1/* 2 * linux/fs/namespace.c 3 * 4 * (C) Copyright Al Viro 2000, 2001 5 * Released under GPL v2. 6 * 7 * Based on code from fs/super.c, copyright Linus Torvalds and others. 8 * Heavily rewritten. 9 */ 10 11#include <linux/syscalls.h> 12#include <linux/export.h> 13#include <linux/capability.h> 14#include <linux/mnt_namespace.h> 15#include <linux/user_namespace.h> 16#include <linux/namei.h> 17#include <linux/security.h> 18#include <linux/idr.h> 19#include <linux/init.h> /* init_rootfs */ 20#include <linux/fs_struct.h> /* get_fs_root et.al. */ 21#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */ 22#include <linux/uaccess.h> 23#include <linux/proc_ns.h> 24#include <linux/magic.h> 25#include <linux/bootmem.h> 26#include <linux/task_work.h> 27#include "pnode.h" 28#include "internal.h" 29 30static unsigned int m_hash_mask __read_mostly; 31static unsigned int m_hash_shift __read_mostly; 32static unsigned int mp_hash_mask __read_mostly; 33static unsigned int mp_hash_shift __read_mostly; 34 35static __initdata unsigned long mhash_entries; 36static int __init set_mhash_entries(char *str) 37{ 38 if (!str) 39 return 0; 40 mhash_entries = simple_strtoul(str, &str, 0); 41 return 1; 42} 43__setup("mhash_entries=", set_mhash_entries); 44 45static __initdata unsigned long mphash_entries; 46static int __init set_mphash_entries(char *str) 47{ 48 if (!str) 49 return 0; 50 mphash_entries = simple_strtoul(str, &str, 0); 51 return 1; 52} 53__setup("mphash_entries=", set_mphash_entries); 54 55static u64 event; 56static DEFINE_IDA(mnt_id_ida); 57static DEFINE_IDA(mnt_group_ida); 58static DEFINE_SPINLOCK(mnt_id_lock); 59static int mnt_id_start = 0; 60static int mnt_group_start = 1; 61 62static struct hlist_head *mount_hashtable __read_mostly; 63static struct hlist_head *mountpoint_hashtable __read_mostly; 64static struct kmem_cache *mnt_cache __read_mostly; 65static DECLARE_RWSEM(namespace_sem); 66 67/* /sys/fs */ 68struct kobject *fs_kobj; 69EXPORT_SYMBOL_GPL(fs_kobj); 70 71/* 72 * vfsmount lock may be taken for read to prevent changes to the 73 * vfsmount hash, ie. during mountpoint lookups or walking back 74 * up the tree. 75 * 76 * It should be taken for write in all cases where the vfsmount 77 * tree or hash is modified or when a vfsmount structure is modified. 78 */ 79__cacheline_aligned_in_smp DEFINE_SEQLOCK(mount_lock); 80 81static inline struct hlist_head *m_hash(struct vfsmount *mnt, struct dentry *dentry) 82{ 83 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES); 84 tmp += ((unsigned long)dentry / L1_CACHE_BYTES); 85 tmp = tmp + (tmp >> m_hash_shift); 86 return &mount_hashtable[tmp & m_hash_mask]; 87} 88 89static inline struct hlist_head *mp_hash(struct dentry *dentry) 90{ 91 unsigned long tmp = ((unsigned long)dentry / L1_CACHE_BYTES); 92 tmp = tmp + (tmp >> mp_hash_shift); 93 return &mountpoint_hashtable[tmp & mp_hash_mask]; 94} 95 96/* 97 * allocation is serialized by namespace_sem, but we need the spinlock to 98 * serialize with freeing. 99 */ 100static int mnt_alloc_id(struct mount *mnt) 101{ 102 int res; 103 104retry: 105 ida_pre_get(&mnt_id_ida, GFP_KERNEL); 106 spin_lock(&mnt_id_lock); 107 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id); 108 if (!res) 109 mnt_id_start = mnt->mnt_id + 1; 110 spin_unlock(&mnt_id_lock); 111 if (res == -EAGAIN) 112 goto retry; 113 114 return res; 115} 116 117static void mnt_free_id(struct mount *mnt) 118{ 119 int id = mnt->mnt_id; 120 spin_lock(&mnt_id_lock); 121 ida_remove(&mnt_id_ida, id); 122 if (mnt_id_start > id) 123 mnt_id_start = id; 124 spin_unlock(&mnt_id_lock); 125} 126 127/* 128 * Allocate a new peer group ID 129 * 130 * mnt_group_ida is protected by namespace_sem 131 */ 132static int mnt_alloc_group_id(struct mount *mnt) 133{ 134 int res; 135 136 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL)) 137 return -ENOMEM; 138 139 res = ida_get_new_above(&mnt_group_ida, 140 mnt_group_start, 141 &mnt->mnt_group_id); 142 if (!res) 143 mnt_group_start = mnt->mnt_group_id + 1; 144 145 return res; 146} 147 148/* 149 * Release a peer group ID 150 */ 151void mnt_release_group_id(struct mount *mnt) 152{ 153 int id = mnt->mnt_group_id; 154 ida_remove(&mnt_group_ida, id); 155 if (mnt_group_start > id) 156 mnt_group_start = id; 157 mnt->mnt_group_id = 0; 158} 159 160/* 161 * vfsmount lock must be held for read 162 */ 163static inline void mnt_add_count(struct mount *mnt, int n) 164{ 165#ifdef CONFIG_SMP 166 this_cpu_add(mnt->mnt_pcp->mnt_count, n); 167#else 168 preempt_disable(); 169 mnt->mnt_count += n; 170 preempt_enable(); 171#endif 172} 173 174/* 175 * vfsmount lock must be held for write 176 */ 177unsigned int mnt_get_count(struct mount *mnt) 178{ 179#ifdef CONFIG_SMP 180 unsigned int count = 0; 181 int cpu; 182 183 for_each_possible_cpu(cpu) { 184 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count; 185 } 186 187 return count; 188#else 189 return mnt->mnt_count; 190#endif 191} 192 193static void drop_mountpoint(struct fs_pin *p) 194{ 195 struct mount *m = container_of(p, struct mount, mnt_umount); 196 dput(m->mnt_ex_mountpoint); 197 pin_remove(p); 198 mntput(&m->mnt); 199} 200 201static struct mount *alloc_vfsmnt(const char *name) 202{ 203 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL); 204 if (mnt) { 205 int err; 206 207 err = mnt_alloc_id(mnt); 208 if (err) 209 goto out_free_cache; 210 211 if (name) { 212 mnt->mnt_devname = kstrdup_const(name, GFP_KERNEL); 213 if (!mnt->mnt_devname) 214 goto out_free_id; 215 } 216 217#ifdef CONFIG_SMP 218 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp); 219 if (!mnt->mnt_pcp) 220 goto out_free_devname; 221 222 this_cpu_add(mnt->mnt_pcp->mnt_count, 1); 223#else 224 mnt->mnt_count = 1; 225 mnt->mnt_writers = 0; 226#endif 227 228 INIT_HLIST_NODE(&mnt->mnt_hash); 229 INIT_LIST_HEAD(&mnt->mnt_child); 230 INIT_LIST_HEAD(&mnt->mnt_mounts); 231 INIT_LIST_HEAD(&mnt->mnt_list); 232 INIT_LIST_HEAD(&mnt->mnt_expire); 233 INIT_LIST_HEAD(&mnt->mnt_share); 234 INIT_LIST_HEAD(&mnt->mnt_slave_list); 235 INIT_LIST_HEAD(&mnt->mnt_slave); 236 INIT_HLIST_NODE(&mnt->mnt_mp_list); 237#ifdef CONFIG_FSNOTIFY 238 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks); 239#endif 240 init_fs_pin(&mnt->mnt_umount, drop_mountpoint); 241 } 242 return mnt; 243 244#ifdef CONFIG_SMP 245out_free_devname: 246 kfree_const(mnt->mnt_devname); 247#endif 248out_free_id: 249 mnt_free_id(mnt); 250out_free_cache: 251 kmem_cache_free(mnt_cache, mnt); 252 return NULL; 253} 254 255/* 256 * Most r/o checks on a fs are for operations that take 257 * discrete amounts of time, like a write() or unlink(). 258 * We must keep track of when those operations start 259 * (for permission checks) and when they end, so that 260 * we can determine when writes are able to occur to 261 * a filesystem. 262 */ 263/* 264 * __mnt_is_readonly: check whether a mount is read-only 265 * @mnt: the mount to check for its write status 266 * 267 * This shouldn't be used directly ouside of the VFS. 268 * It does not guarantee that the filesystem will stay 269 * r/w, just that it is right *now*. This can not and 270 * should not be used in place of IS_RDONLY(inode). 271 * mnt_want/drop_write() will _keep_ the filesystem 272 * r/w. 273 */ 274int __mnt_is_readonly(struct vfsmount *mnt) 275{ 276 if (mnt->mnt_flags & MNT_READONLY) 277 return 1; 278 if (mnt->mnt_sb->s_flags & MS_RDONLY) 279 return 1; 280 return 0; 281} 282EXPORT_SYMBOL_GPL(__mnt_is_readonly); 283 284static inline void mnt_inc_writers(struct mount *mnt) 285{ 286#ifdef CONFIG_SMP 287 this_cpu_inc(mnt->mnt_pcp->mnt_writers); 288#else 289 mnt->mnt_writers++; 290#endif 291} 292 293static inline void mnt_dec_writers(struct mount *mnt) 294{ 295#ifdef CONFIG_SMP 296 this_cpu_dec(mnt->mnt_pcp->mnt_writers); 297#else 298 mnt->mnt_writers--; 299#endif 300} 301 302static unsigned int mnt_get_writers(struct mount *mnt) 303{ 304#ifdef CONFIG_SMP 305 unsigned int count = 0; 306 int cpu; 307 308 for_each_possible_cpu(cpu) { 309 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers; 310 } 311 312 return count; 313#else 314 return mnt->mnt_writers; 315#endif 316} 317 318static int mnt_is_readonly(struct vfsmount *mnt) 319{ 320 if (mnt->mnt_sb->s_readonly_remount) 321 return 1; 322 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */ 323 smp_rmb(); 324 return __mnt_is_readonly(mnt); 325} 326 327/* 328 * Most r/o & frozen checks on a fs are for operations that take discrete 329 * amounts of time, like a write() or unlink(). We must keep track of when 330 * those operations start (for permission checks) and when they end, so that we 331 * can determine when writes are able to occur to a filesystem. 332 */ 333/** 334 * __mnt_want_write - get write access to a mount without freeze protection 335 * @m: the mount on which to take a write 336 * 337 * This tells the low-level filesystem that a write is about to be performed to 338 * it, and makes sure that writes are allowed (mnt it read-write) before 339 * returning success. This operation does not protect against filesystem being 340 * frozen. When the write operation is finished, __mnt_drop_write() must be 341 * called. This is effectively a refcount. 342 */ 343int __mnt_want_write(struct vfsmount *m) 344{ 345 struct mount *mnt = real_mount(m); 346 int ret = 0; 347 348 preempt_disable(); 349 mnt_inc_writers(mnt); 350 /* 351 * The store to mnt_inc_writers must be visible before we pass 352 * MNT_WRITE_HOLD loop below, so that the slowpath can see our 353 * incremented count after it has set MNT_WRITE_HOLD. 354 */ 355 smp_mb(); 356 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD) 357 cpu_relax(); 358 /* 359 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will 360 * be set to match its requirements. So we must not load that until 361 * MNT_WRITE_HOLD is cleared. 362 */ 363 smp_rmb(); 364 if (mnt_is_readonly(m)) { 365 mnt_dec_writers(mnt); 366 ret = -EROFS; 367 } 368 preempt_enable(); 369 370 return ret; 371} 372 373/** 374 * mnt_want_write - get write access to a mount 375 * @m: the mount on which to take a write 376 * 377 * This tells the low-level filesystem that a write is about to be performed to 378 * it, and makes sure that writes are allowed (mount is read-write, filesystem 379 * is not frozen) before returning success. When the write operation is 380 * finished, mnt_drop_write() must be called. This is effectively a refcount. 381 */ 382int mnt_want_write(struct vfsmount *m) 383{ 384 int ret; 385 386 sb_start_write(m->mnt_sb); 387 ret = __mnt_want_write(m); 388 if (ret) 389 sb_end_write(m->mnt_sb); 390 return ret; 391} 392EXPORT_SYMBOL_GPL(mnt_want_write); 393 394/** 395 * mnt_clone_write - get write access to a mount 396 * @mnt: the mount on which to take a write 397 * 398 * This is effectively like mnt_want_write, except 399 * it must only be used to take an extra write reference 400 * on a mountpoint that we already know has a write reference 401 * on it. This allows some optimisation. 402 * 403 * After finished, mnt_drop_write must be called as usual to 404 * drop the reference. 405 */ 406int mnt_clone_write(struct vfsmount *mnt) 407{ 408 /* superblock may be r/o */ 409 if (__mnt_is_readonly(mnt)) 410 return -EROFS; 411 preempt_disable(); 412 mnt_inc_writers(real_mount(mnt)); 413 preempt_enable(); 414 return 0; 415} 416EXPORT_SYMBOL_GPL(mnt_clone_write); 417 418/** 419 * __mnt_want_write_file - get write access to a file's mount 420 * @file: the file who's mount on which to take a write 421 * 422 * This is like __mnt_want_write, but it takes a file and can 423 * do some optimisations if the file is open for write already 424 */ 425int __mnt_want_write_file(struct file *file) 426{ 427 if (!(file->f_mode & FMODE_WRITER)) 428 return __mnt_want_write(file->f_path.mnt); 429 else 430 return mnt_clone_write(file->f_path.mnt); 431} 432 433/** 434 * mnt_want_write_file - get write access to a file's mount 435 * @file: the file who's mount on which to take a write 436 * 437 * This is like mnt_want_write, but it takes a file and can 438 * do some optimisations if the file is open for write already 439 */ 440int mnt_want_write_file(struct file *file) 441{ 442 int ret; 443 444 sb_start_write(file->f_path.mnt->mnt_sb); 445 ret = __mnt_want_write_file(file); 446 if (ret) 447 sb_end_write(file->f_path.mnt->mnt_sb); 448 return ret; 449} 450EXPORT_SYMBOL_GPL(mnt_want_write_file); 451 452/** 453 * __mnt_drop_write - give up write access to a mount 454 * @mnt: the mount on which to give up write access 455 * 456 * Tells the low-level filesystem that we are done 457 * performing writes to it. Must be matched with 458 * __mnt_want_write() call above. 459 */ 460void __mnt_drop_write(struct vfsmount *mnt) 461{ 462 preempt_disable(); 463 mnt_dec_writers(real_mount(mnt)); 464 preempt_enable(); 465} 466 467/** 468 * mnt_drop_write - give up write access to a mount 469 * @mnt: the mount on which to give up write access 470 * 471 * Tells the low-level filesystem that we are done performing writes to it and 472 * also allows filesystem to be frozen again. Must be matched with 473 * mnt_want_write() call above. 474 */ 475void mnt_drop_write(struct vfsmount *mnt) 476{ 477 __mnt_drop_write(mnt); 478 sb_end_write(mnt->mnt_sb); 479} 480EXPORT_SYMBOL_GPL(mnt_drop_write); 481 482void __mnt_drop_write_file(struct file *file) 483{ 484 __mnt_drop_write(file->f_path.mnt); 485} 486 487void mnt_drop_write_file(struct file *file) 488{ 489 mnt_drop_write(file->f_path.mnt); 490} 491EXPORT_SYMBOL(mnt_drop_write_file); 492 493static int mnt_make_readonly(struct mount *mnt) 494{ 495 int ret = 0; 496 497 lock_mount_hash(); 498 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 499 /* 500 * After storing MNT_WRITE_HOLD, we'll read the counters. This store 501 * should be visible before we do. 502 */ 503 smp_mb(); 504 505 /* 506 * With writers on hold, if this value is zero, then there are 507 * definitely no active writers (although held writers may subsequently 508 * increment the count, they'll have to wait, and decrement it after 509 * seeing MNT_READONLY). 510 * 511 * It is OK to have counter incremented on one CPU and decremented on 512 * another: the sum will add up correctly. The danger would be when we 513 * sum up each counter, if we read a counter before it is incremented, 514 * but then read another CPU's count which it has been subsequently 515 * decremented from -- we would see more decrements than we should. 516 * MNT_WRITE_HOLD protects against this scenario, because 517 * mnt_want_write first increments count, then smp_mb, then spins on 518 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while 519 * we're counting up here. 520 */ 521 if (mnt_get_writers(mnt) > 0) 522 ret = -EBUSY; 523 else 524 mnt->mnt.mnt_flags |= MNT_READONLY; 525 /* 526 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers 527 * that become unheld will see MNT_READONLY. 528 */ 529 smp_wmb(); 530 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 531 unlock_mount_hash(); 532 return ret; 533} 534 535static void __mnt_unmake_readonly(struct mount *mnt) 536{ 537 lock_mount_hash(); 538 mnt->mnt.mnt_flags &= ~MNT_READONLY; 539 unlock_mount_hash(); 540} 541 542int sb_prepare_remount_readonly(struct super_block *sb) 543{ 544 struct mount *mnt; 545 int err = 0; 546 547 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */ 548 if (atomic_long_read(&sb->s_remove_count)) 549 return -EBUSY; 550 551 lock_mount_hash(); 552 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 553 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) { 554 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD; 555 smp_mb(); 556 if (mnt_get_writers(mnt) > 0) { 557 err = -EBUSY; 558 break; 559 } 560 } 561 } 562 if (!err && atomic_long_read(&sb->s_remove_count)) 563 err = -EBUSY; 564 565 if (!err) { 566 sb->s_readonly_remount = 1; 567 smp_wmb(); 568 } 569 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) { 570 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD) 571 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD; 572 } 573 unlock_mount_hash(); 574 575 return err; 576} 577 578static void free_vfsmnt(struct mount *mnt) 579{ 580 kfree_const(mnt->mnt_devname); 581#ifdef CONFIG_SMP 582 free_percpu(mnt->mnt_pcp); 583#endif 584 kmem_cache_free(mnt_cache, mnt); 585} 586 587static void delayed_free_vfsmnt(struct rcu_head *head) 588{ 589 free_vfsmnt(container_of(head, struct mount, mnt_rcu)); 590} 591 592/* call under rcu_read_lock */ 593bool legitimize_mnt(struct vfsmount *bastard, unsigned seq) 594{ 595 struct mount *mnt; 596 if (read_seqretry(&mount_lock, seq)) 597 return false; 598 if (bastard == NULL) 599 return true; 600 mnt = real_mount(bastard); 601 mnt_add_count(mnt, 1); 602 if (likely(!read_seqretry(&mount_lock, seq))) 603 return true; 604 if (bastard->mnt_flags & MNT_SYNC_UMOUNT) { 605 mnt_add_count(mnt, -1); 606 return false; 607 } 608 rcu_read_unlock(); 609 mntput(bastard); 610 rcu_read_lock(); 611 return false; 612} 613 614/* 615 * find the first mount at @dentry on vfsmount @mnt. 616 * call under rcu_read_lock() 617 */ 618struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry) 619{ 620 struct hlist_head *head = m_hash(mnt, dentry); 621 struct mount *p; 622 623 hlist_for_each_entry_rcu(p, head, mnt_hash) 624 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) 625 return p; 626 return NULL; 627} 628 629/* 630 * find the last mount at @dentry on vfsmount @mnt. 631 * mount_lock must be held. 632 */ 633struct mount *__lookup_mnt_last(struct vfsmount *mnt, struct dentry *dentry) 634{ 635 struct mount *p, *res = NULL; 636 p = __lookup_mnt(mnt, dentry); 637 if (!p) 638 goto out; 639 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 640 res = p; 641 hlist_for_each_entry_continue(p, mnt_hash) { 642 if (&p->mnt_parent->mnt != mnt || p->mnt_mountpoint != dentry) 643 break; 644 if (!(p->mnt.mnt_flags & MNT_UMOUNT)) 645 res = p; 646 } 647out: 648 return res; 649} 650 651/* 652 * lookup_mnt - Return the first child mount mounted at path 653 * 654 * "First" means first mounted chronologically. If you create the 655 * following mounts: 656 * 657 * mount /dev/sda1 /mnt 658 * mount /dev/sda2 /mnt 659 * mount /dev/sda3 /mnt 660 * 661 * Then lookup_mnt() on the base /mnt dentry in the root mount will 662 * return successively the root dentry and vfsmount of /dev/sda1, then 663 * /dev/sda2, then /dev/sda3, then NULL. 664 * 665 * lookup_mnt takes a reference to the found vfsmount. 666 */ 667struct vfsmount *lookup_mnt(struct path *path) 668{ 669 struct mount *child_mnt; 670 struct vfsmount *m; 671 unsigned seq; 672 673 rcu_read_lock(); 674 do { 675 seq = read_seqbegin(&mount_lock); 676 child_mnt = __lookup_mnt(path->mnt, path->dentry); 677 m = child_mnt ? &child_mnt->mnt : NULL; 678 } while (!legitimize_mnt(m, seq)); 679 rcu_read_unlock(); 680 return m; 681} 682 683/* 684 * __is_local_mountpoint - Test to see if dentry is a mountpoint in the 685 * current mount namespace. 686 * 687 * The common case is dentries are not mountpoints at all and that 688 * test is handled inline. For the slow case when we are actually 689 * dealing with a mountpoint of some kind, walk through all of the 690 * mounts in the current mount namespace and test to see if the dentry 691 * is a mountpoint. 692 * 693 * The mount_hashtable is not usable in the context because we 694 * need to identify all mounts that may be in the current mount 695 * namespace not just a mount that happens to have some specified 696 * parent mount. 697 */ 698bool __is_local_mountpoint(struct dentry *dentry) 699{ 700 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 701 struct mount *mnt; 702 bool is_covered = false; 703 704 if (!d_mountpoint(dentry)) 705 goto out; 706 707 down_read(&namespace_sem); 708 list_for_each_entry(mnt, &ns->list, mnt_list) { 709 is_covered = (mnt->mnt_mountpoint == dentry); 710 if (is_covered) 711 break; 712 } 713 up_read(&namespace_sem); 714out: 715 return is_covered; 716} 717 718static struct mountpoint *lookup_mountpoint(struct dentry *dentry) 719{ 720 struct hlist_head *chain = mp_hash(dentry); 721 struct mountpoint *mp; 722 723 hlist_for_each_entry(mp, chain, m_hash) { 724 if (mp->m_dentry == dentry) { 725 /* might be worth a WARN_ON() */ 726 if (d_unlinked(dentry)) 727 return ERR_PTR(-ENOENT); 728 mp->m_count++; 729 return mp; 730 } 731 } 732 return NULL; 733} 734 735static struct mountpoint *new_mountpoint(struct dentry *dentry) 736{ 737 struct hlist_head *chain = mp_hash(dentry); 738 struct mountpoint *mp; 739 int ret; 740 741 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL); 742 if (!mp) 743 return ERR_PTR(-ENOMEM); 744 745 ret = d_set_mounted(dentry); 746 if (ret) { 747 kfree(mp); 748 return ERR_PTR(ret); 749 } 750 751 mp->m_dentry = dentry; 752 mp->m_count = 1; 753 hlist_add_head(&mp->m_hash, chain); 754 INIT_HLIST_HEAD(&mp->m_list); 755 return mp; 756} 757 758static void put_mountpoint(struct mountpoint *mp) 759{ 760 if (!--mp->m_count) { 761 struct dentry *dentry = mp->m_dentry; 762 BUG_ON(!hlist_empty(&mp->m_list)); 763 spin_lock(&dentry->d_lock); 764 dentry->d_flags &= ~DCACHE_MOUNTED; 765 spin_unlock(&dentry->d_lock); 766 hlist_del(&mp->m_hash); 767 kfree(mp); 768 } 769} 770 771static inline int check_mnt(struct mount *mnt) 772{ 773 return mnt->mnt_ns == current->nsproxy->mnt_ns; 774} 775 776/* 777 * vfsmount lock must be held for write 778 */ 779static void touch_mnt_namespace(struct mnt_namespace *ns) 780{ 781 if (ns) { 782 ns->event = ++event; 783 wake_up_interruptible(&ns->poll); 784 } 785} 786 787/* 788 * vfsmount lock must be held for write 789 */ 790static void __touch_mnt_namespace(struct mnt_namespace *ns) 791{ 792 if (ns && ns->event != event) { 793 ns->event = event; 794 wake_up_interruptible(&ns->poll); 795 } 796} 797 798/* 799 * vfsmount lock must be held for write 800 */ 801static void unhash_mnt(struct mount *mnt) 802{ 803 mnt->mnt_parent = mnt; 804 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 805 list_del_init(&mnt->mnt_child); 806 hlist_del_init_rcu(&mnt->mnt_hash); 807 hlist_del_init(&mnt->mnt_mp_list); 808 put_mountpoint(mnt->mnt_mp); 809 mnt->mnt_mp = NULL; 810} 811 812/* 813 * vfsmount lock must be held for write 814 */ 815static void detach_mnt(struct mount *mnt, struct path *old_path) 816{ 817 old_path->dentry = mnt->mnt_mountpoint; 818 old_path->mnt = &mnt->mnt_parent->mnt; 819 unhash_mnt(mnt); 820} 821 822/* 823 * vfsmount lock must be held for write 824 */ 825static void umount_mnt(struct mount *mnt) 826{ 827 /* old mountpoint will be dropped when we can do that */ 828 mnt->mnt_ex_mountpoint = mnt->mnt_mountpoint; 829 unhash_mnt(mnt); 830} 831 832/* 833 * vfsmount lock must be held for write 834 */ 835void mnt_set_mountpoint(struct mount *mnt, 836 struct mountpoint *mp, 837 struct mount *child_mnt) 838{ 839 mp->m_count++; 840 mnt_add_count(mnt, 1); /* essentially, that's mntget */ 841 child_mnt->mnt_mountpoint = dget(mp->m_dentry); 842 child_mnt->mnt_parent = mnt; 843 child_mnt->mnt_mp = mp; 844 hlist_add_head(&child_mnt->mnt_mp_list, &mp->m_list); 845} 846 847/* 848 * vfsmount lock must be held for write 849 */ 850static void attach_mnt(struct mount *mnt, 851 struct mount *parent, 852 struct mountpoint *mp) 853{ 854 mnt_set_mountpoint(parent, mp, mnt); 855 hlist_add_head_rcu(&mnt->mnt_hash, m_hash(&parent->mnt, mp->m_dentry)); 856 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 857} 858 859static void attach_shadowed(struct mount *mnt, 860 struct mount *parent, 861 struct mount *shadows) 862{ 863 if (shadows) { 864 hlist_add_behind_rcu(&mnt->mnt_hash, &shadows->mnt_hash); 865 list_add(&mnt->mnt_child, &shadows->mnt_child); 866 } else { 867 hlist_add_head_rcu(&mnt->mnt_hash, 868 m_hash(&parent->mnt, mnt->mnt_mountpoint)); 869 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts); 870 } 871} 872 873/* 874 * vfsmount lock must be held for write 875 */ 876static void commit_tree(struct mount *mnt, struct mount *shadows) 877{ 878 struct mount *parent = mnt->mnt_parent; 879 struct mount *m; 880 LIST_HEAD(head); 881 struct mnt_namespace *n = parent->mnt_ns; 882 883 BUG_ON(parent == mnt); 884 885 list_add_tail(&head, &mnt->mnt_list); 886 list_for_each_entry(m, &head, mnt_list) 887 m->mnt_ns = n; 888 889 list_splice(&head, n->list.prev); 890 891 attach_shadowed(mnt, parent, shadows); 892 touch_mnt_namespace(n); 893} 894 895static struct mount *next_mnt(struct mount *p, struct mount *root) 896{ 897 struct list_head *next = p->mnt_mounts.next; 898 if (next == &p->mnt_mounts) { 899 while (1) { 900 if (p == root) 901 return NULL; 902 next = p->mnt_child.next; 903 if (next != &p->mnt_parent->mnt_mounts) 904 break; 905 p = p->mnt_parent; 906 } 907 } 908 return list_entry(next, struct mount, mnt_child); 909} 910 911static struct mount *skip_mnt_tree(struct mount *p) 912{ 913 struct list_head *prev = p->mnt_mounts.prev; 914 while (prev != &p->mnt_mounts) { 915 p = list_entry(prev, struct mount, mnt_child); 916 prev = p->mnt_mounts.prev; 917 } 918 return p; 919} 920 921struct vfsmount * 922vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data) 923{ 924 struct mount *mnt; 925 struct dentry *root; 926 927 if (!type) 928 return ERR_PTR(-ENODEV); 929 930 mnt = alloc_vfsmnt(name); 931 if (!mnt) 932 return ERR_PTR(-ENOMEM); 933 934 if (flags & MS_KERNMOUNT) 935 mnt->mnt.mnt_flags = MNT_INTERNAL; 936 937 root = mount_fs(type, flags, name, data); 938 if (IS_ERR(root)) { 939 mnt_free_id(mnt); 940 free_vfsmnt(mnt); 941 return ERR_CAST(root); 942 } 943 944 mnt->mnt.mnt_root = root; 945 mnt->mnt.mnt_sb = root->d_sb; 946 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 947 mnt->mnt_parent = mnt; 948 lock_mount_hash(); 949 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts); 950 unlock_mount_hash(); 951 return &mnt->mnt; 952} 953EXPORT_SYMBOL_GPL(vfs_kern_mount); 954 955static struct mount *clone_mnt(struct mount *old, struct dentry *root, 956 int flag) 957{ 958 struct super_block *sb = old->mnt.mnt_sb; 959 struct mount *mnt; 960 int err; 961 962 mnt = alloc_vfsmnt(old->mnt_devname); 963 if (!mnt) 964 return ERR_PTR(-ENOMEM); 965 966 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE)) 967 mnt->mnt_group_id = 0; /* not a peer of original */ 968 else 969 mnt->mnt_group_id = old->mnt_group_id; 970 971 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) { 972 err = mnt_alloc_group_id(mnt); 973 if (err) 974 goto out_free; 975 } 976 977 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~(MNT_WRITE_HOLD|MNT_MARKED); 978 /* Don't allow unprivileged users to change mount flags */ 979 if (flag & CL_UNPRIVILEGED) { 980 mnt->mnt.mnt_flags |= MNT_LOCK_ATIME; 981 982 if (mnt->mnt.mnt_flags & MNT_READONLY) 983 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY; 984 985 if (mnt->mnt.mnt_flags & MNT_NODEV) 986 mnt->mnt.mnt_flags |= MNT_LOCK_NODEV; 987 988 if (mnt->mnt.mnt_flags & MNT_NOSUID) 989 mnt->mnt.mnt_flags |= MNT_LOCK_NOSUID; 990 991 if (mnt->mnt.mnt_flags & MNT_NOEXEC) 992 mnt->mnt.mnt_flags |= MNT_LOCK_NOEXEC; 993 } 994 995 /* Don't allow unprivileged users to reveal what is under a mount */ 996 if ((flag & CL_UNPRIVILEGED) && 997 (!(flag & CL_EXPIRE) || list_empty(&old->mnt_expire))) 998 mnt->mnt.mnt_flags |= MNT_LOCKED; 999 1000 atomic_inc(&sb->s_active); 1001 mnt->mnt.mnt_sb = sb; 1002 mnt->mnt.mnt_root = dget(root); 1003 mnt->mnt_mountpoint = mnt->mnt.mnt_root; 1004 mnt->mnt_parent = mnt; 1005 lock_mount_hash(); 1006 list_add_tail(&mnt->mnt_instance, &sb->s_mounts); 1007 unlock_mount_hash(); 1008 1009 if ((flag & CL_SLAVE) || 1010 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) { 1011 list_add(&mnt->mnt_slave, &old->mnt_slave_list); 1012 mnt->mnt_master = old; 1013 CLEAR_MNT_SHARED(mnt); 1014 } else if (!(flag & CL_PRIVATE)) { 1015 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old)) 1016 list_add(&mnt->mnt_share, &old->mnt_share); 1017 if (IS_MNT_SLAVE(old)) 1018 list_add(&mnt->mnt_slave, &old->mnt_slave); 1019 mnt->mnt_master = old->mnt_master; 1020 } 1021 if (flag & CL_MAKE_SHARED) 1022 set_mnt_shared(mnt); 1023 1024 /* stick the duplicate mount on the same expiry list 1025 * as the original if that was on one */ 1026 if (flag & CL_EXPIRE) { 1027 if (!list_empty(&old->mnt_expire)) 1028 list_add(&mnt->mnt_expire, &old->mnt_expire); 1029 } 1030 1031 return mnt; 1032 1033 out_free: 1034 mnt_free_id(mnt); 1035 free_vfsmnt(mnt); 1036 return ERR_PTR(err); 1037} 1038 1039static void cleanup_mnt(struct mount *mnt) 1040{ 1041 /* 1042 * This probably indicates that somebody messed 1043 * up a mnt_want/drop_write() pair. If this 1044 * happens, the filesystem was probably unable 1045 * to make r/w->r/o transitions. 1046 */ 1047 /* 1048 * The locking used to deal with mnt_count decrement provides barriers, 1049 * so mnt_get_writers() below is safe. 1050 */ 1051 WARN_ON(mnt_get_writers(mnt)); 1052 if (unlikely(mnt->mnt_pins.first)) 1053 mnt_pin_kill(mnt); 1054 fsnotify_vfsmount_delete(&mnt->mnt); 1055 dput(mnt->mnt.mnt_root); 1056 deactivate_super(mnt->mnt.mnt_sb); 1057 mnt_free_id(mnt); 1058 call_rcu(&mnt->mnt_rcu, delayed_free_vfsmnt); 1059} 1060 1061static void __cleanup_mnt(struct rcu_head *head) 1062{ 1063 cleanup_mnt(container_of(head, struct mount, mnt_rcu)); 1064} 1065 1066static LLIST_HEAD(delayed_mntput_list); 1067static void delayed_mntput(struct work_struct *unused) 1068{ 1069 struct llist_node *node = llist_del_all(&delayed_mntput_list); 1070 struct llist_node *next; 1071 1072 for (; node; node = next) { 1073 next = llist_next(node); 1074 cleanup_mnt(llist_entry(node, struct mount, mnt_llist)); 1075 } 1076} 1077static DECLARE_DELAYED_WORK(delayed_mntput_work, delayed_mntput); 1078 1079static void mntput_no_expire(struct mount *mnt) 1080{ 1081 rcu_read_lock(); 1082 mnt_add_count(mnt, -1); 1083 if (likely(mnt->mnt_ns)) { /* shouldn't be the last one */ 1084 rcu_read_unlock(); 1085 return; 1086 } 1087 lock_mount_hash(); 1088 if (mnt_get_count(mnt)) { 1089 rcu_read_unlock(); 1090 unlock_mount_hash(); 1091 return; 1092 } 1093 if (unlikely(mnt->mnt.mnt_flags & MNT_DOOMED)) { 1094 rcu_read_unlock(); 1095 unlock_mount_hash(); 1096 return; 1097 } 1098 mnt->mnt.mnt_flags |= MNT_DOOMED; 1099 rcu_read_unlock(); 1100 1101 list_del(&mnt->mnt_instance); 1102 1103 if (unlikely(!list_empty(&mnt->mnt_mounts))) { 1104 struct mount *p, *tmp; 1105 list_for_each_entry_safe(p, tmp, &mnt->mnt_mounts, mnt_child) { 1106 umount_mnt(p); 1107 } 1108 } 1109 unlock_mount_hash(); 1110 1111 if (likely(!(mnt->mnt.mnt_flags & MNT_INTERNAL))) { 1112 struct task_struct *task = current; 1113 if (likely(!(task->flags & PF_KTHREAD))) { 1114 init_task_work(&mnt->mnt_rcu, __cleanup_mnt); 1115 if (!task_work_add(task, &mnt->mnt_rcu, true)) 1116 return; 1117 } 1118 if (llist_add(&mnt->mnt_llist, &delayed_mntput_list)) 1119 schedule_delayed_work(&delayed_mntput_work, 1); 1120 return; 1121 } 1122 cleanup_mnt(mnt); 1123} 1124 1125void mntput(struct vfsmount *mnt) 1126{ 1127 if (mnt) { 1128 struct mount *m = real_mount(mnt); 1129 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */ 1130 if (unlikely(m->mnt_expiry_mark)) 1131 m->mnt_expiry_mark = 0; 1132 mntput_no_expire(m); 1133 } 1134} 1135EXPORT_SYMBOL(mntput); 1136 1137struct vfsmount *mntget(struct vfsmount *mnt) 1138{ 1139 if (mnt) 1140 mnt_add_count(real_mount(mnt), 1); 1141 return mnt; 1142} 1143EXPORT_SYMBOL(mntget); 1144 1145struct vfsmount *mnt_clone_internal(struct path *path) 1146{ 1147 struct mount *p; 1148 p = clone_mnt(real_mount(path->mnt), path->dentry, CL_PRIVATE); 1149 if (IS_ERR(p)) 1150 return ERR_CAST(p); 1151 p->mnt.mnt_flags |= MNT_INTERNAL; 1152 return &p->mnt; 1153} 1154 1155static inline void mangle(struct seq_file *m, const char *s) 1156{ 1157 seq_escape(m, s, " \t\n\\"); 1158} 1159 1160/* 1161 * Simple .show_options callback for filesystems which don't want to 1162 * implement more complex mount option showing. 1163 * 1164 * See also save_mount_options(). 1165 */ 1166int generic_show_options(struct seq_file *m, struct dentry *root) 1167{ 1168 const char *options; 1169 1170 rcu_read_lock(); 1171 options = rcu_dereference(root->d_sb->s_options); 1172 1173 if (options != NULL && options[0]) { 1174 seq_putc(m, ','); 1175 mangle(m, options); 1176 } 1177 rcu_read_unlock(); 1178 1179 return 0; 1180} 1181EXPORT_SYMBOL(generic_show_options); 1182 1183/* 1184 * If filesystem uses generic_show_options(), this function should be 1185 * called from the fill_super() callback. 1186 * 1187 * The .remount_fs callback usually needs to be handled in a special 1188 * way, to make sure, that previous options are not overwritten if the 1189 * remount fails. 1190 * 1191 * Also note, that if the filesystem's .remount_fs function doesn't 1192 * reset all options to their default value, but changes only newly 1193 * given options, then the displayed options will not reflect reality 1194 * any more. 1195 */ 1196void save_mount_options(struct super_block *sb, char *options) 1197{ 1198 BUG_ON(sb->s_options); 1199 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL)); 1200} 1201EXPORT_SYMBOL(save_mount_options); 1202 1203void replace_mount_options(struct super_block *sb, char *options) 1204{ 1205 char *old = sb->s_options; 1206 rcu_assign_pointer(sb->s_options, options); 1207 if (old) { 1208 synchronize_rcu(); 1209 kfree(old); 1210 } 1211} 1212EXPORT_SYMBOL(replace_mount_options); 1213 1214#ifdef CONFIG_PROC_FS 1215/* iterator; we want it to have access to namespace_sem, thus here... */ 1216static void *m_start(struct seq_file *m, loff_t *pos) 1217{ 1218 struct proc_mounts *p = proc_mounts(m); 1219 1220 down_read(&namespace_sem); 1221 if (p->cached_event == p->ns->event) { 1222 void *v = p->cached_mount; 1223 if (*pos == p->cached_index) 1224 return v; 1225 if (*pos == p->cached_index + 1) { 1226 v = seq_list_next(v, &p->ns->list, &p->cached_index); 1227 return p->cached_mount = v; 1228 } 1229 } 1230 1231 p->cached_event = p->ns->event; 1232 p->cached_mount = seq_list_start(&p->ns->list, *pos); 1233 p->cached_index = *pos; 1234 return p->cached_mount; 1235} 1236 1237static void *m_next(struct seq_file *m, void *v, loff_t *pos) 1238{ 1239 struct proc_mounts *p = proc_mounts(m); 1240 1241 p->cached_mount = seq_list_next(v, &p->ns->list, pos); 1242 p->cached_index = *pos; 1243 return p->cached_mount; 1244} 1245 1246static void m_stop(struct seq_file *m, void *v) 1247{ 1248 up_read(&namespace_sem); 1249} 1250 1251static int m_show(struct seq_file *m, void *v) 1252{ 1253 struct proc_mounts *p = proc_mounts(m); 1254 struct mount *r = list_entry(v, struct mount, mnt_list); 1255 return p->show(m, &r->mnt); 1256} 1257 1258const struct seq_operations mounts_op = { 1259 .start = m_start, 1260 .next = m_next, 1261 .stop = m_stop, 1262 .show = m_show, 1263}; 1264#endif /* CONFIG_PROC_FS */ 1265 1266/** 1267 * may_umount_tree - check if a mount tree is busy 1268 * @mnt: root of mount tree 1269 * 1270 * This is called to check if a tree of mounts has any 1271 * open files, pwds, chroots or sub mounts that are 1272 * busy. 1273 */ 1274int may_umount_tree(struct vfsmount *m) 1275{ 1276 struct mount *mnt = real_mount(m); 1277 int actual_refs = 0; 1278 int minimum_refs = 0; 1279 struct mount *p; 1280 BUG_ON(!m); 1281 1282 /* write lock needed for mnt_get_count */ 1283 lock_mount_hash(); 1284 for (p = mnt; p; p = next_mnt(p, mnt)) { 1285 actual_refs += mnt_get_count(p); 1286 minimum_refs += 2; 1287 } 1288 unlock_mount_hash(); 1289 1290 if (actual_refs > minimum_refs) 1291 return 0; 1292 1293 return 1; 1294} 1295 1296EXPORT_SYMBOL(may_umount_tree); 1297 1298/** 1299 * may_umount - check if a mount point is busy 1300 * @mnt: root of mount 1301 * 1302 * This is called to check if a mount point has any 1303 * open files, pwds, chroots or sub mounts. If the 1304 * mount has sub mounts this will return busy 1305 * regardless of whether the sub mounts are busy. 1306 * 1307 * Doesn't take quota and stuff into account. IOW, in some cases it will 1308 * give false negatives. The main reason why it's here is that we need 1309 * a non-destructive way to look for easily umountable filesystems. 1310 */ 1311int may_umount(struct vfsmount *mnt) 1312{ 1313 int ret = 1; 1314 down_read(&namespace_sem); 1315 lock_mount_hash(); 1316 if (propagate_mount_busy(real_mount(mnt), 2)) 1317 ret = 0; 1318 unlock_mount_hash(); 1319 up_read(&namespace_sem); 1320 return ret; 1321} 1322 1323EXPORT_SYMBOL(may_umount); 1324 1325static HLIST_HEAD(unmounted); /* protected by namespace_sem */ 1326 1327static void namespace_unlock(void) 1328{ 1329 struct hlist_head head; 1330 1331 hlist_move_list(&unmounted, &head); 1332 1333 up_write(&namespace_sem); 1334 1335 if (likely(hlist_empty(&head))) 1336 return; 1337 1338 synchronize_rcu(); 1339 1340 group_pin_kill(&head); 1341} 1342 1343static inline void namespace_lock(void) 1344{ 1345 down_write(&namespace_sem); 1346} 1347 1348enum umount_tree_flags { 1349 UMOUNT_SYNC = 1, 1350 UMOUNT_PROPAGATE = 2, 1351 UMOUNT_CONNECTED = 4, 1352}; 1353 1354static bool disconnect_mount(struct mount *mnt, enum umount_tree_flags how) 1355{ 1356 /* Leaving mounts connected is only valid for lazy umounts */ 1357 if (how & UMOUNT_SYNC) 1358 return true; 1359 1360 /* A mount without a parent has nothing to be connected to */ 1361 if (!mnt_has_parent(mnt)) 1362 return true; 1363 1364 /* Because the reference counting rules change when mounts are 1365 * unmounted and connected, umounted mounts may not be 1366 * connected to mounted mounts. 1367 */ 1368 if (!(mnt->mnt_parent->mnt.mnt_flags & MNT_UMOUNT)) 1369 return true; 1370 1371 /* Has it been requested that the mount remain connected? */ 1372 if (how & UMOUNT_CONNECTED) 1373 return false; 1374 1375 /* Is the mount locked such that it needs to remain connected? */ 1376 if (IS_MNT_LOCKED(mnt)) 1377 return false; 1378 1379 /* By default disconnect the mount */ 1380 return true; 1381} 1382 1383/* 1384 * mount_lock must be held 1385 * namespace_sem must be held for write 1386 */ 1387static void umount_tree(struct mount *mnt, enum umount_tree_flags how) 1388{ 1389 LIST_HEAD(tmp_list); 1390 struct mount *p; 1391 1392 if (how & UMOUNT_PROPAGATE) 1393 propagate_mount_unlock(mnt); 1394 1395 /* Gather the mounts to umount */ 1396 for (p = mnt; p; p = next_mnt(p, mnt)) { 1397 p->mnt.mnt_flags |= MNT_UMOUNT; 1398 list_move(&p->mnt_list, &tmp_list); 1399 } 1400 1401 /* Hide the mounts from mnt_mounts */ 1402 list_for_each_entry(p, &tmp_list, mnt_list) { 1403 list_del_init(&p->mnt_child); 1404 } 1405 1406 /* Add propogated mounts to the tmp_list */ 1407 if (how & UMOUNT_PROPAGATE) 1408 propagate_umount(&tmp_list); 1409 1410 while (!list_empty(&tmp_list)) { 1411 bool disconnect; 1412 p = list_first_entry(&tmp_list, struct mount, mnt_list); 1413 list_del_init(&p->mnt_expire); 1414 list_del_init(&p->mnt_list); 1415 __touch_mnt_namespace(p->mnt_ns); 1416 p->mnt_ns = NULL; 1417 if (how & UMOUNT_SYNC) 1418 p->mnt.mnt_flags |= MNT_SYNC_UMOUNT; 1419 1420 disconnect = disconnect_mount(p, how); 1421 1422 pin_insert_group(&p->mnt_umount, &p->mnt_parent->mnt, 1423 disconnect ? &unmounted : NULL); 1424 if (mnt_has_parent(p)) { 1425 mnt_add_count(p->mnt_parent, -1); 1426 if (!disconnect) { 1427 /* Don't forget about p */ 1428 list_add_tail(&p->mnt_child, &p->mnt_parent->mnt_mounts); 1429 } else { 1430 umount_mnt(p); 1431 } 1432 } 1433 change_mnt_propagation(p, MS_PRIVATE); 1434 } 1435} 1436 1437static void shrink_submounts(struct mount *mnt); 1438 1439static int do_umount(struct mount *mnt, int flags) 1440{ 1441 struct super_block *sb = mnt->mnt.mnt_sb; 1442 int retval; 1443 1444 retval = security_sb_umount(&mnt->mnt, flags); 1445 if (retval) 1446 return retval; 1447 1448 /* 1449 * Allow userspace to request a mountpoint be expired rather than 1450 * unmounting unconditionally. Unmount only happens if: 1451 * (1) the mark is already set (the mark is cleared by mntput()) 1452 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount] 1453 */ 1454 if (flags & MNT_EXPIRE) { 1455 if (&mnt->mnt == current->fs->root.mnt || 1456 flags & (MNT_FORCE | MNT_DETACH)) 1457 return -EINVAL; 1458 1459 /* 1460 * probably don't strictly need the lock here if we examined 1461 * all race cases, but it's a slowpath. 1462 */ 1463 lock_mount_hash(); 1464 if (mnt_get_count(mnt) != 2) { 1465 unlock_mount_hash(); 1466 return -EBUSY; 1467 } 1468 unlock_mount_hash(); 1469 1470 if (!xchg(&mnt->mnt_expiry_mark, 1)) 1471 return -EAGAIN; 1472 } 1473 1474 /* 1475 * If we may have to abort operations to get out of this 1476 * mount, and they will themselves hold resources we must 1477 * allow the fs to do things. In the Unix tradition of 1478 * 'Gee thats tricky lets do it in userspace' the umount_begin 1479 * might fail to complete on the first run through as other tasks 1480 * must return, and the like. Thats for the mount program to worry 1481 * about for the moment. 1482 */ 1483 1484 if (flags & MNT_FORCE && sb->s_op->umount_begin) { 1485 sb->s_op->umount_begin(sb); 1486 } 1487 1488 /* 1489 * No sense to grab the lock for this test, but test itself looks 1490 * somewhat bogus. Suggestions for better replacement? 1491 * Ho-hum... In principle, we might treat that as umount + switch 1492 * to rootfs. GC would eventually take care of the old vfsmount. 1493 * Actually it makes sense, especially if rootfs would contain a 1494 * /reboot - static binary that would close all descriptors and 1495 * call reboot(9). Then init(8) could umount root and exec /reboot. 1496 */ 1497 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) { 1498 /* 1499 * Special case for "unmounting" root ... 1500 * we just try to remount it readonly. 1501 */ 1502 if (!capable(CAP_SYS_ADMIN)) 1503 return -EPERM; 1504 down_write(&sb->s_umount); 1505 if (!(sb->s_flags & MS_RDONLY)) 1506 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0); 1507 up_write(&sb->s_umount); 1508 return retval; 1509 } 1510 1511 namespace_lock(); 1512 lock_mount_hash(); 1513 event++; 1514 1515 if (flags & MNT_DETACH) { 1516 if (!list_empty(&mnt->mnt_list)) 1517 umount_tree(mnt, UMOUNT_PROPAGATE); 1518 retval = 0; 1519 } else { 1520 shrink_submounts(mnt); 1521 retval = -EBUSY; 1522 if (!propagate_mount_busy(mnt, 2)) { 1523 if (!list_empty(&mnt->mnt_list)) 1524 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 1525 retval = 0; 1526 } 1527 } 1528 unlock_mount_hash(); 1529 namespace_unlock(); 1530 return retval; 1531} 1532 1533/* 1534 * __detach_mounts - lazily unmount all mounts on the specified dentry 1535 * 1536 * During unlink, rmdir, and d_drop it is possible to loose the path 1537 * to an existing mountpoint, and wind up leaking the mount. 1538 * detach_mounts allows lazily unmounting those mounts instead of 1539 * leaking them. 1540 * 1541 * The caller may hold dentry->d_inode->i_mutex. 1542 */ 1543void __detach_mounts(struct dentry *dentry) 1544{ 1545 struct mountpoint *mp; 1546 struct mount *mnt; 1547 1548 namespace_lock(); 1549 mp = lookup_mountpoint(dentry); 1550 if (IS_ERR_OR_NULL(mp)) 1551 goto out_unlock; 1552 1553 lock_mount_hash(); 1554 while (!hlist_empty(&mp->m_list)) { 1555 mnt = hlist_entry(mp->m_list.first, struct mount, mnt_mp_list); 1556 if (mnt->mnt.mnt_flags & MNT_UMOUNT) { 1557 hlist_add_head(&mnt->mnt_umount.s_list, &unmounted); 1558 umount_mnt(mnt); 1559 } 1560 else umount_tree(mnt, UMOUNT_CONNECTED); 1561 } 1562 unlock_mount_hash(); 1563 put_mountpoint(mp); 1564out_unlock: 1565 namespace_unlock(); 1566} 1567 1568/* 1569 * Is the caller allowed to modify his namespace? 1570 */ 1571static inline bool may_mount(void) 1572{ 1573 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN); 1574} 1575 1576/* 1577 * Now umount can handle mount points as well as block devices. 1578 * This is important for filesystems which use unnamed block devices. 1579 * 1580 * We now support a flag for forced unmount like the other 'big iron' 1581 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD 1582 */ 1583 1584SYSCALL_DEFINE2(umount, char __user *, name, int, flags) 1585{ 1586 struct path path; 1587 struct mount *mnt; 1588 int retval; 1589 int lookup_flags = 0; 1590 1591 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW)) 1592 return -EINVAL; 1593 1594 if (!may_mount()) 1595 return -EPERM; 1596 1597 if (!(flags & UMOUNT_NOFOLLOW)) 1598 lookup_flags |= LOOKUP_FOLLOW; 1599 1600 retval = user_path_mountpoint_at(AT_FDCWD, name, lookup_flags, &path); 1601 if (retval) 1602 goto out; 1603 mnt = real_mount(path.mnt); 1604 retval = -EINVAL; 1605 if (path.dentry != path.mnt->mnt_root) 1606 goto dput_and_out; 1607 if (!check_mnt(mnt)) 1608 goto dput_and_out; 1609 if (mnt->mnt.mnt_flags & MNT_LOCKED) 1610 goto dput_and_out; 1611 retval = -EPERM; 1612 if (flags & MNT_FORCE && !capable(CAP_SYS_ADMIN)) 1613 goto dput_and_out; 1614 1615 retval = do_umount(mnt, flags); 1616dput_and_out: 1617 /* we mustn't call path_put() as that would clear mnt_expiry_mark */ 1618 dput(path.dentry); 1619 mntput_no_expire(mnt); 1620out: 1621 return retval; 1622} 1623 1624#ifdef __ARCH_WANT_SYS_OLDUMOUNT 1625 1626/* 1627 * The 2.0 compatible umount. No flags. 1628 */ 1629SYSCALL_DEFINE1(oldumount, char __user *, name) 1630{ 1631 return sys_umount(name, 0); 1632} 1633 1634#endif 1635 1636static bool is_mnt_ns_file(struct dentry *dentry) 1637{ 1638 /* Is this a proxy for a mount namespace? */ 1639 return dentry->d_op == &ns_dentry_operations && 1640 dentry->d_fsdata == &mntns_operations; 1641} 1642 1643struct mnt_namespace *to_mnt_ns(struct ns_common *ns) 1644{ 1645 return container_of(ns, struct mnt_namespace, ns); 1646} 1647 1648static bool mnt_ns_loop(struct dentry *dentry) 1649{ 1650 /* Could bind mounting the mount namespace inode cause a 1651 * mount namespace loop? 1652 */ 1653 struct mnt_namespace *mnt_ns; 1654 if (!is_mnt_ns_file(dentry)) 1655 return false; 1656 1657 mnt_ns = to_mnt_ns(get_proc_ns(dentry->d_inode)); 1658 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq; 1659} 1660 1661struct mount *copy_tree(struct mount *mnt, struct dentry *dentry, 1662 int flag) 1663{ 1664 struct mount *res, *p, *q, *r, *parent; 1665 1666 if (!(flag & CL_COPY_UNBINDABLE) && IS_MNT_UNBINDABLE(mnt)) 1667 return ERR_PTR(-EINVAL); 1668 1669 if (!(flag & CL_COPY_MNT_NS_FILE) && is_mnt_ns_file(dentry)) 1670 return ERR_PTR(-EINVAL); 1671 1672 res = q = clone_mnt(mnt, dentry, flag); 1673 if (IS_ERR(q)) 1674 return q; 1675 1676 q->mnt_mountpoint = mnt->mnt_mountpoint; 1677 1678 p = mnt; 1679 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) { 1680 struct mount *s; 1681 if (!is_subdir(r->mnt_mountpoint, dentry)) 1682 continue; 1683 1684 for (s = r; s; s = next_mnt(s, r)) { 1685 struct mount *t = NULL; 1686 if (!(flag & CL_COPY_UNBINDABLE) && 1687 IS_MNT_UNBINDABLE(s)) { 1688 s = skip_mnt_tree(s); 1689 continue; 1690 } 1691 if (!(flag & CL_COPY_MNT_NS_FILE) && 1692 is_mnt_ns_file(s->mnt.mnt_root)) { 1693 s = skip_mnt_tree(s); 1694 continue; 1695 } 1696 while (p != s->mnt_parent) { 1697 p = p->mnt_parent; 1698 q = q->mnt_parent; 1699 } 1700 p = s; 1701 parent = q; 1702 q = clone_mnt(p, p->mnt.mnt_root, flag); 1703 if (IS_ERR(q)) 1704 goto out; 1705 lock_mount_hash(); 1706 list_add_tail(&q->mnt_list, &res->mnt_list); 1707 mnt_set_mountpoint(parent, p->mnt_mp, q); 1708 if (!list_empty(&parent->mnt_mounts)) { 1709 t = list_last_entry(&parent->mnt_mounts, 1710 struct mount, mnt_child); 1711 if (t->mnt_mp != p->mnt_mp) 1712 t = NULL; 1713 } 1714 attach_shadowed(q, parent, t); 1715 unlock_mount_hash(); 1716 } 1717 } 1718 return res; 1719out: 1720 if (res) { 1721 lock_mount_hash(); 1722 umount_tree(res, UMOUNT_SYNC); 1723 unlock_mount_hash(); 1724 } 1725 return q; 1726} 1727 1728/* Caller should check returned pointer for errors */ 1729 1730struct vfsmount *collect_mounts(struct path *path) 1731{ 1732 struct mount *tree; 1733 namespace_lock(); 1734 if (!check_mnt(real_mount(path->mnt))) 1735 tree = ERR_PTR(-EINVAL); 1736 else 1737 tree = copy_tree(real_mount(path->mnt), path->dentry, 1738 CL_COPY_ALL | CL_PRIVATE); 1739 namespace_unlock(); 1740 if (IS_ERR(tree)) 1741 return ERR_CAST(tree); 1742 return &tree->mnt; 1743} 1744 1745void drop_collected_mounts(struct vfsmount *mnt) 1746{ 1747 namespace_lock(); 1748 lock_mount_hash(); 1749 umount_tree(real_mount(mnt), UMOUNT_SYNC); 1750 unlock_mount_hash(); 1751 namespace_unlock(); 1752} 1753 1754/** 1755 * clone_private_mount - create a private clone of a path 1756 * 1757 * This creates a new vfsmount, which will be the clone of @path. The new will 1758 * not be attached anywhere in the namespace and will be private (i.e. changes 1759 * to the originating mount won't be propagated into this). 1760 * 1761 * Release with mntput(). 1762 */ 1763struct vfsmount *clone_private_mount(struct path *path) 1764{ 1765 struct mount *old_mnt = real_mount(path->mnt); 1766 struct mount *new_mnt; 1767 1768 if (IS_MNT_UNBINDABLE(old_mnt)) 1769 return ERR_PTR(-EINVAL); 1770 1771 down_read(&namespace_sem); 1772 new_mnt = clone_mnt(old_mnt, path->dentry, CL_PRIVATE); 1773 up_read(&namespace_sem); 1774 if (IS_ERR(new_mnt)) 1775 return ERR_CAST(new_mnt); 1776 1777 return &new_mnt->mnt; 1778} 1779EXPORT_SYMBOL_GPL(clone_private_mount); 1780 1781int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg, 1782 struct vfsmount *root) 1783{ 1784 struct mount *mnt; 1785 int res = f(root, arg); 1786 if (res) 1787 return res; 1788 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) { 1789 res = f(&mnt->mnt, arg); 1790 if (res) 1791 return res; 1792 } 1793 return 0; 1794} 1795 1796static void cleanup_group_ids(struct mount *mnt, struct mount *end) 1797{ 1798 struct mount *p; 1799 1800 for (p = mnt; p != end; p = next_mnt(p, mnt)) { 1801 if (p->mnt_group_id && !IS_MNT_SHARED(p)) 1802 mnt_release_group_id(p); 1803 } 1804} 1805 1806static int invent_group_ids(struct mount *mnt, bool recurse) 1807{ 1808 struct mount *p; 1809 1810 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) { 1811 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) { 1812 int err = mnt_alloc_group_id(p); 1813 if (err) { 1814 cleanup_group_ids(mnt, p); 1815 return err; 1816 } 1817 } 1818 } 1819 1820 return 0; 1821} 1822 1823/* 1824 * @source_mnt : mount tree to be attached 1825 * @nd : place the mount tree @source_mnt is attached 1826 * @parent_nd : if non-null, detach the source_mnt from its parent and 1827 * store the parent mount and mountpoint dentry. 1828 * (done when source_mnt is moved) 1829 * 1830 * NOTE: in the table below explains the semantics when a source mount 1831 * of a given type is attached to a destination mount of a given type. 1832 * --------------------------------------------------------------------------- 1833 * | BIND MOUNT OPERATION | 1834 * |************************************************************************** 1835 * | source-->| shared | private | slave | unbindable | 1836 * | dest | | | | | 1837 * | | | | | | | 1838 * | v | | | | | 1839 * |************************************************************************** 1840 * | shared | shared (++) | shared (+) | shared(+++)| invalid | 1841 * | | | | | | 1842 * |non-shared| shared (+) | private | slave (*) | invalid | 1843 * *************************************************************************** 1844 * A bind operation clones the source mount and mounts the clone on the 1845 * destination mount. 1846 * 1847 * (++) the cloned mount is propagated to all the mounts in the propagation 1848 * tree of the destination mount and the cloned mount is added to 1849 * the peer group of the source mount. 1850 * (+) the cloned mount is created under the destination mount and is marked 1851 * as shared. The cloned mount is added to the peer group of the source 1852 * mount. 1853 * (+++) the mount is propagated to all the mounts in the propagation tree 1854 * of the destination mount and the cloned mount is made slave 1855 * of the same master as that of the source mount. The cloned mount 1856 * is marked as 'shared and slave'. 1857 * (*) the cloned mount is made a slave of the same master as that of the 1858 * source mount. 1859 * 1860 * --------------------------------------------------------------------------- 1861 * | MOVE MOUNT OPERATION | 1862 * |************************************************************************** 1863 * | source-->| shared | private | slave | unbindable | 1864 * | dest | | | | | 1865 * | | | | | | | 1866 * | v | | | | | 1867 * |************************************************************************** 1868 * | shared | shared (+) | shared (+) | shared(+++) | invalid | 1869 * | | | | | | 1870 * |non-shared| shared (+*) | private | slave (*) | unbindable | 1871 * *************************************************************************** 1872 * 1873 * (+) the mount is moved to the destination. And is then propagated to 1874 * all the mounts in the propagation tree of the destination mount. 1875 * (+*) the mount is moved to the destination. 1876 * (+++) the mount is moved to the destination and is then propagated to 1877 * all the mounts belonging to the destination mount's propagation tree. 1878 * the mount is marked as 'shared and slave'. 1879 * (*) the mount continues to be a slave at the new location. 1880 * 1881 * if the source mount is a tree, the operations explained above is 1882 * applied to each mount in the tree. 1883 * Must be called without spinlocks held, since this function can sleep 1884 * in allocations. 1885 */ 1886static int attach_recursive_mnt(struct mount *source_mnt, 1887 struct mount *dest_mnt, 1888 struct mountpoint *dest_mp, 1889 struct path *parent_path) 1890{ 1891 HLIST_HEAD(tree_list); 1892 struct mount *child, *p; 1893 struct hlist_node *n; 1894 int err; 1895 1896 if (IS_MNT_SHARED(dest_mnt)) { 1897 err = invent_group_ids(source_mnt, true); 1898 if (err) 1899 goto out; 1900 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list); 1901 lock_mount_hash(); 1902 if (err) 1903 goto out_cleanup_ids; 1904 for (p = source_mnt; p; p = next_mnt(p, source_mnt)) 1905 set_mnt_shared(p); 1906 } else { 1907 lock_mount_hash(); 1908 } 1909 if (parent_path) { 1910 detach_mnt(source_mnt, parent_path); 1911 attach_mnt(source_mnt, dest_mnt, dest_mp); 1912 touch_mnt_namespace(source_mnt->mnt_ns); 1913 } else { 1914 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt); 1915 commit_tree(source_mnt, NULL); 1916 } 1917 1918 hlist_for_each_entry_safe(child, n, &tree_list, mnt_hash) { 1919 struct mount *q; 1920 hlist_del_init(&child->mnt_hash); 1921 q = __lookup_mnt_last(&child->mnt_parent->mnt, 1922 child->mnt_mountpoint); 1923 commit_tree(child, q); 1924 } 1925 unlock_mount_hash(); 1926 1927 return 0; 1928 1929 out_cleanup_ids: 1930 while (!hlist_empty(&tree_list)) { 1931 child = hlist_entry(tree_list.first, struct mount, mnt_hash); 1932 umount_tree(child, UMOUNT_SYNC); 1933 } 1934 unlock_mount_hash(); 1935 cleanup_group_ids(source_mnt, NULL); 1936 out: 1937 return err; 1938} 1939 1940static struct mountpoint *lock_mount(struct path *path) 1941{ 1942 struct vfsmount *mnt; 1943 struct dentry *dentry = path->dentry; 1944retry: 1945 mutex_lock(&dentry->d_inode->i_mutex); 1946 if (unlikely(cant_mount(dentry))) { 1947 mutex_unlock(&dentry->d_inode->i_mutex); 1948 return ERR_PTR(-ENOENT); 1949 } 1950 namespace_lock(); 1951 mnt = lookup_mnt(path); 1952 if (likely(!mnt)) { 1953 struct mountpoint *mp = lookup_mountpoint(dentry); 1954 if (!mp) 1955 mp = new_mountpoint(dentry); 1956 if (IS_ERR(mp)) { 1957 namespace_unlock(); 1958 mutex_unlock(&dentry->d_inode->i_mutex); 1959 return mp; 1960 } 1961 return mp; 1962 } 1963 namespace_unlock(); 1964 mutex_unlock(&path->dentry->d_inode->i_mutex); 1965 path_put(path); 1966 path->mnt = mnt; 1967 dentry = path->dentry = dget(mnt->mnt_root); 1968 goto retry; 1969} 1970 1971static void unlock_mount(struct mountpoint *where) 1972{ 1973 struct dentry *dentry = where->m_dentry; 1974 put_mountpoint(where); 1975 namespace_unlock(); 1976 mutex_unlock(&dentry->d_inode->i_mutex); 1977} 1978 1979static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp) 1980{ 1981 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER) 1982 return -EINVAL; 1983 1984 if (d_is_dir(mp->m_dentry) != 1985 d_is_dir(mnt->mnt.mnt_root)) 1986 return -ENOTDIR; 1987 1988 return attach_recursive_mnt(mnt, p, mp, NULL); 1989} 1990 1991/* 1992 * Sanity check the flags to change_mnt_propagation. 1993 */ 1994 1995static int flags_to_propagation_type(int flags) 1996{ 1997 int type = flags & ~(MS_REC | MS_SILENT); 1998 1999 /* Fail if any non-propagation flags are set */ 2000 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2001 return 0; 2002 /* Only one propagation flag should be set */ 2003 if (!is_power_of_2(type)) 2004 return 0; 2005 return type; 2006} 2007 2008/* 2009 * recursively change the type of the mountpoint. 2010 */ 2011static int do_change_type(struct path *path, int flag) 2012{ 2013 struct mount *m; 2014 struct mount *mnt = real_mount(path->mnt); 2015 int recurse = flag & MS_REC; 2016 int type; 2017 int err = 0; 2018 2019 if (path->dentry != path->mnt->mnt_root) 2020 return -EINVAL; 2021 2022 type = flags_to_propagation_type(flag); 2023 if (!type) 2024 return -EINVAL; 2025 2026 namespace_lock(); 2027 if (type == MS_SHARED) { 2028 err = invent_group_ids(mnt, recurse); 2029 if (err) 2030 goto out_unlock; 2031 } 2032 2033 lock_mount_hash(); 2034 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL)) 2035 change_mnt_propagation(m, type); 2036 unlock_mount_hash(); 2037 2038 out_unlock: 2039 namespace_unlock(); 2040 return err; 2041} 2042 2043static bool has_locked_children(struct mount *mnt, struct dentry *dentry) 2044{ 2045 struct mount *child; 2046 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 2047 if (!is_subdir(child->mnt_mountpoint, dentry)) 2048 continue; 2049 2050 if (child->mnt.mnt_flags & MNT_LOCKED) 2051 return true; 2052 } 2053 return false; 2054} 2055 2056/* 2057 * do loopback mount. 2058 */ 2059static int do_loopback(struct path *path, const char *old_name, 2060 int recurse) 2061{ 2062 struct path old_path; 2063 struct mount *mnt = NULL, *old, *parent; 2064 struct mountpoint *mp; 2065 int err; 2066 if (!old_name || !*old_name) 2067 return -EINVAL; 2068 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path); 2069 if (err) 2070 return err; 2071 2072 err = -EINVAL; 2073 if (mnt_ns_loop(old_path.dentry)) 2074 goto out; 2075 2076 mp = lock_mount(path); 2077 err = PTR_ERR(mp); 2078 if (IS_ERR(mp)) 2079 goto out; 2080 2081 old = real_mount(old_path.mnt); 2082 parent = real_mount(path->mnt); 2083 2084 err = -EINVAL; 2085 if (IS_MNT_UNBINDABLE(old)) 2086 goto out2; 2087 2088 if (!check_mnt(parent)) 2089 goto out2; 2090 2091 if (!check_mnt(old) && old_path.dentry->d_op != &ns_dentry_operations) 2092 goto out2; 2093 2094 if (!recurse && has_locked_children(old, old_path.dentry)) 2095 goto out2; 2096 2097 if (recurse) 2098 mnt = copy_tree(old, old_path.dentry, CL_COPY_MNT_NS_FILE); 2099 else 2100 mnt = clone_mnt(old, old_path.dentry, 0); 2101 2102 if (IS_ERR(mnt)) { 2103 err = PTR_ERR(mnt); 2104 goto out2; 2105 } 2106 2107 mnt->mnt.mnt_flags &= ~MNT_LOCKED; 2108 2109 err = graft_tree(mnt, parent, mp); 2110 if (err) { 2111 lock_mount_hash(); 2112 umount_tree(mnt, UMOUNT_SYNC); 2113 unlock_mount_hash(); 2114 } 2115out2: 2116 unlock_mount(mp); 2117out: 2118 path_put(&old_path); 2119 return err; 2120} 2121 2122static int change_mount_flags(struct vfsmount *mnt, int ms_flags) 2123{ 2124 int error = 0; 2125 int readonly_request = 0; 2126 2127 if (ms_flags & MS_RDONLY) 2128 readonly_request = 1; 2129 if (readonly_request == __mnt_is_readonly(mnt)) 2130 return 0; 2131 2132 if (readonly_request) 2133 error = mnt_make_readonly(real_mount(mnt)); 2134 else 2135 __mnt_unmake_readonly(real_mount(mnt)); 2136 return error; 2137} 2138 2139/* 2140 * change filesystem flags. dir should be a physical root of filesystem. 2141 * If you've mounted a non-root directory somewhere and want to do remount 2142 * on it - tough luck. 2143 */ 2144static int do_remount(struct path *path, int flags, int mnt_flags, 2145 void *data) 2146{ 2147 int err; 2148 struct super_block *sb = path->mnt->mnt_sb; 2149 struct mount *mnt = real_mount(path->mnt); 2150 2151 if (!check_mnt(mnt)) 2152 return -EINVAL; 2153 2154 if (path->dentry != path->mnt->mnt_root) 2155 return -EINVAL; 2156 2157 /* Don't allow changing of locked mnt flags. 2158 * 2159 * No locks need to be held here while testing the various 2160 * MNT_LOCK flags because those flags can never be cleared 2161 * once they are set. 2162 */ 2163 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 2164 !(mnt_flags & MNT_READONLY)) { 2165 return -EPERM; 2166 } 2167 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 2168 !(mnt_flags & MNT_NODEV)) { 2169 /* Was the nodev implicitly added in mount? */ 2170 if ((mnt->mnt_ns->user_ns != &init_user_ns) && 2171 !(sb->s_type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2172 mnt_flags |= MNT_NODEV; 2173 } else { 2174 return -EPERM; 2175 } 2176 } 2177 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOSUID) && 2178 !(mnt_flags & MNT_NOSUID)) { 2179 return -EPERM; 2180 } 2181 if ((mnt->mnt.mnt_flags & MNT_LOCK_NOEXEC) && 2182 !(mnt_flags & MNT_NOEXEC)) { 2183 return -EPERM; 2184 } 2185 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 2186 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (mnt_flags & MNT_ATIME_MASK))) { 2187 return -EPERM; 2188 } 2189 2190 err = security_sb_remount(sb, data); 2191 if (err) 2192 return err; 2193 2194 down_write(&sb->s_umount); 2195 if (flags & MS_BIND) 2196 err = change_mount_flags(path->mnt, flags); 2197 else if (!capable(CAP_SYS_ADMIN)) 2198 err = -EPERM; 2199 else 2200 err = do_remount_sb(sb, flags, data, 0); 2201 if (!err) { 2202 lock_mount_hash(); 2203 mnt_flags |= mnt->mnt.mnt_flags & ~MNT_USER_SETTABLE_MASK; 2204 mnt->mnt.mnt_flags = mnt_flags; 2205 touch_mnt_namespace(mnt->mnt_ns); 2206 unlock_mount_hash(); 2207 } 2208 up_write(&sb->s_umount); 2209 return err; 2210} 2211 2212static inline int tree_contains_unbindable(struct mount *mnt) 2213{ 2214 struct mount *p; 2215 for (p = mnt; p; p = next_mnt(p, mnt)) { 2216 if (IS_MNT_UNBINDABLE(p)) 2217 return 1; 2218 } 2219 return 0; 2220} 2221 2222static int do_move_mount(struct path *path, const char *old_name) 2223{ 2224 struct path old_path, parent_path; 2225 struct mount *p; 2226 struct mount *old; 2227 struct mountpoint *mp; 2228 int err; 2229 if (!old_name || !*old_name) 2230 return -EINVAL; 2231 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path); 2232 if (err) 2233 return err; 2234 2235 mp = lock_mount(path); 2236 err = PTR_ERR(mp); 2237 if (IS_ERR(mp)) 2238 goto out; 2239 2240 old = real_mount(old_path.mnt); 2241 p = real_mount(path->mnt); 2242 2243 err = -EINVAL; 2244 if (!check_mnt(p) || !check_mnt(old)) 2245 goto out1; 2246 2247 if (old->mnt.mnt_flags & MNT_LOCKED) 2248 goto out1; 2249 2250 err = -EINVAL; 2251 if (old_path.dentry != old_path.mnt->mnt_root) 2252 goto out1; 2253 2254 if (!mnt_has_parent(old)) 2255 goto out1; 2256 2257 if (d_is_dir(path->dentry) != 2258 d_is_dir(old_path.dentry)) 2259 goto out1; 2260 /* 2261 * Don't move a mount residing in a shared parent. 2262 */ 2263 if (IS_MNT_SHARED(old->mnt_parent)) 2264 goto out1; 2265 /* 2266 * Don't move a mount tree containing unbindable mounts to a destination 2267 * mount which is shared. 2268 */ 2269 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old)) 2270 goto out1; 2271 err = -ELOOP; 2272 for (; mnt_has_parent(p); p = p->mnt_parent) 2273 if (p == old) 2274 goto out1; 2275 2276 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path); 2277 if (err) 2278 goto out1; 2279 2280 /* if the mount is moved, it should no longer be expire 2281 * automatically */ 2282 list_del_init(&old->mnt_expire); 2283out1: 2284 unlock_mount(mp); 2285out: 2286 if (!err) 2287 path_put(&parent_path); 2288 path_put(&old_path); 2289 return err; 2290} 2291 2292static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype) 2293{ 2294 int err; 2295 const char *subtype = strchr(fstype, '.'); 2296 if (subtype) { 2297 subtype++; 2298 err = -EINVAL; 2299 if (!subtype[0]) 2300 goto err; 2301 } else 2302 subtype = ""; 2303 2304 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL); 2305 err = -ENOMEM; 2306 if (!mnt->mnt_sb->s_subtype) 2307 goto err; 2308 return mnt; 2309 2310 err: 2311 mntput(mnt); 2312 return ERR_PTR(err); 2313} 2314 2315/* 2316 * add a mount into a namespace's mount tree 2317 */ 2318static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags) 2319{ 2320 struct mountpoint *mp; 2321 struct mount *parent; 2322 int err; 2323 2324 mnt_flags &= ~MNT_INTERNAL_FLAGS; 2325 2326 mp = lock_mount(path); 2327 if (IS_ERR(mp)) 2328 return PTR_ERR(mp); 2329 2330 parent = real_mount(path->mnt); 2331 err = -EINVAL; 2332 if (unlikely(!check_mnt(parent))) { 2333 /* that's acceptable only for automounts done in private ns */ 2334 if (!(mnt_flags & MNT_SHRINKABLE)) 2335 goto unlock; 2336 /* ... and for those we'd better have mountpoint still alive */ 2337 if (!parent->mnt_ns) 2338 goto unlock; 2339 } 2340 2341 /* Refuse the same filesystem on the same mount point */ 2342 err = -EBUSY; 2343 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb && 2344 path->mnt->mnt_root == path->dentry) 2345 goto unlock; 2346 2347 err = -EINVAL; 2348 if (d_is_symlink(newmnt->mnt.mnt_root)) 2349 goto unlock; 2350 2351 newmnt->mnt.mnt_flags = mnt_flags; 2352 err = graft_tree(newmnt, parent, mp); 2353 2354unlock: 2355 unlock_mount(mp); 2356 return err; 2357} 2358 2359static bool fs_fully_visible(struct file_system_type *fs_type, int *new_mnt_flags); 2360 2361/* 2362 * create a new mount for userspace and request it to be added into the 2363 * namespace's tree 2364 */ 2365static int do_new_mount(struct path *path, const char *fstype, int flags, 2366 int mnt_flags, const char *name, void *data) 2367{ 2368 struct file_system_type *type; 2369 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns; 2370 struct vfsmount *mnt; 2371 int err; 2372 2373 if (!fstype) 2374 return -EINVAL; 2375 2376 type = get_fs_type(fstype); 2377 if (!type) 2378 return -ENODEV; 2379 2380 if (user_ns != &init_user_ns) { 2381 if (!(type->fs_flags & FS_USERNS_MOUNT)) { 2382 put_filesystem(type); 2383 return -EPERM; 2384 } 2385 /* Only in special cases allow devices from mounts 2386 * created outside the initial user namespace. 2387 */ 2388 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) { 2389 flags |= MS_NODEV; 2390 mnt_flags |= MNT_NODEV | MNT_LOCK_NODEV; 2391 } 2392 if (type->fs_flags & FS_USERNS_VISIBLE) { 2393 if (!fs_fully_visible(type, &mnt_flags)) { 2394 put_filesystem(type); 2395 return -EPERM; 2396 } 2397 } 2398 } 2399 2400 mnt = vfs_kern_mount(type, flags, name, data); 2401 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) && 2402 !mnt->mnt_sb->s_subtype) 2403 mnt = fs_set_subtype(mnt, fstype); 2404 2405 put_filesystem(type); 2406 if (IS_ERR(mnt)) 2407 return PTR_ERR(mnt); 2408 2409 err = do_add_mount(real_mount(mnt), path, mnt_flags); 2410 if (err) 2411 mntput(mnt); 2412 return err; 2413} 2414 2415int finish_automount(struct vfsmount *m, struct path *path) 2416{ 2417 struct mount *mnt = real_mount(m); 2418 int err; 2419 /* The new mount record should have at least 2 refs to prevent it being 2420 * expired before we get a chance to add it 2421 */ 2422 BUG_ON(mnt_get_count(mnt) < 2); 2423 2424 if (m->mnt_sb == path->mnt->mnt_sb && 2425 m->mnt_root == path->dentry) { 2426 err = -ELOOP; 2427 goto fail; 2428 } 2429 2430 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE); 2431 if (!err) 2432 return 0; 2433fail: 2434 /* remove m from any expiration list it may be on */ 2435 if (!list_empty(&mnt->mnt_expire)) { 2436 namespace_lock(); 2437 list_del_init(&mnt->mnt_expire); 2438 namespace_unlock(); 2439 } 2440 mntput(m); 2441 mntput(m); 2442 return err; 2443} 2444 2445/** 2446 * mnt_set_expiry - Put a mount on an expiration list 2447 * @mnt: The mount to list. 2448 * @expiry_list: The list to add the mount to. 2449 */ 2450void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list) 2451{ 2452 namespace_lock(); 2453 2454 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list); 2455 2456 namespace_unlock(); 2457} 2458EXPORT_SYMBOL(mnt_set_expiry); 2459 2460/* 2461 * process a list of expirable mountpoints with the intent of discarding any 2462 * mountpoints that aren't in use and haven't been touched since last we came 2463 * here 2464 */ 2465void mark_mounts_for_expiry(struct list_head *mounts) 2466{ 2467 struct mount *mnt, *next; 2468 LIST_HEAD(graveyard); 2469 2470 if (list_empty(mounts)) 2471 return; 2472 2473 namespace_lock(); 2474 lock_mount_hash(); 2475 2476 /* extract from the expiration list every vfsmount that matches the 2477 * following criteria: 2478 * - only referenced by its parent vfsmount 2479 * - still marked for expiry (marked on the last call here; marks are 2480 * cleared by mntput()) 2481 */ 2482 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) { 2483 if (!xchg(&mnt->mnt_expiry_mark, 1) || 2484 propagate_mount_busy(mnt, 1)) 2485 continue; 2486 list_move(&mnt->mnt_expire, &graveyard); 2487 } 2488 while (!list_empty(&graveyard)) { 2489 mnt = list_first_entry(&graveyard, struct mount, mnt_expire); 2490 touch_mnt_namespace(mnt->mnt_ns); 2491 umount_tree(mnt, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2492 } 2493 unlock_mount_hash(); 2494 namespace_unlock(); 2495} 2496 2497EXPORT_SYMBOL_GPL(mark_mounts_for_expiry); 2498 2499/* 2500 * Ripoff of 'select_parent()' 2501 * 2502 * search the list of submounts for a given mountpoint, and move any 2503 * shrinkable submounts to the 'graveyard' list. 2504 */ 2505static int select_submounts(struct mount *parent, struct list_head *graveyard) 2506{ 2507 struct mount *this_parent = parent; 2508 struct list_head *next; 2509 int found = 0; 2510 2511repeat: 2512 next = this_parent->mnt_mounts.next; 2513resume: 2514 while (next != &this_parent->mnt_mounts) { 2515 struct list_head *tmp = next; 2516 struct mount *mnt = list_entry(tmp, struct mount, mnt_child); 2517 2518 next = tmp->next; 2519 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE)) 2520 continue; 2521 /* 2522 * Descend a level if the d_mounts list is non-empty. 2523 */ 2524 if (!list_empty(&mnt->mnt_mounts)) { 2525 this_parent = mnt; 2526 goto repeat; 2527 } 2528 2529 if (!propagate_mount_busy(mnt, 1)) { 2530 list_move_tail(&mnt->mnt_expire, graveyard); 2531 found++; 2532 } 2533 } 2534 /* 2535 * All done at this level ... ascend and resume the search 2536 */ 2537 if (this_parent != parent) { 2538 next = this_parent->mnt_child.next; 2539 this_parent = this_parent->mnt_parent; 2540 goto resume; 2541 } 2542 return found; 2543} 2544 2545/* 2546 * process a list of expirable mountpoints with the intent of discarding any 2547 * submounts of a specific parent mountpoint 2548 * 2549 * mount_lock must be held for write 2550 */ 2551static void shrink_submounts(struct mount *mnt) 2552{ 2553 LIST_HEAD(graveyard); 2554 struct mount *m; 2555 2556 /* extract submounts of 'mountpoint' from the expiration list */ 2557 while (select_submounts(mnt, &graveyard)) { 2558 while (!list_empty(&graveyard)) { 2559 m = list_first_entry(&graveyard, struct mount, 2560 mnt_expire); 2561 touch_mnt_namespace(m->mnt_ns); 2562 umount_tree(m, UMOUNT_PROPAGATE|UMOUNT_SYNC); 2563 } 2564 } 2565} 2566 2567/* 2568 * Some copy_from_user() implementations do not return the exact number of 2569 * bytes remaining to copy on a fault. But copy_mount_options() requires that. 2570 * Note that this function differs from copy_from_user() in that it will oops 2571 * on bad values of `to', rather than returning a short copy. 2572 */ 2573static long exact_copy_from_user(void *to, const void __user * from, 2574 unsigned long n) 2575{ 2576 char *t = to; 2577 const char __user *f = from; 2578 char c; 2579 2580 if (!access_ok(VERIFY_READ, from, n)) 2581 return n; 2582 2583 while (n) { 2584 if (__get_user(c, f)) { 2585 memset(t, 0, n); 2586 break; 2587 } 2588 *t++ = c; 2589 f++; 2590 n--; 2591 } 2592 return n; 2593} 2594 2595int copy_mount_options(const void __user * data, unsigned long *where) 2596{ 2597 int i; 2598 unsigned long page; 2599 unsigned long size; 2600 2601 *where = 0; 2602 if (!data) 2603 return 0; 2604 2605 if (!(page = __get_free_page(GFP_KERNEL))) 2606 return -ENOMEM; 2607 2608 /* We only care that *some* data at the address the user 2609 * gave us is valid. Just in case, we'll zero 2610 * the remainder of the page. 2611 */ 2612 /* copy_from_user cannot cross TASK_SIZE ! */ 2613 size = TASK_SIZE - (unsigned long)data; 2614 if (size > PAGE_SIZE) 2615 size = PAGE_SIZE; 2616 2617 i = size - exact_copy_from_user((void *)page, data, size); 2618 if (!i) { 2619 free_page(page); 2620 return -EFAULT; 2621 } 2622 if (i != PAGE_SIZE) 2623 memset((char *)page + i, 0, PAGE_SIZE - i); 2624 *where = page; 2625 return 0; 2626} 2627 2628char *copy_mount_string(const void __user *data) 2629{ 2630 return data ? strndup_user(data, PAGE_SIZE) : NULL; 2631} 2632 2633/* 2634 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to 2635 * be given to the mount() call (ie: read-only, no-dev, no-suid etc). 2636 * 2637 * data is a (void *) that can point to any structure up to 2638 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent 2639 * information (or be NULL). 2640 * 2641 * Pre-0.97 versions of mount() didn't have a flags word. 2642 * When the flags word was introduced its top half was required 2643 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9. 2644 * Therefore, if this magic number is present, it carries no information 2645 * and must be discarded. 2646 */ 2647long do_mount(const char *dev_name, const char __user *dir_name, 2648 const char *type_page, unsigned long flags, void *data_page) 2649{ 2650 struct path path; 2651 int retval = 0; 2652 int mnt_flags = 0; 2653 2654 /* Discard magic */ 2655 if ((flags & MS_MGC_MSK) == MS_MGC_VAL) 2656 flags &= ~MS_MGC_MSK; 2657 2658 /* Basic sanity checks */ 2659 if (data_page) 2660 ((char *)data_page)[PAGE_SIZE - 1] = 0; 2661 2662 /* ... and get the mountpoint */ 2663 retval = user_path(dir_name, &path); 2664 if (retval) 2665 return retval; 2666 2667 retval = security_sb_mount(dev_name, &path, 2668 type_page, flags, data_page); 2669 if (!retval && !may_mount()) 2670 retval = -EPERM; 2671 if (retval) 2672 goto dput_out; 2673 2674 /* Default to relatime unless overriden */ 2675 if (!(flags & MS_NOATIME)) 2676 mnt_flags |= MNT_RELATIME; 2677 2678 /* Separate the per-mountpoint flags */ 2679 if (flags & MS_NOSUID) 2680 mnt_flags |= MNT_NOSUID; 2681 if (flags & MS_NODEV) 2682 mnt_flags |= MNT_NODEV; 2683 if (flags & MS_NOEXEC) 2684 mnt_flags |= MNT_NOEXEC; 2685 if (flags & MS_NOATIME) 2686 mnt_flags |= MNT_NOATIME; 2687 if (flags & MS_NODIRATIME) 2688 mnt_flags |= MNT_NODIRATIME; 2689 if (flags & MS_STRICTATIME) 2690 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME); 2691 if (flags & MS_RDONLY) 2692 mnt_flags |= MNT_READONLY; 2693 2694 /* The default atime for remount is preservation */ 2695 if ((flags & MS_REMOUNT) && 2696 ((flags & (MS_NOATIME | MS_NODIRATIME | MS_RELATIME | 2697 MS_STRICTATIME)) == 0)) { 2698 mnt_flags &= ~MNT_ATIME_MASK; 2699 mnt_flags |= path.mnt->mnt_flags & MNT_ATIME_MASK; 2700 } 2701 2702 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN | 2703 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT | 2704 MS_STRICTATIME); 2705 2706 if (flags & MS_REMOUNT) 2707 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags, 2708 data_page); 2709 else if (flags & MS_BIND) 2710 retval = do_loopback(&path, dev_name, flags & MS_REC); 2711 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE)) 2712 retval = do_change_type(&path, flags); 2713 else if (flags & MS_MOVE) 2714 retval = do_move_mount(&path, dev_name); 2715 else 2716 retval = do_new_mount(&path, type_page, flags, mnt_flags, 2717 dev_name, data_page); 2718dput_out: 2719 path_put(&path); 2720 return retval; 2721} 2722 2723static void free_mnt_ns(struct mnt_namespace *ns) 2724{ 2725 ns_free_inum(&ns->ns); 2726 put_user_ns(ns->user_ns); 2727 kfree(ns); 2728} 2729 2730/* 2731 * Assign a sequence number so we can detect when we attempt to bind 2732 * mount a reference to an older mount namespace into the current 2733 * mount namespace, preventing reference counting loops. A 64bit 2734 * number incrementing at 10Ghz will take 12,427 years to wrap which 2735 * is effectively never, so we can ignore the possibility. 2736 */ 2737static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1); 2738 2739static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns) 2740{ 2741 struct mnt_namespace *new_ns; 2742 int ret; 2743 2744 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL); 2745 if (!new_ns) 2746 return ERR_PTR(-ENOMEM); 2747 ret = ns_alloc_inum(&new_ns->ns); 2748 if (ret) { 2749 kfree(new_ns); 2750 return ERR_PTR(ret); 2751 } 2752 new_ns->ns.ops = &mntns_operations; 2753 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq); 2754 atomic_set(&new_ns->count, 1); 2755 new_ns->root = NULL; 2756 INIT_LIST_HEAD(&new_ns->list); 2757 init_waitqueue_head(&new_ns->poll); 2758 new_ns->event = 0; 2759 new_ns->user_ns = get_user_ns(user_ns); 2760 return new_ns; 2761} 2762 2763struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns, 2764 struct user_namespace *user_ns, struct fs_struct *new_fs) 2765{ 2766 struct mnt_namespace *new_ns; 2767 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL; 2768 struct mount *p, *q; 2769 struct mount *old; 2770 struct mount *new; 2771 int copy_flags; 2772 2773 BUG_ON(!ns); 2774 2775 if (likely(!(flags & CLONE_NEWNS))) { 2776 get_mnt_ns(ns); 2777 return ns; 2778 } 2779 2780 old = ns->root; 2781 2782 new_ns = alloc_mnt_ns(user_ns); 2783 if (IS_ERR(new_ns)) 2784 return new_ns; 2785 2786 namespace_lock(); 2787 /* First pass: copy the tree topology */ 2788 copy_flags = CL_COPY_UNBINDABLE | CL_EXPIRE; 2789 if (user_ns != ns->user_ns) 2790 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED; 2791 new = copy_tree(old, old->mnt.mnt_root, copy_flags); 2792 if (IS_ERR(new)) { 2793 namespace_unlock(); 2794 free_mnt_ns(new_ns); 2795 return ERR_CAST(new); 2796 } 2797 new_ns->root = new; 2798 list_add_tail(&new_ns->list, &new->mnt_list); 2799 2800 /* 2801 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts 2802 * as belonging to new namespace. We have already acquired a private 2803 * fs_struct, so tsk->fs->lock is not needed. 2804 */ 2805 p = old; 2806 q = new; 2807 while (p) { 2808 q->mnt_ns = new_ns; 2809 if (new_fs) { 2810 if (&p->mnt == new_fs->root.mnt) { 2811 new_fs->root.mnt = mntget(&q->mnt); 2812 rootmnt = &p->mnt; 2813 } 2814 if (&p->mnt == new_fs->pwd.mnt) { 2815 new_fs->pwd.mnt = mntget(&q->mnt); 2816 pwdmnt = &p->mnt; 2817 } 2818 } 2819 p = next_mnt(p, old); 2820 q = next_mnt(q, new); 2821 if (!q) 2822 break; 2823 while (p->mnt.mnt_root != q->mnt.mnt_root) 2824 p = next_mnt(p, old); 2825 } 2826 namespace_unlock(); 2827 2828 if (rootmnt) 2829 mntput(rootmnt); 2830 if (pwdmnt) 2831 mntput(pwdmnt); 2832 2833 return new_ns; 2834} 2835 2836/** 2837 * create_mnt_ns - creates a private namespace and adds a root filesystem 2838 * @mnt: pointer to the new root filesystem mountpoint 2839 */ 2840static struct mnt_namespace *create_mnt_ns(struct vfsmount *m) 2841{ 2842 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns); 2843 if (!IS_ERR(new_ns)) { 2844 struct mount *mnt = real_mount(m); 2845 mnt->mnt_ns = new_ns; 2846 new_ns->root = mnt; 2847 list_add(&mnt->mnt_list, &new_ns->list); 2848 } else { 2849 mntput(m); 2850 } 2851 return new_ns; 2852} 2853 2854struct dentry *mount_subtree(struct vfsmount *mnt, const char *name) 2855{ 2856 struct mnt_namespace *ns; 2857 struct super_block *s; 2858 struct path path; 2859 int err; 2860 2861 ns = create_mnt_ns(mnt); 2862 if (IS_ERR(ns)) 2863 return ERR_CAST(ns); 2864 2865 err = vfs_path_lookup(mnt->mnt_root, mnt, 2866 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path); 2867 2868 put_mnt_ns(ns); 2869 2870 if (err) 2871 return ERR_PTR(err); 2872 2873 /* trade a vfsmount reference for active sb one */ 2874 s = path.mnt->mnt_sb; 2875 atomic_inc(&s->s_active); 2876 mntput(path.mnt); 2877 /* lock the sucker */ 2878 down_write(&s->s_umount); 2879 /* ... and return the root of (sub)tree on it */ 2880 return path.dentry; 2881} 2882EXPORT_SYMBOL(mount_subtree); 2883 2884SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name, 2885 char __user *, type, unsigned long, flags, void __user *, data) 2886{ 2887 int ret; 2888 char *kernel_type; 2889 char *kernel_dev; 2890 unsigned long data_page; 2891 2892 kernel_type = copy_mount_string(type); 2893 ret = PTR_ERR(kernel_type); 2894 if (IS_ERR(kernel_type)) 2895 goto out_type; 2896 2897 kernel_dev = copy_mount_string(dev_name); 2898 ret = PTR_ERR(kernel_dev); 2899 if (IS_ERR(kernel_dev)) 2900 goto out_dev; 2901 2902 ret = copy_mount_options(data, &data_page); 2903 if (ret < 0) 2904 goto out_data; 2905 2906 ret = do_mount(kernel_dev, dir_name, kernel_type, flags, 2907 (void *) data_page); 2908 2909 free_page(data_page); 2910out_data: 2911 kfree(kernel_dev); 2912out_dev: 2913 kfree(kernel_type); 2914out_type: 2915 return ret; 2916} 2917 2918/* 2919 * Return true if path is reachable from root 2920 * 2921 * namespace_sem or mount_lock is held 2922 */ 2923bool is_path_reachable(struct mount *mnt, struct dentry *dentry, 2924 const struct path *root) 2925{ 2926 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) { 2927 dentry = mnt->mnt_mountpoint; 2928 mnt = mnt->mnt_parent; 2929 } 2930 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry); 2931} 2932 2933int path_is_under(struct path *path1, struct path *path2) 2934{ 2935 int res; 2936 read_seqlock_excl(&mount_lock); 2937 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2); 2938 read_sequnlock_excl(&mount_lock); 2939 return res; 2940} 2941EXPORT_SYMBOL(path_is_under); 2942 2943/* 2944 * pivot_root Semantics: 2945 * Moves the root file system of the current process to the directory put_old, 2946 * makes new_root as the new root file system of the current process, and sets 2947 * root/cwd of all processes which had them on the current root to new_root. 2948 * 2949 * Restrictions: 2950 * The new_root and put_old must be directories, and must not be on the 2951 * same file system as the current process root. The put_old must be 2952 * underneath new_root, i.e. adding a non-zero number of /.. to the string 2953 * pointed to by put_old must yield the same directory as new_root. No other 2954 * file system may be mounted on put_old. After all, new_root is a mountpoint. 2955 * 2956 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem. 2957 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives 2958 * in this situation. 2959 * 2960 * Notes: 2961 * - we don't move root/cwd if they are not at the root (reason: if something 2962 * cared enough to change them, it's probably wrong to force them elsewhere) 2963 * - it's okay to pick a root that isn't the root of a file system, e.g. 2964 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint, 2965 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root 2966 * first. 2967 */ 2968SYSCALL_DEFINE2(pivot_root, const char __user *, new_root, 2969 const char __user *, put_old) 2970{ 2971 struct path new, old, parent_path, root_parent, root; 2972 struct mount *new_mnt, *root_mnt, *old_mnt; 2973 struct mountpoint *old_mp, *root_mp; 2974 int error; 2975 2976 if (!may_mount()) 2977 return -EPERM; 2978 2979 error = user_path_dir(new_root, &new); 2980 if (error) 2981 goto out0; 2982 2983 error = user_path_dir(put_old, &old); 2984 if (error) 2985 goto out1; 2986 2987 error = security_sb_pivotroot(&old, &new); 2988 if (error) 2989 goto out2; 2990 2991 get_fs_root(current->fs, &root); 2992 old_mp = lock_mount(&old); 2993 error = PTR_ERR(old_mp); 2994 if (IS_ERR(old_mp)) 2995 goto out3; 2996 2997 error = -EINVAL; 2998 new_mnt = real_mount(new.mnt); 2999 root_mnt = real_mount(root.mnt); 3000 old_mnt = real_mount(old.mnt); 3001 if (IS_MNT_SHARED(old_mnt) || 3002 IS_MNT_SHARED(new_mnt->mnt_parent) || 3003 IS_MNT_SHARED(root_mnt->mnt_parent)) 3004 goto out4; 3005 if (!check_mnt(root_mnt) || !check_mnt(new_mnt)) 3006 goto out4; 3007 if (new_mnt->mnt.mnt_flags & MNT_LOCKED) 3008 goto out4; 3009 error = -ENOENT; 3010 if (d_unlinked(new.dentry)) 3011 goto out4; 3012 error = -EBUSY; 3013 if (new_mnt == root_mnt || old_mnt == root_mnt) 3014 goto out4; /* loop, on the same file system */ 3015 error = -EINVAL; 3016 if (root.mnt->mnt_root != root.dentry) 3017 goto out4; /* not a mountpoint */ 3018 if (!mnt_has_parent(root_mnt)) 3019 goto out4; /* not attached */ 3020 root_mp = root_mnt->mnt_mp; 3021 if (new.mnt->mnt_root != new.dentry) 3022 goto out4; /* not a mountpoint */ 3023 if (!mnt_has_parent(new_mnt)) 3024 goto out4; /* not attached */ 3025 /* make sure we can reach put_old from new_root */ 3026 if (!is_path_reachable(old_mnt, old.dentry, &new)) 3027 goto out4; 3028 /* make certain new is below the root */ 3029 if (!is_path_reachable(new_mnt, new.dentry, &root)) 3030 goto out4; 3031 root_mp->m_count++; /* pin it so it won't go away */ 3032 lock_mount_hash(); 3033 detach_mnt(new_mnt, &parent_path); 3034 detach_mnt(root_mnt, &root_parent); 3035 if (root_mnt->mnt.mnt_flags & MNT_LOCKED) { 3036 new_mnt->mnt.mnt_flags |= MNT_LOCKED; 3037 root_mnt->mnt.mnt_flags &= ~MNT_LOCKED; 3038 } 3039 /* mount old root on put_old */ 3040 attach_mnt(root_mnt, old_mnt, old_mp); 3041 /* mount new_root on / */ 3042 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp); 3043 touch_mnt_namespace(current->nsproxy->mnt_ns); 3044 /* A moved mount should not expire automatically */ 3045 list_del_init(&new_mnt->mnt_expire); 3046 unlock_mount_hash(); 3047 chroot_fs_refs(&root, &new); 3048 put_mountpoint(root_mp); 3049 error = 0; 3050out4: 3051 unlock_mount(old_mp); 3052 if (!error) { 3053 path_put(&root_parent); 3054 path_put(&parent_path); 3055 } 3056out3: 3057 path_put(&root); 3058out2: 3059 path_put(&old); 3060out1: 3061 path_put(&new); 3062out0: 3063 return error; 3064} 3065 3066static void __init init_mount_tree(void) 3067{ 3068 struct vfsmount *mnt; 3069 struct mnt_namespace *ns; 3070 struct path root; 3071 struct file_system_type *type; 3072 3073 type = get_fs_type("rootfs"); 3074 if (!type) 3075 panic("Can't find rootfs type"); 3076 mnt = vfs_kern_mount(type, 0, "rootfs", NULL); 3077 put_filesystem(type); 3078 if (IS_ERR(mnt)) 3079 panic("Can't create rootfs"); 3080 3081 ns = create_mnt_ns(mnt); 3082 if (IS_ERR(ns)) 3083 panic("Can't allocate initial namespace"); 3084 3085 init_task.nsproxy->mnt_ns = ns; 3086 get_mnt_ns(ns); 3087 3088 root.mnt = mnt; 3089 root.dentry = mnt->mnt_root; 3090 mnt->mnt_flags |= MNT_LOCKED; 3091 3092 set_fs_pwd(current->fs, &root); 3093 set_fs_root(current->fs, &root); 3094} 3095 3096void __init mnt_init(void) 3097{ 3098 unsigned u; 3099 int err; 3100 3101 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount), 3102 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL); 3103 3104 mount_hashtable = alloc_large_system_hash("Mount-cache", 3105 sizeof(struct hlist_head), 3106 mhash_entries, 19, 3107 0, 3108 &m_hash_shift, &m_hash_mask, 0, 0); 3109 mountpoint_hashtable = alloc_large_system_hash("Mountpoint-cache", 3110 sizeof(struct hlist_head), 3111 mphash_entries, 19, 3112 0, 3113 &mp_hash_shift, &mp_hash_mask, 0, 0); 3114 3115 if (!mount_hashtable || !mountpoint_hashtable) 3116 panic("Failed to allocate mount hash table\n"); 3117 3118 for (u = 0; u <= m_hash_mask; u++) 3119 INIT_HLIST_HEAD(&mount_hashtable[u]); 3120 for (u = 0; u <= mp_hash_mask; u++) 3121 INIT_HLIST_HEAD(&mountpoint_hashtable[u]); 3122 3123 kernfs_init(); 3124 3125 err = sysfs_init(); 3126 if (err) 3127 printk(KERN_WARNING "%s: sysfs_init error: %d\n", 3128 __func__, err); 3129 fs_kobj = kobject_create_and_add("fs", NULL); 3130 if (!fs_kobj) 3131 printk(KERN_WARNING "%s: kobj create error\n", __func__); 3132 init_rootfs(); 3133 init_mount_tree(); 3134} 3135 3136void put_mnt_ns(struct mnt_namespace *ns) 3137{ 3138 if (!atomic_dec_and_test(&ns->count)) 3139 return; 3140 drop_collected_mounts(&ns->root->mnt); 3141 free_mnt_ns(ns); 3142} 3143 3144struct vfsmount *kern_mount_data(struct file_system_type *type, void *data) 3145{ 3146 struct vfsmount *mnt; 3147 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data); 3148 if (!IS_ERR(mnt)) { 3149 /* 3150 * it is a longterm mount, don't release mnt until 3151 * we unmount before file sys is unregistered 3152 */ 3153 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL; 3154 } 3155 return mnt; 3156} 3157EXPORT_SYMBOL_GPL(kern_mount_data); 3158 3159void kern_unmount(struct vfsmount *mnt) 3160{ 3161 /* release long term mount so mount point can be released */ 3162 if (!IS_ERR_OR_NULL(mnt)) { 3163 real_mount(mnt)->mnt_ns = NULL; 3164 synchronize_rcu(); /* yecchhh... */ 3165 mntput(mnt); 3166 } 3167} 3168EXPORT_SYMBOL(kern_unmount); 3169 3170bool our_mnt(struct vfsmount *mnt) 3171{ 3172 return check_mnt(real_mount(mnt)); 3173} 3174 3175bool current_chrooted(void) 3176{ 3177 /* Does the current process have a non-standard root */ 3178 struct path ns_root; 3179 struct path fs_root; 3180 bool chrooted; 3181 3182 /* Find the namespace root */ 3183 ns_root.mnt = ¤t->nsproxy->mnt_ns->root->mnt; 3184 ns_root.dentry = ns_root.mnt->mnt_root; 3185 path_get(&ns_root); 3186 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root)) 3187 ; 3188 3189 get_fs_root(current->fs, &fs_root); 3190 3191 chrooted = !path_equal(&fs_root, &ns_root); 3192 3193 path_put(&fs_root); 3194 path_put(&ns_root); 3195 3196 return chrooted; 3197} 3198 3199static bool fs_fully_visible(struct file_system_type *type, int *new_mnt_flags) 3200{ 3201 struct mnt_namespace *ns = current->nsproxy->mnt_ns; 3202 int new_flags = *new_mnt_flags; 3203 struct mount *mnt; 3204 bool visible = false; 3205 3206 if (unlikely(!ns)) 3207 return false; 3208 3209 down_read(&namespace_sem); 3210 list_for_each_entry(mnt, &ns->list, mnt_list) { 3211 struct mount *child; 3212 if (mnt->mnt.mnt_sb->s_type != type) 3213 continue; 3214 3215 /* This mount is not fully visible if it's root directory 3216 * is not the root directory of the filesystem. 3217 */ 3218 if (mnt->mnt.mnt_root != mnt->mnt.mnt_sb->s_root) 3219 continue; 3220 3221 /* Verify the mount flags are equal to or more permissive 3222 * than the proposed new mount. 3223 */ 3224 if ((mnt->mnt.mnt_flags & MNT_LOCK_READONLY) && 3225 !(new_flags & MNT_READONLY)) 3226 continue; 3227 if ((mnt->mnt.mnt_flags & MNT_LOCK_NODEV) && 3228 !(new_flags & MNT_NODEV)) 3229 continue; 3230 if ((mnt->mnt.mnt_flags & MNT_LOCK_ATIME) && 3231 ((mnt->mnt.mnt_flags & MNT_ATIME_MASK) != (new_flags & MNT_ATIME_MASK))) 3232 continue; 3233 3234 /* This mount is not fully visible if there are any 3235 * locked child mounts that cover anything except for 3236 * empty directories. 3237 */ 3238 list_for_each_entry(child, &mnt->mnt_mounts, mnt_child) { 3239 struct inode *inode = child->mnt_mountpoint->d_inode; 3240 /* Only worry about locked mounts */ 3241 if (!(child->mnt.mnt_flags & MNT_LOCKED)) 3242 continue; 3243 /* Is the directory permanetly empty? */ 3244 if (!is_empty_dir_inode(inode)) 3245 goto next; 3246 } 3247 /* Preserve the locked attributes */ 3248 *new_mnt_flags |= mnt->mnt.mnt_flags & (MNT_LOCK_READONLY | \ 3249 MNT_LOCK_NODEV | \ 3250 MNT_LOCK_ATIME); 3251 visible = true; 3252 goto found; 3253 next: ; 3254 } 3255found: 3256 up_read(&namespace_sem); 3257 return visible; 3258} 3259 3260static struct ns_common *mntns_get(struct task_struct *task) 3261{ 3262 struct ns_common *ns = NULL; 3263 struct nsproxy *nsproxy; 3264 3265 task_lock(task); 3266 nsproxy = task->nsproxy; 3267 if (nsproxy) { 3268 ns = &nsproxy->mnt_ns->ns; 3269 get_mnt_ns(to_mnt_ns(ns)); 3270 } 3271 task_unlock(task); 3272 3273 return ns; 3274} 3275 3276static void mntns_put(struct ns_common *ns) 3277{ 3278 put_mnt_ns(to_mnt_ns(ns)); 3279} 3280 3281static int mntns_install(struct nsproxy *nsproxy, struct ns_common *ns) 3282{ 3283 struct fs_struct *fs = current->fs; 3284 struct mnt_namespace *mnt_ns = to_mnt_ns(ns); 3285 struct path root; 3286 3287 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) || 3288 !ns_capable(current_user_ns(), CAP_SYS_CHROOT) || 3289 !ns_capable(current_user_ns(), CAP_SYS_ADMIN)) 3290 return -EPERM; 3291 3292 if (fs->users != 1) 3293 return -EINVAL; 3294 3295 get_mnt_ns(mnt_ns); 3296 put_mnt_ns(nsproxy->mnt_ns); 3297 nsproxy->mnt_ns = mnt_ns; 3298 3299 /* Find the root */ 3300 root.mnt = &mnt_ns->root->mnt; 3301 root.dentry = mnt_ns->root->mnt.mnt_root; 3302 path_get(&root); 3303 while(d_mountpoint(root.dentry) && follow_down_one(&root)) 3304 ; 3305 3306 /* Update the pwd and root */ 3307 set_fs_pwd(fs, &root); 3308 set_fs_root(fs, &root); 3309 3310 path_put(&root); 3311 return 0; 3312} 3313 3314const struct proc_ns_operations mntns_operations = { 3315 .name = "mnt", 3316 .type = CLONE_NEWNS, 3317 .get = mntns_get, 3318 .put = mntns_put, 3319 .install = mntns_install, 3320}; 3321