1/*
2 *  linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 *	Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
11#include <linux/syscalls.h>
12#include <linux/export.h>
13#include <linux/capability.h>
14#include <linux/mnt_namespace.h>
15#include <linux/user_namespace.h>
16#include <linux/namei.h>
17#include <linux/security.h>
18#include <linux/idr.h>
19#include <linux/init.h>		/* init_rootfs */
20#include <linux/fs_struct.h>	/* get_fs_root et.al. */
21#include <linux/fsnotify.h>	/* fsnotify_vfsmount_delete */
22#include <linux/uaccess.h>
23#include <linux/proc_ns.h>
24#include <linux/magic.h>
25#include <linux/bootmem.h>
26#include <linux/task_work.h>
27#include "pnode.h"
28#include "internal.h"
29
30static unsigned int m_hash_mask __read_mostly;
31static unsigned int m_hash_shift __read_mostly;
32static unsigned int mp_hash_mask __read_mostly;
33static unsigned int mp_hash_shift __read_mostly;
34
35static __initdata unsigned long mhash_entries;
36static int __init set_mhash_entries(char *str)
37{
38	if (!str)
39		return 0;
40	mhash_entries = simple_strtoul(str, &str, 0);
41	return 1;
42}
43__setup("mhash_entries=", set_mhash_entries);
44
45static __initdata unsigned long mphash_entries;
46static int __init set_mphash_entries(char *str)
47{
48	if (!str)
49		return 0;
50	mphash_entries = simple_strtoul(str, &str, 0);
51	return 1;
52}
53__setup("mphash_entries=", set_mphash_entries);
54
55static u64 event;
56static DEFINE_IDA(mnt_id_ida);
57static DEFINE_IDA(mnt_group_ida);
58static DEFINE_SPINLOCK(mnt_id_lock);
59static int mnt_id_start = 0;
60static int mnt_group_start = 1;
61
62static struct hlist_head *mount_hashtable __read_mostly;
63static struct hlist_head *mountpoint_hashtable __read_mostly;
64static struct kmem_cache *mnt_cache __read_mostly;
65static DECLARE_RWSEM(namespace_sem);
66
67/* /sys/fs */
68struct kobject *fs_kobj;
69EXPORT_SYMBOL_GPL(fs_kobj);
70
71/*
72 * vfsmount lock may be taken for read to prevent changes to the
73 * vfsmount hash, ie. during mountpoint lookups or walking back
74 * up the tree.
75 *
76 * It should be taken for write in all cases where the vfsmount
77 * tree or hash is modified or when a vfsmount structure is modified.
78 */
79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock);
80
81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry)
82{
83	unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
84	tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
85	tmp = tmp + (tmp >> m_hash_shift);
86	return &mount_hashtable[tmp & m_hash_mask];
87}
88
89static inline struct hlist_head *mp_hash(struct dentry *dentry)
90{
91	unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES);
92	tmp = tmp + (tmp >> mp_hash_shift);
93	return &mountpoint_hashtable[tmp & mp_hash_mask];
94}
95
96/*
97 * allocation is serialized by namespace_sem, but we need the spinlock to
98 * serialize with freeing.
99 */
100static int mnt_alloc_id(struct mount *mnt)
101{
102	int res;
103
104retry:
105	ida_pre_get(&mnt_id_ida, GFP_KERNEL);
106	spin_lock(&mnt_id_lock);
107	res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
108	if (!res)
109		mnt_id_start = mnt->mnt_id + 1;
110	spin_unlock(&mnt_id_lock);
111	if (res == -EAGAIN)
112		goto retry;
113
114	return res;
115}
116
117static void mnt_free_id(struct mount *mnt)
118{
119	int id = mnt->mnt_id;
120	spin_lock(&mnt_id_lock);
121	ida_remove(&mnt_id_ida, id);
122	if (mnt_id_start > id)
123		mnt_id_start = id;
124	spin_unlock(&mnt_id_lock);
125}
126
127/*
128 * Allocate a new peer group ID
129 *
130 * mnt_group_ida is protected by namespace_sem
131 */
132static int mnt_alloc_group_id(struct mount *mnt)
133{
134	int res;
135
136	if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
137		return -ENOMEM;
138
139	res = ida_get_new_above(&mnt_group_ida,
140				mnt_group_start,
141				&mnt->mnt_group_id);
142	if (!res)
143		mnt_group_start = mnt->mnt_group_id + 1;
144
145	return res;
146}
147
148/*
149 * Release a peer group ID
150 */
151void mnt_release_group_id(struct mount *mnt)
152{
153	int id = mnt->mnt_group_id;
154	ida_remove(&mnt_group_ida, id);
155	if (mnt_group_start > id)
156		mnt_group_start = id;
157	mnt->mnt_group_id = 0;
158}
159
160/*
161 * vfsmount lock must be held for read
162 */
163static inline void mnt_add_count(struct mount *mnt, int n)
164{
165#ifdef CONFIG_SMP
166	this_cpu_add(mnt->mnt_pcp->mnt_count, n);
167#else
168	preempt_disable();
169	mnt->mnt_count += n;
170	preempt_enable();
171#endif
172}
173
174/*
175 * vfsmount lock must be held for write
176 */
177unsigned int mnt_get_count(struct mount *mnt)
178{
179#ifdef CONFIG_SMP
180	unsigned int count = 0;
181	int cpu;
182
183	for_each_possible_cpu(cpu) {
184		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
185	}
186
187	return count;
188#else
189	return mnt->mnt_count;
190#endif
191}
192
193static void drop_mountpoint(struct fs_pin *p)
194{
195	struct mount *m = container_of(p, struct mount, mnt_umount);
196	dput(m->mnt_ex_mountpoint);
197	pin_remove(p);
198	mntput(&m->mnt);
199}
200
201static struct mount *alloc_vfsmnt(const char *name)
202{
203	struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
204	if (mnt) {
205		int err;
206
207		err = mnt_alloc_id(mnt);
208		if (err)
209			goto out_free_cache;
210
211		if (name) {
212			mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL);
213			if (!mnt->mnt_devname)
214				goto out_free_id;
215		}
216
217#ifdef CONFIG_SMP
218		mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
219		if (!mnt->mnt_pcp)
220			goto out_free_devname;
221
222		this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
223#else
224		mnt->mnt_count = 1;
225		mnt->mnt_writers = 0;
226#endif
227
228		INIT_HLIST_NODE(&mnt->mnt_hash);
229		INIT_LIST_HEAD(&mnt->mnt_child);
230		INIT_LIST_HEAD(&mnt->mnt_mounts);
231		INIT_LIST_HEAD(&mnt->mnt_list);
232		INIT_LIST_HEAD(&mnt->mnt_expire);
233		INIT_LIST_HEAD(&mnt->mnt_share);
234		INIT_LIST_HEAD(&mnt->mnt_slave_list);
235		INIT_LIST_HEAD(&mnt->mnt_slave);
236		INIT_HLIST_NODE(&mnt->mnt_mp_list);
237#ifdef CONFIG_FSNOTIFY
238		INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
239#endif
240		init_fs_pin(&mnt->mnt_umount, drop_mountpoint);
241	}
242	return mnt;
243
244#ifdef CONFIG_SMP
245out_free_devname:
246	kfree_const(mnt->mnt_devname);
247#endif
248out_free_id:
249	mnt_free_id(mnt);
250out_free_cache:
251	kmem_cache_free(mnt_cache, mnt);
252	return NULL;
253}
254
255/*
256 * Most r/o checks on a fs are for operations that take
257 * discrete amounts of time, like a write() or unlink().
258 * We must keep track of when those operations start
259 * (for permission checks) and when they end, so that
260 * we can determine when writes are able to occur to
261 * a filesystem.
262 */
263/*
264 * __mnt_is_readonly: check whether a mount is read-only
265 * @mnt: the mount to check for its write status
266 *
267 * This shouldn't be used directly ouside of the VFS.
268 * It does not guarantee that the filesystem will stay
269 * r/w, just that it is right *now*.  This can not and
270 * should not be used in place of IS_RDONLY(inode).
271 * mnt_want/drop_write() will _keep_ the filesystem
272 * r/w.
273 */
274int __mnt_is_readonly(struct vfsmount *mnt)
275{
276	if (mnt->mnt_flags & MNT_READONLY)
277		return 1;
278	if (mnt->mnt_sb->s_flags & MS_RDONLY)
279		return 1;
280	return 0;
281}
282EXPORT_SYMBOL_GPL(__mnt_is_readonly);
283
284static inline void mnt_inc_writers(struct mount *mnt)
285{
286#ifdef CONFIG_SMP
287	this_cpu_inc(mnt->mnt_pcp->mnt_writers);
288#else
289	mnt->mnt_writers++;
290#endif
291}
292
293static inline void mnt_dec_writers(struct mount *mnt)
294{
295#ifdef CONFIG_SMP
296	this_cpu_dec(mnt->mnt_pcp->mnt_writers);
297#else
298	mnt->mnt_writers--;
299#endif
300}
301
302static unsigned int mnt_get_writers(struct mount *mnt)
303{
304#ifdef CONFIG_SMP
305	unsigned int count = 0;
306	int cpu;
307
308	for_each_possible_cpu(cpu) {
309		count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
310	}
311
312	return count;
313#else
314	return mnt->mnt_writers;
315#endif
316}
317
318static int mnt_is_readonly(struct vfsmount *mnt)
319{
320	if (mnt->mnt_sb->s_readonly_remount)
321		return 1;
322	/* Order wrt setting s_flags/s_readonly_remount in do_remount() */
323	smp_rmb();
324	return __mnt_is_readonly(mnt);
325}
326
327/*
328 * Most r/o & frozen checks on a fs are for operations that take discrete
329 * amounts of time, like a write() or unlink().  We must keep track of when
330 * those operations start (for permission checks) and when they end, so that we
331 * can determine when writes are able to occur to a filesystem.
332 */
333/**
334 * __mnt_want_write - get write access to a mount without freeze protection
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mnt it read-write) before
339 * returning success. This operation does not protect against filesystem being
340 * frozen. When the write operation is finished, __mnt_drop_write() must be
341 * called. This is effectively a refcount.
342 */
343int __mnt_want_write(struct vfsmount *m)
344{
345	struct mount *mnt = real_mount(m);
346	int ret = 0;
347
348	preempt_disable();
349	mnt_inc_writers(mnt);
350	/*
351	 * The store to mnt_inc_writers must be visible before we pass
352	 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
353	 * incremented count after it has set MNT_WRITE_HOLD.
354	 */
355	smp_mb();
356	while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
357		cpu_relax();
358	/*
359	 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
360	 * be set to match its requirements. So we must not load that until
361	 * MNT_WRITE_HOLD is cleared.
362	 */
363	smp_rmb();
364	if (mnt_is_readonly(m)) {
365		mnt_dec_writers(mnt);
366		ret = -EROFS;
367	}
368	preempt_enable();
369
370	return ret;
371}
372
373/**
374 * mnt_want_write - get write access to a mount
375 * @m: the mount on which to take a write
376 *
377 * This tells the low-level filesystem that a write is about to be performed to
378 * it, and makes sure that writes are allowed (mount is read-write, filesystem
379 * is not frozen) before returning success.  When the write operation is
380 * finished, mnt_drop_write() must be called.  This is effectively a refcount.
381 */
382int mnt_want_write(struct vfsmount *m)
383{
384	int ret;
385
386	sb_start_write(m->mnt_sb);
387	ret = __mnt_want_write(m);
388	if (ret)
389		sb_end_write(m->mnt_sb);
390	return ret;
391}
392EXPORT_SYMBOL_GPL(mnt_want_write);
393
394/**
395 * mnt_clone_write - get write access to a mount
396 * @mnt: the mount on which to take a write
397 *
398 * This is effectively like mnt_want_write, except
399 * it must only be used to take an extra write reference
400 * on a mountpoint that we already know has a write reference
401 * on it. This allows some optimisation.
402 *
403 * After finished, mnt_drop_write must be called as usual to
404 * drop the reference.
405 */
406int mnt_clone_write(struct vfsmount *mnt)
407{
408	/* superblock may be r/o */
409	if (__mnt_is_readonly(mnt))
410		return -EROFS;
411	preempt_disable();
412	mnt_inc_writers(real_mount(mnt));
413	preempt_enable();
414	return 0;
415}
416EXPORT_SYMBOL_GPL(mnt_clone_write);
417
418/**
419 * __mnt_want_write_file - get write access to a file's mount
420 * @file: the file who's mount on which to take a write
421 *
422 * This is like __mnt_want_write, but it takes a file and can
423 * do some optimisations if the file is open for write already
424 */
425int __mnt_want_write_file(struct file *file)
426{
427	if (!(file->f_mode & FMODE_WRITER))
428		return __mnt_want_write(file->f_path.mnt);
429	else
430		return mnt_clone_write(file->f_path.mnt);
431}
432
433/**
434 * mnt_want_write_file - get write access to a file's mount
435 * @file: the file who's mount on which to take a write
436 *
437 * This is like mnt_want_write, but it takes a file and can
438 * do some optimisations if the file is open for write already
439 */
440int mnt_want_write_file(struct file *file)
441{
442	int ret;
443
444	sb_start_write(file->f_path.mnt->mnt_sb);
445	ret = __mnt_want_write_file(file);
446	if (ret)
447		sb_end_write(file->f_path.mnt->mnt_sb);
448	return ret;
449}
450EXPORT_SYMBOL_GPL(mnt_want_write_file);
451
452/**
453 * __mnt_drop_write - give up write access to a mount
454 * @mnt: the mount on which to give up write access
455 *
456 * Tells the low-level filesystem that we are done
457 * performing writes to it.  Must be matched with
458 * __mnt_want_write() call above.
459 */
460void __mnt_drop_write(struct vfsmount *mnt)
461{
462	preempt_disable();
463	mnt_dec_writers(real_mount(mnt));
464	preempt_enable();
465}
466
467/**
468 * mnt_drop_write - give up write access to a mount
469 * @mnt: the mount on which to give up write access
470 *
471 * Tells the low-level filesystem that we are done performing writes to it and
472 * also allows filesystem to be frozen again.  Must be matched with
473 * mnt_want_write() call above.
474 */
475void mnt_drop_write(struct vfsmount *mnt)
476{
477	__mnt_drop_write(mnt);
478	sb_end_write(mnt->mnt_sb);
479}
480EXPORT_SYMBOL_GPL(mnt_drop_write);
481
482void __mnt_drop_write_file(struct file *file)
483{
484	__mnt_drop_write(file->f_path.mnt);
485}
486
487void mnt_drop_write_file(struct file *file)
488{
489	mnt_drop_write(file->f_path.mnt);
490}
491EXPORT_SYMBOL(mnt_drop_write_file);
492
493static int mnt_make_readonly(struct mount *mnt)
494{
495	int ret = 0;
496
497	lock_mount_hash();
498	mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
499	/*
500	 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
501	 * should be visible before we do.
502	 */
503	smp_mb();
504
505	/*
506	 * With writers on hold, if this value is zero, then there are
507	 * definitely no active writers (although held writers may subsequently
508	 * increment the count, they'll have to wait, and decrement it after
509	 * seeing MNT_READONLY).
510	 *
511	 * It is OK to have counter incremented on one CPU and decremented on
512	 * another: the sum will add up correctly. The danger would be when we
513	 * sum up each counter, if we read a counter before it is incremented,
514	 * but then read another CPU's count which it has been subsequently
515	 * decremented from -- we would see more decrements than we should.
516	 * MNT_WRITE_HOLD protects against this scenario, because
517	 * mnt_want_write first increments count, then smp_mb, then spins on
518	 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
519	 * we're counting up here.
520	 */
521	if (mnt_get_writers(mnt) > 0)
522		ret = -EBUSY;
523	else
524		mnt->mnt.mnt_flags |= MNT_READONLY;
525	/*
526	 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
527	 * that become unheld will see MNT_READONLY.
528	 */
529	smp_wmb();
530	mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
531	unlock_mount_hash();
532	return ret;
533}
534
535static void __mnt_unmake_readonly(struct mount *mnt)
536{
537	lock_mount_hash();
538	mnt->mnt.mnt_flags &= ~MNT_READONLY;
539	unlock_mount_hash();
540}
541
542int sb_prepare_remount_readonly(struct super_block *sb)
543{
544	struct mount *mnt;
545	int err = 0;
546
547	/* Racy optimization.  Recheck the counter under MNT_WRITE_HOLD */
548	if (atomic_long_read(&sb->s_remove_count))
549		return -EBUSY;
550
551	lock_mount_hash();
552	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
553		if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
554			mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
555			smp_mb();
556			if (mnt_get_writers(mnt) > 0) {
557				err = -EBUSY;
558				break;
559			}
560		}
561	}
562	if (!err && atomic_long_read(&sb->s_remove_count))
563		err = -EBUSY;
564
565	if (!err) {
566		sb->s_readonly_remount = 1;
567		smp_wmb();
568	}
569	list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
570		if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
571			mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
572	}
573	unlock_mount_hash();
574
575	return err;
576}
577
578static void free_vfsmnt(struct mount *mnt)
579{
580	kfree_const(mnt->mnt_devname);
581#ifdef CONFIG_SMP
582	free_percpu(mnt->mnt_pcp);
583#endif
584	kmem_cache_free(mnt_cache, mnt);
585}
586
587static void delayed_free_vfsmnt(struct rcu_head *head)
588{
589	free_vfsmnt(container_of(head, struct mount, mnt_rcu));
590}
591
592/* call under rcu_read_lock */
593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq)
594{
595	struct mount *mnt;
596	if (read_seqretry(&mount_lock, seq))
597		return false;
598	if (bastard == NULL)
599		return true;
600	mnt = real_mount(bastard);
601	mnt_add_count(mnt, 1);
602	if (likely(!read_seqretry(&mount_lock, seq)))
603		return true;
604	if (bastard->mnt_flags & MNT_SYNC_UMOUNT) {
605		mnt_add_count(mnt, -1);
606		return false;
607	}
608	rcu_read_unlock();
609	mntput(bastard);
610	rcu_read_lock();
611	return false;
612}
613
614/*
615 * find the first mount at @dentry on vfsmount @mnt.
616 * call under rcu_read_lock()
617 */
618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
619{
620	struct hlist_head *head = m_hash(mnt, dentry);
621	struct mount *p;
622
623	hlist_for_each_entry_rcu(p, head, mnt_hash)
624		if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry)
625			return p;
626	return NULL;
627}
628
629/*
630 * find the last mount at @dentry on vfsmount @mnt.
631 * mount_lock must be held.
632 */
633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry)
634{
635	struct mount *p, *res = NULL;
636	p = __lookup_mnt(mnt, dentry);
637	if (!p)
638		goto out;
639	if (!(p->mnt.mnt_flags & MNT_UMOUNT))
640		res = p;
641	hlist_for_each_entry_continue(p, mnt_hash) {
642		if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry)
643			break;
644		if (!(p->mnt.mnt_flags & MNT_UMOUNT))
645			res = p;
646	}
647out:
648	return res;
649}
650
651/*
652 * lookup_mnt - Return the first child mount mounted at path
653 *
654 * "First" means first mounted chronologically.  If you create the
655 * following mounts:
656 *
657 * mount /dev/sda1 /mnt
658 * mount /dev/sda2 /mnt
659 * mount /dev/sda3 /mnt
660 *
661 * Then lookup_mnt() on the base /mnt dentry in the root mount will
662 * return successively the root dentry and vfsmount of /dev/sda1, then
663 * /dev/sda2, then /dev/sda3, then NULL.
664 *
665 * lookup_mnt takes a reference to the found vfsmount.
666 */
667struct vfsmount *lookup_mnt(struct path *path)
668{
669	struct mount *child_mnt;
670	struct vfsmount *m;
671	unsigned seq;
672
673	rcu_read_lock();
674	do {
675		seq = read_seqbegin(&mount_lock);
676		child_mnt = __lookup_mnt(path->mnt, path->dentry);
677		m = child_mnt ? &child_mnt->mnt : NULL;
678	} while (!legitimize_mnt(m, seq));
679	rcu_read_unlock();
680	return m;
681}
682
683/*
684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the
685 *                         current mount namespace.
686 *
687 * The common case is dentries are not mountpoints at all and that
688 * test is handled inline.  For the slow case when we are actually
689 * dealing with a mountpoint of some kind, walk through all of the
690 * mounts in the current mount namespace and test to see if the dentry
691 * is a mountpoint.
692 *
693 * The mount_hashtable is not usable in the context because we
694 * need to identify all mounts that may be in the current mount
695 * namespace not just a mount that happens to have some specified
696 * parent mount.
697 */
698bool __is_local_mountpoint(struct dentry *dentry)
699{
700	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
701	struct mount *mnt;
702	bool is_covered = false;
703
704	if (!d_mountpoint(dentry))
705		goto out;
706
707	down_read(&namespace_sem);
708	list_for_each_entry(mnt, &ns->list, mnt_list) {
709		is_covered = (mnt->mnt_mountpoint == dentry);
710		if (is_covered)
711			break;
712	}
713	up_read(&namespace_sem);
714out:
715	return is_covered;
716}
717
718static struct mountpoint *lookup_mountpoint(struct dentry *dentry)
719{
720	struct hlist_head *chain = mp_hash(dentry);
721	struct mountpoint *mp;
722
723	hlist_for_each_entry(mp, chain, m_hash) {
724		if (mp->m_dentry == dentry) {
725			/* might be worth a WARN_ON() */
726			if (d_unlinked(dentry))
727				return ERR_PTR(-ENOENT);
728			mp->m_count++;
729			return mp;
730		}
731	}
732	return NULL;
733}
734
735static struct mountpoint *new_mountpoint(struct dentry *dentry)
736{
737	struct hlist_head *chain = mp_hash(dentry);
738	struct mountpoint *mp;
739	int ret;
740
741	mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
742	if (!mp)
743		return ERR_PTR(-ENOMEM);
744
745	ret = d_set_mounted(dentry);
746	if (ret) {
747		kfree(mp);
748		return ERR_PTR(ret);
749	}
750
751	mp->m_dentry = dentry;
752	mp->m_count = 1;
753	hlist_add_head(&mp->m_hash, chain);
754	INIT_HLIST_HEAD(&mp->m_list);
755	return mp;
756}
757
758static void put_mountpoint(struct mountpoint *mp)
759{
760	if (!--mp->m_count) {
761		struct dentry *dentry = mp->m_dentry;
762		BUG_ON(!hlist_empty(&mp->m_list));
763		spin_lock(&dentry->d_lock);
764		dentry->d_flags &= ~DCACHE_MOUNTED;
765		spin_unlock(&dentry->d_lock);
766		hlist_del(&mp->m_hash);
767		kfree(mp);
768	}
769}
770
771static inline int check_mnt(struct mount *mnt)
772{
773	return mnt->mnt_ns == current->nsproxy->mnt_ns;
774}
775
776/*
777 * vfsmount lock must be held for write
778 */
779static void touch_mnt_namespace(struct mnt_namespace *ns)
780{
781	if (ns) {
782		ns->event = ++event;
783		wake_up_interruptible(&ns->poll);
784	}
785}
786
787/*
788 * vfsmount lock must be held for write
789 */
790static void __touch_mnt_namespace(struct mnt_namespace *ns)
791{
792	if (ns && ns->event != event) {
793		ns->event = event;
794		wake_up_interruptible(&ns->poll);
795	}
796}
797
798/*
799 * vfsmount lock must be held for write
800 */
801static void unhash_mnt(struct mount *mnt)
802{
803	mnt->mnt_parent = mnt;
804	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805	list_del_init(&mnt->mnt_child);
806	hlist_del_init_rcu(&mnt->mnt_hash);
807	hlist_del_init(&mnt->mnt_mp_list);
808	put_mountpoint(mnt->mnt_mp);
809	mnt->mnt_mp = NULL;
810}
811
812/*
813 * vfsmount lock must be held for write
814 */
815static void detach_mnt(struct mount *mnt, struct path *old_path)
816{
817	old_path->dentry = mnt->mnt_mountpoint;
818	old_path->mnt = &mnt->mnt_parent->mnt;
819	unhash_mnt(mnt);
820}
821
822/*
823 * vfsmount lock must be held for write
824 */
825static void umount_mnt(struct mount *mnt)
826{
827	/* old mountpoint will be dropped when we can do that */
828	mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint;
829	unhash_mnt(mnt);
830}
831
832/*
833 * vfsmount lock must be held for write
834 */
835void mnt_set_mountpoint(struct mount *mnt,
836			struct mountpoint *mp,
837			struct mount *child_mnt)
838{
839	mp->m_count++;
840	mnt_add_count(mnt, 1);	/* essentially, that's mntget */
841	child_mnt->mnt_mountpoint = dget(mp->m_dentry);
842	child_mnt->mnt_parent = mnt;
843	child_mnt->mnt_mp = mp;
844	hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list);
845}
846
847/*
848 * vfsmount lock must be held for write
849 */
850static void attach_mnt(struct mount *mnt,
851			struct mount *parent,
852			struct mountpoint *mp)
853{
854	mnt_set_mountpoint(parent, mp, mnt);
855	hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry));
856	list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
857}
858
859static void attach_shadowed(struct mount *mnt,
860			struct mount *parent,
861			struct mount *shadows)
862{
863	if (shadows) {
864		hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash);
865		list_add(&mnt->mnt_child, &shadows->mnt_child);
866	} else {
867		hlist_add_head_rcu(&mnt->mnt_hash,
868				m_hash(&parent->mnt, mnt->mnt_mountpoint));
869		list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
870	}
871}
872
873/*
874 * vfsmount lock must be held for write
875 */
876static void commit_tree(struct mount *mnt, struct mount *shadows)
877{
878	struct mount *parent = mnt->mnt_parent;
879	struct mount *m;
880	LIST_HEAD(head);
881	struct mnt_namespace *n = parent->mnt_ns;
882
883	BUG_ON(parent == mnt);
884
885	list_add_tail(&head, &mnt->mnt_list);
886	list_for_each_entry(m, &head, mnt_list)
887		m->mnt_ns = n;
888
889	list_splice(&head, n->list.prev);
890
891	attach_shadowed(mnt, parent, shadows);
892	touch_mnt_namespace(n);
893}
894
895static struct mount *next_mnt(struct mount *p, struct mount *root)
896{
897	struct list_head *next = p->mnt_mounts.next;
898	if (next == &p->mnt_mounts) {
899		while (1) {
900			if (p == root)
901				return NULL;
902			next = p->mnt_child.next;
903			if (next != &p->mnt_parent->mnt_mounts)
904				break;
905			p = p->mnt_parent;
906		}
907	}
908	return list_entry(next, struct mount, mnt_child);
909}
910
911static struct mount *skip_mnt_tree(struct mount *p)
912{
913	struct list_head *prev = p->mnt_mounts.prev;
914	while (prev != &p->mnt_mounts) {
915		p = list_entry(prev, struct mount, mnt_child);
916		prev = p->mnt_mounts.prev;
917	}
918	return p;
919}
920
921struct vfsmount *
922vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
923{
924	struct mount *mnt;
925	struct dentry *root;
926
927	if (!type)
928		return ERR_PTR(-ENODEV);
929
930	mnt = alloc_vfsmnt(name);
931	if (!mnt)
932		return ERR_PTR(-ENOMEM);
933
934	if (flags & MS_KERNMOUNT)
935		mnt->mnt.mnt_flags = MNT_INTERNAL;
936
937	root = mount_fs(type, flags, name, data);
938	if (IS_ERR(root)) {
939		mnt_free_id(mnt);
940		free_vfsmnt(mnt);
941		return ERR_CAST(root);
942	}
943
944	mnt->mnt.mnt_root = root;
945	mnt->mnt.mnt_sb = root->d_sb;
946	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
947	mnt->mnt_parent = mnt;
948	lock_mount_hash();
949	list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
950	unlock_mount_hash();
951	return &mnt->mnt;
952}
953EXPORT_SYMBOL_GPL(vfs_kern_mount);
954
955static struct mount *clone_mnt(struct mount *old, struct dentry *root,
956					int flag)
957{
958	struct super_block *sb = old->mnt.mnt_sb;
959	struct mount *mnt;
960	int err;
961
962	mnt = alloc_vfsmnt(old->mnt_devname);
963	if (!mnt)
964		return ERR_PTR(-ENOMEM);
965
966	if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
967		mnt->mnt_group_id = 0; /* not a peer of original */
968	else
969		mnt->mnt_group_id = old->mnt_group_id;
970
971	if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
972		err = mnt_alloc_group_id(mnt);
973		if (err)
974			goto out_free;
975	}
976
977	mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED);
978	/* Don't allow unprivileged users to change mount flags */
979	if (flag & CL_UNPRIVILEGED) {
980		mnt->mnt.mnt_flags |= MNT_LOCK_ATIME;
981
982		if (mnt->mnt.mnt_flags & MNT_READONLY)
983			mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
984
985		if (mnt->mnt.mnt_flags & MNT_NODEV)
986			mnt->mnt.mnt_flags |= MNT_LOCK_NODEV;
987
988		if (mnt->mnt.mnt_flags & MNT_NOSUID)
989			mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID;
990
991		if (mnt->mnt.mnt_flags & MNT_NOEXEC)
992			mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC;
993	}
994
995	/* Don't allow unprivileged users to reveal what is under a mount */
996	if ((flag & CL_UNPRIVILEGED) &&
997	    (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire)))
998		mnt->mnt.mnt_flags |= MNT_LOCKED;
999
1000	atomic_inc(&sb->s_active);
1001	mnt->mnt.mnt_sb = sb;
1002	mnt->mnt.mnt_root = dget(root);
1003	mnt->mnt_mountpoint = mnt->mnt.mnt_root;
1004	mnt->mnt_parent = mnt;
1005	lock_mount_hash();
1006	list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
1007	unlock_mount_hash();
1008
1009	if ((flag & CL_SLAVE) ||
1010	    ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
1011		list_add(&mnt->mnt_slave, &old->mnt_slave_list);
1012		mnt->mnt_master = old;
1013		CLEAR_MNT_SHARED(mnt);
1014	} else if (!(flag & CL_PRIVATE)) {
1015		if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
1016			list_add(&mnt->mnt_share, &old->mnt_share);
1017		if (IS_MNT_SLAVE(old))
1018			list_add(&mnt->mnt_slave, &old->mnt_slave);
1019		mnt->mnt_master = old->mnt_master;
1020	}
1021	if (flag & CL_MAKE_SHARED)
1022		set_mnt_shared(mnt);
1023
1024	/* stick the duplicate mount on the same expiry list
1025	 * as the original if that was on one */
1026	if (flag & CL_EXPIRE) {
1027		if (!list_empty(&old->mnt_expire))
1028			list_add(&mnt->mnt_expire, &old->mnt_expire);
1029	}
1030
1031	return mnt;
1032
1033 out_free:
1034	mnt_free_id(mnt);
1035	free_vfsmnt(mnt);
1036	return ERR_PTR(err);
1037}
1038
1039static void cleanup_mnt(struct mount *mnt)
1040{
1041	/*
1042	 * This probably indicates that somebody messed
1043	 * up a mnt_want/drop_write() pair.  If this
1044	 * happens, the filesystem was probably unable
1045	 * to make r/w->r/o transitions.
1046	 */
1047	/*
1048	 * The locking used to deal with mnt_count decrement provides barriers,
1049	 * so mnt_get_writers() below is safe.
1050	 */
1051	WARN_ON(mnt_get_writers(mnt));
1052	if (unlikely(mnt->mnt_pins.first))
1053		mnt_pin_kill(mnt);
1054	fsnotify_vfsmount_delete(&mnt->mnt);
1055	dput(mnt->mnt.mnt_root);
1056	deactivate_super(mnt->mnt.mnt_sb);
1057	mnt_free_id(mnt);
1058	call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt);
1059}
1060
1061static void __cleanup_mnt(struct rcu_head *head)
1062{
1063	cleanup_mnt(container_of(head, struct mount, mnt_rcu));
1064}
1065
1066static LLIST_HEAD(delayed_mntput_list);
1067static void delayed_mntput(struct work_struct *unused)
1068{
1069	struct llist_node *node = llist_del_all(&delayed_mntput_list);
1070	struct llist_node *next;
1071
1072	for (; node; node = next) {
1073		next = llist_next(node);
1074		cleanup_mnt(llist_entry(node, struct mount, mnt_llist));
1075	}
1076}
1077static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput);
1078
1079static void mntput_no_expire(struct mount *mnt)
1080{
1081	rcu_read_lock();
1082	mnt_add_count(mnt, -1);
1083	if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */
1084		rcu_read_unlock();
1085		return;
1086	}
1087	lock_mount_hash();
1088	if (mnt_get_count(mnt)) {
1089		rcu_read_unlock();
1090		unlock_mount_hash();
1091		return;
1092	}
1093	if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) {
1094		rcu_read_unlock();
1095		unlock_mount_hash();
1096		return;
1097	}
1098	mnt->mnt.mnt_flags |= MNT_DOOMED;
1099	rcu_read_unlock();
1100
1101	list_del(&mnt->mnt_instance);
1102
1103	if (unlikely(!list_empty(&mnt->mnt_mounts))) {
1104		struct mount *p, *tmp;
1105		list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts,  mnt_child) {
1106			umount_mnt(p);
1107		}
1108	}
1109	unlock_mount_hash();
1110
1111	if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) {
1112		struct task_struct *task = current;
1113		if (likely(!(task->flags & PF_KTHREAD))) {
1114			init_task_work(&mnt->mnt_rcu, __cleanup_mnt);
1115			if (!task_work_add(task, &mnt->mnt_rcu, true))
1116				return;
1117		}
1118		if (llist_add(&mnt->mnt_llist, &delayed_mntput_list))
1119			schedule_delayed_work(&delayed_mntput_work, 1);
1120		return;
1121	}
1122	cleanup_mnt(mnt);
1123}
1124
1125void mntput(struct vfsmount *mnt)
1126{
1127	if (mnt) {
1128		struct mount *m = real_mount(mnt);
1129		/* avoid cacheline pingpong, hope gcc doesn't get "smart" */
1130		if (unlikely(m->mnt_expiry_mark))
1131			m->mnt_expiry_mark = 0;
1132		mntput_no_expire(m);
1133	}
1134}
1135EXPORT_SYMBOL(mntput);
1136
1137struct vfsmount *mntget(struct vfsmount *mnt)
1138{
1139	if (mnt)
1140		mnt_add_count(real_mount(mnt), 1);
1141	return mnt;
1142}
1143EXPORT_SYMBOL(mntget);
1144
1145struct vfsmount *mnt_clone_internal(struct path *path)
1146{
1147	struct mount *p;
1148	p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE);
1149	if (IS_ERR(p))
1150		return ERR_CAST(p);
1151	p->mnt.mnt_flags |= MNT_INTERNAL;
1152	return &p->mnt;
1153}
1154
1155static inline void mangle(struct seq_file *m, const char *s)
1156{
1157	seq_escape(m, s, " \t\n\\");
1158}
1159
1160/*
1161 * Simple .show_options callback for filesystems which don't want to
1162 * implement more complex mount option showing.
1163 *
1164 * See also save_mount_options().
1165 */
1166int generic_show_options(struct seq_file *m, struct dentry *root)
1167{
1168	const char *options;
1169
1170	rcu_read_lock();
1171	options = rcu_dereference(root->d_sb->s_options);
1172
1173	if (options != NULL && options[0]) {
1174		seq_putc(m, ',');
1175		mangle(m, options);
1176	}
1177	rcu_read_unlock();
1178
1179	return 0;
1180}
1181EXPORT_SYMBOL(generic_show_options);
1182
1183/*
1184 * If filesystem uses generic_show_options(), this function should be
1185 * called from the fill_super() callback.
1186 *
1187 * The .remount_fs callback usually needs to be handled in a special
1188 * way, to make sure, that previous options are not overwritten if the
1189 * remount fails.
1190 *
1191 * Also note, that if the filesystem's .remount_fs function doesn't
1192 * reset all options to their default value, but changes only newly
1193 * given options, then the displayed options will not reflect reality
1194 * any more.
1195 */
1196void save_mount_options(struct super_block *sb, char *options)
1197{
1198	BUG_ON(sb->s_options);
1199	rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
1200}
1201EXPORT_SYMBOL(save_mount_options);
1202
1203void replace_mount_options(struct super_block *sb, char *options)
1204{
1205	char *old = sb->s_options;
1206	rcu_assign_pointer(sb->s_options, options);
1207	if (old) {
1208		synchronize_rcu();
1209		kfree(old);
1210	}
1211}
1212EXPORT_SYMBOL(replace_mount_options);
1213
1214#ifdef CONFIG_PROC_FS
1215/* iterator; we want it to have access to namespace_sem, thus here... */
1216static void *m_start(struct seq_file *m, loff_t *pos)
1217{
1218	struct proc_mounts *p = proc_mounts(m);
1219
1220	down_read(&namespace_sem);
1221	if (p->cached_event == p->ns->event) {
1222		void *v = p->cached_mount;
1223		if (*pos == p->cached_index)
1224			return v;
1225		if (*pos == p->cached_index + 1) {
1226			v = seq_list_next(v, &p->ns->list, &p->cached_index);
1227			return p->cached_mount = v;
1228		}
1229	}
1230
1231	p->cached_event = p->ns->event;
1232	p->cached_mount = seq_list_start(&p->ns->list, *pos);
1233	p->cached_index = *pos;
1234	return p->cached_mount;
1235}
1236
1237static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1238{
1239	struct proc_mounts *p = proc_mounts(m);
1240
1241	p->cached_mount = seq_list_next(v, &p->ns->list, pos);
1242	p->cached_index = *pos;
1243	return p->cached_mount;
1244}
1245
1246static void m_stop(struct seq_file *m, void *v)
1247{
1248	up_read(&namespace_sem);
1249}
1250
1251static int m_show(struct seq_file *m, void *v)
1252{
1253	struct proc_mounts *p = proc_mounts(m);
1254	struct mount *r = list_entry(v, struct mount, mnt_list);
1255	return p->show(m, &r->mnt);
1256}
1257
1258const struct seq_operations mounts_op = {
1259	.start	= m_start,
1260	.next	= m_next,
1261	.stop	= m_stop,
1262	.show	= m_show,
1263};
1264#endif  /* CONFIG_PROC_FS */
1265
1266/**
1267 * may_umount_tree - check if a mount tree is busy
1268 * @mnt: root of mount tree
1269 *
1270 * This is called to check if a tree of mounts has any
1271 * open files, pwds, chroots or sub mounts that are
1272 * busy.
1273 */
1274int may_umount_tree(struct vfsmount *m)
1275{
1276	struct mount *mnt = real_mount(m);
1277	int actual_refs = 0;
1278	int minimum_refs = 0;
1279	struct mount *p;
1280	BUG_ON(!m);
1281
1282	/* write lock needed for mnt_get_count */
1283	lock_mount_hash();
1284	for (p = mnt; p; p = next_mnt(p, mnt)) {
1285		actual_refs += mnt_get_count(p);
1286		minimum_refs += 2;
1287	}
1288	unlock_mount_hash();
1289
1290	if (actual_refs > minimum_refs)
1291		return 0;
1292
1293	return 1;
1294}
1295
1296EXPORT_SYMBOL(may_umount_tree);
1297
1298/**
1299 * may_umount - check if a mount point is busy
1300 * @mnt: root of mount
1301 *
1302 * This is called to check if a mount point has any
1303 * open files, pwds, chroots or sub mounts. If the
1304 * mount has sub mounts this will return busy
1305 * regardless of whether the sub mounts are busy.
1306 *
1307 * Doesn't take quota and stuff into account. IOW, in some cases it will
1308 * give false negatives. The main reason why it's here is that we need
1309 * a non-destructive way to look for easily umountable filesystems.
1310 */
1311int may_umount(struct vfsmount *mnt)
1312{
1313	int ret = 1;
1314	down_read(&namespace_sem);
1315	lock_mount_hash();
1316	if (propagate_mount_busy(real_mount(mnt), 2))
1317		ret = 0;
1318	unlock_mount_hash();
1319	up_read(&namespace_sem);
1320	return ret;
1321}
1322
1323EXPORT_SYMBOL(may_umount);
1324
1325static HLIST_HEAD(unmounted);	/* protected by namespace_sem */
1326
1327static void namespace_unlock(void)
1328{
1329	struct hlist_head head;
1330
1331	hlist_move_list(&unmounted, &head);
1332
1333	up_write(&namespace_sem);
1334
1335	if (likely(hlist_empty(&head)))
1336		return;
1337
1338	synchronize_rcu();
1339
1340	group_pin_kill(&head);
1341}
1342
1343static inline void namespace_lock(void)
1344{
1345	down_write(&namespace_sem);
1346}
1347
1348enum umount_tree_flags {
1349	UMOUNT_SYNC = 1,
1350	UMOUNT_PROPAGATE = 2,
1351	UMOUNT_CONNECTED = 4,
1352};
1353
1354static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how)
1355{
1356	/* Leaving mounts connected is only valid for lazy umounts */
1357	if (how & UMOUNT_SYNC)
1358		return true;
1359
1360	/* A mount without a parent has nothing to be connected to */
1361	if (!mnt_has_parent(mnt))
1362		return true;
1363
1364	/* Because the reference counting rules change when mounts are
1365	 * unmounted and connected, umounted mounts may not be
1366	 * connected to mounted mounts.
1367	 */
1368	if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT))
1369		return true;
1370
1371	/* Has it been requested that the mount remain connected? */
1372	if (how & UMOUNT_CONNECTED)
1373		return false;
1374
1375	/* Is the mount locked such that it needs to remain connected? */
1376	if (IS_MNT_LOCKED(mnt))
1377		return false;
1378
1379	/* By default disconnect the mount */
1380	return true;
1381}
1382
1383/*
1384 * mount_lock must be held
1385 * namespace_sem must be held for write
1386 */
1387static void umount_tree(struct mount *mnt, enum umount_tree_flags how)
1388{
1389	LIST_HEAD(tmp_list);
1390	struct mount *p;
1391
1392	if (how & UMOUNT_PROPAGATE)
1393		propagate_mount_unlock(mnt);
1394
1395	/* Gather the mounts to umount */
1396	for (p = mnt; p; p = next_mnt(p, mnt)) {
1397		p->mnt.mnt_flags |= MNT_UMOUNT;
1398		list_move(&p->mnt_list, &tmp_list);
1399	}
1400
1401	/* Hide the mounts from mnt_mounts */
1402	list_for_each_entry(p, &tmp_list, mnt_list) {
1403		list_del_init(&p->mnt_child);
1404	}
1405
1406	/* Add propogated mounts to the tmp_list */
1407	if (how & UMOUNT_PROPAGATE)
1408		propagate_umount(&tmp_list);
1409
1410	while (!list_empty(&tmp_list)) {
1411		bool disconnect;
1412		p = list_first_entry(&tmp_list, struct mount, mnt_list);
1413		list_del_init(&p->mnt_expire);
1414		list_del_init(&p->mnt_list);
1415		__touch_mnt_namespace(p->mnt_ns);
1416		p->mnt_ns = NULL;
1417		if (how & UMOUNT_SYNC)
1418			p->mnt.mnt_flags |= MNT_SYNC_UMOUNT;
1419
1420		disconnect = disconnect_mount(p, how);
1421
1422		pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt,
1423				 disconnect ? &unmounted : NULL);
1424		if (mnt_has_parent(p)) {
1425			mnt_add_count(p->mnt_parent, -1);
1426			if (!disconnect) {
1427				/* Don't forget about p */
1428				list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts);
1429			} else {
1430				umount_mnt(p);
1431			}
1432		}
1433		change_mnt_propagation(p, MS_PRIVATE);
1434	}
1435}
1436
1437static void shrink_submounts(struct mount *mnt);
1438
1439static int do_umount(struct mount *mnt, int flags)
1440{
1441	struct super_block *sb = mnt->mnt.mnt_sb;
1442	int retval;
1443
1444	retval = security_sb_umount(&mnt->mnt, flags);
1445	if (retval)
1446		return retval;
1447
1448	/*
1449	 * Allow userspace to request a mountpoint be expired rather than
1450	 * unmounting unconditionally. Unmount only happens if:
1451	 *  (1) the mark is already set (the mark is cleared by mntput())
1452	 *  (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1453	 */
1454	if (flags & MNT_EXPIRE) {
1455		if (&mnt->mnt == current->fs->root.mnt ||
1456		    flags & (MNT_FORCE | MNT_DETACH))
1457			return -EINVAL;
1458
1459		/*
1460		 * probably don't strictly need the lock here if we examined
1461		 * all race cases, but it's a slowpath.
1462		 */
1463		lock_mount_hash();
1464		if (mnt_get_count(mnt) != 2) {
1465			unlock_mount_hash();
1466			return -EBUSY;
1467		}
1468		unlock_mount_hash();
1469
1470		if (!xchg(&mnt->mnt_expiry_mark, 1))
1471			return -EAGAIN;
1472	}
1473
1474	/*
1475	 * If we may have to abort operations to get out of this
1476	 * mount, and they will themselves hold resources we must
1477	 * allow the fs to do things. In the Unix tradition of
1478	 * 'Gee thats tricky lets do it in userspace' the umount_begin
1479	 * might fail to complete on the first run through as other tasks
1480	 * must return, and the like. Thats for the mount program to worry
1481	 * about for the moment.
1482	 */
1483
1484	if (flags & MNT_FORCE && sb->s_op->umount_begin) {
1485		sb->s_op->umount_begin(sb);
1486	}
1487
1488	/*
1489	 * No sense to grab the lock for this test, but test itself looks
1490	 * somewhat bogus. Suggestions for better replacement?
1491	 * Ho-hum... In principle, we might treat that as umount + switch
1492	 * to rootfs. GC would eventually take care of the old vfsmount.
1493	 * Actually it makes sense, especially if rootfs would contain a
1494	 * /reboot - static binary that would close all descriptors and
1495	 * call reboot(9). Then init(8) could umount root and exec /reboot.
1496	 */
1497	if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1498		/*
1499		 * Special case for "unmounting" root ...
1500		 * we just try to remount it readonly.
1501		 */
1502		if (!capable(CAP_SYS_ADMIN))
1503			return -EPERM;
1504		down_write(&sb->s_umount);
1505		if (!(sb->s_flags & MS_RDONLY))
1506			retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1507		up_write(&sb->s_umount);
1508		return retval;
1509	}
1510
1511	namespace_lock();
1512	lock_mount_hash();
1513	event++;
1514
1515	if (flags & MNT_DETACH) {
1516		if (!list_empty(&mnt->mnt_list))
1517			umount_tree(mnt, UMOUNT_PROPAGATE);
1518		retval = 0;
1519	} else {
1520		shrink_submounts(mnt);
1521		retval = -EBUSY;
1522		if (!propagate_mount_busy(mnt, 2)) {
1523			if (!list_empty(&mnt->mnt_list))
1524				umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
1525			retval = 0;
1526		}
1527	}
1528	unlock_mount_hash();
1529	namespace_unlock();
1530	return retval;
1531}
1532
1533/*
1534 * __detach_mounts - lazily unmount all mounts on the specified dentry
1535 *
1536 * During unlink, rmdir, and d_drop it is possible to loose the path
1537 * to an existing mountpoint, and wind up leaking the mount.
1538 * detach_mounts allows lazily unmounting those mounts instead of
1539 * leaking them.
1540 *
1541 * The caller may hold dentry->d_inode->i_mutex.
1542 */
1543void __detach_mounts(struct dentry *dentry)
1544{
1545	struct mountpoint *mp;
1546	struct mount *mnt;
1547
1548	namespace_lock();
1549	mp = lookup_mountpoint(dentry);
1550	if (IS_ERR_OR_NULL(mp))
1551		goto out_unlock;
1552
1553	lock_mount_hash();
1554	while (!hlist_empty(&mp->m_list)) {
1555		mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list);
1556		if (mnt->mnt.mnt_flags & MNT_UMOUNT) {
1557			hlist_add_head(&mnt->mnt_umount.s_list, &unmounted);
1558			umount_mnt(mnt);
1559		}
1560		else umount_tree(mnt, UMOUNT_CONNECTED);
1561	}
1562	unlock_mount_hash();
1563	put_mountpoint(mp);
1564out_unlock:
1565	namespace_unlock();
1566}
1567
1568/*
1569 * Is the caller allowed to modify his namespace?
1570 */
1571static inline bool may_mount(void)
1572{
1573	return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1574}
1575
1576/*
1577 * Now umount can handle mount points as well as block devices.
1578 * This is important for filesystems which use unnamed block devices.
1579 *
1580 * We now support a flag for forced unmount like the other 'big iron'
1581 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1582 */
1583
1584SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1585{
1586	struct path path;
1587	struct mount *mnt;
1588	int retval;
1589	int lookup_flags = 0;
1590
1591	if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1592		return -EINVAL;
1593
1594	if (!may_mount())
1595		return -EPERM;
1596
1597	if (!(flags & UMOUNT_NOFOLLOW))
1598		lookup_flags |= LOOKUP_FOLLOW;
1599
1600	retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path);
1601	if (retval)
1602		goto out;
1603	mnt = real_mount(path.mnt);
1604	retval = -EINVAL;
1605	if (path.dentry != path.mnt->mnt_root)
1606		goto dput_and_out;
1607	if (!check_mnt(mnt))
1608		goto dput_and_out;
1609	if (mnt->mnt.mnt_flags & MNT_LOCKED)
1610		goto dput_and_out;
1611	retval = -EPERM;
1612	if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN))
1613		goto dput_and_out;
1614
1615	retval = do_umount(mnt, flags);
1616dput_and_out:
1617	/* we mustn't call path_put() as that would clear mnt_expiry_mark */
1618	dput(path.dentry);
1619	mntput_no_expire(mnt);
1620out:
1621	return retval;
1622}
1623
1624#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1625
1626/*
1627 *	The 2.0 compatible umount. No flags.
1628 */
1629SYSCALL_DEFINE1(oldumount, char __user *, name)
1630{
1631	return sys_umount(name, 0);
1632}
1633
1634#endif
1635
1636static bool is_mnt_ns_file(struct dentry *dentry)
1637{
1638	/* Is this a proxy for a mount namespace? */
1639	return dentry->d_op == &ns_dentry_operations &&
1640	       dentry->d_fsdata == &mntns_operations;
1641}
1642
1643struct mnt_namespace *to_mnt_ns(struct ns_common *ns)
1644{
1645	return container_of(ns, struct mnt_namespace, ns);
1646}
1647
1648static bool mnt_ns_loop(struct dentry *dentry)
1649{
1650	/* Could bind mounting the mount namespace inode cause a
1651	 * mount namespace loop?
1652	 */
1653	struct mnt_namespace *mnt_ns;
1654	if (!is_mnt_ns_file(dentry))
1655		return false;
1656
1657	mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode));
1658	return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1659}
1660
1661struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
1662					int flag)
1663{
1664	struct mount *res, *p, *q, *r, *parent;
1665
1666	if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt))
1667		return ERR_PTR(-EINVAL);
1668
1669	if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry))
1670		return ERR_PTR(-EINVAL);
1671
1672	res = q = clone_mnt(mnt, dentry, flag);
1673	if (IS_ERR(q))
1674		return q;
1675
1676	q->mnt_mountpoint = mnt->mnt_mountpoint;
1677
1678	p = mnt;
1679	list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
1680		struct mount *s;
1681		if (!is_subdir(r->mnt_mountpoint, dentry))
1682			continue;
1683
1684		for (s = r; s; s = next_mnt(s, r)) {
1685			struct mount *t = NULL;
1686			if (!(flag & CL_COPY_UNBINDABLE) &&
1687			    IS_MNT_UNBINDABLE(s)) {
1688				s = skip_mnt_tree(s);
1689				continue;
1690			}
1691			if (!(flag & CL_COPY_MNT_NS_FILE) &&
1692			    is_mnt_ns_file(s->mnt.mnt_root)) {
1693				s = skip_mnt_tree(s);
1694				continue;
1695			}
1696			while (p != s->mnt_parent) {
1697				p = p->mnt_parent;
1698				q = q->mnt_parent;
1699			}
1700			p = s;
1701			parent = q;
1702			q = clone_mnt(p, p->mnt.mnt_root, flag);
1703			if (IS_ERR(q))
1704				goto out;
1705			lock_mount_hash();
1706			list_add_tail(&q->mnt_list, &res->mnt_list);
1707			mnt_set_mountpoint(parent, p->mnt_mp, q);
1708			if (!list_empty(&parent->mnt_mounts)) {
1709				t = list_last_entry(&parent->mnt_mounts,
1710					struct mount, mnt_child);
1711				if (t->mnt_mp != p->mnt_mp)
1712					t = NULL;
1713			}
1714			attach_shadowed(q, parent, t);
1715			unlock_mount_hash();
1716		}
1717	}
1718	return res;
1719out:
1720	if (res) {
1721		lock_mount_hash();
1722		umount_tree(res, UMOUNT_SYNC);
1723		unlock_mount_hash();
1724	}
1725	return q;
1726}
1727
1728/* Caller should check returned pointer for errors */
1729
1730struct vfsmount *collect_mounts(struct path *path)
1731{
1732	struct mount *tree;
1733	namespace_lock();
1734	if (!check_mnt(real_mount(path->mnt)))
1735		tree = ERR_PTR(-EINVAL);
1736	else
1737		tree = copy_tree(real_mount(path->mnt), path->dentry,
1738				 CL_COPY_ALL | CL_PRIVATE);
1739	namespace_unlock();
1740	if (IS_ERR(tree))
1741		return ERR_CAST(tree);
1742	return &tree->mnt;
1743}
1744
1745void drop_collected_mounts(struct vfsmount *mnt)
1746{
1747	namespace_lock();
1748	lock_mount_hash();
1749	umount_tree(real_mount(mnt), UMOUNT_SYNC);
1750	unlock_mount_hash();
1751	namespace_unlock();
1752}
1753
1754/**
1755 * clone_private_mount - create a private clone of a path
1756 *
1757 * This creates a new vfsmount, which will be the clone of @path.  The new will
1758 * not be attached anywhere in the namespace and will be private (i.e. changes
1759 * to the originating mount won't be propagated into this).
1760 *
1761 * Release with mntput().
1762 */
1763struct vfsmount *clone_private_mount(struct path *path)
1764{
1765	struct mount *old_mnt = real_mount(path->mnt);
1766	struct mount *new_mnt;
1767
1768	if (IS_MNT_UNBINDABLE(old_mnt))
1769		return ERR_PTR(-EINVAL);
1770
1771	down_read(&namespace_sem);
1772	new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE);
1773	up_read(&namespace_sem);
1774	if (IS_ERR(new_mnt))
1775		return ERR_CAST(new_mnt);
1776
1777	return &new_mnt->mnt;
1778}
1779EXPORT_SYMBOL_GPL(clone_private_mount);
1780
1781int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1782		   struct vfsmount *root)
1783{
1784	struct mount *mnt;
1785	int res = f(root, arg);
1786	if (res)
1787		return res;
1788	list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1789		res = f(&mnt->mnt, arg);
1790		if (res)
1791			return res;
1792	}
1793	return 0;
1794}
1795
1796static void cleanup_group_ids(struct mount *mnt, struct mount *end)
1797{
1798	struct mount *p;
1799
1800	for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1801		if (p->mnt_group_id && !IS_MNT_SHARED(p))
1802			mnt_release_group_id(p);
1803	}
1804}
1805
1806static int invent_group_ids(struct mount *mnt, bool recurse)
1807{
1808	struct mount *p;
1809
1810	for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1811		if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1812			int err = mnt_alloc_group_id(p);
1813			if (err) {
1814				cleanup_group_ids(mnt, p);
1815				return err;
1816			}
1817		}
1818	}
1819
1820	return 0;
1821}
1822
1823/*
1824 *  @source_mnt : mount tree to be attached
1825 *  @nd         : place the mount tree @source_mnt is attached
1826 *  @parent_nd  : if non-null, detach the source_mnt from its parent and
1827 *  		   store the parent mount and mountpoint dentry.
1828 *  		   (done when source_mnt is moved)
1829 *
1830 *  NOTE: in the table below explains the semantics when a source mount
1831 *  of a given type is attached to a destination mount of a given type.
1832 * ---------------------------------------------------------------------------
1833 * |         BIND MOUNT OPERATION                                            |
1834 * |**************************************************************************
1835 * | source-->| shared        |       private  |       slave    | unbindable |
1836 * | dest     |               |                |                |            |
1837 * |   |      |               |                |                |            |
1838 * |   v      |               |                |                |            |
1839 * |**************************************************************************
1840 * |  shared  | shared (++)   |     shared (+) |     shared(+++)|  invalid   |
1841 * |          |               |                |                |            |
1842 * |non-shared| shared (+)    |      private   |      slave (*) |  invalid   |
1843 * ***************************************************************************
1844 * A bind operation clones the source mount and mounts the clone on the
1845 * destination mount.
1846 *
1847 * (++)  the cloned mount is propagated to all the mounts in the propagation
1848 * 	 tree of the destination mount and the cloned mount is added to
1849 * 	 the peer group of the source mount.
1850 * (+)   the cloned mount is created under the destination mount and is marked
1851 *       as shared. The cloned mount is added to the peer group of the source
1852 *       mount.
1853 * (+++) the mount is propagated to all the mounts in the propagation tree
1854 *       of the destination mount and the cloned mount is made slave
1855 *       of the same master as that of the source mount. The cloned mount
1856 *       is marked as 'shared and slave'.
1857 * (*)   the cloned mount is made a slave of the same master as that of the
1858 * 	 source mount.
1859 *
1860 * ---------------------------------------------------------------------------
1861 * |         		MOVE MOUNT OPERATION                                 |
1862 * |**************************************************************************
1863 * | source-->| shared        |       private  |       slave    | unbindable |
1864 * | dest     |               |                |                |            |
1865 * |   |      |               |                |                |            |
1866 * |   v      |               |                |                |            |
1867 * |**************************************************************************
1868 * |  shared  | shared (+)    |     shared (+) |    shared(+++) |  invalid   |
1869 * |          |               |                |                |            |
1870 * |non-shared| shared (+*)   |      private   |    slave (*)   | unbindable |
1871 * ***************************************************************************
1872 *
1873 * (+)  the mount is moved to the destination. And is then propagated to
1874 * 	all the mounts in the propagation tree of the destination mount.
1875 * (+*)  the mount is moved to the destination.
1876 * (+++)  the mount is moved to the destination and is then propagated to
1877 * 	all the mounts belonging to the destination mount's propagation tree.
1878 * 	the mount is marked as 'shared and slave'.
1879 * (*)	the mount continues to be a slave at the new location.
1880 *
1881 * if the source mount is a tree, the operations explained above is
1882 * applied to each mount in the tree.
1883 * Must be called without spinlocks held, since this function can sleep
1884 * in allocations.
1885 */
1886static int attach_recursive_mnt(struct mount *source_mnt,
1887			struct mount *dest_mnt,
1888			struct mountpoint *dest_mp,
1889			struct path *parent_path)
1890{
1891	HLIST_HEAD(tree_list);
1892	struct mount *child, *p;
1893	struct hlist_node *n;
1894	int err;
1895
1896	if (IS_MNT_SHARED(dest_mnt)) {
1897		err = invent_group_ids(source_mnt, true);
1898		if (err)
1899			goto out;
1900		err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
1901		lock_mount_hash();
1902		if (err)
1903			goto out_cleanup_ids;
1904		for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1905			set_mnt_shared(p);
1906	} else {
1907		lock_mount_hash();
1908	}
1909	if (parent_path) {
1910		detach_mnt(source_mnt, parent_path);
1911		attach_mnt(source_mnt, dest_mnt, dest_mp);
1912		touch_mnt_namespace(source_mnt->mnt_ns);
1913	} else {
1914		mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
1915		commit_tree(source_mnt, NULL);
1916	}
1917
1918	hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) {
1919		struct mount *q;
1920		hlist_del_init(&child->mnt_hash);
1921		q = __lookup_mnt_last(&child->mnt_parent->mnt,
1922				      child->mnt_mountpoint);
1923		commit_tree(child, q);
1924	}
1925	unlock_mount_hash();
1926
1927	return 0;
1928
1929 out_cleanup_ids:
1930	while (!hlist_empty(&tree_list)) {
1931		child = hlist_entry(tree_list.first, struct mount, mnt_hash);
1932		umount_tree(child, UMOUNT_SYNC);
1933	}
1934	unlock_mount_hash();
1935	cleanup_group_ids(source_mnt, NULL);
1936 out:
1937	return err;
1938}
1939
1940static struct mountpoint *lock_mount(struct path *path)
1941{
1942	struct vfsmount *mnt;
1943	struct dentry *dentry = path->dentry;
1944retry:
1945	mutex_lock(&dentry->d_inode->i_mutex);
1946	if (unlikely(cant_mount(dentry))) {
1947		mutex_unlock(&dentry->d_inode->i_mutex);
1948		return ERR_PTR(-ENOENT);
1949	}
1950	namespace_lock();
1951	mnt = lookup_mnt(path);
1952	if (likely(!mnt)) {
1953		struct mountpoint *mp = lookup_mountpoint(dentry);
1954		if (!mp)
1955			mp = new_mountpoint(dentry);
1956		if (IS_ERR(mp)) {
1957			namespace_unlock();
1958			mutex_unlock(&dentry->d_inode->i_mutex);
1959			return mp;
1960		}
1961		return mp;
1962	}
1963	namespace_unlock();
1964	mutex_unlock(&path->dentry->d_inode->i_mutex);
1965	path_put(path);
1966	path->mnt = mnt;
1967	dentry = path->dentry = dget(mnt->mnt_root);
1968	goto retry;
1969}
1970
1971static void unlock_mount(struct mountpoint *where)
1972{
1973	struct dentry *dentry = where->m_dentry;
1974	put_mountpoint(where);
1975	namespace_unlock();
1976	mutex_unlock(&dentry->d_inode->i_mutex);
1977}
1978
1979static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1980{
1981	if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1982		return -EINVAL;
1983
1984	if (d_is_dir(mp->m_dentry) !=
1985	      d_is_dir(mnt->mnt.mnt_root))
1986		return -ENOTDIR;
1987
1988	return attach_recursive_mnt(mnt, p, mp, NULL);
1989}
1990
1991/*
1992 * Sanity check the flags to change_mnt_propagation.
1993 */
1994
1995static int flags_to_propagation_type(int flags)
1996{
1997	int type = flags & ~(MS_REC | MS_SILENT);
1998
1999	/* Fail if any non-propagation flags are set */
2000	if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2001		return 0;
2002	/* Only one propagation flag should be set */
2003	if (!is_power_of_2(type))
2004		return 0;
2005	return type;
2006}
2007
2008/*
2009 * recursively change the type of the mountpoint.
2010 */
2011static int do_change_type(struct path *path, int flag)
2012{
2013	struct mount *m;
2014	struct mount *mnt = real_mount(path->mnt);
2015	int recurse = flag & MS_REC;
2016	int type;
2017	int err = 0;
2018
2019	if (path->dentry != path->mnt->mnt_root)
2020		return -EINVAL;
2021
2022	type = flags_to_propagation_type(flag);
2023	if (!type)
2024		return -EINVAL;
2025
2026	namespace_lock();
2027	if (type == MS_SHARED) {
2028		err = invent_group_ids(mnt, recurse);
2029		if (err)
2030			goto out_unlock;
2031	}
2032
2033	lock_mount_hash();
2034	for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
2035		change_mnt_propagation(m, type);
2036	unlock_mount_hash();
2037
2038 out_unlock:
2039	namespace_unlock();
2040	return err;
2041}
2042
2043static bool has_locked_children(struct mount *mnt, struct dentry *dentry)
2044{
2045	struct mount *child;
2046	list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
2047		if (!is_subdir(child->mnt_mountpoint, dentry))
2048			continue;
2049
2050		if (child->mnt.mnt_flags & MNT_LOCKED)
2051			return true;
2052	}
2053	return false;
2054}
2055
2056/*
2057 * do loopback mount.
2058 */
2059static int do_loopback(struct path *path, const char *old_name,
2060				int recurse)
2061{
2062	struct path old_path;
2063	struct mount *mnt = NULL, *old, *parent;
2064	struct mountpoint *mp;
2065	int err;
2066	if (!old_name || !*old_name)
2067		return -EINVAL;
2068	err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
2069	if (err)
2070		return err;
2071
2072	err = -EINVAL;
2073	if (mnt_ns_loop(old_path.dentry))
2074		goto out;
2075
2076	mp = lock_mount(path);
2077	err = PTR_ERR(mp);
2078	if (IS_ERR(mp))
2079		goto out;
2080
2081	old = real_mount(old_path.mnt);
2082	parent = real_mount(path->mnt);
2083
2084	err = -EINVAL;
2085	if (IS_MNT_UNBINDABLE(old))
2086		goto out2;
2087
2088	if (!check_mnt(parent))
2089		goto out2;
2090
2091	if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations)
2092		goto out2;
2093
2094	if (!recurse && has_locked_children(old, old_path.dentry))
2095		goto out2;
2096
2097	if (recurse)
2098		mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE);
2099	else
2100		mnt = clone_mnt(old, old_path.dentry, 0);
2101
2102	if (IS_ERR(mnt)) {
2103		err = PTR_ERR(mnt);
2104		goto out2;
2105	}
2106
2107	mnt->mnt.mnt_flags &= ~MNT_LOCKED;
2108
2109	err = graft_tree(mnt, parent, mp);
2110	if (err) {
2111		lock_mount_hash();
2112		umount_tree(mnt, UMOUNT_SYNC);
2113		unlock_mount_hash();
2114	}
2115out2:
2116	unlock_mount(mp);
2117out:
2118	path_put(&old_path);
2119	return err;
2120}
2121
2122static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
2123{
2124	int error = 0;
2125	int readonly_request = 0;
2126
2127	if (ms_flags & MS_RDONLY)
2128		readonly_request = 1;
2129	if (readonly_request == __mnt_is_readonly(mnt))
2130		return 0;
2131
2132	if (readonly_request)
2133		error = mnt_make_readonly(real_mount(mnt));
2134	else
2135		__mnt_unmake_readonly(real_mount(mnt));
2136	return error;
2137}
2138
2139/*
2140 * change filesystem flags. dir should be a physical root of filesystem.
2141 * If you've mounted a non-root directory somewhere and want to do remount
2142 * on it - tough luck.
2143 */
2144static int do_remount(struct path *path, int flags, int mnt_flags,
2145		      void *data)
2146{
2147	int err;
2148	struct super_block *sb = path->mnt->mnt_sb;
2149	struct mount *mnt = real_mount(path->mnt);
2150
2151	if (!check_mnt(mnt))
2152		return -EINVAL;
2153
2154	if (path->dentry != path->mnt->mnt_root)
2155		return -EINVAL;
2156
2157	/* Don't allow changing of locked mnt flags.
2158	 *
2159	 * No locks need to be held here while testing the various
2160	 * MNT_LOCK flags because those flags can never be cleared
2161	 * once they are set.
2162	 */
2163	if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
2164	    !(mnt_flags & MNT_READONLY)) {
2165		return -EPERM;
2166	}
2167	if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
2168	    !(mnt_flags & MNT_NODEV)) {
2169		/* Was the nodev implicitly added in mount? */
2170		if ((mnt->mnt_ns->user_ns != &init_user_ns) &&
2171		    !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2172			mnt_flags |= MNT_NODEV;
2173		} else {
2174			return -EPERM;
2175		}
2176	}
2177	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) &&
2178	    !(mnt_flags & MNT_NOSUID)) {
2179		return -EPERM;
2180	}
2181	if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) &&
2182	    !(mnt_flags & MNT_NOEXEC)) {
2183		return -EPERM;
2184	}
2185	if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
2186	    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) {
2187		return -EPERM;
2188	}
2189
2190	err = security_sb_remount(sb, data);
2191	if (err)
2192		return err;
2193
2194	down_write(&sb->s_umount);
2195	if (flags & MS_BIND)
2196		err = change_mount_flags(path->mnt, flags);
2197	else if (!capable(CAP_SYS_ADMIN))
2198		err = -EPERM;
2199	else
2200		err = do_remount_sb(sb, flags, data, 0);
2201	if (!err) {
2202		lock_mount_hash();
2203		mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK;
2204		mnt->mnt.mnt_flags = mnt_flags;
2205		touch_mnt_namespace(mnt->mnt_ns);
2206		unlock_mount_hash();
2207	}
2208	up_write(&sb->s_umount);
2209	return err;
2210}
2211
2212static inline int tree_contains_unbindable(struct mount *mnt)
2213{
2214	struct mount *p;
2215	for (p = mnt; p; p = next_mnt(p, mnt)) {
2216		if (IS_MNT_UNBINDABLE(p))
2217			return 1;
2218	}
2219	return 0;
2220}
2221
2222static int do_move_mount(struct path *path, const char *old_name)
2223{
2224	struct path old_path, parent_path;
2225	struct mount *p;
2226	struct mount *old;
2227	struct mountpoint *mp;
2228	int err;
2229	if (!old_name || !*old_name)
2230		return -EINVAL;
2231	err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
2232	if (err)
2233		return err;
2234
2235	mp = lock_mount(path);
2236	err = PTR_ERR(mp);
2237	if (IS_ERR(mp))
2238		goto out;
2239
2240	old = real_mount(old_path.mnt);
2241	p = real_mount(path->mnt);
2242
2243	err = -EINVAL;
2244	if (!check_mnt(p) || !check_mnt(old))
2245		goto out1;
2246
2247	if (old->mnt.mnt_flags & MNT_LOCKED)
2248		goto out1;
2249
2250	err = -EINVAL;
2251	if (old_path.dentry != old_path.mnt->mnt_root)
2252		goto out1;
2253
2254	if (!mnt_has_parent(old))
2255		goto out1;
2256
2257	if (d_is_dir(path->dentry) !=
2258	      d_is_dir(old_path.dentry))
2259		goto out1;
2260	/*
2261	 * Don't move a mount residing in a shared parent.
2262	 */
2263	if (IS_MNT_SHARED(old->mnt_parent))
2264		goto out1;
2265	/*
2266	 * Don't move a mount tree containing unbindable mounts to a destination
2267	 * mount which is shared.
2268	 */
2269	if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
2270		goto out1;
2271	err = -ELOOP;
2272	for (; mnt_has_parent(p); p = p->mnt_parent)
2273		if (p == old)
2274			goto out1;
2275
2276	err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
2277	if (err)
2278		goto out1;
2279
2280	/* if the mount is moved, it should no longer be expire
2281	 * automatically */
2282	list_del_init(&old->mnt_expire);
2283out1:
2284	unlock_mount(mp);
2285out:
2286	if (!err)
2287		path_put(&parent_path);
2288	path_put(&old_path);
2289	return err;
2290}
2291
2292static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
2293{
2294	int err;
2295	const char *subtype = strchr(fstype, '.');
2296	if (subtype) {
2297		subtype++;
2298		err = -EINVAL;
2299		if (!subtype[0])
2300			goto err;
2301	} else
2302		subtype = "";
2303
2304	mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
2305	err = -ENOMEM;
2306	if (!mnt->mnt_sb->s_subtype)
2307		goto err;
2308	return mnt;
2309
2310 err:
2311	mntput(mnt);
2312	return ERR_PTR(err);
2313}
2314
2315/*
2316 * add a mount into a namespace's mount tree
2317 */
2318static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
2319{
2320	struct mountpoint *mp;
2321	struct mount *parent;
2322	int err;
2323
2324	mnt_flags &= ~MNT_INTERNAL_FLAGS;
2325
2326	mp = lock_mount(path);
2327	if (IS_ERR(mp))
2328		return PTR_ERR(mp);
2329
2330	parent = real_mount(path->mnt);
2331	err = -EINVAL;
2332	if (unlikely(!check_mnt(parent))) {
2333		/* that's acceptable only for automounts done in private ns */
2334		if (!(mnt_flags & MNT_SHRINKABLE))
2335			goto unlock;
2336		/* ... and for those we'd better have mountpoint still alive */
2337		if (!parent->mnt_ns)
2338			goto unlock;
2339	}
2340
2341	/* Refuse the same filesystem on the same mount point */
2342	err = -EBUSY;
2343	if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
2344	    path->mnt->mnt_root == path->dentry)
2345		goto unlock;
2346
2347	err = -EINVAL;
2348	if (d_is_symlink(newmnt->mnt.mnt_root))
2349		goto unlock;
2350
2351	newmnt->mnt.mnt_flags = mnt_flags;
2352	err = graft_tree(newmnt, parent, mp);
2353
2354unlock:
2355	unlock_mount(mp);
2356	return err;
2357}
2358
2359static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags);
2360
2361/*
2362 * create a new mount for userspace and request it to be added into the
2363 * namespace's tree
2364 */
2365static int do_new_mount(struct path *path, const char *fstype, int flags,
2366			int mnt_flags, const char *name, void *data)
2367{
2368	struct file_system_type *type;
2369	struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
2370	struct vfsmount *mnt;
2371	int err;
2372
2373	if (!fstype)
2374		return -EINVAL;
2375
2376	type = get_fs_type(fstype);
2377	if (!type)
2378		return -ENODEV;
2379
2380	if (user_ns != &init_user_ns) {
2381		if (!(type->fs_flags & FS_USERNS_MOUNT)) {
2382			put_filesystem(type);
2383			return -EPERM;
2384		}
2385		/* Only in special cases allow devices from mounts
2386		 * created outside the initial user namespace.
2387		 */
2388		if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
2389			flags |= MS_NODEV;
2390			mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV;
2391		}
2392		if (type->fs_flags & FS_USERNS_VISIBLE) {
2393			if (!fs_fully_visible(type, &mnt_flags)) {
2394				put_filesystem(type);
2395				return -EPERM;
2396			}
2397		}
2398	}
2399
2400	mnt = vfs_kern_mount(type, flags, name, data);
2401	if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2402	    !mnt->mnt_sb->s_subtype)
2403		mnt = fs_set_subtype(mnt, fstype);
2404
2405	put_filesystem(type);
2406	if (IS_ERR(mnt))
2407		return PTR_ERR(mnt);
2408
2409	err = do_add_mount(real_mount(mnt), path, mnt_flags);
2410	if (err)
2411		mntput(mnt);
2412	return err;
2413}
2414
2415int finish_automount(struct vfsmount *m, struct path *path)
2416{
2417	struct mount *mnt = real_mount(m);
2418	int err;
2419	/* The new mount record should have at least 2 refs to prevent it being
2420	 * expired before we get a chance to add it
2421	 */
2422	BUG_ON(mnt_get_count(mnt) < 2);
2423
2424	if (m->mnt_sb == path->mnt->mnt_sb &&
2425	    m->mnt_root == path->dentry) {
2426		err = -ELOOP;
2427		goto fail;
2428	}
2429
2430	err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
2431	if (!err)
2432		return 0;
2433fail:
2434	/* remove m from any expiration list it may be on */
2435	if (!list_empty(&mnt->mnt_expire)) {
2436		namespace_lock();
2437		list_del_init(&mnt->mnt_expire);
2438		namespace_unlock();
2439	}
2440	mntput(m);
2441	mntput(m);
2442	return err;
2443}
2444
2445/**
2446 * mnt_set_expiry - Put a mount on an expiration list
2447 * @mnt: The mount to list.
2448 * @expiry_list: The list to add the mount to.
2449 */
2450void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2451{
2452	namespace_lock();
2453
2454	list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
2455
2456	namespace_unlock();
2457}
2458EXPORT_SYMBOL(mnt_set_expiry);
2459
2460/*
2461 * process a list of expirable mountpoints with the intent of discarding any
2462 * mountpoints that aren't in use and haven't been touched since last we came
2463 * here
2464 */
2465void mark_mounts_for_expiry(struct list_head *mounts)
2466{
2467	struct mount *mnt, *next;
2468	LIST_HEAD(graveyard);
2469
2470	if (list_empty(mounts))
2471		return;
2472
2473	namespace_lock();
2474	lock_mount_hash();
2475
2476	/* extract from the expiration list every vfsmount that matches the
2477	 * following criteria:
2478	 * - only referenced by its parent vfsmount
2479	 * - still marked for expiry (marked on the last call here; marks are
2480	 *   cleared by mntput())
2481	 */
2482	list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
2483		if (!xchg(&mnt->mnt_expiry_mark, 1) ||
2484			propagate_mount_busy(mnt, 1))
2485			continue;
2486		list_move(&mnt->mnt_expire, &graveyard);
2487	}
2488	while (!list_empty(&graveyard)) {
2489		mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
2490		touch_mnt_namespace(mnt->mnt_ns);
2491		umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2492	}
2493	unlock_mount_hash();
2494	namespace_unlock();
2495}
2496
2497EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2498
2499/*
2500 * Ripoff of 'select_parent()'
2501 *
2502 * search the list of submounts for a given mountpoint, and move any
2503 * shrinkable submounts to the 'graveyard' list.
2504 */
2505static int select_submounts(struct mount *parent, struct list_head *graveyard)
2506{
2507	struct mount *this_parent = parent;
2508	struct list_head *next;
2509	int found = 0;
2510
2511repeat:
2512	next = this_parent->mnt_mounts.next;
2513resume:
2514	while (next != &this_parent->mnt_mounts) {
2515		struct list_head *tmp = next;
2516		struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
2517
2518		next = tmp->next;
2519		if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
2520			continue;
2521		/*
2522		 * Descend a level if the d_mounts list is non-empty.
2523		 */
2524		if (!list_empty(&mnt->mnt_mounts)) {
2525			this_parent = mnt;
2526			goto repeat;
2527		}
2528
2529		if (!propagate_mount_busy(mnt, 1)) {
2530			list_move_tail(&mnt->mnt_expire, graveyard);
2531			found++;
2532		}
2533	}
2534	/*
2535	 * All done at this level ... ascend and resume the search
2536	 */
2537	if (this_parent != parent) {
2538		next = this_parent->mnt_child.next;
2539		this_parent = this_parent->mnt_parent;
2540		goto resume;
2541	}
2542	return found;
2543}
2544
2545/*
2546 * process a list of expirable mountpoints with the intent of discarding any
2547 * submounts of a specific parent mountpoint
2548 *
2549 * mount_lock must be held for write
2550 */
2551static void shrink_submounts(struct mount *mnt)
2552{
2553	LIST_HEAD(graveyard);
2554	struct mount *m;
2555
2556	/* extract submounts of 'mountpoint' from the expiration list */
2557	while (select_submounts(mnt, &graveyard)) {
2558		while (!list_empty(&graveyard)) {
2559			m = list_first_entry(&graveyard, struct mount,
2560						mnt_expire);
2561			touch_mnt_namespace(m->mnt_ns);
2562			umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC);
2563		}
2564	}
2565}
2566
2567/*
2568 * Some copy_from_user() implementations do not return the exact number of
2569 * bytes remaining to copy on a fault.  But copy_mount_options() requires that.
2570 * Note that this function differs from copy_from_user() in that it will oops
2571 * on bad values of `to', rather than returning a short copy.
2572 */
2573static long exact_copy_from_user(void *to, const void __user * from,
2574				 unsigned long n)
2575{
2576	char *t = to;
2577	const char __user *f = from;
2578	char c;
2579
2580	if (!access_ok(VERIFY_READ, from, n))
2581		return n;
2582
2583	while (n) {
2584		if (__get_user(c, f)) {
2585			memset(t, 0, n);
2586			break;
2587		}
2588		*t++ = c;
2589		f++;
2590		n--;
2591	}
2592	return n;
2593}
2594
2595int copy_mount_options(const void __user * data, unsigned long *where)
2596{
2597	int i;
2598	unsigned long page;
2599	unsigned long size;
2600
2601	*where = 0;
2602	if (!data)
2603		return 0;
2604
2605	if (!(page = __get_free_page(GFP_KERNEL)))
2606		return -ENOMEM;
2607
2608	/* We only care that *some* data at the address the user
2609	 * gave us is valid.  Just in case, we'll zero
2610	 * the remainder of the page.
2611	 */
2612	/* copy_from_user cannot cross TASK_SIZE ! */
2613	size = TASK_SIZE - (unsigned long)data;
2614	if (size > PAGE_SIZE)
2615		size = PAGE_SIZE;
2616
2617	i = size - exact_copy_from_user((void *)page, data, size);
2618	if (!i) {
2619		free_page(page);
2620		return -EFAULT;
2621	}
2622	if (i != PAGE_SIZE)
2623		memset((char *)page + i, 0, PAGE_SIZE - i);
2624	*where = page;
2625	return 0;
2626}
2627
2628char *copy_mount_string(const void __user *data)
2629{
2630	return data ? strndup_user(data, PAGE_SIZE) : NULL;
2631}
2632
2633/*
2634 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2635 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2636 *
2637 * data is a (void *) that can point to any structure up to
2638 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2639 * information (or be NULL).
2640 *
2641 * Pre-0.97 versions of mount() didn't have a flags word.
2642 * When the flags word was introduced its top half was required
2643 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2644 * Therefore, if this magic number is present, it carries no information
2645 * and must be discarded.
2646 */
2647long do_mount(const char *dev_name, const char __user *dir_name,
2648		const char *type_page, unsigned long flags, void *data_page)
2649{
2650	struct path path;
2651	int retval = 0;
2652	int mnt_flags = 0;
2653
2654	/* Discard magic */
2655	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2656		flags &= ~MS_MGC_MSK;
2657
2658	/* Basic sanity checks */
2659	if (data_page)
2660		((char *)data_page)[PAGE_SIZE - 1] = 0;
2661
2662	/* ... and get the mountpoint */
2663	retval = user_path(dir_name, &path);
2664	if (retval)
2665		return retval;
2666
2667	retval = security_sb_mount(dev_name, &path,
2668				   type_page, flags, data_page);
2669	if (!retval && !may_mount())
2670		retval = -EPERM;
2671	if (retval)
2672		goto dput_out;
2673
2674	/* Default to relatime unless overriden */
2675	if (!(flags & MS_NOATIME))
2676		mnt_flags |= MNT_RELATIME;
2677
2678	/* Separate the per-mountpoint flags */
2679	if (flags & MS_NOSUID)
2680		mnt_flags |= MNT_NOSUID;
2681	if (flags & MS_NODEV)
2682		mnt_flags |= MNT_NODEV;
2683	if (flags & MS_NOEXEC)
2684		mnt_flags |= MNT_NOEXEC;
2685	if (flags & MS_NOATIME)
2686		mnt_flags |= MNT_NOATIME;
2687	if (flags & MS_NODIRATIME)
2688		mnt_flags |= MNT_NODIRATIME;
2689	if (flags & MS_STRICTATIME)
2690		mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2691	if (flags & MS_RDONLY)
2692		mnt_flags |= MNT_READONLY;
2693
2694	/* The default atime for remount is preservation */
2695	if ((flags & MS_REMOUNT) &&
2696	    ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME |
2697		       MS_STRICTATIME)) == 0)) {
2698		mnt_flags &= ~MNT_ATIME_MASK;
2699		mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK;
2700	}
2701
2702	flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
2703		   MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2704		   MS_STRICTATIME);
2705
2706	if (flags & MS_REMOUNT)
2707		retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
2708				    data_page);
2709	else if (flags & MS_BIND)
2710		retval = do_loopback(&path, dev_name, flags & MS_REC);
2711	else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2712		retval = do_change_type(&path, flags);
2713	else if (flags & MS_MOVE)
2714		retval = do_move_mount(&path, dev_name);
2715	else
2716		retval = do_new_mount(&path, type_page, flags, mnt_flags,
2717				      dev_name, data_page);
2718dput_out:
2719	path_put(&path);
2720	return retval;
2721}
2722
2723static void free_mnt_ns(struct mnt_namespace *ns)
2724{
2725	ns_free_inum(&ns->ns);
2726	put_user_ns(ns->user_ns);
2727	kfree(ns);
2728}
2729
2730/*
2731 * Assign a sequence number so we can detect when we attempt to bind
2732 * mount a reference to an older mount namespace into the current
2733 * mount namespace, preventing reference counting loops.  A 64bit
2734 * number incrementing at 10Ghz will take 12,427 years to wrap which
2735 * is effectively never, so we can ignore the possibility.
2736 */
2737static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2738
2739static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
2740{
2741	struct mnt_namespace *new_ns;
2742	int ret;
2743
2744	new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2745	if (!new_ns)
2746		return ERR_PTR(-ENOMEM);
2747	ret = ns_alloc_inum(&new_ns->ns);
2748	if (ret) {
2749		kfree(new_ns);
2750		return ERR_PTR(ret);
2751	}
2752	new_ns->ns.ops = &mntns_operations;
2753	new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
2754	atomic_set(&new_ns->count, 1);
2755	new_ns->root = NULL;
2756	INIT_LIST_HEAD(&new_ns->list);
2757	init_waitqueue_head(&new_ns->poll);
2758	new_ns->event = 0;
2759	new_ns->user_ns = get_user_ns(user_ns);
2760	return new_ns;
2761}
2762
2763struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
2764		struct user_namespace *user_ns, struct fs_struct *new_fs)
2765{
2766	struct mnt_namespace *new_ns;
2767	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
2768	struct mount *p, *q;
2769	struct mount *old;
2770	struct mount *new;
2771	int copy_flags;
2772
2773	BUG_ON(!ns);
2774
2775	if (likely(!(flags & CLONE_NEWNS))) {
2776		get_mnt_ns(ns);
2777		return ns;
2778	}
2779
2780	old = ns->root;
2781
2782	new_ns = alloc_mnt_ns(user_ns);
2783	if (IS_ERR(new_ns))
2784		return new_ns;
2785
2786	namespace_lock();
2787	/* First pass: copy the tree topology */
2788	copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE;
2789	if (user_ns != ns->user_ns)
2790		copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
2791	new = copy_tree(old, old->mnt.mnt_root, copy_flags);
2792	if (IS_ERR(new)) {
2793		namespace_unlock();
2794		free_mnt_ns(new_ns);
2795		return ERR_CAST(new);
2796	}
2797	new_ns->root = new;
2798	list_add_tail(&new_ns->list, &new->mnt_list);
2799
2800	/*
2801	 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2802	 * as belonging to new namespace.  We have already acquired a private
2803	 * fs_struct, so tsk->fs->lock is not needed.
2804	 */
2805	p = old;
2806	q = new;
2807	while (p) {
2808		q->mnt_ns = new_ns;
2809		if (new_fs) {
2810			if (&p->mnt == new_fs->root.mnt) {
2811				new_fs->root.mnt = mntget(&q->mnt);
2812				rootmnt = &p->mnt;
2813			}
2814			if (&p->mnt == new_fs->pwd.mnt) {
2815				new_fs->pwd.mnt = mntget(&q->mnt);
2816				pwdmnt = &p->mnt;
2817			}
2818		}
2819		p = next_mnt(p, old);
2820		q = next_mnt(q, new);
2821		if (!q)
2822			break;
2823		while (p->mnt.mnt_root != q->mnt.mnt_root)
2824			p = next_mnt(p, old);
2825	}
2826	namespace_unlock();
2827
2828	if (rootmnt)
2829		mntput(rootmnt);
2830	if (pwdmnt)
2831		mntput(pwdmnt);
2832
2833	return new_ns;
2834}
2835
2836/**
2837 * create_mnt_ns - creates a private namespace and adds a root filesystem
2838 * @mnt: pointer to the new root filesystem mountpoint
2839 */
2840static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
2841{
2842	struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
2843	if (!IS_ERR(new_ns)) {
2844		struct mount *mnt = real_mount(m);
2845		mnt->mnt_ns = new_ns;
2846		new_ns->root = mnt;
2847		list_add(&mnt->mnt_list, &new_ns->list);
2848	} else {
2849		mntput(m);
2850	}
2851	return new_ns;
2852}
2853
2854struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2855{
2856	struct mnt_namespace *ns;
2857	struct super_block *s;
2858	struct path path;
2859	int err;
2860
2861	ns = create_mnt_ns(mnt);
2862	if (IS_ERR(ns))
2863		return ERR_CAST(ns);
2864
2865	err = vfs_path_lookup(mnt->mnt_root, mnt,
2866			name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2867
2868	put_mnt_ns(ns);
2869
2870	if (err)
2871		return ERR_PTR(err);
2872
2873	/* trade a vfsmount reference for active sb one */
2874	s = path.mnt->mnt_sb;
2875	atomic_inc(&s->s_active);
2876	mntput(path.mnt);
2877	/* lock the sucker */
2878	down_write(&s->s_umount);
2879	/* ... and return the root of (sub)tree on it */
2880	return path.dentry;
2881}
2882EXPORT_SYMBOL(mount_subtree);
2883
2884SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2885		char __user *, type, unsigned long, flags, void __user *, data)
2886{
2887	int ret;
2888	char *kernel_type;
2889	char *kernel_dev;
2890	unsigned long data_page;
2891
2892	kernel_type = copy_mount_string(type);
2893	ret = PTR_ERR(kernel_type);
2894	if (IS_ERR(kernel_type))
2895		goto out_type;
2896
2897	kernel_dev = copy_mount_string(dev_name);
2898	ret = PTR_ERR(kernel_dev);
2899	if (IS_ERR(kernel_dev))
2900		goto out_dev;
2901
2902	ret = copy_mount_options(data, &data_page);
2903	if (ret < 0)
2904		goto out_data;
2905
2906	ret = do_mount(kernel_dev, dir_name, kernel_type, flags,
2907		(void *) data_page);
2908
2909	free_page(data_page);
2910out_data:
2911	kfree(kernel_dev);
2912out_dev:
2913	kfree(kernel_type);
2914out_type:
2915	return ret;
2916}
2917
2918/*
2919 * Return true if path is reachable from root
2920 *
2921 * namespace_sem or mount_lock is held
2922 */
2923bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
2924			 const struct path *root)
2925{
2926	while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
2927		dentry = mnt->mnt_mountpoint;
2928		mnt = mnt->mnt_parent;
2929	}
2930	return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
2931}
2932
2933int path_is_under(struct path *path1, struct path *path2)
2934{
2935	int res;
2936	read_seqlock_excl(&mount_lock);
2937	res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
2938	read_sequnlock_excl(&mount_lock);
2939	return res;
2940}
2941EXPORT_SYMBOL(path_is_under);
2942
2943/*
2944 * pivot_root Semantics:
2945 * Moves the root file system of the current process to the directory put_old,
2946 * makes new_root as the new root file system of the current process, and sets
2947 * root/cwd of all processes which had them on the current root to new_root.
2948 *
2949 * Restrictions:
2950 * The new_root and put_old must be directories, and  must not be on the
2951 * same file  system as the current process root. The put_old  must  be
2952 * underneath new_root,  i.e. adding a non-zero number of /.. to the string
2953 * pointed to by put_old must yield the same directory as new_root. No other
2954 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2955 *
2956 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2957 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2958 * in this situation.
2959 *
2960 * Notes:
2961 *  - we don't move root/cwd if they are not at the root (reason: if something
2962 *    cared enough to change them, it's probably wrong to force them elsewhere)
2963 *  - it's okay to pick a root that isn't the root of a file system, e.g.
2964 *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2965 *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2966 *    first.
2967 */
2968SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2969		const char __user *, put_old)
2970{
2971	struct path new, old, parent_path, root_parent, root;
2972	struct mount *new_mnt, *root_mnt, *old_mnt;
2973	struct mountpoint *old_mp, *root_mp;
2974	int error;
2975
2976	if (!may_mount())
2977		return -EPERM;
2978
2979	error = user_path_dir(new_root, &new);
2980	if (error)
2981		goto out0;
2982
2983	error = user_path_dir(put_old, &old);
2984	if (error)
2985		goto out1;
2986
2987	error = security_sb_pivotroot(&old, &new);
2988	if (error)
2989		goto out2;
2990
2991	get_fs_root(current->fs, &root);
2992	old_mp = lock_mount(&old);
2993	error = PTR_ERR(old_mp);
2994	if (IS_ERR(old_mp))
2995		goto out3;
2996
2997	error = -EINVAL;
2998	new_mnt = real_mount(new.mnt);
2999	root_mnt = real_mount(root.mnt);
3000	old_mnt = real_mount(old.mnt);
3001	if (IS_MNT_SHARED(old_mnt) ||
3002		IS_MNT_SHARED(new_mnt->mnt_parent) ||
3003		IS_MNT_SHARED(root_mnt->mnt_parent))
3004		goto out4;
3005	if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
3006		goto out4;
3007	if (new_mnt->mnt.mnt_flags & MNT_LOCKED)
3008		goto out4;
3009	error = -ENOENT;
3010	if (d_unlinked(new.dentry))
3011		goto out4;
3012	error = -EBUSY;
3013	if (new_mnt == root_mnt || old_mnt == root_mnt)
3014		goto out4; /* loop, on the same file system  */
3015	error = -EINVAL;
3016	if (root.mnt->mnt_root != root.dentry)
3017		goto out4; /* not a mountpoint */
3018	if (!mnt_has_parent(root_mnt))
3019		goto out4; /* not attached */
3020	root_mp = root_mnt->mnt_mp;
3021	if (new.mnt->mnt_root != new.dentry)
3022		goto out4; /* not a mountpoint */
3023	if (!mnt_has_parent(new_mnt))
3024		goto out4; /* not attached */
3025	/* make sure we can reach put_old from new_root */
3026	if (!is_path_reachable(old_mnt, old.dentry, &new))
3027		goto out4;
3028	/* make certain new is below the root */
3029	if (!is_path_reachable(new_mnt, new.dentry, &root))
3030		goto out4;
3031	root_mp->m_count++; /* pin it so it won't go away */
3032	lock_mount_hash();
3033	detach_mnt(new_mnt, &parent_path);
3034	detach_mnt(root_mnt, &root_parent);
3035	if (root_mnt->mnt.mnt_flags & MNT_LOCKED) {
3036		new_mnt->mnt.mnt_flags |= MNT_LOCKED;
3037		root_mnt->mnt.mnt_flags &= ~MNT_LOCKED;
3038	}
3039	/* mount old root on put_old */
3040	attach_mnt(root_mnt, old_mnt, old_mp);
3041	/* mount new_root on / */
3042	attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
3043	touch_mnt_namespace(current->nsproxy->mnt_ns);
3044	/* A moved mount should not expire automatically */
3045	list_del_init(&new_mnt->mnt_expire);
3046	unlock_mount_hash();
3047	chroot_fs_refs(&root, &new);
3048	put_mountpoint(root_mp);
3049	error = 0;
3050out4:
3051	unlock_mount(old_mp);
3052	if (!error) {
3053		path_put(&root_parent);
3054		path_put(&parent_path);
3055	}
3056out3:
3057	path_put(&root);
3058out2:
3059	path_put(&old);
3060out1:
3061	path_put(&new);
3062out0:
3063	return error;
3064}
3065
3066static void __init init_mount_tree(void)
3067{
3068	struct vfsmount *mnt;
3069	struct mnt_namespace *ns;
3070	struct path root;
3071	struct file_system_type *type;
3072
3073	type = get_fs_type("rootfs");
3074	if (!type)
3075		panic("Can't find rootfs type");
3076	mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
3077	put_filesystem(type);
3078	if (IS_ERR(mnt))
3079		panic("Can't create rootfs");
3080
3081	ns = create_mnt_ns(mnt);
3082	if (IS_ERR(ns))
3083		panic("Can't allocate initial namespace");
3084
3085	init_task.nsproxy->mnt_ns = ns;
3086	get_mnt_ns(ns);
3087
3088	root.mnt = mnt;
3089	root.dentry = mnt->mnt_root;
3090	mnt->mnt_flags |= MNT_LOCKED;
3091
3092	set_fs_pwd(current->fs, &root);
3093	set_fs_root(current->fs, &root);
3094}
3095
3096void __init mnt_init(void)
3097{
3098	unsigned u;
3099	int err;
3100
3101	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
3102			0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3103
3104	mount_hashtable = alloc_large_system_hash("Mount-cache",
3105				sizeof(struct hlist_head),
3106				mhash_entries, 19,
3107				0,
3108				&m_hash_shift, &m_hash_mask, 0, 0);
3109	mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache",
3110				sizeof(struct hlist_head),
3111				mphash_entries, 19,
3112				0,
3113				&mp_hash_shift, &mp_hash_mask, 0, 0);
3114
3115	if (!mount_hashtable || !mountpoint_hashtable)
3116		panic("Failed to allocate mount hash table\n");
3117
3118	for (u = 0; u <= m_hash_mask; u++)
3119		INIT_HLIST_HEAD(&mount_hashtable[u]);
3120	for (u = 0; u <= mp_hash_mask; u++)
3121		INIT_HLIST_HEAD(&mountpoint_hashtable[u]);
3122
3123	kernfs_init();
3124
3125	err = sysfs_init();
3126	if (err)
3127		printk(KERN_WARNING "%s: sysfs_init error: %d\n",
3128			__func__, err);
3129	fs_kobj = kobject_create_and_add("fs", NULL);
3130	if (!fs_kobj)
3131		printk(KERN_WARNING "%s: kobj create error\n", __func__);
3132	init_rootfs();
3133	init_mount_tree();
3134}
3135
3136void put_mnt_ns(struct mnt_namespace *ns)
3137{
3138	if (!atomic_dec_and_test(&ns->count))
3139		return;
3140	drop_collected_mounts(&ns->root->mnt);
3141	free_mnt_ns(ns);
3142}
3143
3144struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
3145{
3146	struct vfsmount *mnt;
3147	mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
3148	if (!IS_ERR(mnt)) {
3149		/*
3150		 * it is a longterm mount, don't release mnt until
3151		 * we unmount before file sys is unregistered
3152		*/
3153		real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
3154	}
3155	return mnt;
3156}
3157EXPORT_SYMBOL_GPL(kern_mount_data);
3158
3159void kern_unmount(struct vfsmount *mnt)
3160{
3161	/* release long term mount so mount point can be released */
3162	if (!IS_ERR_OR_NULL(mnt)) {
3163		real_mount(mnt)->mnt_ns = NULL;
3164		synchronize_rcu();	/* yecchhh... */
3165		mntput(mnt);
3166	}
3167}
3168EXPORT_SYMBOL(kern_unmount);
3169
3170bool our_mnt(struct vfsmount *mnt)
3171{
3172	return check_mnt(real_mount(mnt));
3173}
3174
3175bool current_chrooted(void)
3176{
3177	/* Does the current process have a non-standard root */
3178	struct path ns_root;
3179	struct path fs_root;
3180	bool chrooted;
3181
3182	/* Find the namespace root */
3183	ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
3184	ns_root.dentry = ns_root.mnt->mnt_root;
3185	path_get(&ns_root);
3186	while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
3187		;
3188
3189	get_fs_root(current->fs, &fs_root);
3190
3191	chrooted = !path_equal(&fs_root, &ns_root);
3192
3193	path_put(&fs_root);
3194	path_put(&ns_root);
3195
3196	return chrooted;
3197}
3198
3199static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags)
3200{
3201	struct mnt_namespace *ns = current->nsproxy->mnt_ns;
3202	int new_flags = *new_mnt_flags;
3203	struct mount *mnt;
3204	bool visible = false;
3205
3206	if (unlikely(!ns))
3207		return false;
3208
3209	down_read(&namespace_sem);
3210	list_for_each_entry(mnt, &ns->list, mnt_list) {
3211		struct mount *child;
3212		if (mnt->mnt.mnt_sb->s_type != type)
3213			continue;
3214
3215		/* This mount is not fully visible if it's root directory
3216		 * is not the root directory of the filesystem.
3217		 */
3218		if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root)
3219			continue;
3220
3221		/* Verify the mount flags are equal to or more permissive
3222		 * than the proposed new mount.
3223		 */
3224		if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) &&
3225		    !(new_flags & MNT_READONLY))
3226			continue;
3227		if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) &&
3228		    !(new_flags & MNT_NODEV))
3229			continue;
3230		if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) &&
3231		    ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK)))
3232			continue;
3233
3234		/* This mount is not fully visible if there are any
3235		 * locked child mounts that cover anything except for
3236		 * empty directories.
3237		 */
3238		list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) {
3239			struct inode *inode = child->mnt_mountpoint->d_inode;
3240			/* Only worry about locked mounts */
3241			if (!(child->mnt.mnt_flags & MNT_LOCKED))
3242				continue;
3243			/* Is the directory permanetly empty? */
3244			if (!is_empty_dir_inode(inode))
3245				goto next;
3246		}
3247		/* Preserve the locked attributes */
3248		*new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \
3249							MNT_LOCK_NODEV    | \
3250							MNT_LOCK_ATIME);
3251		visible = true;
3252		goto found;
3253	next:	;
3254	}
3255found:
3256	up_read(&namespace_sem);
3257	return visible;
3258}
3259
3260static struct ns_common *mntns_get(struct task_struct *task)
3261{
3262	struct ns_common *ns = NULL;
3263	struct nsproxy *nsproxy;
3264
3265	task_lock(task);
3266	nsproxy = task->nsproxy;
3267	if (nsproxy) {
3268		ns = &nsproxy->mnt_ns->ns;
3269		get_mnt_ns(to_mnt_ns(ns));
3270	}
3271	task_unlock(task);
3272
3273	return ns;
3274}
3275
3276static void mntns_put(struct ns_common *ns)
3277{
3278	put_mnt_ns(to_mnt_ns(ns));
3279}
3280
3281static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns)
3282{
3283	struct fs_struct *fs = current->fs;
3284	struct mnt_namespace *mnt_ns = to_mnt_ns(ns);
3285	struct path root;
3286
3287	if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
3288	    !ns_capable(current_user_ns(), CAP_SYS_CHROOT) ||
3289	    !ns_capable(current_user_ns(), CAP_SYS_ADMIN))
3290		return -EPERM;
3291
3292	if (fs->users != 1)
3293		return -EINVAL;
3294
3295	get_mnt_ns(mnt_ns);
3296	put_mnt_ns(nsproxy->mnt_ns);
3297	nsproxy->mnt_ns = mnt_ns;
3298
3299	/* Find the root */
3300	root.mnt    = &mnt_ns->root->mnt;
3301	root.dentry = mnt_ns->root->mnt.mnt_root;
3302	path_get(&root);
3303	while(d_mountpoint(root.dentry) && follow_down_one(&root))
3304		;
3305
3306	/* Update the pwd and root */
3307	set_fs_pwd(fs, &root);
3308	set_fs_root(fs, &root);
3309
3310	path_put(&root);
3311	return 0;
3312}
3313
3314const struct proc_ns_operations mntns_operations = {
3315	.name		= "mnt",
3316	.type		= CLONE_NEWNS,
3317	.get		= mntns_get,
3318	.put		= mntns_put,
3319	.install	= mntns_install,
3320};
3321