1/**
2 * attrib.c - NTFS attribute operations.  Part of the Linux-NTFS project.
3 *
4 * Copyright (c) 2001-2012 Anton Altaparmakov and Tuxera Inc.
5 * Copyright (c) 2002 Richard Russon
6 *
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
11 *
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15 * GNU General Public License for more details.
16 *
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
21 */
22
23#include <linux/buffer_head.h>
24#include <linux/sched.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28
29#include "attrib.h"
30#include "debug.h"
31#include "layout.h"
32#include "lcnalloc.h"
33#include "malloc.h"
34#include "mft.h"
35#include "ntfs.h"
36#include "types.h"
37
38/**
39 * ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
40 * @ni:		ntfs inode for which to map (part of) a runlist
41 * @vcn:	map runlist part containing this vcn
42 * @ctx:	active attribute search context if present or NULL if not
43 *
44 * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
45 *
46 * If @ctx is specified, it is an active search context of @ni and its base mft
47 * record.  This is needed when ntfs_map_runlist_nolock() encounters unmapped
48 * runlist fragments and allows their mapping.  If you do not have the mft
49 * record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
50 * will perform the necessary mapping and unmapping.
51 *
52 * Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
53 * restores it before returning.  Thus, @ctx will be left pointing to the same
54 * attribute on return as on entry.  However, the actual pointers in @ctx may
55 * point to different memory locations on return, so you must remember to reset
56 * any cached pointers from the @ctx, i.e. after the call to
57 * ntfs_map_runlist_nolock(), you will probably want to do:
58 *	m = ctx->mrec;
59 *	a = ctx->attr;
60 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
61 * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
62 *
63 * Return 0 on success and -errno on error.  There is one special error code
64 * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
65 * of bounds of the runlist.
66 *
67 * Note the runlist can be NULL after this function returns if @vcn is zero and
68 * the attribute has zero allocated size, i.e. there simply is no runlist.
69 *
70 * WARNING: If @ctx is supplied, regardless of whether success or failure is
71 *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
72 *	    is no longer valid, i.e. you need to either call
73 *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
74 *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
75 *	    why the mapping of the old inode failed.
76 *
77 * Locking: - The runlist described by @ni must be locked for writing on entry
78 *	      and is locked on return.  Note the runlist will be modified.
79 *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
80 *	      entry and it will be left unmapped on return.
81 *	    - If @ctx is not NULL, the base mft record must be mapped on entry
82 *	      and it will be left mapped on return.
83 */
84int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
85{
86	VCN end_vcn;
87	unsigned long flags;
88	ntfs_inode *base_ni;
89	MFT_RECORD *m;
90	ATTR_RECORD *a;
91	runlist_element *rl;
92	struct page *put_this_page = NULL;
93	int err = 0;
94	bool ctx_is_temporary, ctx_needs_reset;
95	ntfs_attr_search_ctx old_ctx = { NULL, };
96
97	ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
98			(unsigned long long)vcn);
99	if (!NInoAttr(ni))
100		base_ni = ni;
101	else
102		base_ni = ni->ext.base_ntfs_ino;
103	if (!ctx) {
104		ctx_is_temporary = ctx_needs_reset = true;
105		m = map_mft_record(base_ni);
106		if (IS_ERR(m))
107			return PTR_ERR(m);
108		ctx = ntfs_attr_get_search_ctx(base_ni, m);
109		if (unlikely(!ctx)) {
110			err = -ENOMEM;
111			goto err_out;
112		}
113	} else {
114		VCN allocated_size_vcn;
115
116		BUG_ON(IS_ERR(ctx->mrec));
117		a = ctx->attr;
118		BUG_ON(!a->non_resident);
119		ctx_is_temporary = false;
120		end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
121		read_lock_irqsave(&ni->size_lock, flags);
122		allocated_size_vcn = ni->allocated_size >>
123				ni->vol->cluster_size_bits;
124		read_unlock_irqrestore(&ni->size_lock, flags);
125		if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
126			end_vcn = allocated_size_vcn - 1;
127		/*
128		 * If we already have the attribute extent containing @vcn in
129		 * @ctx, no need to look it up again.  We slightly cheat in
130		 * that if vcn exceeds the allocated size, we will refuse to
131		 * map the runlist below, so there is definitely no need to get
132		 * the right attribute extent.
133		 */
134		if (vcn >= allocated_size_vcn || (a->type == ni->type &&
135				a->name_length == ni->name_len &&
136				!memcmp((u8*)a + le16_to_cpu(a->name_offset),
137				ni->name, ni->name_len) &&
138				sle64_to_cpu(a->data.non_resident.lowest_vcn)
139				<= vcn && end_vcn >= vcn))
140			ctx_needs_reset = false;
141		else {
142			/* Save the old search context. */
143			old_ctx = *ctx;
144			/*
145			 * If the currently mapped (extent) inode is not the
146			 * base inode we will unmap it when we reinitialize the
147			 * search context which means we need to get a
148			 * reference to the page containing the mapped mft
149			 * record so we do not accidentally drop changes to the
150			 * mft record when it has not been marked dirty yet.
151			 */
152			if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
153					old_ctx.base_ntfs_ino) {
154				put_this_page = old_ctx.ntfs_ino->page;
155				page_cache_get(put_this_page);
156			}
157			/*
158			 * Reinitialize the search context so we can lookup the
159			 * needed attribute extent.
160			 */
161			ntfs_attr_reinit_search_ctx(ctx);
162			ctx_needs_reset = true;
163		}
164	}
165	if (ctx_needs_reset) {
166		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
167				CASE_SENSITIVE, vcn, NULL, 0, ctx);
168		if (unlikely(err)) {
169			if (err == -ENOENT)
170				err = -EIO;
171			goto err_out;
172		}
173		BUG_ON(!ctx->attr->non_resident);
174	}
175	a = ctx->attr;
176	/*
177	 * Only decompress the mapping pairs if @vcn is inside it.  Otherwise
178	 * we get into problems when we try to map an out of bounds vcn because
179	 * we then try to map the already mapped runlist fragment and
180	 * ntfs_mapping_pairs_decompress() fails.
181	 */
182	end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
183	if (unlikely(vcn && vcn >= end_vcn)) {
184		err = -ENOENT;
185		goto err_out;
186	}
187	rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
188	if (IS_ERR(rl))
189		err = PTR_ERR(rl);
190	else
191		ni->runlist.rl = rl;
192err_out:
193	if (ctx_is_temporary) {
194		if (likely(ctx))
195			ntfs_attr_put_search_ctx(ctx);
196		unmap_mft_record(base_ni);
197	} else if (ctx_needs_reset) {
198		/*
199		 * If there is no attribute list, restoring the search context
200		 * is accomplished simply by copying the saved context back over
201		 * the caller supplied context.  If there is an attribute list,
202		 * things are more complicated as we need to deal with mapping
203		 * of mft records and resulting potential changes in pointers.
204		 */
205		if (NInoAttrList(base_ni)) {
206			/*
207			 * If the currently mapped (extent) inode is not the
208			 * one we had before, we need to unmap it and map the
209			 * old one.
210			 */
211			if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
212				/*
213				 * If the currently mapped inode is not the
214				 * base inode, unmap it.
215				 */
216				if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
217						ctx->base_ntfs_ino) {
218					unmap_extent_mft_record(ctx->ntfs_ino);
219					ctx->mrec = ctx->base_mrec;
220					BUG_ON(!ctx->mrec);
221				}
222				/*
223				 * If the old mapped inode is not the base
224				 * inode, map it.
225				 */
226				if (old_ctx.base_ntfs_ino &&
227						old_ctx.ntfs_ino !=
228						old_ctx.base_ntfs_ino) {
229retry_map:
230					ctx->mrec = map_mft_record(
231							old_ctx.ntfs_ino);
232					/*
233					 * Something bad has happened.  If out
234					 * of memory retry till it succeeds.
235					 * Any other errors are fatal and we
236					 * return the error code in ctx->mrec.
237					 * Let the caller deal with it...  We
238					 * just need to fudge things so the
239					 * caller can reinit and/or put the
240					 * search context safely.
241					 */
242					if (IS_ERR(ctx->mrec)) {
243						if (PTR_ERR(ctx->mrec) ==
244								-ENOMEM) {
245							schedule();
246							goto retry_map;
247						} else
248							old_ctx.ntfs_ino =
249								old_ctx.
250								base_ntfs_ino;
251					}
252				}
253			}
254			/* Update the changed pointers in the saved context. */
255			if (ctx->mrec != old_ctx.mrec) {
256				if (!IS_ERR(ctx->mrec))
257					old_ctx.attr = (ATTR_RECORD*)(
258							(u8*)ctx->mrec +
259							((u8*)old_ctx.attr -
260							(u8*)old_ctx.mrec));
261				old_ctx.mrec = ctx->mrec;
262			}
263		}
264		/* Restore the search context to the saved one. */
265		*ctx = old_ctx;
266		/*
267		 * We drop the reference on the page we took earlier.  In the
268		 * case that IS_ERR(ctx->mrec) is true this means we might lose
269		 * some changes to the mft record that had been made between
270		 * the last time it was marked dirty/written out and now.  This
271		 * at this stage is not a problem as the mapping error is fatal
272		 * enough that the mft record cannot be written out anyway and
273		 * the caller is very likely to shutdown the whole inode
274		 * immediately and mark the volume dirty for chkdsk to pick up
275		 * the pieces anyway.
276		 */
277		if (put_this_page)
278			page_cache_release(put_this_page);
279	}
280	return err;
281}
282
283/**
284 * ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
285 * @ni:		ntfs inode for which to map (part of) a runlist
286 * @vcn:	map runlist part containing this vcn
287 *
288 * Map the part of a runlist containing the @vcn of the ntfs inode @ni.
289 *
290 * Return 0 on success and -errno on error.  There is one special error code
291 * which is not an error as such.  This is -ENOENT.  It means that @vcn is out
292 * of bounds of the runlist.
293 *
294 * Locking: - The runlist must be unlocked on entry and is unlocked on return.
295 *	    - This function takes the runlist lock for writing and may modify
296 *	      the runlist.
297 */
298int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
299{
300	int err = 0;
301
302	down_write(&ni->runlist.lock);
303	/* Make sure someone else didn't do the work while we were sleeping. */
304	if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
305			LCN_RL_NOT_MAPPED))
306		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
307	up_write(&ni->runlist.lock);
308	return err;
309}
310
311/**
312 * ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
313 * @ni:			ntfs inode of the attribute whose runlist to search
314 * @vcn:		vcn to convert
315 * @write_locked:	true if the runlist is locked for writing
316 *
317 * Find the virtual cluster number @vcn in the runlist of the ntfs attribute
318 * described by the ntfs inode @ni and return the corresponding logical cluster
319 * number (lcn).
320 *
321 * If the @vcn is not mapped yet, the attempt is made to map the attribute
322 * extent containing the @vcn and the vcn to lcn conversion is retried.
323 *
324 * If @write_locked is true the caller has locked the runlist for writing and
325 * if false for reading.
326 *
327 * Since lcns must be >= 0, we use negative return codes with special meaning:
328 *
329 * Return code	Meaning / Description
330 * ==========================================
331 *  LCN_HOLE	Hole / not allocated on disk.
332 *  LCN_ENOENT	There is no such vcn in the runlist, i.e. @vcn is out of bounds.
333 *  LCN_ENOMEM	Not enough memory to map runlist.
334 *  LCN_EIO	Critical error (runlist/file is corrupt, i/o error, etc).
335 *
336 * Locking: - The runlist must be locked on entry and is left locked on return.
337 *	    - If @write_locked is 'false', i.e. the runlist is locked for reading,
338 *	      the lock may be dropped inside the function so you cannot rely on
339 *	      the runlist still being the same when this function returns.
340 */
341LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
342		const bool write_locked)
343{
344	LCN lcn;
345	unsigned long flags;
346	bool is_retry = false;
347
348	BUG_ON(!ni);
349	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
350			ni->mft_no, (unsigned long long)vcn,
351			write_locked ? "write" : "read");
352	BUG_ON(!NInoNonResident(ni));
353	BUG_ON(vcn < 0);
354	if (!ni->runlist.rl) {
355		read_lock_irqsave(&ni->size_lock, flags);
356		if (!ni->allocated_size) {
357			read_unlock_irqrestore(&ni->size_lock, flags);
358			return LCN_ENOENT;
359		}
360		read_unlock_irqrestore(&ni->size_lock, flags);
361	}
362retry_remap:
363	/* Convert vcn to lcn.  If that fails map the runlist and retry once. */
364	lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
365	if (likely(lcn >= LCN_HOLE)) {
366		ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
367		return lcn;
368	}
369	if (lcn != LCN_RL_NOT_MAPPED) {
370		if (lcn != LCN_ENOENT)
371			lcn = LCN_EIO;
372	} else if (!is_retry) {
373		int err;
374
375		if (!write_locked) {
376			up_read(&ni->runlist.lock);
377			down_write(&ni->runlist.lock);
378			if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
379					LCN_RL_NOT_MAPPED)) {
380				up_write(&ni->runlist.lock);
381				down_read(&ni->runlist.lock);
382				goto retry_remap;
383			}
384		}
385		err = ntfs_map_runlist_nolock(ni, vcn, NULL);
386		if (!write_locked) {
387			up_write(&ni->runlist.lock);
388			down_read(&ni->runlist.lock);
389		}
390		if (likely(!err)) {
391			is_retry = true;
392			goto retry_remap;
393		}
394		if (err == -ENOENT)
395			lcn = LCN_ENOENT;
396		else if (err == -ENOMEM)
397			lcn = LCN_ENOMEM;
398		else
399			lcn = LCN_EIO;
400	}
401	if (lcn != LCN_ENOENT)
402		ntfs_error(ni->vol->sb, "Failed with error code %lli.",
403				(long long)lcn);
404	return lcn;
405}
406
407/**
408 * ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
409 * @ni:		ntfs inode describing the runlist to search
410 * @vcn:	vcn to find
411 * @ctx:	active attribute search context if present or NULL if not
412 *
413 * Find the virtual cluster number @vcn in the runlist described by the ntfs
414 * inode @ni and return the address of the runlist element containing the @vcn.
415 *
416 * If the @vcn is not mapped yet, the attempt is made to map the attribute
417 * extent containing the @vcn and the vcn to lcn conversion is retried.
418 *
419 * If @ctx is specified, it is an active search context of @ni and its base mft
420 * record.  This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
421 * runlist fragments and allows their mapping.  If you do not have the mft
422 * record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
423 * will perform the necessary mapping and unmapping.
424 *
425 * Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
426 * restores it before returning.  Thus, @ctx will be left pointing to the same
427 * attribute on return as on entry.  However, the actual pointers in @ctx may
428 * point to different memory locations on return, so you must remember to reset
429 * any cached pointers from the @ctx, i.e. after the call to
430 * ntfs_attr_find_vcn_nolock(), you will probably want to do:
431 *	m = ctx->mrec;
432 *	a = ctx->attr;
433 * Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
434 * you cache ctx->mrec in a variable @m of type MFT_RECORD *.
435 * Note you need to distinguish between the lcn of the returned runlist element
436 * being >= 0 and LCN_HOLE.  In the later case you have to return zeroes on
437 * read and allocate clusters on write.
438 *
439 * Return the runlist element containing the @vcn on success and
440 * ERR_PTR(-errno) on error.  You need to test the return value with IS_ERR()
441 * to decide if the return is success or failure and PTR_ERR() to get to the
442 * error code if IS_ERR() is true.
443 *
444 * The possible error return codes are:
445 *	-ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
446 *	-ENOMEM - Not enough memory to map runlist.
447 *	-EIO	- Critical error (runlist/file is corrupt, i/o error, etc).
448 *
449 * WARNING: If @ctx is supplied, regardless of whether success or failure is
450 *	    returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
451 *	    is no longer valid, i.e. you need to either call
452 *	    ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
453 *	    In that case PTR_ERR(@ctx->mrec) will give you the error code for
454 *	    why the mapping of the old inode failed.
455 *
456 * Locking: - The runlist described by @ni must be locked for writing on entry
457 *	      and is locked on return.  Note the runlist may be modified when
458 *	      needed runlist fragments need to be mapped.
459 *	    - If @ctx is NULL, the base mft record of @ni must not be mapped on
460 *	      entry and it will be left unmapped on return.
461 *	    - If @ctx is not NULL, the base mft record must be mapped on entry
462 *	      and it will be left mapped on return.
463 */
464runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
465		ntfs_attr_search_ctx *ctx)
466{
467	unsigned long flags;
468	runlist_element *rl;
469	int err = 0;
470	bool is_retry = false;
471
472	BUG_ON(!ni);
473	ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
474			ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
475	BUG_ON(!NInoNonResident(ni));
476	BUG_ON(vcn < 0);
477	if (!ni->runlist.rl) {
478		read_lock_irqsave(&ni->size_lock, flags);
479		if (!ni->allocated_size) {
480			read_unlock_irqrestore(&ni->size_lock, flags);
481			return ERR_PTR(-ENOENT);
482		}
483		read_unlock_irqrestore(&ni->size_lock, flags);
484	}
485retry_remap:
486	rl = ni->runlist.rl;
487	if (likely(rl && vcn >= rl[0].vcn)) {
488		while (likely(rl->length)) {
489			if (unlikely(vcn < rl[1].vcn)) {
490				if (likely(rl->lcn >= LCN_HOLE)) {
491					ntfs_debug("Done.");
492					return rl;
493				}
494				break;
495			}
496			rl++;
497		}
498		if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
499			if (likely(rl->lcn == LCN_ENOENT))
500				err = -ENOENT;
501			else
502				err = -EIO;
503		}
504	}
505	if (!err && !is_retry) {
506		/*
507		 * If the search context is invalid we cannot map the unmapped
508		 * region.
509		 */
510		if (IS_ERR(ctx->mrec))
511			err = PTR_ERR(ctx->mrec);
512		else {
513			/*
514			 * The @vcn is in an unmapped region, map the runlist
515			 * and retry.
516			 */
517			err = ntfs_map_runlist_nolock(ni, vcn, ctx);
518			if (likely(!err)) {
519				is_retry = true;
520				goto retry_remap;
521			}
522		}
523		if (err == -EINVAL)
524			err = -EIO;
525	} else if (!err)
526		err = -EIO;
527	if (err != -ENOENT)
528		ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
529	return ERR_PTR(err);
530}
531
532/**
533 * ntfs_attr_find - find (next) attribute in mft record
534 * @type:	attribute type to find
535 * @name:	attribute name to find (optional, i.e. NULL means don't care)
536 * @name_len:	attribute name length (only needed if @name present)
537 * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
538 * @val:	attribute value to find (optional, resident attributes only)
539 * @val_len:	attribute value length
540 * @ctx:	search context with mft record and attribute to search from
541 *
542 * You should not need to call this function directly.  Use ntfs_attr_lookup()
543 * instead.
544 *
545 * ntfs_attr_find() takes a search context @ctx as parameter and searches the
546 * mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
547 * attribute of @type, optionally @name and @val.
548 *
549 * If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
550 * point to the found attribute.
551 *
552 * If the attribute is not found, ntfs_attr_find() returns -ENOENT and
553 * @ctx->attr will point to the attribute before which the attribute being
554 * searched for would need to be inserted if such an action were to be desired.
555 *
556 * On actual error, ntfs_attr_find() returns -EIO.  In this case @ctx->attr is
557 * undefined and in particular do not rely on it not changing.
558 *
559 * If @ctx->is_first is 'true', the search begins with @ctx->attr itself.  If it
560 * is 'false', the search begins after @ctx->attr.
561 *
562 * If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
563 * @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
564 * @ctx->mrec belongs.  This is so we can get at the ntfs volume and hence at
565 * the upcase table.  If @ic is CASE_SENSITIVE, the comparison is case
566 * sensitive.  When @name is present, @name_len is the @name length in Unicode
567 * characters.
568 *
569 * If @name is not present (NULL), we assume that the unnamed attribute is
570 * being searched for.
571 *
572 * Finally, the resident attribute value @val is looked for, if present.  If
573 * @val is not present (NULL), @val_len is ignored.
574 *
575 * ntfs_attr_find() only searches the specified mft record and it ignores the
576 * presence of an attribute list attribute (unless it is the one being searched
577 * for, obviously).  If you need to take attribute lists into consideration,
578 * use ntfs_attr_lookup() instead (see below).  This also means that you cannot
579 * use ntfs_attr_find() to search for extent records of non-resident
580 * attributes, as extents with lowest_vcn != 0 are usually described by the
581 * attribute list attribute only. - Note that it is possible that the first
582 * extent is only in the attribute list while the last extent is in the base
583 * mft record, so do not rely on being able to find the first extent in the
584 * base mft record.
585 *
586 * Warning: Never use @val when looking for attribute types which can be
587 *	    non-resident as this most likely will result in a crash!
588 */
589static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
590		const u32 name_len, const IGNORE_CASE_BOOL ic,
591		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
592{
593	ATTR_RECORD *a;
594	ntfs_volume *vol = ctx->ntfs_ino->vol;
595	ntfschar *upcase = vol->upcase;
596	u32 upcase_len = vol->upcase_len;
597
598	/*
599	 * Iterate over attributes in mft record starting at @ctx->attr, or the
600	 * attribute following that, if @ctx->is_first is 'true'.
601	 */
602	if (ctx->is_first) {
603		a = ctx->attr;
604		ctx->is_first = false;
605	} else
606		a = (ATTR_RECORD*)((u8*)ctx->attr +
607				le32_to_cpu(ctx->attr->length));
608	for (;;	a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
609		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
610				le32_to_cpu(ctx->mrec->bytes_allocated))
611			break;
612		ctx->attr = a;
613		if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
614				a->type == AT_END))
615			return -ENOENT;
616		if (unlikely(!a->length))
617			break;
618		if (a->type != type)
619			continue;
620		/*
621		 * If @name is present, compare the two names.  If @name is
622		 * missing, assume we want an unnamed attribute.
623		 */
624		if (!name) {
625			/* The search failed if the found attribute is named. */
626			if (a->name_length)
627				return -ENOENT;
628		} else if (!ntfs_are_names_equal(name, name_len,
629			    (ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
630			    a->name_length, ic, upcase, upcase_len)) {
631			register int rc;
632
633			rc = ntfs_collate_names(name, name_len,
634					(ntfschar*)((u8*)a +
635					le16_to_cpu(a->name_offset)),
636					a->name_length, 1, IGNORE_CASE,
637					upcase, upcase_len);
638			/*
639			 * If @name collates before a->name, there is no
640			 * matching attribute.
641			 */
642			if (rc == -1)
643				return -ENOENT;
644			/* If the strings are not equal, continue search. */
645			if (rc)
646				continue;
647			rc = ntfs_collate_names(name, name_len,
648					(ntfschar*)((u8*)a +
649					le16_to_cpu(a->name_offset)),
650					a->name_length, 1, CASE_SENSITIVE,
651					upcase, upcase_len);
652			if (rc == -1)
653				return -ENOENT;
654			if (rc)
655				continue;
656		}
657		/*
658		 * The names match or @name not present and attribute is
659		 * unnamed.  If no @val specified, we have found the attribute
660		 * and are done.
661		 */
662		if (!val)
663			return 0;
664		/* @val is present; compare values. */
665		else {
666			register int rc;
667
668			rc = memcmp(val, (u8*)a + le16_to_cpu(
669					a->data.resident.value_offset),
670					min_t(u32, val_len, le32_to_cpu(
671					a->data.resident.value_length)));
672			/*
673			 * If @val collates before the current attribute's
674			 * value, there is no matching attribute.
675			 */
676			if (!rc) {
677				register u32 avl;
678
679				avl = le32_to_cpu(
680						a->data.resident.value_length);
681				if (val_len == avl)
682					return 0;
683				if (val_len < avl)
684					return -ENOENT;
685			} else if (rc < 0)
686				return -ENOENT;
687		}
688	}
689	ntfs_error(vol->sb, "Inode is corrupt.  Run chkdsk.");
690	NVolSetErrors(vol);
691	return -EIO;
692}
693
694/**
695 * load_attribute_list - load an attribute list into memory
696 * @vol:		ntfs volume from which to read
697 * @runlist:		runlist of the attribute list
698 * @al_start:		destination buffer
699 * @size:		size of the destination buffer in bytes
700 * @initialized_size:	initialized size of the attribute list
701 *
702 * Walk the runlist @runlist and load all clusters from it copying them into
703 * the linear buffer @al. The maximum number of bytes copied to @al is @size
704 * bytes. Note, @size does not need to be a multiple of the cluster size. If
705 * @initialized_size is less than @size, the region in @al between
706 * @initialized_size and @size will be zeroed and not read from disk.
707 *
708 * Return 0 on success or -errno on error.
709 */
710int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
711		const s64 size, const s64 initialized_size)
712{
713	LCN lcn;
714	u8 *al = al_start;
715	u8 *al_end = al + initialized_size;
716	runlist_element *rl;
717	struct buffer_head *bh;
718	struct super_block *sb;
719	unsigned long block_size;
720	unsigned long block, max_block;
721	int err = 0;
722	unsigned char block_size_bits;
723
724	ntfs_debug("Entering.");
725	if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
726			initialized_size > size)
727		return -EINVAL;
728	if (!initialized_size) {
729		memset(al, 0, size);
730		return 0;
731	}
732	sb = vol->sb;
733	block_size = sb->s_blocksize;
734	block_size_bits = sb->s_blocksize_bits;
735	down_read(&runlist->lock);
736	rl = runlist->rl;
737	if (!rl) {
738		ntfs_error(sb, "Cannot read attribute list since runlist is "
739				"missing.");
740		goto err_out;
741	}
742	/* Read all clusters specified by the runlist one run at a time. */
743	while (rl->length) {
744		lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
745		ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
746				(unsigned long long)rl->vcn,
747				(unsigned long long)lcn);
748		/* The attribute list cannot be sparse. */
749		if (lcn < 0) {
750			ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed.  Cannot "
751					"read attribute list.");
752			goto err_out;
753		}
754		block = lcn << vol->cluster_size_bits >> block_size_bits;
755		/* Read the run from device in chunks of block_size bytes. */
756		max_block = block + (rl->length << vol->cluster_size_bits >>
757				block_size_bits);
758		ntfs_debug("max_block = 0x%lx.", max_block);
759		do {
760			ntfs_debug("Reading block = 0x%lx.", block);
761			bh = sb_bread(sb, block);
762			if (!bh) {
763				ntfs_error(sb, "sb_bread() failed. Cannot "
764						"read attribute list.");
765				goto err_out;
766			}
767			if (al + block_size >= al_end)
768				goto do_final;
769			memcpy(al, bh->b_data, block_size);
770			brelse(bh);
771			al += block_size;
772		} while (++block < max_block);
773		rl++;
774	}
775	if (initialized_size < size) {
776initialize:
777		memset(al_start + initialized_size, 0, size - initialized_size);
778	}
779done:
780	up_read(&runlist->lock);
781	return err;
782do_final:
783	if (al < al_end) {
784		/*
785		 * Partial block.
786		 *
787		 * Note: The attribute list can be smaller than its allocation
788		 * by multiple clusters.  This has been encountered by at least
789		 * two people running Windows XP, thus we cannot do any
790		 * truncation sanity checking here. (AIA)
791		 */
792		memcpy(al, bh->b_data, al_end - al);
793		brelse(bh);
794		if (initialized_size < size)
795			goto initialize;
796		goto done;
797	}
798	brelse(bh);
799	/* Real overflow! */
800	ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
801			"is truncated.");
802err_out:
803	err = -EIO;
804	goto done;
805}
806
807/**
808 * ntfs_external_attr_find - find an attribute in the attribute list of an inode
809 * @type:	attribute type to find
810 * @name:	attribute name to find (optional, i.e. NULL means don't care)
811 * @name_len:	attribute name length (only needed if @name present)
812 * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
813 * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
814 * @val:	attribute value to find (optional, resident attributes only)
815 * @val_len:	attribute value length
816 * @ctx:	search context with mft record and attribute to search from
817 *
818 * You should not need to call this function directly.  Use ntfs_attr_lookup()
819 * instead.
820 *
821 * Find an attribute by searching the attribute list for the corresponding
822 * attribute list entry.  Having found the entry, map the mft record if the
823 * attribute is in a different mft record/inode, ntfs_attr_find() the attribute
824 * in there and return it.
825 *
826 * On first search @ctx->ntfs_ino must be the base mft record and @ctx must
827 * have been obtained from a call to ntfs_attr_get_search_ctx().  On subsequent
828 * calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
829 * then the base inode).
830 *
831 * After finishing with the attribute/mft record you need to call
832 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
833 * mapped inodes, etc).
834 *
835 * If the attribute is found, ntfs_external_attr_find() returns 0 and
836 * @ctx->attr will point to the found attribute.  @ctx->mrec will point to the
837 * mft record in which @ctx->attr is located and @ctx->al_entry will point to
838 * the attribute list entry for the attribute.
839 *
840 * If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
841 * @ctx->attr will point to the attribute in the base mft record before which
842 * the attribute being searched for would need to be inserted if such an action
843 * were to be desired.  @ctx->mrec will point to the mft record in which
844 * @ctx->attr is located and @ctx->al_entry will point to the attribute list
845 * entry of the attribute before which the attribute being searched for would
846 * need to be inserted if such an action were to be desired.
847 *
848 * Thus to insert the not found attribute, one wants to add the attribute to
849 * @ctx->mrec (the base mft record) and if there is not enough space, the
850 * attribute should be placed in a newly allocated extent mft record.  The
851 * attribute list entry for the inserted attribute should be inserted in the
852 * attribute list attribute at @ctx->al_entry.
853 *
854 * On actual error, ntfs_external_attr_find() returns -EIO.  In this case
855 * @ctx->attr is undefined and in particular do not rely on it not changing.
856 */
857static int ntfs_external_attr_find(const ATTR_TYPE type,
858		const ntfschar *name, const u32 name_len,
859		const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
860		const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
861{
862	ntfs_inode *base_ni, *ni;
863	ntfs_volume *vol;
864	ATTR_LIST_ENTRY *al_entry, *next_al_entry;
865	u8 *al_start, *al_end;
866	ATTR_RECORD *a;
867	ntfschar *al_name;
868	u32 al_name_len;
869	int err = 0;
870	static const char *es = " Unmount and run chkdsk.";
871
872	ni = ctx->ntfs_ino;
873	base_ni = ctx->base_ntfs_ino;
874	ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
875	if (!base_ni) {
876		/* First call happens with the base mft record. */
877		base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
878		ctx->base_mrec = ctx->mrec;
879	}
880	if (ni == base_ni)
881		ctx->base_attr = ctx->attr;
882	if (type == AT_END)
883		goto not_found;
884	vol = base_ni->vol;
885	al_start = base_ni->attr_list;
886	al_end = al_start + base_ni->attr_list_size;
887	if (!ctx->al_entry)
888		ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
889	/*
890	 * Iterate over entries in attribute list starting at @ctx->al_entry,
891	 * or the entry following that, if @ctx->is_first is 'true'.
892	 */
893	if (ctx->is_first) {
894		al_entry = ctx->al_entry;
895		ctx->is_first = false;
896	} else
897		al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
898				le16_to_cpu(ctx->al_entry->length));
899	for (;; al_entry = next_al_entry) {
900		/* Out of bounds check. */
901		if ((u8*)al_entry < base_ni->attr_list ||
902				(u8*)al_entry > al_end)
903			break;	/* Inode is corrupt. */
904		ctx->al_entry = al_entry;
905		/* Catch the end of the attribute list. */
906		if ((u8*)al_entry == al_end)
907			goto not_found;
908		if (!al_entry->length)
909			break;
910		if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
911				le16_to_cpu(al_entry->length) > al_end)
912			break;
913		next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
914				le16_to_cpu(al_entry->length));
915		if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
916			goto not_found;
917		if (type != al_entry->type)
918			continue;
919		/*
920		 * If @name is present, compare the two names.  If @name is
921		 * missing, assume we want an unnamed attribute.
922		 */
923		al_name_len = al_entry->name_length;
924		al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
925		if (!name) {
926			if (al_name_len)
927				goto not_found;
928		} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
929				name_len, ic, vol->upcase, vol->upcase_len)) {
930			register int rc;
931
932			rc = ntfs_collate_names(name, name_len, al_name,
933					al_name_len, 1, IGNORE_CASE,
934					vol->upcase, vol->upcase_len);
935			/*
936			 * If @name collates before al_name, there is no
937			 * matching attribute.
938			 */
939			if (rc == -1)
940				goto not_found;
941			/* If the strings are not equal, continue search. */
942			if (rc)
943				continue;
944			/*
945			 * FIXME: Reverse engineering showed 0, IGNORE_CASE but
946			 * that is inconsistent with ntfs_attr_find().  The
947			 * subsequent rc checks were also different.  Perhaps I
948			 * made a mistake in one of the two.  Need to recheck
949			 * which is correct or at least see what is going on...
950			 * (AIA)
951			 */
952			rc = ntfs_collate_names(name, name_len, al_name,
953					al_name_len, 1, CASE_SENSITIVE,
954					vol->upcase, vol->upcase_len);
955			if (rc == -1)
956				goto not_found;
957			if (rc)
958				continue;
959		}
960		/*
961		 * The names match or @name not present and attribute is
962		 * unnamed.  Now check @lowest_vcn.  Continue search if the
963		 * next attribute list entry still fits @lowest_vcn.  Otherwise
964		 * we have reached the right one or the search has failed.
965		 */
966		if (lowest_vcn && (u8*)next_al_entry >= al_start	    &&
967				(u8*)next_al_entry + 6 < al_end		    &&
968				(u8*)next_al_entry + le16_to_cpu(
969					next_al_entry->length) <= al_end    &&
970				sle64_to_cpu(next_al_entry->lowest_vcn) <=
971					lowest_vcn			    &&
972				next_al_entry->type == al_entry->type	    &&
973				next_al_entry->name_length == al_name_len   &&
974				ntfs_are_names_equal((ntfschar*)((u8*)
975					next_al_entry +
976					next_al_entry->name_offset),
977					next_al_entry->name_length,
978					al_name, al_name_len, CASE_SENSITIVE,
979					vol->upcase, vol->upcase_len))
980			continue;
981		if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
982			if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
983				ntfs_error(vol->sb, "Found stale mft "
984						"reference in attribute list "
985						"of base inode 0x%lx.%s",
986						base_ni->mft_no, es);
987				err = -EIO;
988				break;
989			}
990		} else { /* Mft references do not match. */
991			/* If there is a mapped record unmap it first. */
992			if (ni != base_ni)
993				unmap_extent_mft_record(ni);
994			/* Do we want the base record back? */
995			if (MREF_LE(al_entry->mft_reference) ==
996					base_ni->mft_no) {
997				ni = ctx->ntfs_ino = base_ni;
998				ctx->mrec = ctx->base_mrec;
999			} else {
1000				/* We want an extent record. */
1001				ctx->mrec = map_extent_mft_record(base_ni,
1002						le64_to_cpu(
1003						al_entry->mft_reference), &ni);
1004				if (IS_ERR(ctx->mrec)) {
1005					ntfs_error(vol->sb, "Failed to map "
1006							"extent mft record "
1007							"0x%lx of base inode "
1008							"0x%lx.%s",
1009							MREF_LE(al_entry->
1010							mft_reference),
1011							base_ni->mft_no, es);
1012					err = PTR_ERR(ctx->mrec);
1013					if (err == -ENOENT)
1014						err = -EIO;
1015					/* Cause @ctx to be sanitized below. */
1016					ni = NULL;
1017					break;
1018				}
1019				ctx->ntfs_ino = ni;
1020			}
1021			ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1022					le16_to_cpu(ctx->mrec->attrs_offset));
1023		}
1024		/*
1025		 * ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
1026		 * mft record containing the attribute represented by the
1027		 * current al_entry.
1028		 */
1029		/*
1030		 * We could call into ntfs_attr_find() to find the right
1031		 * attribute in this mft record but this would be less
1032		 * efficient and not quite accurate as ntfs_attr_find() ignores
1033		 * the attribute instance numbers for example which become
1034		 * important when one plays with attribute lists.  Also,
1035		 * because a proper match has been found in the attribute list
1036		 * entry above, the comparison can now be optimized.  So it is
1037		 * worth re-implementing a simplified ntfs_attr_find() here.
1038		 */
1039		a = ctx->attr;
1040		/*
1041		 * Use a manual loop so we can still use break and continue
1042		 * with the same meanings as above.
1043		 */
1044do_next_attr_loop:
1045		if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
1046				le32_to_cpu(ctx->mrec->bytes_allocated))
1047			break;
1048		if (a->type == AT_END)
1049			break;
1050		if (!a->length)
1051			break;
1052		if (al_entry->instance != a->instance)
1053			goto do_next_attr;
1054		/*
1055		 * If the type and/or the name are mismatched between the
1056		 * attribute list entry and the attribute record, there is
1057		 * corruption so we break and return error EIO.
1058		 */
1059		if (al_entry->type != a->type)
1060			break;
1061		if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
1062				le16_to_cpu(a->name_offset)), a->name_length,
1063				al_name, al_name_len, CASE_SENSITIVE,
1064				vol->upcase, vol->upcase_len))
1065			break;
1066		ctx->attr = a;
1067		/*
1068		 * If no @val specified or @val specified and it matches, we
1069		 * have found it!
1070		 */
1071		if (!val || (!a->non_resident && le32_to_cpu(
1072				a->data.resident.value_length) == val_len &&
1073				!memcmp((u8*)a +
1074				le16_to_cpu(a->data.resident.value_offset),
1075				val, val_len))) {
1076			ntfs_debug("Done, found.");
1077			return 0;
1078		}
1079do_next_attr:
1080		/* Proceed to the next attribute in the current mft record. */
1081		a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
1082		goto do_next_attr_loop;
1083	}
1084	if (!err) {
1085		ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
1086				"attribute list attribute.%s", base_ni->mft_no,
1087				es);
1088		err = -EIO;
1089	}
1090	if (ni != base_ni) {
1091		if (ni)
1092			unmap_extent_mft_record(ni);
1093		ctx->ntfs_ino = base_ni;
1094		ctx->mrec = ctx->base_mrec;
1095		ctx->attr = ctx->base_attr;
1096	}
1097	if (err != -ENOMEM)
1098		NVolSetErrors(vol);
1099	return err;
1100not_found:
1101	/*
1102	 * If we were looking for AT_END, we reset the search context @ctx and
1103	 * use ntfs_attr_find() to seek to the end of the base mft record.
1104	 */
1105	if (type == AT_END) {
1106		ntfs_attr_reinit_search_ctx(ctx);
1107		return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
1108				ctx);
1109	}
1110	/*
1111	 * The attribute was not found.  Before we return, we want to ensure
1112	 * @ctx->mrec and @ctx->attr indicate the position at which the
1113	 * attribute should be inserted in the base mft record.  Since we also
1114	 * want to preserve @ctx->al_entry we cannot reinitialize the search
1115	 * context using ntfs_attr_reinit_search_ctx() as this would set
1116	 * @ctx->al_entry to NULL.  Thus we do the necessary bits manually (see
1117	 * ntfs_attr_init_search_ctx() below).  Note, we _only_ preserve
1118	 * @ctx->al_entry as the remaining fields (base_*) are identical to
1119	 * their non base_ counterparts and we cannot set @ctx->base_attr
1120	 * correctly yet as we do not know what @ctx->attr will be set to by
1121	 * the call to ntfs_attr_find() below.
1122	 */
1123	if (ni != base_ni)
1124		unmap_extent_mft_record(ni);
1125	ctx->mrec = ctx->base_mrec;
1126	ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1127			le16_to_cpu(ctx->mrec->attrs_offset));
1128	ctx->is_first = true;
1129	ctx->ntfs_ino = base_ni;
1130	ctx->base_ntfs_ino = NULL;
1131	ctx->base_mrec = NULL;
1132	ctx->base_attr = NULL;
1133	/*
1134	 * In case there are multiple matches in the base mft record, need to
1135	 * keep enumerating until we get an attribute not found response (or
1136	 * another error), otherwise we would keep returning the same attribute
1137	 * over and over again and all programs using us for enumeration would
1138	 * lock up in a tight loop.
1139	 */
1140	do {
1141		err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
1142				ctx);
1143	} while (!err);
1144	ntfs_debug("Done, not found.");
1145	return err;
1146}
1147
1148/**
1149 * ntfs_attr_lookup - find an attribute in an ntfs inode
1150 * @type:	attribute type to find
1151 * @name:	attribute name to find (optional, i.e. NULL means don't care)
1152 * @name_len:	attribute name length (only needed if @name present)
1153 * @ic:		IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
1154 * @lowest_vcn:	lowest vcn to find (optional, non-resident attributes only)
1155 * @val:	attribute value to find (optional, resident attributes only)
1156 * @val_len:	attribute value length
1157 * @ctx:	search context with mft record and attribute to search from
1158 *
1159 * Find an attribute in an ntfs inode.  On first search @ctx->ntfs_ino must
1160 * be the base mft record and @ctx must have been obtained from a call to
1161 * ntfs_attr_get_search_ctx().
1162 *
1163 * This function transparently handles attribute lists and @ctx is used to
1164 * continue searches where they were left off at.
1165 *
1166 * After finishing with the attribute/mft record you need to call
1167 * ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
1168 * mapped inodes, etc).
1169 *
1170 * Return 0 if the search was successful and -errno if not.
1171 *
1172 * When 0, @ctx->attr is the found attribute and it is in mft record
1173 * @ctx->mrec.  If an attribute list attribute is present, @ctx->al_entry is
1174 * the attribute list entry of the found attribute.
1175 *
1176 * When -ENOENT, @ctx->attr is the attribute which collates just after the
1177 * attribute being searched for, i.e. if one wants to add the attribute to the
1178 * mft record this is the correct place to insert it into.  If an attribute
1179 * list attribute is present, @ctx->al_entry is the attribute list entry which
1180 * collates just after the attribute list entry of the attribute being searched
1181 * for, i.e. if one wants to add the attribute to the mft record this is the
1182 * correct place to insert its attribute list entry into.
1183 *
1184 * When -errno != -ENOENT, an error occurred during the lookup.  @ctx->attr is
1185 * then undefined and in particular you should not rely on it not changing.
1186 */
1187int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
1188		const u32 name_len, const IGNORE_CASE_BOOL ic,
1189		const VCN lowest_vcn, const u8 *val, const u32 val_len,
1190		ntfs_attr_search_ctx *ctx)
1191{
1192	ntfs_inode *base_ni;
1193
1194	ntfs_debug("Entering.");
1195	BUG_ON(IS_ERR(ctx->mrec));
1196	if (ctx->base_ntfs_ino)
1197		base_ni = ctx->base_ntfs_ino;
1198	else
1199		base_ni = ctx->ntfs_ino;
1200	/* Sanity check, just for debugging really. */
1201	BUG_ON(!base_ni);
1202	if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
1203		return ntfs_attr_find(type, name, name_len, ic, val, val_len,
1204				ctx);
1205	return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
1206			val, val_len, ctx);
1207}
1208
1209/**
1210 * ntfs_attr_init_search_ctx - initialize an attribute search context
1211 * @ctx:	attribute search context to initialize
1212 * @ni:		ntfs inode with which to initialize the search context
1213 * @mrec:	mft record with which to initialize the search context
1214 *
1215 * Initialize the attribute search context @ctx with @ni and @mrec.
1216 */
1217static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
1218		ntfs_inode *ni, MFT_RECORD *mrec)
1219{
1220	*ctx = (ntfs_attr_search_ctx) {
1221		.mrec = mrec,
1222		/* Sanity checks are performed elsewhere. */
1223		.attr = (ATTR_RECORD*)((u8*)mrec +
1224				le16_to_cpu(mrec->attrs_offset)),
1225		.is_first = true,
1226		.ntfs_ino = ni,
1227	};
1228}
1229
1230/**
1231 * ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
1232 * @ctx:	attribute search context to reinitialize
1233 *
1234 * Reinitialize the attribute search context @ctx, unmapping an associated
1235 * extent mft record if present, and initialize the search context again.
1236 *
1237 * This is used when a search for a new attribute is being started to reset
1238 * the search context to the beginning.
1239 */
1240void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
1241{
1242	if (likely(!ctx->base_ntfs_ino)) {
1243		/* No attribute list. */
1244		ctx->is_first = true;
1245		/* Sanity checks are performed elsewhere. */
1246		ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
1247				le16_to_cpu(ctx->mrec->attrs_offset));
1248		/*
1249		 * This needs resetting due to ntfs_external_attr_find() which
1250		 * can leave it set despite having zeroed ctx->base_ntfs_ino.
1251		 */
1252		ctx->al_entry = NULL;
1253		return;
1254	} /* Attribute list. */
1255	if (ctx->ntfs_ino != ctx->base_ntfs_ino)
1256		unmap_extent_mft_record(ctx->ntfs_ino);
1257	ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
1258	return;
1259}
1260
1261/**
1262 * ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
1263 * @ni:		ntfs inode with which to initialize the search context
1264 * @mrec:	mft record with which to initialize the search context
1265 *
1266 * Allocate a new attribute search context, initialize it with @ni and @mrec,
1267 * and return it. Return NULL if allocation failed.
1268 */
1269ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
1270{
1271	ntfs_attr_search_ctx *ctx;
1272
1273	ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
1274	if (ctx)
1275		ntfs_attr_init_search_ctx(ctx, ni, mrec);
1276	return ctx;
1277}
1278
1279/**
1280 * ntfs_attr_put_search_ctx - release an attribute search context
1281 * @ctx:	attribute search context to free
1282 *
1283 * Release the attribute search context @ctx, unmapping an associated extent
1284 * mft record if present.
1285 */
1286void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
1287{
1288	if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
1289		unmap_extent_mft_record(ctx->ntfs_ino);
1290	kmem_cache_free(ntfs_attr_ctx_cache, ctx);
1291	return;
1292}
1293
1294#ifdef NTFS_RW
1295
1296/**
1297 * ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
1298 * @vol:	ntfs volume to which the attribute belongs
1299 * @type:	attribute type which to find
1300 *
1301 * Search for the attribute definition record corresponding to the attribute
1302 * @type in the $AttrDef system file.
1303 *
1304 * Return the attribute type definition record if found and NULL if not found.
1305 */
1306static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
1307		const ATTR_TYPE type)
1308{
1309	ATTR_DEF *ad;
1310
1311	BUG_ON(!vol->attrdef);
1312	BUG_ON(!type);
1313	for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
1314			vol->attrdef_size && ad->type; ++ad) {
1315		/* We have not found it yet, carry on searching. */
1316		if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
1317			continue;
1318		/* We found the attribute; return it. */
1319		if (likely(ad->type == type))
1320			return ad;
1321		/* We have gone too far already.  No point in continuing. */
1322		break;
1323	}
1324	/* Attribute not found. */
1325	ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
1326			le32_to_cpu(type));
1327	return NULL;
1328}
1329
1330/**
1331 * ntfs_attr_size_bounds_check - check a size of an attribute type for validity
1332 * @vol:	ntfs volume to which the attribute belongs
1333 * @type:	attribute type which to check
1334 * @size:	size which to check
1335 *
1336 * Check whether the @size in bytes is valid for an attribute of @type on the
1337 * ntfs volume @vol.  This information is obtained from $AttrDef system file.
1338 *
1339 * Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
1340 * listed in $AttrDef.
1341 */
1342int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
1343		const s64 size)
1344{
1345	ATTR_DEF *ad;
1346
1347	BUG_ON(size < 0);
1348	/*
1349	 * $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
1350	 * listed in $AttrDef.
1351	 */
1352	if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
1353		return -ERANGE;
1354	/* Get the $AttrDef entry for the attribute @type. */
1355	ad = ntfs_attr_find_in_attrdef(vol, type);
1356	if (unlikely(!ad))
1357		return -ENOENT;
1358	/* Do the bounds check. */
1359	if (((sle64_to_cpu(ad->min_size) > 0) &&
1360			size < sle64_to_cpu(ad->min_size)) ||
1361			((sle64_to_cpu(ad->max_size) > 0) && size >
1362			sle64_to_cpu(ad->max_size)))
1363		return -ERANGE;
1364	return 0;
1365}
1366
1367/**
1368 * ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
1369 * @vol:	ntfs volume to which the attribute belongs
1370 * @type:	attribute type which to check
1371 *
1372 * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1373 * be non-resident.  This information is obtained from $AttrDef system file.
1374 *
1375 * Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
1376 * -ENOENT if the attribute is not listed in $AttrDef.
1377 */
1378int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1379{
1380	ATTR_DEF *ad;
1381
1382	/* Find the attribute definition record in $AttrDef. */
1383	ad = ntfs_attr_find_in_attrdef(vol, type);
1384	if (unlikely(!ad))
1385		return -ENOENT;
1386	/* Check the flags and return the result. */
1387	if (ad->flags & ATTR_DEF_RESIDENT)
1388		return -EPERM;
1389	return 0;
1390}
1391
1392/**
1393 * ntfs_attr_can_be_resident - check if an attribute can be resident
1394 * @vol:	ntfs volume to which the attribute belongs
1395 * @type:	attribute type which to check
1396 *
1397 * Check whether the attribute of @type on the ntfs volume @vol is allowed to
1398 * be resident.  This information is derived from our ntfs knowledge and may
1399 * not be completely accurate, especially when user defined attributes are
1400 * present.  Basically we allow everything to be resident except for index
1401 * allocation and $EA attributes.
1402 *
1403 * Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
1404 *
1405 * Warning: In the system file $MFT the attribute $Bitmap must be non-resident
1406 *	    otherwise windows will not boot (blue screen of death)!  We cannot
1407 *	    check for this here as we do not know which inode's $Bitmap is
1408 *	    being asked about so the caller needs to special case this.
1409 */
1410int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
1411{
1412	if (type == AT_INDEX_ALLOCATION)
1413		return -EPERM;
1414	return 0;
1415}
1416
1417/**
1418 * ntfs_attr_record_resize - resize an attribute record
1419 * @m:		mft record containing attribute record
1420 * @a:		attribute record to resize
1421 * @new_size:	new size in bytes to which to resize the attribute record @a
1422 *
1423 * Resize the attribute record @a, i.e. the resident part of the attribute, in
1424 * the mft record @m to @new_size bytes.
1425 *
1426 * Return 0 on success and -errno on error.  The following error codes are
1427 * defined:
1428 *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1429 *
1430 * Note: On error, no modifications have been performed whatsoever.
1431 *
1432 * Warning: If you make a record smaller without having copied all the data you
1433 *	    are interested in the data may be overwritten.
1434 */
1435int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
1436{
1437	ntfs_debug("Entering for new_size %u.", new_size);
1438	/* Align to 8 bytes if it is not already done. */
1439	if (new_size & 7)
1440		new_size = (new_size + 7) & ~7;
1441	/* If the actual attribute length has changed, move things around. */
1442	if (new_size != le32_to_cpu(a->length)) {
1443		u32 new_muse = le32_to_cpu(m->bytes_in_use) -
1444				le32_to_cpu(a->length) + new_size;
1445		/* Not enough space in this mft record. */
1446		if (new_muse > le32_to_cpu(m->bytes_allocated))
1447			return -ENOSPC;
1448		/* Move attributes following @a to their new location. */
1449		memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
1450				le32_to_cpu(m->bytes_in_use) - ((u8*)a -
1451				(u8*)m) - le32_to_cpu(a->length));
1452		/* Adjust @m to reflect the change in used space. */
1453		m->bytes_in_use = cpu_to_le32(new_muse);
1454		/* Adjust @a to reflect the new size. */
1455		if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
1456			a->length = cpu_to_le32(new_size);
1457	}
1458	return 0;
1459}
1460
1461/**
1462 * ntfs_resident_attr_value_resize - resize the value of a resident attribute
1463 * @m:		mft record containing attribute record
1464 * @a:		attribute record whose value to resize
1465 * @new_size:	new size in bytes to which to resize the attribute value of @a
1466 *
1467 * Resize the value of the attribute @a in the mft record @m to @new_size bytes.
1468 * If the value is made bigger, the newly allocated space is cleared.
1469 *
1470 * Return 0 on success and -errno on error.  The following error codes are
1471 * defined:
1472 *	-ENOSPC	- Not enough space in the mft record @m to perform the resize.
1473 *
1474 * Note: On error, no modifications have been performed whatsoever.
1475 *
1476 * Warning: If you make a record smaller without having copied all the data you
1477 *	    are interested in the data may be overwritten.
1478 */
1479int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
1480		const u32 new_size)
1481{
1482	u32 old_size;
1483
1484	/* Resize the resident part of the attribute record. */
1485	if (ntfs_attr_record_resize(m, a,
1486			le16_to_cpu(a->data.resident.value_offset) + new_size))
1487		return -ENOSPC;
1488	/*
1489	 * The resize succeeded!  If we made the attribute value bigger, clear
1490	 * the area between the old size and @new_size.
1491	 */
1492	old_size = le32_to_cpu(a->data.resident.value_length);
1493	if (new_size > old_size)
1494		memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
1495				old_size, 0, new_size - old_size);
1496	/* Finally update the length of the attribute value. */
1497	a->data.resident.value_length = cpu_to_le32(new_size);
1498	return 0;
1499}
1500
1501/**
1502 * ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
1503 * @ni:		ntfs inode describing the attribute to convert
1504 * @data_size:	size of the resident data to copy to the non-resident attribute
1505 *
1506 * Convert the resident ntfs attribute described by the ntfs inode @ni to a
1507 * non-resident one.
1508 *
1509 * @data_size must be equal to the attribute value size.  This is needed since
1510 * we need to know the size before we can map the mft record and our callers
1511 * always know it.  The reason we cannot simply read the size from the vfs
1512 * inode i_size is that this is not necessarily uptodate.  This happens when
1513 * ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
1514 *
1515 * Return 0 on success and -errno on error.  The following error return codes
1516 * are defined:
1517 *	-EPERM	- The attribute is not allowed to be non-resident.
1518 *	-ENOMEM	- Not enough memory.
1519 *	-ENOSPC	- Not enough disk space.
1520 *	-EINVAL	- Attribute not defined on the volume.
1521 *	-EIO	- I/o error or other error.
1522 * Note that -ENOSPC is also returned in the case that there is not enough
1523 * space in the mft record to do the conversion.  This can happen when the mft
1524 * record is already very full.  The caller is responsible for trying to make
1525 * space in the mft record and trying again.  FIXME: Do we need a separate
1526 * error return code for this kind of -ENOSPC or is it always worth trying
1527 * again in case the attribute may then fit in a resident state so no need to
1528 * make it non-resident at all?  Ho-hum...  (AIA)
1529 *
1530 * NOTE to self: No changes in the attribute list are required to move from
1531 *		 a resident to a non-resident attribute.
1532 *
1533 * Locking: - The caller must hold i_mutex on the inode.
1534 */
1535int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
1536{
1537	s64 new_size;
1538	struct inode *vi = VFS_I(ni);
1539	ntfs_volume *vol = ni->vol;
1540	ntfs_inode *base_ni;
1541	MFT_RECORD *m;
1542	ATTR_RECORD *a;
1543	ntfs_attr_search_ctx *ctx;
1544	struct page *page;
1545	runlist_element *rl;
1546	u8 *kaddr;
1547	unsigned long flags;
1548	int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
1549	u32 attr_size;
1550	u8 old_res_attr_flags;
1551
1552	/* Check that the attribute is allowed to be non-resident. */
1553	err = ntfs_attr_can_be_non_resident(vol, ni->type);
1554	if (unlikely(err)) {
1555		if (err == -EPERM)
1556			ntfs_debug("Attribute is not allowed to be "
1557					"non-resident.");
1558		else
1559			ntfs_debug("Attribute not defined on the NTFS "
1560					"volume!");
1561		return err;
1562	}
1563	/*
1564	 * FIXME: Compressed and encrypted attributes are not supported when
1565	 * writing and we should never have gotten here for them.
1566	 */
1567	BUG_ON(NInoCompressed(ni));
1568	BUG_ON(NInoEncrypted(ni));
1569	/*
1570	 * The size needs to be aligned to a cluster boundary for allocation
1571	 * purposes.
1572	 */
1573	new_size = (data_size + vol->cluster_size - 1) &
1574			~(vol->cluster_size - 1);
1575	if (new_size > 0) {
1576		/*
1577		 * Will need the page later and since the page lock nests
1578		 * outside all ntfs locks, we need to get the page now.
1579		 */
1580		page = find_or_create_page(vi->i_mapping, 0,
1581				mapping_gfp_mask(vi->i_mapping));
1582		if (unlikely(!page))
1583			return -ENOMEM;
1584		/* Start by allocating clusters to hold the attribute value. */
1585		rl = ntfs_cluster_alloc(vol, 0, new_size >>
1586				vol->cluster_size_bits, -1, DATA_ZONE, true);
1587		if (IS_ERR(rl)) {
1588			err = PTR_ERR(rl);
1589			ntfs_debug("Failed to allocate cluster%s, error code "
1590					"%i.", (new_size >>
1591					vol->cluster_size_bits) > 1 ? "s" : "",
1592					err);
1593			goto page_err_out;
1594		}
1595	} else {
1596		rl = NULL;
1597		page = NULL;
1598	}
1599	/* Determine the size of the mapping pairs array. */
1600	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
1601	if (unlikely(mp_size < 0)) {
1602		err = mp_size;
1603		ntfs_debug("Failed to get size for mapping pairs array, error "
1604				"code %i.", err);
1605		goto rl_err_out;
1606	}
1607	down_write(&ni->runlist.lock);
1608	if (!NInoAttr(ni))
1609		base_ni = ni;
1610	else
1611		base_ni = ni->ext.base_ntfs_ino;
1612	m = map_mft_record(base_ni);
1613	if (IS_ERR(m)) {
1614		err = PTR_ERR(m);
1615		m = NULL;
1616		ctx = NULL;
1617		goto err_out;
1618	}
1619	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1620	if (unlikely(!ctx)) {
1621		err = -ENOMEM;
1622		goto err_out;
1623	}
1624	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1625			CASE_SENSITIVE, 0, NULL, 0, ctx);
1626	if (unlikely(err)) {
1627		if (err == -ENOENT)
1628			err = -EIO;
1629		goto err_out;
1630	}
1631	m = ctx->mrec;
1632	a = ctx->attr;
1633	BUG_ON(NInoNonResident(ni));
1634	BUG_ON(a->non_resident);
1635	/*
1636	 * Calculate new offsets for the name and the mapping pairs array.
1637	 */
1638	if (NInoSparse(ni) || NInoCompressed(ni))
1639		name_ofs = (offsetof(ATTR_REC,
1640				data.non_resident.compressed_size) +
1641				sizeof(a->data.non_resident.compressed_size) +
1642				7) & ~7;
1643	else
1644		name_ofs = (offsetof(ATTR_REC,
1645				data.non_resident.compressed_size) + 7) & ~7;
1646	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1647	/*
1648	 * Determine the size of the resident part of the now non-resident
1649	 * attribute record.
1650	 */
1651	arec_size = (mp_ofs + mp_size + 7) & ~7;
1652	/*
1653	 * If the page is not uptodate bring it uptodate by copying from the
1654	 * attribute value.
1655	 */
1656	attr_size = le32_to_cpu(a->data.resident.value_length);
1657	BUG_ON(attr_size != data_size);
1658	if (page && !PageUptodate(page)) {
1659		kaddr = kmap_atomic(page);
1660		memcpy(kaddr, (u8*)a +
1661				le16_to_cpu(a->data.resident.value_offset),
1662				attr_size);
1663		memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size);
1664		kunmap_atomic(kaddr);
1665		flush_dcache_page(page);
1666		SetPageUptodate(page);
1667	}
1668	/* Backup the attribute flag. */
1669	old_res_attr_flags = a->data.resident.flags;
1670	/* Resize the resident part of the attribute record. */
1671	err = ntfs_attr_record_resize(m, a, arec_size);
1672	if (unlikely(err))
1673		goto err_out;
1674	/*
1675	 * Convert the resident part of the attribute record to describe a
1676	 * non-resident attribute.
1677	 */
1678	a->non_resident = 1;
1679	/* Move the attribute name if it exists and update the offset. */
1680	if (a->name_length)
1681		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1682				a->name_length * sizeof(ntfschar));
1683	a->name_offset = cpu_to_le16(name_ofs);
1684	/* Setup the fields specific to non-resident attributes. */
1685	a->data.non_resident.lowest_vcn = 0;
1686	a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
1687			vol->cluster_size_bits);
1688	a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
1689	memset(&a->data.non_resident.reserved, 0,
1690			sizeof(a->data.non_resident.reserved));
1691	a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
1692	a->data.non_resident.data_size =
1693			a->data.non_resident.initialized_size =
1694			cpu_to_sle64(attr_size);
1695	if (NInoSparse(ni) || NInoCompressed(ni)) {
1696		a->data.non_resident.compression_unit = 0;
1697		if (NInoCompressed(ni) || vol->major_ver < 3)
1698			a->data.non_resident.compression_unit = 4;
1699		a->data.non_resident.compressed_size =
1700				a->data.non_resident.allocated_size;
1701	} else
1702		a->data.non_resident.compression_unit = 0;
1703	/* Generate the mapping pairs array into the attribute record. */
1704	err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
1705			arec_size - mp_ofs, rl, 0, -1, NULL);
1706	if (unlikely(err)) {
1707		ntfs_debug("Failed to build mapping pairs, error code %i.",
1708				err);
1709		goto undo_err_out;
1710	}
1711	/* Setup the in-memory attribute structure to be non-resident. */
1712	ni->runlist.rl = rl;
1713	write_lock_irqsave(&ni->size_lock, flags);
1714	ni->allocated_size = new_size;
1715	if (NInoSparse(ni) || NInoCompressed(ni)) {
1716		ni->itype.compressed.size = ni->allocated_size;
1717		if (a->data.non_resident.compression_unit) {
1718			ni->itype.compressed.block_size = 1U << (a->data.
1719					non_resident.compression_unit +
1720					vol->cluster_size_bits);
1721			ni->itype.compressed.block_size_bits =
1722					ffs(ni->itype.compressed.block_size) -
1723					1;
1724			ni->itype.compressed.block_clusters = 1U <<
1725					a->data.non_resident.compression_unit;
1726		} else {
1727			ni->itype.compressed.block_size = 0;
1728			ni->itype.compressed.block_size_bits = 0;
1729			ni->itype.compressed.block_clusters = 0;
1730		}
1731		vi->i_blocks = ni->itype.compressed.size >> 9;
1732	} else
1733		vi->i_blocks = ni->allocated_size >> 9;
1734	write_unlock_irqrestore(&ni->size_lock, flags);
1735	/*
1736	 * This needs to be last since the address space operations ->readpage
1737	 * and ->writepage can run concurrently with us as they are not
1738	 * serialized on i_mutex.  Note, we are not allowed to fail once we flip
1739	 * this switch, which is another reason to do this last.
1740	 */
1741	NInoSetNonResident(ni);
1742	/* Mark the mft record dirty, so it gets written back. */
1743	flush_dcache_mft_record_page(ctx->ntfs_ino);
1744	mark_mft_record_dirty(ctx->ntfs_ino);
1745	ntfs_attr_put_search_ctx(ctx);
1746	unmap_mft_record(base_ni);
1747	up_write(&ni->runlist.lock);
1748	if (page) {
1749		set_page_dirty(page);
1750		unlock_page(page);
1751		page_cache_release(page);
1752	}
1753	ntfs_debug("Done.");
1754	return 0;
1755undo_err_out:
1756	/* Convert the attribute back into a resident attribute. */
1757	a->non_resident = 0;
1758	/* Move the attribute name if it exists and update the offset. */
1759	name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
1760			sizeof(a->data.resident.reserved) + 7) & ~7;
1761	if (a->name_length)
1762		memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
1763				a->name_length * sizeof(ntfschar));
1764	mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
1765	a->name_offset = cpu_to_le16(name_ofs);
1766	arec_size = (mp_ofs + attr_size + 7) & ~7;
1767	/* Resize the resident part of the attribute record. */
1768	err2 = ntfs_attr_record_resize(m, a, arec_size);
1769	if (unlikely(err2)) {
1770		/*
1771		 * This cannot happen (well if memory corruption is at work it
1772		 * could happen in theory), but deal with it as well as we can.
1773		 * If the old size is too small, truncate the attribute,
1774		 * otherwise simply give it a larger allocated size.
1775		 * FIXME: Should check whether chkdsk complains when the
1776		 * allocated size is much bigger than the resident value size.
1777		 */
1778		arec_size = le32_to_cpu(a->length);
1779		if ((mp_ofs + attr_size) > arec_size) {
1780			err2 = attr_size;
1781			attr_size = arec_size - mp_ofs;
1782			ntfs_error(vol->sb, "Failed to undo partial resident "
1783					"to non-resident attribute "
1784					"conversion.  Truncating inode 0x%lx, "
1785					"attribute type 0x%x from %i bytes to "
1786					"%i bytes to maintain metadata "
1787					"consistency.  THIS MEANS YOU ARE "
1788					"LOSING %i BYTES DATA FROM THIS %s.",
1789					vi->i_ino,
1790					(unsigned)le32_to_cpu(ni->type),
1791					err2, attr_size, err2 - attr_size,
1792					((ni->type == AT_DATA) &&
1793					!ni->name_len) ? "FILE": "ATTRIBUTE");
1794			write_lock_irqsave(&ni->size_lock, flags);
1795			ni->initialized_size = attr_size;
1796			i_size_write(vi, attr_size);
1797			write_unlock_irqrestore(&ni->size_lock, flags);
1798		}
1799	}
1800	/* Setup the fields specific to resident attributes. */
1801	a->data.resident.value_length = cpu_to_le32(attr_size);
1802	a->data.resident.value_offset = cpu_to_le16(mp_ofs);
1803	a->data.resident.flags = old_res_attr_flags;
1804	memset(&a->data.resident.reserved, 0,
1805			sizeof(a->data.resident.reserved));
1806	/* Copy the data from the page back to the attribute value. */
1807	if (page) {
1808		kaddr = kmap_atomic(page);
1809		memcpy((u8*)a + mp_ofs, kaddr, attr_size);
1810		kunmap_atomic(kaddr);
1811	}
1812	/* Setup the allocated size in the ntfs inode in case it changed. */
1813	write_lock_irqsave(&ni->size_lock, flags);
1814	ni->allocated_size = arec_size - mp_ofs;
1815	write_unlock_irqrestore(&ni->size_lock, flags);
1816	/* Mark the mft record dirty, so it gets written back. */
1817	flush_dcache_mft_record_page(ctx->ntfs_ino);
1818	mark_mft_record_dirty(ctx->ntfs_ino);
1819err_out:
1820	if (ctx)
1821		ntfs_attr_put_search_ctx(ctx);
1822	if (m)
1823		unmap_mft_record(base_ni);
1824	ni->runlist.rl = NULL;
1825	up_write(&ni->runlist.lock);
1826rl_err_out:
1827	if (rl) {
1828		if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
1829			ntfs_error(vol->sb, "Failed to release allocated "
1830					"cluster(s) in error code path.  Run "
1831					"chkdsk to recover the lost "
1832					"cluster(s).");
1833			NVolSetErrors(vol);
1834		}
1835		ntfs_free(rl);
1836page_err_out:
1837		unlock_page(page);
1838		page_cache_release(page);
1839	}
1840	if (err == -EINVAL)
1841		err = -EIO;
1842	return err;
1843}
1844
1845/**
1846 * ntfs_attr_extend_allocation - extend the allocated space of an attribute
1847 * @ni:			ntfs inode of the attribute whose allocation to extend
1848 * @new_alloc_size:	new size in bytes to which to extend the allocation to
1849 * @new_data_size:	new size in bytes to which to extend the data to
1850 * @data_start:		beginning of region which is required to be non-sparse
1851 *
1852 * Extend the allocated space of an attribute described by the ntfs inode @ni
1853 * to @new_alloc_size bytes.  If @data_start is -1, the whole extension may be
1854 * implemented as a hole in the file (as long as both the volume and the ntfs
1855 * inode @ni have sparse support enabled).  If @data_start is >= 0, then the
1856 * region between the old allocated size and @data_start - 1 may be made sparse
1857 * but the regions between @data_start and @new_alloc_size must be backed by
1858 * actual clusters.
1859 *
1860 * If @new_data_size is -1, it is ignored.  If it is >= 0, then the data size
1861 * of the attribute is extended to @new_data_size.  Note that the i_size of the
1862 * vfs inode is not updated.  Only the data size in the base attribute record
1863 * is updated.  The caller has to update i_size separately if this is required.
1864 * WARNING: It is a BUG() for @new_data_size to be smaller than the old data
1865 * size as well as for @new_data_size to be greater than @new_alloc_size.
1866 *
1867 * For resident attributes this involves resizing the attribute record and if
1868 * necessary moving it and/or other attributes into extent mft records and/or
1869 * converting the attribute to a non-resident attribute which in turn involves
1870 * extending the allocation of a non-resident attribute as described below.
1871 *
1872 * For non-resident attributes this involves allocating clusters in the data
1873 * zone on the volume (except for regions that are being made sparse) and
1874 * extending the run list to describe the allocated clusters as well as
1875 * updating the mapping pairs array of the attribute.  This in turn involves
1876 * resizing the attribute record and if necessary moving it and/or other
1877 * attributes into extent mft records and/or splitting the attribute record
1878 * into multiple extent attribute records.
1879 *
1880 * Also, the attribute list attribute is updated if present and in some of the
1881 * above cases (the ones where extent mft records/attributes come into play),
1882 * an attribute list attribute is created if not already present.
1883 *
1884 * Return the new allocated size on success and -errno on error.  In the case
1885 * that an error is encountered but a partial extension at least up to
1886 * @data_start (if present) is possible, the allocation is partially extended
1887 * and this is returned.  This means the caller must check the returned size to
1888 * determine if the extension was partial.  If @data_start is -1 then partial
1889 * allocations are not performed.
1890 *
1891 * WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
1892 *
1893 * Locking: This function takes the runlist lock of @ni for writing as well as
1894 * locking the mft record of the base ntfs inode.  These locks are maintained
1895 * throughout execution of the function.  These locks are required so that the
1896 * attribute can be resized safely and so that it can for example be converted
1897 * from resident to non-resident safely.
1898 *
1899 * TODO: At present attribute list attribute handling is not implemented.
1900 *
1901 * TODO: At present it is not safe to call this function for anything other
1902 * than the $DATA attribute(s) of an uncompressed and unencrypted file.
1903 */
1904s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
1905		const s64 new_data_size, const s64 data_start)
1906{
1907	VCN vcn;
1908	s64 ll, allocated_size, start = data_start;
1909	struct inode *vi = VFS_I(ni);
1910	ntfs_volume *vol = ni->vol;
1911	ntfs_inode *base_ni;
1912	MFT_RECORD *m;
1913	ATTR_RECORD *a;
1914	ntfs_attr_search_ctx *ctx;
1915	runlist_element *rl, *rl2;
1916	unsigned long flags;
1917	int err, mp_size;
1918	u32 attr_len = 0; /* Silence stupid gcc warning. */
1919	bool mp_rebuilt;
1920
1921#ifdef DEBUG
1922	read_lock_irqsave(&ni->size_lock, flags);
1923	allocated_size = ni->allocated_size;
1924	read_unlock_irqrestore(&ni->size_lock, flags);
1925	ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
1926			"old_allocated_size 0x%llx, "
1927			"new_allocated_size 0x%llx, new_data_size 0x%llx, "
1928			"data_start 0x%llx.", vi->i_ino,
1929			(unsigned)le32_to_cpu(ni->type),
1930			(unsigned long long)allocated_size,
1931			(unsigned long long)new_alloc_size,
1932			(unsigned long long)new_data_size,
1933			(unsigned long long)start);
1934#endif
1935retry_extend:
1936	/*
1937	 * For non-resident attributes, @start and @new_size need to be aligned
1938	 * to cluster boundaries for allocation purposes.
1939	 */
1940	if (NInoNonResident(ni)) {
1941		if (start > 0)
1942			start &= ~(s64)vol->cluster_size_mask;
1943		new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
1944				~(s64)vol->cluster_size_mask;
1945	}
1946	BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
1947	/* Check if new size is allowed in $AttrDef. */
1948	err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
1949	if (unlikely(err)) {
1950		/* Only emit errors when the write will fail completely. */
1951		read_lock_irqsave(&ni->size_lock, flags);
1952		allocated_size = ni->allocated_size;
1953		read_unlock_irqrestore(&ni->size_lock, flags);
1954		if (start < 0 || start >= allocated_size) {
1955			if (err == -ERANGE) {
1956				ntfs_error(vol->sb, "Cannot extend allocation "
1957						"of inode 0x%lx, attribute "
1958						"type 0x%x, because the new "
1959						"allocation would exceed the "
1960						"maximum allowed size for "
1961						"this attribute type.",
1962						vi->i_ino, (unsigned)
1963						le32_to_cpu(ni->type));
1964			} else {
1965				ntfs_error(vol->sb, "Cannot extend allocation "
1966						"of inode 0x%lx, attribute "
1967						"type 0x%x, because this "
1968						"attribute type is not "
1969						"defined on the NTFS volume.  "
1970						"Possible corruption!  You "
1971						"should run chkdsk!",
1972						vi->i_ino, (unsigned)
1973						le32_to_cpu(ni->type));
1974			}
1975		}
1976		/* Translate error code to be POSIX conformant for write(2). */
1977		if (err == -ERANGE)
1978			err = -EFBIG;
1979		else
1980			err = -EIO;
1981		return err;
1982	}
1983	if (!NInoAttr(ni))
1984		base_ni = ni;
1985	else
1986		base_ni = ni->ext.base_ntfs_ino;
1987	/*
1988	 * We will be modifying both the runlist (if non-resident) and the mft
1989	 * record so lock them both down.
1990	 */
1991	down_write(&ni->runlist.lock);
1992	m = map_mft_record(base_ni);
1993	if (IS_ERR(m)) {
1994		err = PTR_ERR(m);
1995		m = NULL;
1996		ctx = NULL;
1997		goto err_out;
1998	}
1999	ctx = ntfs_attr_get_search_ctx(base_ni, m);
2000	if (unlikely(!ctx)) {
2001		err = -ENOMEM;
2002		goto err_out;
2003	}
2004	read_lock_irqsave(&ni->size_lock, flags);
2005	allocated_size = ni->allocated_size;
2006	read_unlock_irqrestore(&ni->size_lock, flags);
2007	/*
2008	 * If non-resident, seek to the last extent.  If resident, there is
2009	 * only one extent, so seek to that.
2010	 */
2011	vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
2012			0;
2013	/*
2014	 * Abort if someone did the work whilst we waited for the locks.  If we
2015	 * just converted the attribute from resident to non-resident it is
2016	 * likely that exactly this has happened already.  We cannot quite
2017	 * abort if we need to update the data size.
2018	 */
2019	if (unlikely(new_alloc_size <= allocated_size)) {
2020		ntfs_debug("Allocated size already exceeds requested size.");
2021		new_alloc_size = allocated_size;
2022		if (new_data_size < 0)
2023			goto done;
2024		/*
2025		 * We want the first attribute extent so that we can update the
2026		 * data size.
2027		 */
2028		vcn = 0;
2029	}
2030	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2031			CASE_SENSITIVE, vcn, NULL, 0, ctx);
2032	if (unlikely(err)) {
2033		if (err == -ENOENT)
2034			err = -EIO;
2035		goto err_out;
2036	}
2037	m = ctx->mrec;
2038	a = ctx->attr;
2039	/* Use goto to reduce indentation. */
2040	if (a->non_resident)
2041		goto do_non_resident_extend;
2042	BUG_ON(NInoNonResident(ni));
2043	/* The total length of the attribute value. */
2044	attr_len = le32_to_cpu(a->data.resident.value_length);
2045	/*
2046	 * Extend the attribute record to be able to store the new attribute
2047	 * size.  ntfs_attr_record_resize() will not do anything if the size is
2048	 * not changing.
2049	 */
2050	if (new_alloc_size < vol->mft_record_size &&
2051			!ntfs_attr_record_resize(m, a,
2052			le16_to_cpu(a->data.resident.value_offset) +
2053			new_alloc_size)) {
2054		/* The resize succeeded! */
2055		write_lock_irqsave(&ni->size_lock, flags);
2056		ni->allocated_size = le32_to_cpu(a->length) -
2057				le16_to_cpu(a->data.resident.value_offset);
2058		write_unlock_irqrestore(&ni->size_lock, flags);
2059		if (new_data_size >= 0) {
2060			BUG_ON(new_data_size < attr_len);
2061			a->data.resident.value_length =
2062					cpu_to_le32((u32)new_data_size);
2063		}
2064		goto flush_done;
2065	}
2066	/*
2067	 * We have to drop all the locks so we can call
2068	 * ntfs_attr_make_non_resident().  This could be optimised by try-
2069	 * locking the first page cache page and only if that fails dropping
2070	 * the locks, locking the page, and redoing all the locking and
2071	 * lookups.  While this would be a huge optimisation, it is not worth
2072	 * it as this is definitely a slow code path.
2073	 */
2074	ntfs_attr_put_search_ctx(ctx);
2075	unmap_mft_record(base_ni);
2076	up_write(&ni->runlist.lock);
2077	/*
2078	 * Not enough space in the mft record, try to make the attribute
2079	 * non-resident and if successful restart the extension process.
2080	 */
2081	err = ntfs_attr_make_non_resident(ni, attr_len);
2082	if (likely(!err))
2083		goto retry_extend;
2084	/*
2085	 * Could not make non-resident.  If this is due to this not being
2086	 * permitted for this attribute type or there not being enough space,
2087	 * try to make other attributes non-resident.  Otherwise fail.
2088	 */
2089	if (unlikely(err != -EPERM && err != -ENOSPC)) {
2090		/* Only emit errors when the write will fail completely. */
2091		read_lock_irqsave(&ni->size_lock, flags);
2092		allocated_size = ni->allocated_size;
2093		read_unlock_irqrestore(&ni->size_lock, flags);
2094		if (start < 0 || start >= allocated_size)
2095			ntfs_error(vol->sb, "Cannot extend allocation of "
2096					"inode 0x%lx, attribute type 0x%x, "
2097					"because the conversion from resident "
2098					"to non-resident attribute failed "
2099					"with error code %i.", vi->i_ino,
2100					(unsigned)le32_to_cpu(ni->type), err);
2101		if (err != -ENOMEM)
2102			err = -EIO;
2103		goto conv_err_out;
2104	}
2105	/* TODO: Not implemented from here, abort. */
2106	read_lock_irqsave(&ni->size_lock, flags);
2107	allocated_size = ni->allocated_size;
2108	read_unlock_irqrestore(&ni->size_lock, flags);
2109	if (start < 0 || start >= allocated_size) {
2110		if (err == -ENOSPC)
2111			ntfs_error(vol->sb, "Not enough space in the mft "
2112					"record/on disk for the non-resident "
2113					"attribute value.  This case is not "
2114					"implemented yet.");
2115		else /* if (err == -EPERM) */
2116			ntfs_error(vol->sb, "This attribute type may not be "
2117					"non-resident.  This case is not "
2118					"implemented yet.");
2119	}
2120	err = -EOPNOTSUPP;
2121	goto conv_err_out;
2122#if 0
2123	// TODO: Attempt to make other attributes non-resident.
2124	if (!err)
2125		goto do_resident_extend;
2126	/*
2127	 * Both the attribute list attribute and the standard information
2128	 * attribute must remain in the base inode.  Thus, if this is one of
2129	 * these attributes, we have to try to move other attributes out into
2130	 * extent mft records instead.
2131	 */
2132	if (ni->type == AT_ATTRIBUTE_LIST ||
2133			ni->type == AT_STANDARD_INFORMATION) {
2134		// TODO: Attempt to move other attributes into extent mft
2135		// records.
2136		err = -EOPNOTSUPP;
2137		if (!err)
2138			goto do_resident_extend;
2139		goto err_out;
2140	}
2141	// TODO: Attempt to move this attribute to an extent mft record, but
2142	// only if it is not already the only attribute in an mft record in
2143	// which case there would be nothing to gain.
2144	err = -EOPNOTSUPP;
2145	if (!err)
2146		goto do_resident_extend;
2147	/* There is nothing we can do to make enough space. )-: */
2148	goto err_out;
2149#endif
2150do_non_resident_extend:
2151	BUG_ON(!NInoNonResident(ni));
2152	if (new_alloc_size == allocated_size) {
2153		BUG_ON(vcn);
2154		goto alloc_done;
2155	}
2156	/*
2157	 * If the data starts after the end of the old allocation, this is a
2158	 * $DATA attribute and sparse attributes are enabled on the volume and
2159	 * for this inode, then create a sparse region between the old
2160	 * allocated size and the start of the data.  Otherwise simply proceed
2161	 * with filling the whole space between the old allocated size and the
2162	 * new allocated size with clusters.
2163	 */
2164	if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
2165			!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
2166		goto skip_sparse;
2167	// TODO: This is not implemented yet.  We just fill in with real
2168	// clusters for now...
2169	ntfs_debug("Inserting holes is not-implemented yet.  Falling back to "
2170			"allocating real clusters instead.");
2171skip_sparse:
2172	rl = ni->runlist.rl;
2173	if (likely(rl)) {
2174		/* Seek to the end of the runlist. */
2175		while (rl->length)
2176			rl++;
2177	}
2178	/* If this attribute extent is not mapped, map it now. */
2179	if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
2180			(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
2181			(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
2182		if (!rl && !allocated_size)
2183			goto first_alloc;
2184		rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
2185		if (IS_ERR(rl)) {
2186			err = PTR_ERR(rl);
2187			if (start < 0 || start >= allocated_size)
2188				ntfs_error(vol->sb, "Cannot extend allocation "
2189						"of inode 0x%lx, attribute "
2190						"type 0x%x, because the "
2191						"mapping of a runlist "
2192						"fragment failed with error "
2193						"code %i.", vi->i_ino,
2194						(unsigned)le32_to_cpu(ni->type),
2195						err);
2196			if (err != -ENOMEM)
2197				err = -EIO;
2198			goto err_out;
2199		}
2200		ni->runlist.rl = rl;
2201		/* Seek to the end of the runlist. */
2202		while (rl->length)
2203			rl++;
2204	}
2205	/*
2206	 * We now know the runlist of the last extent is mapped and @rl is at
2207	 * the end of the runlist.  We want to begin allocating clusters
2208	 * starting at the last allocated cluster to reduce fragmentation.  If
2209	 * there are no valid LCNs in the attribute we let the cluster
2210	 * allocator choose the starting cluster.
2211	 */
2212	/* If the last LCN is a hole or simillar seek back to last real LCN. */
2213	while (rl->lcn < 0 && rl > ni->runlist.rl)
2214		rl--;
2215first_alloc:
2216	// FIXME: Need to implement partial allocations so at least part of the
2217	// write can be performed when start >= 0.  (Needed for POSIX write(2)
2218	// conformance.)
2219	rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
2220			(new_alloc_size - allocated_size) >>
2221			vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
2222			rl->lcn + rl->length : -1, DATA_ZONE, true);
2223	if (IS_ERR(rl2)) {
2224		err = PTR_ERR(rl2);
2225		if (start < 0 || start >= allocated_size)
2226			ntfs_error(vol->sb, "Cannot extend allocation of "
2227					"inode 0x%lx, attribute type 0x%x, "
2228					"because the allocation of clusters "
2229					"failed with error code %i.", vi->i_ino,
2230					(unsigned)le32_to_cpu(ni->type), err);
2231		if (err != -ENOMEM && err != -ENOSPC)
2232			err = -EIO;
2233		goto err_out;
2234	}
2235	rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
2236	if (IS_ERR(rl)) {
2237		err = PTR_ERR(rl);
2238		if (start < 0 || start >= allocated_size)
2239			ntfs_error(vol->sb, "Cannot extend allocation of "
2240					"inode 0x%lx, attribute type 0x%x, "
2241					"because the runlist merge failed "
2242					"with error code %i.", vi->i_ino,
2243					(unsigned)le32_to_cpu(ni->type), err);
2244		if (err != -ENOMEM)
2245			err = -EIO;
2246		if (ntfs_cluster_free_from_rl(vol, rl2)) {
2247			ntfs_error(vol->sb, "Failed to release allocated "
2248					"cluster(s) in error code path.  Run "
2249					"chkdsk to recover the lost "
2250					"cluster(s).");
2251			NVolSetErrors(vol);
2252		}
2253		ntfs_free(rl2);
2254		goto err_out;
2255	}
2256	ni->runlist.rl = rl;
2257	ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
2258			allocated_size) >> vol->cluster_size_bits);
2259	/* Find the runlist element with which the attribute extent starts. */
2260	ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
2261	rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
2262	BUG_ON(!rl2);
2263	BUG_ON(!rl2->length);
2264	BUG_ON(rl2->lcn < LCN_HOLE);
2265	mp_rebuilt = false;
2266	/* Get the size for the new mapping pairs array for this extent. */
2267	mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
2268	if (unlikely(mp_size <= 0)) {
2269		err = mp_size;
2270		if (start < 0 || start >= allocated_size)
2271			ntfs_error(vol->sb, "Cannot extend allocation of "
2272					"inode 0x%lx, attribute type 0x%x, "
2273					"because determining the size for the "
2274					"mapping pairs failed with error code "
2275					"%i.", vi->i_ino,
2276					(unsigned)le32_to_cpu(ni->type), err);
2277		err = -EIO;
2278		goto undo_alloc;
2279	}
2280	/* Extend the attribute record to fit the bigger mapping pairs array. */
2281	attr_len = le32_to_cpu(a->length);
2282	err = ntfs_attr_record_resize(m, a, mp_size +
2283			le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
2284	if (unlikely(err)) {
2285		BUG_ON(err != -ENOSPC);
2286		// TODO: Deal with this by moving this extent to a new mft
2287		// record or by starting a new extent in a new mft record,
2288		// possibly by extending this extent partially and filling it
2289		// and creating a new extent for the remainder, or by making
2290		// other attributes non-resident and/or by moving other
2291		// attributes out of this mft record.
2292		if (start < 0 || start >= allocated_size)
2293			ntfs_error(vol->sb, "Not enough space in the mft "
2294					"record for the extended attribute "
2295					"record.  This case is not "
2296					"implemented yet.");
2297		err = -EOPNOTSUPP;
2298		goto undo_alloc;
2299	}
2300	mp_rebuilt = true;
2301	/* Generate the mapping pairs array directly into the attr record. */
2302	err = ntfs_mapping_pairs_build(vol, (u8*)a +
2303			le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
2304			mp_size, rl2, ll, -1, NULL);
2305	if (unlikely(err)) {
2306		if (start < 0 || start >= allocated_size)
2307			ntfs_error(vol->sb, "Cannot extend allocation of "
2308					"inode 0x%lx, attribute type 0x%x, "
2309					"because building the mapping pairs "
2310					"failed with error code %i.", vi->i_ino,
2311					(unsigned)le32_to_cpu(ni->type), err);
2312		err = -EIO;
2313		goto undo_alloc;
2314	}
2315	/* Update the highest_vcn. */
2316	a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
2317			vol->cluster_size_bits) - 1);
2318	/*
2319	 * We now have extended the allocated size of the attribute.  Reflect
2320	 * this in the ntfs_inode structure and the attribute record.
2321	 */
2322	if (a->data.non_resident.lowest_vcn) {
2323		/*
2324		 * We are not in the first attribute extent, switch to it, but
2325		 * first ensure the changes will make it to disk later.
2326		 */
2327		flush_dcache_mft_record_page(ctx->ntfs_ino);
2328		mark_mft_record_dirty(ctx->ntfs_ino);
2329		ntfs_attr_reinit_search_ctx(ctx);
2330		err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
2331				CASE_SENSITIVE, 0, NULL, 0, ctx);
2332		if (unlikely(err))
2333			goto restore_undo_alloc;
2334		/* @m is not used any more so no need to set it. */
2335		a = ctx->attr;
2336	}
2337	write_lock_irqsave(&ni->size_lock, flags);
2338	ni->allocated_size = new_alloc_size;
2339	a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
2340	/*
2341	 * FIXME: This would fail if @ni is a directory, $MFT, or an index,
2342	 * since those can have sparse/compressed set.  For example can be
2343	 * set compressed even though it is not compressed itself and in that
2344	 * case the bit means that files are to be created compressed in the
2345	 * directory...  At present this is ok as this code is only called for
2346	 * regular files, and only for their $DATA attribute(s).
2347	 * FIXME: The calculation is wrong if we created a hole above.  For now
2348	 * it does not matter as we never create holes.
2349	 */
2350	if (NInoSparse(ni) || NInoCompressed(ni)) {
2351		ni->itype.compressed.size += new_alloc_size - allocated_size;
2352		a->data.non_resident.compressed_size =
2353				cpu_to_sle64(ni->itype.compressed.size);
2354		vi->i_blocks = ni->itype.compressed.size >> 9;
2355	} else
2356		vi->i_blocks = new_alloc_size >> 9;
2357	write_unlock_irqrestore(&ni->size_lock, flags);
2358alloc_done:
2359	if (new_data_size >= 0) {
2360		BUG_ON(new_data_size <
2361				sle64_to_cpu(a->data.non_resident.data_size));
2362		a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
2363	}
2364flush_done:
2365	/* Ensure the changes make it to disk. */
2366	flush_dcache_mft_record_page(ctx->ntfs_ino);
2367	mark_mft_record_dirty(ctx->ntfs_ino);
2368done:
2369	ntfs_attr_put_search_ctx(ctx);
2370	unmap_mft_record(base_ni);
2371	up_write(&ni->runlist.lock);
2372	ntfs_debug("Done, new_allocated_size 0x%llx.",
2373			(unsigned long long)new_alloc_size);
2374	return new_alloc_size;
2375restore_undo_alloc:
2376	if (start < 0 || start >= allocated_size)
2377		ntfs_error(vol->sb, "Cannot complete extension of allocation "
2378				"of inode 0x%lx, attribute type 0x%x, because "
2379				"lookup of first attribute extent failed with "
2380				"error code %i.", vi->i_ino,
2381				(unsigned)le32_to_cpu(ni->type), err);
2382	if (err == -ENOENT)
2383		err = -EIO;
2384	ntfs_attr_reinit_search_ctx(ctx);
2385	if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
2386			allocated_size >> vol->cluster_size_bits, NULL, 0,
2387			ctx)) {
2388		ntfs_error(vol->sb, "Failed to find last attribute extent of "
2389				"attribute in error code path.  Run chkdsk to "
2390				"recover.");
2391		write_lock_irqsave(&ni->size_lock, flags);
2392		ni->allocated_size = new_alloc_size;
2393		/*
2394		 * FIXME: This would fail if @ni is a directory...  See above.
2395		 * FIXME: The calculation is wrong if we created a hole above.
2396		 * For now it does not matter as we never create holes.
2397		 */
2398		if (NInoSparse(ni) || NInoCompressed(ni)) {
2399			ni->itype.compressed.size += new_alloc_size -
2400					allocated_size;
2401			vi->i_blocks = ni->itype.compressed.size >> 9;
2402		} else
2403			vi->i_blocks = new_alloc_size >> 9;
2404		write_unlock_irqrestore(&ni->size_lock, flags);
2405		ntfs_attr_put_search_ctx(ctx);
2406		unmap_mft_record(base_ni);
2407		up_write(&ni->runlist.lock);
2408		/*
2409		 * The only thing that is now wrong is the allocated size of the
2410		 * base attribute extent which chkdsk should be able to fix.
2411		 */
2412		NVolSetErrors(vol);
2413		return err;
2414	}
2415	ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
2416			(allocated_size >> vol->cluster_size_bits) - 1);
2417undo_alloc:
2418	ll = allocated_size >> vol->cluster_size_bits;
2419	if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
2420		ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
2421				"in error code path.  Run chkdsk to recover "
2422				"the lost cluster(s).");
2423		NVolSetErrors(vol);
2424	}
2425	m = ctx->mrec;
2426	a = ctx->attr;
2427	/*
2428	 * If the runlist truncation fails and/or the search context is no
2429	 * longer valid, we cannot resize the attribute record or build the
2430	 * mapping pairs array thus we mark the inode bad so that no access to
2431	 * the freed clusters can happen.
2432	 */
2433	if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
2434		ntfs_error(vol->sb, "Failed to %s in error code path.  Run "
2435				"chkdsk to recover.", IS_ERR(m) ?
2436				"restore attribute search context" :
2437				"truncate attribute runlist");
2438		NVolSetErrors(vol);
2439	} else if (mp_rebuilt) {
2440		if (ntfs_attr_record_resize(m, a, attr_len)) {
2441			ntfs_error(vol->sb, "Failed to restore attribute "
2442					"record in error code path.  Run "
2443					"chkdsk to recover.");
2444			NVolSetErrors(vol);
2445		} else /* if (success) */ {
2446			if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
2447					a->data.non_resident.
2448					mapping_pairs_offset), attr_len -
2449					le16_to_cpu(a->data.non_resident.
2450					mapping_pairs_offset), rl2, ll, -1,
2451					NULL)) {
2452				ntfs_error(vol->sb, "Failed to restore "
2453						"mapping pairs array in error "
2454						"code path.  Run chkdsk to "
2455						"recover.");
2456				NVolSetErrors(vol);
2457			}
2458			flush_dcache_mft_record_page(ctx->ntfs_ino);
2459			mark_mft_record_dirty(ctx->ntfs_ino);
2460		}
2461	}
2462err_out:
2463	if (ctx)
2464		ntfs_attr_put_search_ctx(ctx);
2465	if (m)
2466		unmap_mft_record(base_ni);
2467	up_write(&ni->runlist.lock);
2468conv_err_out:
2469	ntfs_debug("Failed.  Returning error code %i.", err);
2470	return err;
2471}
2472
2473/**
2474 * ntfs_attr_set - fill (a part of) an attribute with a byte
2475 * @ni:		ntfs inode describing the attribute to fill
2476 * @ofs:	offset inside the attribute at which to start to fill
2477 * @cnt:	number of bytes to fill
2478 * @val:	the unsigned 8-bit value with which to fill the attribute
2479 *
2480 * Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
2481 * byte offset @ofs inside the attribute with the constant byte @val.
2482 *
2483 * This function is effectively like memset() applied to an ntfs attribute.
2484 * Note thie function actually only operates on the page cache pages belonging
2485 * to the ntfs attribute and it marks them dirty after doing the memset().
2486 * Thus it relies on the vm dirty page write code paths to cause the modified
2487 * pages to be written to the mft record/disk.
2488 *
2489 * Return 0 on success and -errno on error.  An error code of -ESPIPE means
2490 * that @ofs + @cnt were outside the end of the attribute and no write was
2491 * performed.
2492 */
2493int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
2494{
2495	ntfs_volume *vol = ni->vol;
2496	struct address_space *mapping;
2497	struct page *page;
2498	u8 *kaddr;
2499	pgoff_t idx, end;
2500	unsigned start_ofs, end_ofs, size;
2501
2502	ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
2503			(long long)ofs, (long long)cnt, val);
2504	BUG_ON(ofs < 0);
2505	BUG_ON(cnt < 0);
2506	if (!cnt)
2507		goto done;
2508	/*
2509	 * FIXME: Compressed and encrypted attributes are not supported when
2510	 * writing and we should never have gotten here for them.
2511	 */
2512	BUG_ON(NInoCompressed(ni));
2513	BUG_ON(NInoEncrypted(ni));
2514	mapping = VFS_I(ni)->i_mapping;
2515	/* Work out the starting index and page offset. */
2516	idx = ofs >> PAGE_CACHE_SHIFT;
2517	start_ofs = ofs & ~PAGE_CACHE_MASK;
2518	/* Work out the ending index and page offset. */
2519	end = ofs + cnt;
2520	end_ofs = end & ~PAGE_CACHE_MASK;
2521	/* If the end is outside the inode size return -ESPIPE. */
2522	if (unlikely(end > i_size_read(VFS_I(ni)))) {
2523		ntfs_error(vol->sb, "Request exceeds end of attribute.");
2524		return -ESPIPE;
2525	}
2526	end >>= PAGE_CACHE_SHIFT;
2527	/* If there is a first partial page, need to do it the slow way. */
2528	if (start_ofs) {
2529		page = read_mapping_page(mapping, idx, NULL);
2530		if (IS_ERR(page)) {
2531			ntfs_error(vol->sb, "Failed to read first partial "
2532					"page (error, index 0x%lx).", idx);
2533			return PTR_ERR(page);
2534		}
2535		/*
2536		 * If the last page is the same as the first page, need to
2537		 * limit the write to the end offset.
2538		 */
2539		size = PAGE_CACHE_SIZE;
2540		if (idx == end)
2541			size = end_ofs;
2542		kaddr = kmap_atomic(page);
2543		memset(kaddr + start_ofs, val, size - start_ofs);
2544		flush_dcache_page(page);
2545		kunmap_atomic(kaddr);
2546		set_page_dirty(page);
2547		page_cache_release(page);
2548		balance_dirty_pages_ratelimited(mapping);
2549		cond_resched();
2550		if (idx == end)
2551			goto done;
2552		idx++;
2553	}
2554	/* Do the whole pages the fast way. */
2555	for (; idx < end; idx++) {
2556		/* Find or create the current page.  (The page is locked.) */
2557		page = grab_cache_page(mapping, idx);
2558		if (unlikely(!page)) {
2559			ntfs_error(vol->sb, "Insufficient memory to grab "
2560					"page (index 0x%lx).", idx);
2561			return -ENOMEM;
2562		}
2563		kaddr = kmap_atomic(page);
2564		memset(kaddr, val, PAGE_CACHE_SIZE);
2565		flush_dcache_page(page);
2566		kunmap_atomic(kaddr);
2567		/*
2568		 * If the page has buffers, mark them uptodate since buffer
2569		 * state and not page state is definitive in 2.6 kernels.
2570		 */
2571		if (page_has_buffers(page)) {
2572			struct buffer_head *bh, *head;
2573
2574			bh = head = page_buffers(page);
2575			do {
2576				set_buffer_uptodate(bh);
2577			} while ((bh = bh->b_this_page) != head);
2578		}
2579		/* Now that buffers are uptodate, set the page uptodate, too. */
2580		SetPageUptodate(page);
2581		/*
2582		 * Set the page and all its buffers dirty and mark the inode
2583		 * dirty, too.  The VM will write the page later on.
2584		 */
2585		set_page_dirty(page);
2586		/* Finally unlock and release the page. */
2587		unlock_page(page);
2588		page_cache_release(page);
2589		balance_dirty_pages_ratelimited(mapping);
2590		cond_resched();
2591	}
2592	/* If there is a last partial page, need to do it the slow way. */
2593	if (end_ofs) {
2594		page = read_mapping_page(mapping, idx, NULL);
2595		if (IS_ERR(page)) {
2596			ntfs_error(vol->sb, "Failed to read last partial page "
2597					"(error, index 0x%lx).", idx);
2598			return PTR_ERR(page);
2599		}
2600		kaddr = kmap_atomic(page);
2601		memset(kaddr, val, end_ofs);
2602		flush_dcache_page(page);
2603		kunmap_atomic(kaddr);
2604		set_page_dirty(page);
2605		page_cache_release(page);
2606		balance_dirty_pages_ratelimited(mapping);
2607		cond_resched();
2608	}
2609done:
2610	ntfs_debug("Done.");
2611	return 0;
2612}
2613
2614#endif /* NTFS_RW */
2615