_open: 2930 path->dentry = dentry; 2931 path->mnt = nd->path.mnt; 2932 return 1; 2933 2934out_dput: 2935 dput(dentry); 2936 return error; 2937} 2938 2939/* 2940 * Handle the last step of open() 2941 */ 2942static int do_last(struct nameidata *nd, struct path *path, 2943 struct file *file, const struct open_flags *op, 2944 int *opened, struct filename *name) 2945{ 2946 struct dentry *dir = nd->path.dentry; 2947 int open_flag = op->open_flag; 2948 bool will_truncate = (open_flag & O_TRUNC) != 0; 2949 bool got_write = false; 2950 int acc_mode = op->acc_mode; 2951 struct inode *inode; 2952 bool symlink_ok = false; 2953 struct path save_parent = { .dentry = NULL, .mnt = NULL }; 2954 bool retried = false; 2955 int error; 2956 2957 nd->flags &= ~LOOKUP_PARENT; 2958 nd->flags |= op->intent; 2959 2960 if (nd->last_type != LAST_NORM) { 2961 error = handle_dots(nd, nd->last_type); 2962 if (error) 2963 return error; 2964 goto finish_open; 2965 } 2966 2967 if (!(open_flag & O_CREAT)) { 2968 if (nd->last.name[nd->last.len]) 2969 nd->flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY; 2970 if (open_flag & O_PATH && !(nd->flags & LOOKUP_FOLLOW)) 2971 symlink_ok = true; 2972 /* we _can_ be in RCU mode here */ 2973 error = lookup_fast(nd, path, &inode); 2974 if (likely(!error)) 2975 goto finish_lookup; 2976 2977 if (error < 0) 2978 goto out; 2979 2980 BUG_ON(nd->inode != dir->d_inode); 2981 } else { 2982 /* create side of things */ 2983 /* 2984 * This will *only* deal with leaving RCU mode - LOOKUP_JUMPED 2985 * has been cleared when we got to the last component we are 2986 * about to look up 2987 */ 2988 error = complete_walk(nd); 2989 if (error) 2990 return error; 2991 2992 audit_inode(name, dir, LOOKUP_PARENT); 2993 error = -EISDIR; 2994 /* trailing slashes? */ 2995 if (nd->last.name[nd->last.len]) 2996 goto out; 2997 } 2998 2999retry_lookup: 3000 if (op->open_flag & (O_CREAT | O_TRUNC | O_WRONLY | O_RDWR)) { 3001 error = mnt_want_write(nd->path.mnt); 3002 if (!error) 3003 got_write = true; 3004 /* 3005 * do _not_ fail yet - we might not need that or fail with 3006 * a different error; let lookup_open() decide; we'll be 3007 * dropping this one anyway. 3008 */ 3009 } 3010 mutex_lock(&dir->d_inode->i_mutex); 3011 error = lookup_open(nd, path, file, op, got_write, opened); 3012 mutex_unlock(&dir->d_inode->i_mutex); 3013 3014 if (error <= 0) { 3015 if (error) 3016 goto out; 3017 3018 if ((*opened & FILE_CREATED) || 3019 !S_ISREG(file_inode(file)->i_mode)) 3020 will_truncate = false; 3021 3022 audit_inode(name, file->f_path.dentry, 0); 3023 goto opened; 3024 } 3025 3026 if (*opened & FILE_CREATED) { 3027 /* Don't check for write permission, don't truncate */ 3028 open_flag &= ~O_TRUNC; 3029 will_truncate = false; 3030 acc_mode = MAY_OPEN; 3031 path_to_nameidata(path, nd); 3032 goto finish_open_created; 3033 } 3034 3035 /* 3036 * create/update audit record if it already exists. 3037 */ 3038 if (d_is_positive(path->dentry)) 3039 audit_inode(name, path->dentry, 0); 3040 3041 /* 3042 * If atomic_open() acquired write access it is dropped now due to 3043 * possible mount and symlink following (this might be optimized away if 3044 * necessary...) 3045 */ 3046 if (got_write) { 3047 mnt_drop_write(nd->path.mnt); 3048 got_write = false; 3049 } 3050 3051 error = -EEXIST; 3052 if ((open_flag & (O_EXCL | O_CREAT)) == (O_EXCL | O_CREAT)) 3053 goto exit_dput; 3054 3055 error = follow_managed(path, nd->flags); 3056 if (error < 0) 3057 goto exit_dput; 3058 3059 if (error) 3060 nd->flags |= LOOKUP_JUMPED; 3061 3062 BUG_ON(nd->flags & LOOKUP_RCU); 3063 inode = path->dentry->d_inode; 3064 error = -ENOENT; 3065 if (d_is_negative(path->dentry)) { 3066 path_to_nameidata(path, nd); 3067 goto out; 3068 } 3069 inode = path->dentry->d_inode; 3070finish_lookup: 3071 /* we _can_ be in RCU mode here */ 3072 if (should_follow_link(path->dentry, !symlink_ok)) { 3073 if (nd->flags & LOOKUP_RCU) { 3074 if (unlikely(nd->path.mnt != path->mnt || 3075 unlazy_walk(nd, path->dentry))) { 3076 error = -ECHILD; 3077 goto out; 3078 } 3079 } 3080 BUG_ON(inode != path->dentry->d_inode); 3081 return 1; 3082 } 3083 3084 if ((nd->flags & LOOKUP_RCU) || nd->path.mnt != path->mnt) { 3085 path_to_nameidata(path, nd); 3086 } else { 3087 save_parent.dentry = nd->path.dentry; 3088 save_parent.mnt = mntget(path->mnt); 3089 nd->path.dentry = path->dentry; 3090 3091 } 3092 nd->inode = inode; 3093 /* Why this, you ask? _Now_ we might have grown LOOKUP_JUMPED... */ 3094finish_open: 3095 error = complete_walk(nd); 3096 if (error) { 3097 path_put(&save_parent); 3098 return error; 3099 } 3100 audit_inode(name, nd->path.dentry, 0); 3101 error = -EISDIR; 3102 if ((open_flag & O_CREAT) && d_is_dir(nd->path.dentry)) 3103 goto out; 3104 error = -ENOTDIR; 3105 if ((nd->flags & LOOKUP_DIRECTORY) && !d_can_lookup(nd->path.dentry)) 3106 goto out; 3107 if (!d_is_reg(nd->path.dentry)) 3108 will_truncate = false; 3109 3110 if (will_truncate) { 3111 error = mnt_want_write(nd->path.mnt); 3112 if (error) 3113 goto out; 3114 got_write = true; 3115 } 3116finish_open_created: 3117 error = may_open(&nd->path, acc_mode, open_flag); 3118 if (error) 3119 goto out; 3120 3121 BUG_ON(*opened & FILE_OPENED); /* once it's opened, it's opened */ 3122 error = vfs_open(&nd->path, file, current_cred()); 3123 if (!error) { 3124 *opened |= FILE_OPENED; 3125 } else { 3126 if (error == -EOPENSTALE) 3127 goto stale_open; 3128 goto out; 3129 } 3130opened: 3131 error = open_check_o_direct(file); 3132 if (error) 3133 goto exit_fput; 3134 error = ima_file_check(file, op->acc_mode, *opened); 3135 if (error) 3136 goto exit_fput; 3137 3138 if (will_truncate) { 3139 error = handle_truncate(file); 3140 if (error) 3141 goto exit_fput; 3142 } 3143out: 3144 if (unlikely(error > 0)) { 3145 WARN_ON(1); 3146 error = -EINVAL; 3147 } 3148 if (got_write) 3149 mnt_drop_write(nd->path.mnt); 3150 path_put(&save_parent); 3151 terminate_walk(nd); 3152 return error; 3153 3154exit_dput: 3155 path_put_conditional(path, nd); 3156 goto out; 3157exit_fput: 3158 fput(file); 3159 goto out; 3160 3161stale_open: 3162 /* If no saved parent or already retried then can't retry */ 3163 if (!save_parent.dentry || retried) 3164 goto out; 3165 3166 BUG_ON(save_parent.dentry != dir); 3167 path_put(&nd->path); 3168 nd->path = save_parent; 3169 nd->inode = dir->d_inode; 3170 save_parent.mnt = NULL; 3171 save_parent.dentry = NULL; 3172 if (got_write) { 3173 mnt_drop_write(nd->path.mnt); 3174 got_write = false; 3175 } 3176 retried = true; 3177 goto retry_lookup; 3178} 3179 3180static int do_tmpfile(int dfd, struct filename *pathname, 3181 struct nameidata *nd, int flags, 3182 const struct open_flags *op, 3183 struct file *file, int *opened) 3184{ 3185 static const struct qstr name = QSTR_INIT("/", 1); 3186 struct dentry *dentry, *child; 3187 struct inode *dir; 3188 int error = path_lookupat(dfd, pathname, 3189 flags | LOOKUP_DIRECTORY, nd); 3190 if (unlikely(error)) 3191 return error; 3192 error = mnt_want_write(nd->path.mnt); 3193 if (unlikely(error)) 3194 goto out; 3195 /* we want directory to be writable */ 3196 error = inode_permission(nd->inode, MAY_WRITE | MAY_EXEC); 3197 if (error) 3198 goto out2; 3199 dentry = nd->path.dentry; 3200 dir = dentry->d_inode; 3201 if (!dir->i_op->tmpfile) { 3202 error = -EOPNOTSUPP; 3203 goto out2; 3204 } 3205 child = d_alloc(dentry, &name); 3206 if (unlikely(!child)) { 3207 error = -ENOMEM; 3208 goto out2; 3209 } 3210 nd->flags &= ~LOOKUP_DIRECTORY; 3211 nd->flags |= op->intent; 3212 dput(nd->path.dentry); 3213 nd->path.dentry = child; 3214 error = dir->i_op->tmpfile(dir, nd->path.dentry, op->mode); 3215 if (error) 3216 goto out2; 3217 audit_inode(pathname, nd->path.dentry, 0); 3218 /* Don't check for other permissions, the inode was just created */ 3219 error = may_open(&nd->path, MAY_OPEN, op->open_flag); 3220 if (error) 3221 goto out2; 3222 file->f_path.mnt = nd->path.mnt; 3223 error = finish_open(file, nd->path.dentry, NULL, opened); 3224 if (error) 3225 goto out2; 3226 error = open_check_o_direct(file); 3227 if (error) { 3228 fput(file); 3229 } else if (!(op->open_flag & O_EXCL)) { 3230 struct inode *inode = file_inode(file); 3231 spin_lock(&inode->i_lock); 3232 inode->i_state |= I_LINKABLE; 3233 spin_unlock(&inode->i_lock); 3234 } 3235out2: 3236 mnt_drop_write(nd->path.mnt); 3237out: 3238 path_put(&nd->path); 3239 return error; 3240} 3241 3242static struct file *path_openat(int dfd, struct filename *pathname, 3243 struct nameidata *nd, const struct open_flags *op, int flags) 3244{ 3245 struct file *file; 3246 struct path path; 3247 int opened = 0; 3248 int error; 3249 3250 file = get_empty_filp(); 3251 if (IS_ERR(file)) 3252 return file; 3253 3254 file->f_flags = op->open_flag; 3255 3256 if (unlikely(file->f_flags & __O_TMPFILE)) { 3257 error = do_tmpfile(dfd, pathname, nd, flags, op, file, &opened); 3258 goto out2; 3259 } 3260 3261 error = path_init(dfd, pathname, flags, nd); 3262 if (unlikely(error)) 3263 goto out; 3264 3265 error = do_last(nd, &path, file, op, &opened, pathname); 3266 while (unlikely(error > 0)) { /* trailing symlink */ 3267 struct path link = path; 3268 void *cookie; 3269 if (!(nd->flags & LOOKUP_FOLLOW)) { 3270 path_put_conditional(&path, nd); 3271 path_put(&nd->path); 3272 error = -ELOOP; 3273 break; 3274 } 3275 error = may_follow_link(&link, nd); 3276 if (unlikely(error)) 3277 break; 3278 nd->flags |= LOOKUP_PARENT; 3279 nd->flags &= ~(LOOKUP_OPEN|LOOKUP_CREATE|LOOKUP_EXCL); 3280 error = follow_link(&link, nd, &cookie); 3281 if (unlikely(error)) 3282 break; 3283 error = do_last(nd, &path, file, op, &opened, pathname); 3284 put_link(nd, &link, cookie); 3285 } 3286out: 3287 path_cleanup(nd); 3288out2: 3289 if (!(opened & FILE_OPENED)) { 3290 BUG_ON(!error); 3291 put_filp(file); 3292 } 3293 if (unlikely(error)) { 3294 if (error == -EOPENSTALE) { 3295 if (flags & LOOKUP_RCU) 3296 error = -ECHILD; 3297 else 3298 error = -ESTALE; 3299 } 3300 file = ERR_PTR(error); 3301 } 3302 return file; 3303} 3304 3305struct file *do_filp_open(int dfd, struct filename *pathname, 3306 const struct open_flags *op) 3307{ 3308 struct nameidata nd; 3309 int flags = op->lookup_flags; 3310 struct file *filp; 3311 3312 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_RCU); 3313 if (unlikely(filp == ERR_PTR(-ECHILD))) 3314 filp = path_openat(dfd, pathname, &nd, op, flags); 3315 if (unlikely(filp == ERR_PTR(-ESTALE))) 3316 filp = path_openat(dfd, pathname, &nd, op, flags | LOOKUP_REVAL); 3317 return filp; 3318} 3319 3320struct file *do_file_open_root(struct dentry *dentry, struct vfsmount *mnt, 3321 const char *name, const struct open_flags *op) 3322{ 3323 struct nameidata nd; 3324 struct file *file; 3325 struct filename *filename; 3326 int flags = op->lookup_flags | LOOKUP_ROOT; 3327 3328 nd.root.mnt = mnt; 3329 nd.root.dentry = dentry; 3330 3331 if (d_is_symlink(dentry) && op->intent & LOOKUP_OPEN) 3332 return ERR_PTR(-ELOOP); 3333 3334 filename = getname_kernel(name); 3335 if (unlikely(IS_ERR(filename))) 3336 return ERR_CAST(filename); 3337 3338 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_RCU); 3339 if (unlikely(file == ERR_PTR(-ECHILD))) 3340 file = path_openat(-1, filename, &nd, op, flags); 3341 if (unlikely(file == ERR_PTR(-ESTALE))) 3342 file = path_openat(-1, filename, &nd, op, flags | LOOKUP_REVAL); 3343 putname(filename); 3344 return file; 3345} 3346 3347static struct dentry *filename_create(int dfd, struct filename *name, 3348 struct path *path, unsigned int lookup_flags) 3349{ 3350 struct dentry *dentry = ERR_PTR(-EEXIST); 3351 struct nameidata nd; 3352 int err2; 3353 int error; 3354 bool is_dir = (lookup_flags & LOOKUP_DIRECTORY); 3355 3356 /* 3357 * Note that only LOOKUP_REVAL and LOOKUP_DIRECTORY matter here. Any 3358 * other flags passed in are ignored! 3359 */ 3360 lookup_flags &= LOOKUP_REVAL; 3361 3362 error = filename_lookup(dfd, name, LOOKUP_PARENT|lookup_flags, &nd); 3363 if (error) 3364 return ERR_PTR(error); 3365 3366 /* 3367 * Yucky last component or no last component at all? 3368 * (foo/., foo/.., /////) 3369 */ 3370 if (nd.last_type != LAST_NORM) 3371 goto out; 3372 nd.flags &= ~LOOKUP_PARENT; 3373 nd.flags |= LOOKUP_CREATE | LOOKUP_EXCL; 3374 3375 /* don't fail immediately if it's r/o, at least try to report other errors */ 3376 err2 = mnt_want_write(nd.path.mnt); 3377 /* 3378 * Do the final lookup. 3379 */ 3380 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3381 dentry = lookup_hash(&nd); 3382 if (IS_ERR(dentry)) 3383 goto unlock; 3384 3385 error = -EEXIST; 3386 if (d_is_positive(dentry)) 3387 goto fail; 3388 3389 /* 3390 * Special case - lookup gave negative, but... we had foo/bar/ 3391 * From the vfs_mknod() POV we just have a negative dentry - 3392 * all is fine. Let's be bastards - you had / on the end, you've 3393 * been asking for (non-existent) directory. -ENOENT for you. 3394 */ 3395 if (unlikely(!is_dir && nd.last.name[nd.last.len])) { 3396 error = -ENOENT; 3397 goto fail; 3398 } 3399 if (unlikely(err2)) { 3400 error = err2; 3401 goto fail; 3402 } 3403 *path = nd.path; 3404 return dentry; 3405fail: 3406 dput(dentry); 3407 dentry = ERR_PTR(error); 3408unlock: 3409 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3410 if (!err2) 3411 mnt_drop_write(nd.path.mnt); 3412out: 3413 path_put(&nd.path); 3414 return dentry; 3415} 3416 3417struct dentry *kern_path_create(int dfd, const char *pathname, 3418 struct path *path, unsigned int lookup_flags) 3419{ 3420 struct filename *filename = getname_kernel(pathname); 3421 struct dentry *res; 3422 3423 if (IS_ERR(filename)) 3424 return ERR_CAST(filename); 3425 res = filename_create(dfd, filename, path, lookup_flags); 3426 putname(filename); 3427 return res; 3428} 3429EXPORT_SYMBOL(kern_path_create); 3430 3431void done_path_create(struct path *path, struct dentry *dentry) 3432{ 3433 dput(dentry); 3434 mutex_unlock(&path->dentry->d_inode->i_mutex); 3435 mnt_drop_write(path->mnt); 3436 path_put(path); 3437} 3438EXPORT_SYMBOL(done_path_create); 3439 3440struct dentry *user_path_create(int dfd, const char __user *pathname, 3441 struct path *path, unsigned int lookup_flags) 3442{ 3443 struct filename *tmp = getname(pathname); 3444 struct dentry *res; 3445 if (IS_ERR(tmp)) 3446 return ERR_CAST(tmp); 3447 res = filename_create(dfd, tmp, path, lookup_flags); 3448 putname(tmp); 3449 return res; 3450} 3451EXPORT_SYMBOL(user_path_create); 3452 3453int vfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3454{ 3455 int error = may_create(dir, dentry); 3456 3457 if (error) 3458 return error; 3459 3460 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD)) 3461 return -EPERM; 3462 3463 if (!dir->i_op->mknod) 3464 return -EPERM; 3465 3466 error = devcgroup_inode_mknod(mode, dev); 3467 if (error) 3468 return error; 3469 3470 error = security_inode_mknod(dir, dentry, mode, dev); 3471 if (error) 3472 return error; 3473 3474 error = dir->i_op->mknod(dir, dentry, mode, dev); 3475 if (!error) 3476 fsnotify_create(dir, dentry); 3477 return error; 3478} 3479EXPORT_SYMBOL(vfs_mknod); 3480 3481static int may_mknod(umode_t mode) 3482{ 3483 switch (mode & S_IFMT) { 3484 case S_IFREG: 3485 case S_IFCHR: 3486 case S_IFBLK: 3487 case S_IFIFO: 3488 case S_IFSOCK: 3489 case 0: /* zero mode translates to S_IFREG */ 3490 return 0; 3491 case S_IFDIR: 3492 return -EPERM; 3493 default: 3494 return -EINVAL; 3495 } 3496} 3497 3498SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, umode_t, mode, 3499 unsigned, dev) 3500{ 3501 struct dentry *dentry; 3502 struct path path; 3503 int error; 3504 unsigned int lookup_flags = 0; 3505 3506 error = may_mknod(mode); 3507 if (error) 3508 return error; 3509retry: 3510 dentry = user_path_create(dfd, filename, &path, lookup_flags); 3511 if (IS_ERR(dentry)) 3512 return PTR_ERR(dentry); 3513 3514 if (!IS_POSIXACL(path.dentry->d_inode)) 3515 mode &= ~current_umask(); 3516 error = security_path_mknod(&path, dentry, mode, dev); 3517 if (error) 3518 goto out; 3519 switch (mode & S_IFMT) { 3520 case 0: case S_IFREG: 3521 error = vfs_create(path.dentry->d_inode,dentry,mode,true); 3522 break; 3523 case S_IFCHR: case S_IFBLK: 3524 error = vfs_mknod(path.dentry->d_inode,dentry,mode, 3525 new_decode_dev(dev)); 3526 break; 3527 case S_IFIFO: case S_IFSOCK: 3528 error = vfs_mknod(path.dentry->d_inode,dentry,mode,0); 3529 break; 3530 } 3531out: 3532 done_path_create(&path, dentry); 3533 if (retry_estale(error, lookup_flags)) { 3534 lookup_flags |= LOOKUP_REVAL; 3535 goto retry; 3536 } 3537 return error; 3538} 3539 3540SYSCALL_DEFINE3(mknod, const char __user *, filename, umode_t, mode, unsigned, dev) 3541{ 3542 return sys_mknodat(AT_FDCWD, filename, mode, dev); 3543} 3544 3545int vfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 3546{ 3547 int error = may_create(dir, dentry); 3548 unsigned max_links = dir->i_sb->s_max_links; 3549 3550 if (error) 3551 return error; 3552 3553 if (!dir->i_op->mkdir) 3554 return -EPERM; 3555 3556 mode &= (S_IRWXUGO|S_ISVTX); 3557 error = security_inode_mkdir(dir, dentry, mode); 3558 if (error) 3559 return error; 3560 3561 if (max_links && dir->i_nlink >= max_links) 3562 return -EMLINK; 3563 3564 error = dir->i_op->mkdir(dir, dentry, mode); 3565 if (!error) 3566 fsnotify_mkdir(dir, dentry); 3567 return error; 3568} 3569EXPORT_SYMBOL(vfs_mkdir); 3570 3571SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, umode_t, mode) 3572{ 3573 struct dentry *dentry; 3574 struct path path; 3575 int error; 3576 unsigned int lookup_flags = LOOKUP_DIRECTORY; 3577 3578retry: 3579 dentry = user_path_create(dfd, pathname, &path, lookup_flags); 3580 if (IS_ERR(dentry)) 3581 return PTR_ERR(dentry); 3582 3583 if (!IS_POSIXACL(path.dentry->d_inode)) 3584 mode &= ~current_umask(); 3585 error = security_path_mkdir(&path, dentry, mode); 3586 if (!error) 3587 error = vfs_mkdir(path.dentry->d_inode, dentry, mode); 3588 done_path_create(&path, dentry); 3589 if (retry_estale(error, lookup_flags)) { 3590 lookup_flags |= LOOKUP_REVAL; 3591 goto retry; 3592 } 3593 return error; 3594} 3595 3596SYSCALL_DEFINE2(mkdir, const char __user *, pathname, umode_t, mode) 3597{ 3598 return sys_mkdirat(AT_FDCWD, pathname, mode); 3599} 3600 3601/* 3602 * The dentry_unhash() helper will try to drop the dentry early: we 3603 * should have a usage count of 1 if we're the only user of this 3604 * dentry, and if that is true (possibly after pruning the dcache), 3605 * then we drop the dentry now. 3606 * 3607 * A low-level filesystem can, if it choses, legally 3608 * do a 3609 * 3610 * if (!d_unhashed(dentry)) 3611 * return -EBUSY; 3612 * 3613 * if it cannot handle the case of removing a directory 3614 * that is still in use by something else.. 3615 */ 3616void dentry_unhash(struct dentry *dentry) 3617{ 3618 shrink_dcache_parent(dentry); 3619 spin_lock(&dentry->d_lock); 3620 if (dentry->d_lockref.count == 1) 3621 __d_drop(dentry); 3622 spin_unlock(&dentry->d_lock); 3623} 3624EXPORT_SYMBOL(dentry_unhash); 3625 3626int vfs_rmdir(struct inode *dir, struct dentry *dentry) 3627{ 3628 int error = may_delete(dir, dentry, 1); 3629 3630 if (error) 3631 return error; 3632 3633 if (!dir->i_op->rmdir) 3634 return -EPERM; 3635 3636 dget(dentry); 3637 mutex_lock(&dentry->d_inode->i_mutex); 3638 3639 error = -EBUSY; 3640 if (is_local_mountpoint(dentry)) 3641 goto out; 3642 3643 error = security_inode_rmdir(dir, dentry); 3644 if (error) 3645 goto out; 3646 3647 shrink_dcache_parent(dentry); 3648 error = dir->i_op->rmdir(dir, dentry); 3649 if (error) 3650 goto out; 3651 3652 dentry->d_inode->i_flags |= S_DEAD; 3653 dont_mount(dentry); 3654 detach_mounts(dentry); 3655 3656out: 3657 mutex_unlock(&dentry->d_inode->i_mutex); 3658 dput(dentry); 3659 if (!error) 3660 d_delete(dentry); 3661 return error; 3662} 3663EXPORT_SYMBOL(vfs_rmdir); 3664 3665static long do_rmdir(int dfd, const char __user *pathname) 3666{ 3667 int error = 0; 3668 struct filename *name; 3669 struct dentry *dentry; 3670 struct nameidata nd; 3671 unsigned int lookup_flags = 0; 3672retry: 3673 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3674 if (IS_ERR(name)) 3675 return PTR_ERR(name); 3676 3677 switch(nd.last_type) { 3678 case LAST_DOTDOT: 3679 error = -ENOTEMPTY; 3680 goto exit1; 3681 case LAST_DOT: 3682 error = -EINVAL; 3683 goto exit1; 3684 case LAST_ROOT: 3685 error = -EBUSY; 3686 goto exit1; 3687 } 3688 3689 nd.flags &= ~LOOKUP_PARENT; 3690 error = mnt_want_write(nd.path.mnt); 3691 if (error) 3692 goto exit1; 3693 3694 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3695 dentry = lookup_hash(&nd); 3696 error = PTR_ERR(dentry); 3697 if (IS_ERR(dentry)) 3698 goto exit2; 3699 if (!dentry->d_inode) { 3700 error = -ENOENT; 3701 goto exit3; 3702 } 3703 error = security_path_rmdir(&nd.path, dentry); 3704 if (error) 3705 goto exit3; 3706 error = vfs_rmdir(nd.path.dentry->d_inode, dentry); 3707exit3: 3708 dput(dentry); 3709exit2: 3710 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3711 mnt_drop_write(nd.path.mnt); 3712exit1: 3713 path_put(&nd.path); 3714 putname(name); 3715 if (retry_estale(error, lookup_flags)) { 3716 lookup_flags |= LOOKUP_REVAL; 3717 goto retry; 3718 } 3719 return error; 3720} 3721 3722SYSCALL_DEFINE1(rmdir, const char __user *, pathname) 3723{ 3724 return do_rmdir(AT_FDCWD, pathname); 3725} 3726 3727/** 3728 * vfs_unlink - unlink a filesystem object 3729 * @dir: parent directory 3730 * @dentry: victim 3731 * @delegated_inode: returns victim inode, if the inode is delegated. 3732 * 3733 * The caller must hold dir->i_mutex. 3734 * 3735 * If vfs_unlink discovers a delegation, it will return -EWOULDBLOCK and 3736 * return a reference to the inode in delegated_inode. The caller 3737 * should then break the delegation on that inode and retry. Because 3738 * breaking a delegation may take a long time, the caller should drop 3739 * dir->i_mutex before doing so. 3740 * 3741 * Alternatively, a caller may pass NULL for delegated_inode. This may 3742 * be appropriate for callers that expect the underlying filesystem not 3743 * to be NFS exported. 3744 */ 3745int vfs_unlink(struct inode *dir, struct dentry *dentry, struct inode **delegated_inode) 3746{ 3747 struct inode *target = dentry->d_inode; 3748 int error = may_delete(dir, dentry, 0); 3749 3750 if (error) 3751 return error; 3752 3753 if (!dir->i_op->unlink) 3754 return -EPERM; 3755 3756 mutex_lock(&target->i_mutex); 3757 if (is_local_mountpoint(dentry)) 3758 error = -EBUSY; 3759 else { 3760 error = security_inode_unlink(dir, dentry); 3761 if (!error) { 3762 error = try_break_deleg(target, delegated_inode); 3763 if (error) 3764 goto out; 3765 error = dir->i_op->unlink(dir, dentry); 3766 if (!error) { 3767 dont_mount(dentry); 3768 detach_mounts(dentry); 3769 } 3770 } 3771 } 3772out: 3773 mutex_unlock(&target->i_mutex); 3774 3775 /* We don't d_delete() NFS sillyrenamed files--they still exist. */ 3776 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) { 3777 fsnotify_link_count(target); 3778 d_delete(dentry); 3779 } 3780 3781 return error; 3782} 3783EXPORT_SYMBOL(vfs_unlink); 3784 3785/* 3786 * Make sure that the actual truncation of the file will occur outside its 3787 * directory's i_mutex. Truncate can take a long time if there is a lot of 3788 * writeout happening, and we don't want to prevent access to the directory 3789 * while waiting on the I/O. 3790 */ 3791static long do_unlinkat(int dfd, const char __user *pathname) 3792{ 3793 int error; 3794 struct filename *name; 3795 struct dentry *dentry; 3796 struct nameidata nd; 3797 struct inode *inode = NULL; 3798 struct inode *delegated_inode = NULL; 3799 unsigned int lookup_flags = 0; 3800retry: 3801 name = user_path_parent(dfd, pathname, &nd, lookup_flags); 3802 if (IS_ERR(name)) 3803 return PTR_ERR(name); 3804 3805 error = -EISDIR; 3806 if (nd.last_type != LAST_NORM) 3807 goto exit1; 3808 3809 nd.flags &= ~LOOKUP_PARENT; 3810 error = mnt_want_write(nd.path.mnt); 3811 if (error) 3812 goto exit1; 3813retry_deleg: 3814 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT); 3815 dentry = lookup_hash(&nd); 3816 error = PTR_ERR(dentry); 3817 if (!IS_ERR(dentry)) { 3818 /* Why not before? Because we want correct error value */ 3819 if (nd.last.name[nd.last.len]) 3820 goto slashes; 3821 inode = dentry->d_inode; 3822 if (d_is_negative(dentry)) 3823 goto slashes; 3824 ihold(inode); 3825 error = security_path_unlink(&nd.path, dentry); 3826 if (error) 3827 goto exit2; 3828 error = vfs_unlink(nd.path.dentry->d_inode, dentry, &delegated_inode); 3829exit2: 3830 dput(dentry); 3831 } 3832 mutex_unlock(&nd.path.dentry->d_inode->i_mutex); 3833 if (inode) 3834 iput(inode); /* truncate the inode here */ 3835 inode = NULL; 3836 if (delegated_inode) { 3837 error = break_deleg_wait(&delegated_inode); 3838 if (!error) 3839 goto retry_deleg; 3840 } 3841 mnt_drop_write(nd.path.mnt); 3842exit1: 3843 path_put(&nd.path); 3844 putname(name); 3845 if (retry_estale(error, lookup_flags)) { 3846 lookup_flags |= LOOKUP_REVAL; 3847 inode = NULL; 3848 goto retry; 3849 } 3850 return error; 3851 3852slashes: 3853 if (d_is_negative(dentry)) 3854 error = -ENOENT; 3855 else if (d_is_dir(dentry)) 3856 error = -EISDIR; 3857 else 3858 error = -ENOTDIR; 3859 goto exit2; 3860} 3861 3862SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag) 3863{ 3864 if ((flag & ~AT_REMOVEDIR) != 0) 3865 return -EINVAL; 3866 3867 if (flag & AT_REMOVEDIR) 3868 return do_rmdir(dfd, pathname); 3869 3870 return do_unlinkat(dfd, pathname); 3871} 3872 3873SYSCALL_DEFINE1(unlink, const char __user *, pathname) 3874{ 3875 return do_unlinkat(AT_FDCWD, pathname); 3876} 3877 3878int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname) 3879{ 3880 int error = may_create(dir, dentry); 3881 3882 if (error) 3883 return error; 3884 3885 if (!dir->i_op->symlink) 3886 return -EPERM; 3887 3888 error = security_inode_symlink(dir, dentry, oldname); 3889 if (error) 3890 return error; 3891 3892 error = dir->i_op->symlink(dir, dentry, oldname); 3893 if (!error) 3894 fsnotify_create(dir, dentry); 3895 return error; 3896} 3897EXPORT_SYMBOL(vfs_symlink); 3898 3899SYSCALL_DEFINE3(symlinkat, const char __user *, oldname, 3900 int, newdfd, const char __user *, newname) 3901{ 3902 int error; 3903 struct filename *from; 3904 struct dentry *dentry; 3905 struct path path; 3906 unsigned int lookup_flags = 0; 3907 3908 from = getname(oldname); 3909 if (IS_ERR(from)) 3910 return PTR_ERR(from); 3911retry: 3912 dentry = user_path_create(newdfd, newname, &path, lookup_flags); 3913 error = PTR_ERR(dentry); 3914 if (IS_ERR(dentry)) 3915 goto out_putname; 3916 3917 error = security_path_symlink(&path, dentry, from->name); 3918 if (!error) 3919 error = vfs_symlink(path.dentry->d_inode, dentry, from->name); 3920 done_path_create(&path, dentry); 3921 if (retry_estale(error, lookup_flags)) { 3922 lookup_flags |= LOOKUP_REVAL; 3923 goto retry; 3924 } 3925out_putname: 3926 putname(from); 3927 return error; 3928} 3929 3930SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname) 3931{ 3932 return sys_symlinkat(oldname, AT_FDCWD, newname); 3933} 3934 3935/** 3936 * vfs_link - create a new link 3937 * @old_dentry: object to be linked 3938 * @dir: new parent 3939 * @new_dentry: where to create the new link 3940 * @delegated_inode: returns inode needing a delegation break 3941 * 3942 * The caller must hold dir->i_mutex 3943 * 3944 * If vfs_link discovers a delegation on the to-be-linked file in need 3945 * of breaking, it will return -EWOULDBLOCK and return a reference to the 3946 * inode in delegated_inode. The caller should then break the delegation 3947 * and retry. Because breaking a delegation may take a long time, the 3948 * caller should drop the i_mutex before doing so. 3949 * 3950 * Alternatively, a caller may pass NULL for delegated_inode. This may 3951 * be appropriate for callers that expect the underlying filesystem not 3952 * to be NFS exported. 3953 */ 3954int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry, struct inode **delegated_inode) 3955{ 3956 struct inode *inode = old_dentry->d_inode; 3957 unsigned max_links = dir->i_sb->s_max_links; 3958 int error; 3959 3960 if (!inode) 3961 return -ENOENT; 3962 3963 error = may_create(dir, new_dentry); 3964 if (error) 3965 return error; 3966 3967 if (dir->i_sb != inode->i_sb) 3968 return -EXDEV; 3969 3970 /* 3971 * A link to an append-only or immutable file cannot be created. 3972 */ 3973 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 3974 return -EPERM; 3975 if (!dir->i_op->link) 3976 return -EPERM; 3977 if (S_ISDIR(inode->i_mode)) 3978 return -EPERM; 3979 3980 error = security_inode_link(old_dentry, dir, new_dentry); 3981 if (error) 3982 return error; 3983 3984 mutex_lock(&inode->i_mutex); 3985 /* Make sure we don't allow creating hardlink to an unlinked file */ 3986 if (inode->i_nlink == 0 && !(inode->i_state & I_LINKABLE)) 3987 error = -ENOENT; 3988 else if (max_links && inode->i_nlink >= max_links) 3989 error = -EMLINK; 3990 else { 3991 error = try_break_deleg(inode, delegated_inode); 3992 if (!error) 3993 error = dir->i_op->link(old_dentry, dir, new_dentry); 3994 } 3995 3996 if (!error && (inode->i_state & I_LINKABLE)) { 3997 spin_lock(&inode->i_lock); 3998 inode->i_state &= ~I_LINKABLE; 3999 spin_unlock(&inode->i_lock); 4000 } 4001 mutex_unlock(&inode->i_mutex); 4002 if (!error) 4003 fsnotify_link(dir, inode, new_dentry); 4004 return error; 4005} 4006EXPORT_SYMBOL(vfs_link); 4007 4008/* 4009 * Hardlinks are often used in delicate situations. We avoid 4010 * security-related surprises by not following symlinks on the 4011 * newname. --KAB 4012 * 4013 * We don't follow them on the oldname either to be compatible 4014 * with linux 2.0, and to avoid hard-linking to directories 4015 * and other special files. --ADM 4016 */ 4017SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname, 4018 int, newdfd, const char __user *, newname, int, flags) 4019{ 4020 struct dentry *new_dentry; 4021 struct path old_path, new_path; 4022 struct inode *delegated_inode = NULL; 4023 int how = 0; 4024 int error; 4025 4026 if ((flags & ~(AT_SYMLINK_FOLLOW | AT_EMPTY_PATH)) != 0) 4027 return -EINVAL; 4028 /* 4029 * To use null names we require CAP_DAC_READ_SEARCH 4030 * This ensures that not everyone will be able to create 4031 * handlink using the passed filedescriptor. 4032 */ 4033 if (flags & AT_EMPTY_PATH) { 4034 if (!capable(CAP_DAC_READ_SEARCH)) 4035 return -ENOENT; 4036 how = LOOKUP_EMPTY; 4037 } 4038 4039 if (flags & AT_SYMLINK_FOLLOW) 4040 how |= LOOKUP_FOLLOW; 4041retry: 4042 error = user_path_at(olddfd, oldname, how, &old_path); 4043 if (error) 4044 return error; 4045 4046 new_dentry = user_path_create(newdfd, newname, &new_path, 4047 (how & LOOKUP_REVAL)); 4048 error = PTR_ERR(new_dentry); 4049 if (IS_ERR(new_dentry)) 4050 goto out; 4051 4052 error = -EXDEV; 4053 if (old_path.mnt != new_path.mnt) 4054 goto out_dput; 4055 error = may_linkat(&old_path); 4056 if (unlikely(error)) 4057 goto out_dput; 4058 error = security_path_link(old_path.dentry, &new_path, new_dentry); 4059 if (error) 4060 goto out_dput; 4061 error = vfs_link(old_path.dentry, new_path.dentry->d_inode, new_dentry, &delegated_inode); 4062out_dput: 4063 done_path_create(&new_path, new_dentry); 4064 if (delegated_inode) { 4065 error = break_deleg_wait(&delegated_inode); 4066 if (!error) { 4067 path_put(&old_path); 4068 goto retry; 4069 } 4070 } 4071 if (retry_estale(error, how)) { 4072 path_put(&old_path); 4073 how |= LOOKUP_REVAL; 4074 goto retry; 4075 } 4076out: 4077 path_put(&old_path); 4078 4079 return error; 4080} 4081 4082SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname) 4083{ 4084 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4085} 4086 4087/** 4088 * vfs_rename - rename a filesystem object 4089 * @old_dir: parent of source 4090 * @old_dentry: source 4091 * @new_dir: parent of destination 4092 * @new_dentry: destination 4093 * @delegated_inode: returns an inode needing a delegation break 4094 * @flags: rename flags 4095 * 4096 * The caller must hold multiple mutexes--see lock_rename()). 4097 * 4098 * If vfs_rename discovers a delegation in need of breaking at either 4099 * the source or destination, it will return -EWOULDBLOCK and return a 4100 * reference to the inode in delegated_inode. The caller should then 4101 * break the delegation and retry. Because breaking a delegation may 4102 * take a long time, the caller should drop all locks before doing 4103 * so. 4104 * 4105 * Alternatively, a caller may pass NULL for delegated_inode. This may 4106 * be appropriate for callers that expect the underlying filesystem not 4107 * to be NFS exported. 4108 * 4109 * The worst of all namespace operations - renaming directory. "Perverted" 4110 * doesn't even start to describe it. Somebody in UCB had a heck of a trip... 4111 * Problems: 4112 * a) we can get into loop creation. 4113 * b) race potential - two innocent renames can create a loop together. 4114 * That's where 4.4 screws up. Current fix: serialization on 4115 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another 4116 * story. 4117 * c) we have to lock _four_ objects - parents and victim (if it exists), 4118 * and source (if it is not a directory). 4119 * And that - after we got ->i_mutex on parents (until then we don't know 4120 * whether the target exists). Solution: try to be smart with locking 4121 * order for inodes. We rely on the fact that tree topology may change 4122 * only under ->s_vfs_rename_mutex _and_ that parent of the object we 4123 * move will be locked. Thus we can rank directories by the tree 4124 * (ancestors first) and rank all non-directories after them. 4125 * That works since everybody except rename does "lock parent, lookup, 4126 * lock child" and rename is under ->s_vfs_rename_mutex. 4127 * HOWEVER, it relies on the assumption that any object with ->lookup() 4128 * has no more than 1 dentry. If "hybrid" objects will ever appear, 4129 * we'd better make sure that there's no link(2) for them. 4130 * d) conversion from fhandle to dentry may come in the wrong moment - when 4131 * we are removing the target. Solution: we will have to grab ->i_mutex 4132 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on 4133 * ->i_mutex on parents, which works but leads to some truly excessive 4134 * locking]. 4135 */ 4136int vfs_rename(struct inode *old_dir, struct dentry *old_dentry, 4137 struct inode *new_dir, struct dentry *new_dentry, 4138 struct inode **delegated_inode, unsigned int flags) 4139{ 4140 int error; 4141 bool is_dir = d_is_dir(old_dentry); 4142 const unsigned char *old_name; 4143 struct inode *source = old_dentry->d_inode; 4144 struct inode *target = new_dentry->d_inode; 4145 bool new_is_dir = false; 4146 unsigned max_links = new_dir->i_sb->s_max_links; 4147 4148 if (source == target) 4149 return 0; 4150 4151 error = may_delete(old_dir, old_dentry, is_dir); 4152 if (error) 4153 return error; 4154 4155 if (!target) { 4156 error = may_create(new_dir, new_dentry); 4157 } else { 4158 new_is_dir = d_is_dir(new_dentry); 4159 4160 if (!(flags & RENAME_EXCHANGE)) 4161 error = may_delete(new_dir, new_dentry, is_dir); 4162 else 4163 error = may_delete(new_dir, new_dentry, new_is_dir); 4164 } 4165 if (error) 4166 return error; 4167 4168 if (!old_dir->i_op->rename && !old_dir->i_op->rename2) 4169 return -EPERM; 4170 4171 if (flags && !old_dir->i_op->rename2) 4172 return -EINVAL; 4173 4174 /* 4175 * If we are going to change the parent - check write permissions, 4176 * we'll need to flip '..'. 4177 */ 4178 if (new_dir != old_dir) { 4179 if (is_dir) { 4180 error = inode_permission(source, MAY_WRITE); 4181 if (error) 4182 return error; 4183 } 4184 if ((flags & RENAME_EXCHANGE) && new_is_dir) { 4185 error = inode_permission(target, MAY_WRITE); 4186 if (error) 4187 return error; 4188 } 4189 } 4190 4191 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry, 4192 flags); 4193 if (error) 4194 return error; 4195 4196 old_name = fsnotify_oldname_init(old_dentry->d_name.name); 4197 dget(new_dentry); 4198 if (!is_dir || (flags & RENAME_EXCHANGE)) 4199 lock_two_nondirectories(source, target); 4200 else if (target) 4201 mutex_lock(&target->i_mutex); 4202 4203 error = -EBUSY; 4204 if (is_local_mountpoint(old_dentry) || is_local_mountpoint(new_dentry)) 4205 goto out; 4206 4207 if (max_links && new_dir != old_dir) { 4208 error = -EMLINK; 4209 if (is_dir && !new_is_dir && new_dir->i_nlink >= max_links) 4210 goto out; 4211 if ((flags & RENAME_EXCHANGE) && !is_dir && new_is_dir && 4212 old_dir->i_nlink >= max_links) 4213 goto out; 4214 } 4215 if (is_dir && !(flags & RENAME_EXCHANGE) && target) 4216 shrink_dcache_parent(new_dentry); 4217 if (!is_dir) { 4218 error = try_break_deleg(source, delegated_inode); 4219 if (error) 4220 goto out; 4221 } 4222 if (target && !new_is_dir) { 4223 error = try_break_deleg(target, delegated_inode); 4224 if (error) 4225 goto out; 4226 } 4227 if (!old_dir->i_op->rename2) { 4228 error = old_dir->i_op->rename(old_dir, old_dentry, 4229 new_dir, new_dentry); 4230 } else { 4231 WARN_ON(old_dir->i_op->rename != NULL); 4232 error = old_dir->i_op->rename2(old_dir, old_dentry, 4233 new_dir, new_dentry, flags); 4234 } 4235 if (error) 4236 goto out; 4237 4238 if (!(flags & RENAME_EXCHANGE) && target) { 4239 if (is_dir) 4240 target->i_flags |= S_DEAD; 4241 dont_mount(new_dentry); 4242 detach_mounts(new_dentry); 4243 } 4244 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE)) { 4245 if (!(flags & RENAME_EXCHANGE)) 4246 d_move(old_dentry, new_dentry); 4247 else 4248 d_exchange(old_dentry, new_dentry); 4249 } 4250out: 4251 if (!is_dir || (flags & RENAME_EXCHANGE)) 4252 unlock_two_nondirectories(source, target); 4253 else if (target) 4254 mutex_unlock(&target->i_mutex); 4255 dput(new_dentry); 4256 if (!error) { 4257 fsnotify_move(old_dir, new_dir, old_name, is_dir, 4258 !(flags & RENAME_EXCHANGE) ? target : NULL, old_dentry); 4259 if (flags & RENAME_EXCHANGE) { 4260 fsnotify_move(new_dir, old_dir, old_dentry->d_name.name, 4261 new_is_dir, NULL, new_dentry); 4262 } 4263 } 4264 fsnotify_oldname_free(old_name); 4265 4266 return error; 4267} 4268EXPORT_SYMBOL(vfs_rename); 4269 4270SYSCALL_DEFINE5(renameat2, int, olddfd, const char __user *, oldname, 4271 int, newdfd, const char __user *, newname, unsigned int, flags) 4272{ 4273 struct dentry *old_dir, *new_dir; 4274 struct dentry *old_dentry, *new_dentry; 4275 struct dentry *trap; 4276 struct nameidata oldnd, newnd; 4277 struct inode *delegated_inode = NULL; 4278 struct filename *from; 4279 struct filename *to; 4280 unsigned int lookup_flags = 0; 4281 bool should_retry = false; 4282 int error; 4283 4284 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT)) 4285 return -EINVAL; 4286 4287 if ((flags & (RENAME_NOREPLACE | RENAME_WHITEOUT)) && 4288 (flags & RENAME_EXCHANGE)) 4289 return -EINVAL; 4290 4291 if ((flags & RENAME_WHITEOUT) && !capable(CAP_MKNOD)) 4292 return -EPERM; 4293 4294retry: 4295 from = user_path_parent(olddfd, oldname, &oldnd, lookup_flags); 4296 if (IS_ERR(from)) { 4297 error = PTR_ERR(from); 4298 goto exit; 4299 } 4300 4301 to = user_path_parent(newdfd, newname, &newnd, lookup_flags); 4302 if (IS_ERR(to)) { 4303 error = PTR_ERR(to); 4304 goto exit1; 4305 } 4306 4307 error = -EXDEV; 4308 if (oldnd.path.mnt != newnd.path.mnt) 4309 goto exit2; 4310 4311 old_dir = oldnd.path.dentry; 4312 error = -EBUSY; 4313 if (oldnd.last_type != LAST_NORM) 4314 goto exit2; 4315 4316 new_dir = newnd.path.dentry; 4317 if (flags & RENAME_NOREPLACE) 4318 error = -EEXIST; 4319 if (newnd.last_type != LAST_NORM) 4320 goto exit2; 4321 4322 error = mnt_want_write(oldnd.path.mnt); 4323 if (error) 4324 goto exit2; 4325 4326 oldnd.flags &= ~LOOKUP_PARENT; 4327 newnd.flags &= ~LOOKUP_PARENT; 4328 if (!(flags & RENAME_EXCHANGE)) 4329 newnd.flags |= LOOKUP_RENAME_TARGET; 4330 4331retry_deleg: 4332 trap = lock_rename(new_dir, old_dir); 4333 4334 old_dentry = lookup_hash(&oldnd); 4335 error = PTR_ERR(old_dentry); 4336 if (IS_ERR(old_dentry)) 4337 goto exit3; 4338 /* source must exist */ 4339 error = -ENOENT; 4340 if (d_is_negative(old_dentry)) 4341 goto exit4; 4342 new_dentry = lookup_hash(&newnd); 4343 error = PTR_ERR(new_dentry); 4344 if (IS_ERR(new_dentry)) 4345 goto exit4; 4346 error = -EEXIST; 4347 if ((flags & RENAME_NOREPLACE) && d_is_positive(new_dentry)) 4348 goto exit5; 4349 if (flags & RENAME_EXCHANGE) { 4350 error = -ENOENT; 4351 if (d_is_negative(new_dentry)) 4352 goto exit5; 4353 4354 if (!d_is_dir(new_dentry)) { 4355 error = -ENOTDIR; 4356 if (newnd.last.name[newnd.last.len]) 4357 goto exit5; 4358 } 4359 } 4360 /* unless the source is a directory trailing slashes give -ENOTDIR */ 4361 if (!d_is_dir(old_dentry)) { 4362 error = -ENOTDIR; 4363 if (oldnd.last.name[oldnd.last.len]) 4364 goto exit5; 4365 if (!(flags & RENAME_EXCHANGE) && newnd.last.name[newnd.last.len]) 4366 goto exit5; 4367 } 4368 /* source should not be ancestor of target */ 4369 error = -EINVAL; 4370 if (old_dentry == trap) 4371 goto exit5; 4372 /* target should not be an ancestor of source */ 4373 if (!(flags & RENAME_EXCHANGE)) 4374 error = -ENOTEMPTY; 4375 if (new_dentry == trap) 4376 goto exit5; 4377 4378 error = security_path_rename(&oldnd.path, old_dentry, 4379 &newnd.path, new_dentry, flags); 4380 if (error) 4381 goto exit5; 4382 error = vfs_rename(old_dir->d_inode, old_dentry, 4383 new_dir->d_inode, new_dentry, 4384 &delegated_inode, flags); 4385exit5: 4386 dput(new_dentry); 4387exit4: 4388 dput(old_dentry); 4389exit3: 4390 unlock_rename(new_dir, old_dir); 4391 if (delegated_inode) { 4392 error = break_deleg_wait(&delegated_inode); 4393 if (!error) 4394 goto retry_deleg; 4395 } 4396 mnt_drop_write(oldnd.path.mnt); 4397exit2: 4398 if (retry_estale(error, lookup_flags)) 4399 should_retry = true; 4400 path_put(&newnd.path); 4401 putname(to); 4402exit1: 4403 path_put(&oldnd.path); 4404 putname(from); 4405 if (should_retry) { 4406 should_retry = false; 4407 lookup_flags |= LOOKUP_REVAL; 4408 goto retry; 4409 } 4410exit: 4411 return error; 4412} 4413 4414SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname, 4415 int, newdfd, const char __user *, newname) 4416{ 4417 return sys_renameat2(olddfd, oldname, newdfd, newname, 0); 4418} 4419 4420SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname) 4421{ 4422 return sys_renameat2(AT_FDCWD, oldname, AT_FDCWD, newname, 0); 4423} 4424 4425int vfs_whiteout(struct inode *dir, struct dentry *dentry) 4426{ 4427 int error = may_create(dir, dentry); 4428 if (error) 4429 return error; 4430 4431 if (!dir->i_op->mknod) 4432 return -EPERM; 4433 4434 return dir->i_op->mknod(dir, dentry, 4435 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV); 4436} 4437EXPORT_SYMBOL(vfs_whiteout); 4438 4439int readlink_copy(char __user *buffer, int buflen, const char *link) 4440{ 4441 int len = PTR_ERR(link); 4442 if (IS_ERR(link)) 4443 goto out; 4444 4445 len = strlen(link); 4446 if (len > (unsigned) buflen) 4447 len = buflen; 4448 if (copy_to_user(buffer, link, len)) 4449 len = -EFAULT; 4450out: 4451 return len; 4452} 4453EXPORT_SYMBOL(readlink_copy); 4454 4455/* 4456 * A helper for ->readlink(). This should be used *ONLY* for symlinks that 4457 * have ->follow_link() touching nd only in nd_set_link(). Using (or not 4458 * using) it for any given inode is up to filesystem. 4459 */ 4460int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4461{ 4462 struct nameidata nd; 4463 void *cookie; 4464 int res; 4465 4466 nd.depth = 0; 4467 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd); 4468 if (IS_ERR(cookie)) 4469 return PTR_ERR(cookie); 4470 4471 res = readlink_copy(buffer, buflen, nd_get_link(&nd)); 4472 if (dentry->d_inode->i_op->put_link) 4473 dentry->d_inode->i_op->put_link(dentry, &nd, cookie); 4474 return res; 4475} 4476EXPORT_SYMBOL(generic_readlink); 4477 4478/* get the link contents into pagecache */ 4479static char *page_getlink(struct dentry * dentry, struct page **ppage) 4480{ 4481 char *kaddr; 4482 struct page *page; 4483 struct address_space *mapping = dentry->d_inode->i_mapping; 4484 page = read_mapping_page(mapping, 0, NULL); 4485 if (IS_ERR(page)) 4486 return (char*)page; 4487 *ppage = page; 4488 kaddr = kmap(page); 4489 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1); 4490 return kaddr; 4491} 4492 4493int page_readlink(struct dentry *dentry, char __user *buffer, int buflen) 4494{ 4495 struct page *page = NULL; 4496 int res = readlink_copy(buffer, buflen, page_getlink(dentry, &page)); 4497 if (page) { 4498 kunmap(page); 4499 page_cache_release(page); 4500 } 4501 return res; 4502} 4503EXPORT_SYMBOL(page_readlink); 4504 4505void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd) 4506{ 4507 struct page *page = NULL; 4508 nd_set_link(nd, page_getlink(dentry, &page)); 4509 return page; 4510} 4511EXPORT_SYMBOL(page_follow_link_light); 4512 4513void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie) 4514{ 4515 struct page *page = cookie; 4516 4517 if (page) { 4518 kunmap(page); 4519 page_cache_release(page); 4520 } 4521} 4522EXPORT_SYMBOL(page_put_link); 4523 4524/* 4525 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS 4526 */ 4527int __page_symlink(struct inode *inode, const char *symname, int len, int nofs) 4528{ 4529 struct address_space *mapping = inode->i_mapping; 4530 struct page *page; 4531 void *fsdata; 4532 int err; 4533 char *kaddr; 4534 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE; 4535 if (nofs) 4536 flags |= AOP_FLAG_NOFS; 4537 4538retry: 4539 err = pagecache_write_begin(NULL, mapping, 0, len-1, 4540 flags, &page, &fsdata); 4541 if (err) 4542 goto fail; 4543 4544 kaddr = kmap_atomic(page); 4545 memcpy(kaddr, symname, len-1); 4546 kunmap_atomic(kaddr); 4547 4548 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1, 4549 page, fsdata); 4550 if (err < 0) 4551 goto fail; 4552 if (err < len-1) 4553 goto retry; 4554 4555 mark_inode_dirty(inode); 4556 return 0; 4557fail: 4558 return err; 4559} 4560EXPORT_SYMBOL(__page_symlink); 4561 4562int page_symlink(struct inode *inode, const char *symname, int len) 4563{ 4564 return __page_symlink(inode, symname, len, 4565 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS)); 4566} 4567EXPORT_SYMBOL(page_symlink); 4568 4569const struct inode_operations page_symlink_inode_operations = { 4570 .readlink = generic_readlink, 4571 .follow_link = page_follow_link_light, 4572 .put_link = page_put_link, 4573}; 4574EXPORT_SYMBOL(page_symlink_inode_operations); 4575