1/* -*- mode: c; c-basic-offset: 8; -*-
2 * vim: noexpandtab sw=8 ts=8 sts=0:
3 *
4 * Copyright (C) 2002, 2004 Oracle.  All rights reserved.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14 * General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public
17 * License along with this program; if not, write to the
18 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 * Boston, MA 021110-1307, USA.
20 */
21
22#include <linux/fs.h>
23#include <linux/slab.h>
24#include <linux/highmem.h>
25#include <linux/pagemap.h>
26#include <asm/byteorder.h>
27#include <linux/swap.h>
28#include <linux/pipe_fs_i.h>
29#include <linux/mpage.h>
30#include <linux/quotaops.h>
31#include <linux/blkdev.h>
32#include <linux/uio.h>
33
34#include <cluster/masklog.h>
35
36#include "ocfs2.h"
37
38#include "alloc.h"
39#include "aops.h"
40#include "dlmglue.h"
41#include "extent_map.h"
42#include "file.h"
43#include "inode.h"
44#include "journal.h"
45#include "suballoc.h"
46#include "super.h"
47#include "symlink.h"
48#include "refcounttree.h"
49#include "ocfs2_trace.h"
50
51#include "buffer_head_io.h"
52#include "dir.h"
53#include "namei.h"
54#include "sysfile.h"
55
56static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
57				   struct buffer_head *bh_result, int create)
58{
59	int err = -EIO;
60	int status;
61	struct ocfs2_dinode *fe = NULL;
62	struct buffer_head *bh = NULL;
63	struct buffer_head *buffer_cache_bh = NULL;
64	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
65	void *kaddr;
66
67	trace_ocfs2_symlink_get_block(
68			(unsigned long long)OCFS2_I(inode)->ip_blkno,
69			(unsigned long long)iblock, bh_result, create);
70
71	BUG_ON(ocfs2_inode_is_fast_symlink(inode));
72
73	if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
74		mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
75		     (unsigned long long)iblock);
76		goto bail;
77	}
78
79	status = ocfs2_read_inode_block(inode, &bh);
80	if (status < 0) {
81		mlog_errno(status);
82		goto bail;
83	}
84	fe = (struct ocfs2_dinode *) bh->b_data;
85
86	if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
87						    le32_to_cpu(fe->i_clusters))) {
88		err = -ENOMEM;
89		mlog(ML_ERROR, "block offset is outside the allocated size: "
90		     "%llu\n", (unsigned long long)iblock);
91		goto bail;
92	}
93
94	/* We don't use the page cache to create symlink data, so if
95	 * need be, copy it over from the buffer cache. */
96	if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
97		u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
98			    iblock;
99		buffer_cache_bh = sb_getblk(osb->sb, blkno);
100		if (!buffer_cache_bh) {
101			err = -ENOMEM;
102			mlog(ML_ERROR, "couldn't getblock for symlink!\n");
103			goto bail;
104		}
105
106		/* we haven't locked out transactions, so a commit
107		 * could've happened. Since we've got a reference on
108		 * the bh, even if it commits while we're doing the
109		 * copy, the data is still good. */
110		if (buffer_jbd(buffer_cache_bh)
111		    && ocfs2_inode_is_new(inode)) {
112			kaddr = kmap_atomic(bh_result->b_page);
113			if (!kaddr) {
114				mlog(ML_ERROR, "couldn't kmap!\n");
115				goto bail;
116			}
117			memcpy(kaddr + (bh_result->b_size * iblock),
118			       buffer_cache_bh->b_data,
119			       bh_result->b_size);
120			kunmap_atomic(kaddr);
121			set_buffer_uptodate(bh_result);
122		}
123		brelse(buffer_cache_bh);
124	}
125
126	map_bh(bh_result, inode->i_sb,
127	       le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
128
129	err = 0;
130
131bail:
132	brelse(bh);
133
134	return err;
135}
136
137int ocfs2_get_block(struct inode *inode, sector_t iblock,
138		    struct buffer_head *bh_result, int create)
139{
140	int err = 0;
141	unsigned int ext_flags;
142	u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
143	u64 p_blkno, count, past_eof;
144	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
145
146	trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
147			      (unsigned long long)iblock, bh_result, create);
148
149	if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
150		mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
151		     inode, inode->i_ino);
152
153	if (S_ISLNK(inode->i_mode)) {
154		/* this always does I/O for some reason. */
155		err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
156		goto bail;
157	}
158
159	err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
160					  &ext_flags);
161	if (err) {
162		mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
163		     "%llu, NULL)\n", err, inode, (unsigned long long)iblock,
164		     (unsigned long long)p_blkno);
165		goto bail;
166	}
167
168	if (max_blocks < count)
169		count = max_blocks;
170
171	/*
172	 * ocfs2 never allocates in this function - the only time we
173	 * need to use BH_New is when we're extending i_size on a file
174	 * system which doesn't support holes, in which case BH_New
175	 * allows __block_write_begin() to zero.
176	 *
177	 * If we see this on a sparse file system, then a truncate has
178	 * raced us and removed the cluster. In this case, we clear
179	 * the buffers dirty and uptodate bits and let the buffer code
180	 * ignore it as a hole.
181	 */
182	if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
183		clear_buffer_dirty(bh_result);
184		clear_buffer_uptodate(bh_result);
185		goto bail;
186	}
187
188	/* Treat the unwritten extent as a hole for zeroing purposes. */
189	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
190		map_bh(bh_result, inode->i_sb, p_blkno);
191
192	bh_result->b_size = count << inode->i_blkbits;
193
194	if (!ocfs2_sparse_alloc(osb)) {
195		if (p_blkno == 0) {
196			err = -EIO;
197			mlog(ML_ERROR,
198			     "iblock = %llu p_blkno = %llu blkno=(%llu)\n",
199			     (unsigned long long)iblock,
200			     (unsigned long long)p_blkno,
201			     (unsigned long long)OCFS2_I(inode)->ip_blkno);
202			mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
203			dump_stack();
204			goto bail;
205		}
206	}
207
208	past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
209
210	trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
211				  (unsigned long long)past_eof);
212	if (create && (iblock >= past_eof))
213		set_buffer_new(bh_result);
214
215bail:
216	if (err < 0)
217		err = -EIO;
218
219	return err;
220}
221
222int ocfs2_read_inline_data(struct inode *inode, struct page *page,
223			   struct buffer_head *di_bh)
224{
225	void *kaddr;
226	loff_t size;
227	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
228
229	if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
230		ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag",
231			    (unsigned long long)OCFS2_I(inode)->ip_blkno);
232		return -EROFS;
233	}
234
235	size = i_size_read(inode);
236
237	if (size > PAGE_CACHE_SIZE ||
238	    size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
239		ocfs2_error(inode->i_sb,
240			    "Inode %llu has with inline data has bad size: %Lu",
241			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
242			    (unsigned long long)size);
243		return -EROFS;
244	}
245
246	kaddr = kmap_atomic(page);
247	if (size)
248		memcpy(kaddr, di->id2.i_data.id_data, size);
249	/* Clear the remaining part of the page */
250	memset(kaddr + size, 0, PAGE_CACHE_SIZE - size);
251	flush_dcache_page(page);
252	kunmap_atomic(kaddr);
253
254	SetPageUptodate(page);
255
256	return 0;
257}
258
259static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
260{
261	int ret;
262	struct buffer_head *di_bh = NULL;
263
264	BUG_ON(!PageLocked(page));
265	BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
266
267	ret = ocfs2_read_inode_block(inode, &di_bh);
268	if (ret) {
269		mlog_errno(ret);
270		goto out;
271	}
272
273	ret = ocfs2_read_inline_data(inode, page, di_bh);
274out:
275	unlock_page(page);
276
277	brelse(di_bh);
278	return ret;
279}
280
281static int ocfs2_readpage(struct file *file, struct page *page)
282{
283	struct inode *inode = page->mapping->host;
284	struct ocfs2_inode_info *oi = OCFS2_I(inode);
285	loff_t start = (loff_t)page->index << PAGE_CACHE_SHIFT;
286	int ret, unlock = 1;
287
288	trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
289			     (page ? page->index : 0));
290
291	ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
292	if (ret != 0) {
293		if (ret == AOP_TRUNCATED_PAGE)
294			unlock = 0;
295		mlog_errno(ret);
296		goto out;
297	}
298
299	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
300		/*
301		 * Unlock the page and cycle ip_alloc_sem so that we don't
302		 * busyloop waiting for ip_alloc_sem to unlock
303		 */
304		ret = AOP_TRUNCATED_PAGE;
305		unlock_page(page);
306		unlock = 0;
307		down_read(&oi->ip_alloc_sem);
308		up_read(&oi->ip_alloc_sem);
309		goto out_inode_unlock;
310	}
311
312	/*
313	 * i_size might have just been updated as we grabed the meta lock.  We
314	 * might now be discovering a truncate that hit on another node.
315	 * block_read_full_page->get_block freaks out if it is asked to read
316	 * beyond the end of a file, so we check here.  Callers
317	 * (generic_file_read, vm_ops->fault) are clever enough to check i_size
318	 * and notice that the page they just read isn't needed.
319	 *
320	 * XXX sys_readahead() seems to get that wrong?
321	 */
322	if (start >= i_size_read(inode)) {
323		zero_user(page, 0, PAGE_SIZE);
324		SetPageUptodate(page);
325		ret = 0;
326		goto out_alloc;
327	}
328
329	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
330		ret = ocfs2_readpage_inline(inode, page);
331	else
332		ret = block_read_full_page(page, ocfs2_get_block);
333	unlock = 0;
334
335out_alloc:
336	up_read(&OCFS2_I(inode)->ip_alloc_sem);
337out_inode_unlock:
338	ocfs2_inode_unlock(inode, 0);
339out:
340	if (unlock)
341		unlock_page(page);
342	return ret;
343}
344
345/*
346 * This is used only for read-ahead. Failures or difficult to handle
347 * situations are safe to ignore.
348 *
349 * Right now, we don't bother with BH_Boundary - in-inode extent lists
350 * are quite large (243 extents on 4k blocks), so most inodes don't
351 * grow out to a tree. If need be, detecting boundary extents could
352 * trivially be added in a future version of ocfs2_get_block().
353 */
354static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
355			   struct list_head *pages, unsigned nr_pages)
356{
357	int ret, err = -EIO;
358	struct inode *inode = mapping->host;
359	struct ocfs2_inode_info *oi = OCFS2_I(inode);
360	loff_t start;
361	struct page *last;
362
363	/*
364	 * Use the nonblocking flag for the dlm code to avoid page
365	 * lock inversion, but don't bother with retrying.
366	 */
367	ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
368	if (ret)
369		return err;
370
371	if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
372		ocfs2_inode_unlock(inode, 0);
373		return err;
374	}
375
376	/*
377	 * Don't bother with inline-data. There isn't anything
378	 * to read-ahead in that case anyway...
379	 */
380	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
381		goto out_unlock;
382
383	/*
384	 * Check whether a remote node truncated this file - we just
385	 * drop out in that case as it's not worth handling here.
386	 */
387	last = list_entry(pages->prev, struct page, lru);
388	start = (loff_t)last->index << PAGE_CACHE_SHIFT;
389	if (start >= i_size_read(inode))
390		goto out_unlock;
391
392	err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
393
394out_unlock:
395	up_read(&oi->ip_alloc_sem);
396	ocfs2_inode_unlock(inode, 0);
397
398	return err;
399}
400
401/* Note: Because we don't support holes, our allocation has
402 * already happened (allocation writes zeros to the file data)
403 * so we don't have to worry about ordered writes in
404 * ocfs2_writepage.
405 *
406 * ->writepage is called during the process of invalidating the page cache
407 * during blocked lock processing.  It can't block on any cluster locks
408 * to during block mapping.  It's relying on the fact that the block
409 * mapping can't have disappeared under the dirty pages that it is
410 * being asked to write back.
411 */
412static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
413{
414	trace_ocfs2_writepage(
415		(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
416		page->index);
417
418	return block_write_full_page(page, ocfs2_get_block, wbc);
419}
420
421/* Taken from ext3. We don't necessarily need the full blown
422 * functionality yet, but IMHO it's better to cut and paste the whole
423 * thing so we can avoid introducing our own bugs (and easily pick up
424 * their fixes when they happen) --Mark */
425int walk_page_buffers(	handle_t *handle,
426			struct buffer_head *head,
427			unsigned from,
428			unsigned to,
429			int *partial,
430			int (*fn)(	handle_t *handle,
431					struct buffer_head *bh))
432{
433	struct buffer_head *bh;
434	unsigned block_start, block_end;
435	unsigned blocksize = head->b_size;
436	int err, ret = 0;
437	struct buffer_head *next;
438
439	for (	bh = head, block_start = 0;
440		ret == 0 && (bh != head || !block_start);
441	    	block_start = block_end, bh = next)
442	{
443		next = bh->b_this_page;
444		block_end = block_start + blocksize;
445		if (block_end <= from || block_start >= to) {
446			if (partial && !buffer_uptodate(bh))
447				*partial = 1;
448			continue;
449		}
450		err = (*fn)(handle, bh);
451		if (!ret)
452			ret = err;
453	}
454	return ret;
455}
456
457static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
458{
459	sector_t status;
460	u64 p_blkno = 0;
461	int err = 0;
462	struct inode *inode = mapping->host;
463
464	trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
465			 (unsigned long long)block);
466
467	/* We don't need to lock journal system files, since they aren't
468	 * accessed concurrently from multiple nodes.
469	 */
470	if (!INODE_JOURNAL(inode)) {
471		err = ocfs2_inode_lock(inode, NULL, 0);
472		if (err) {
473			if (err != -ENOENT)
474				mlog_errno(err);
475			goto bail;
476		}
477		down_read(&OCFS2_I(inode)->ip_alloc_sem);
478	}
479
480	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
481		err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
482						  NULL);
483
484	if (!INODE_JOURNAL(inode)) {
485		up_read(&OCFS2_I(inode)->ip_alloc_sem);
486		ocfs2_inode_unlock(inode, 0);
487	}
488
489	if (err) {
490		mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
491		     (unsigned long long)block);
492		mlog_errno(err);
493		goto bail;
494	}
495
496bail:
497	status = err ? 0 : p_blkno;
498
499	return status;
500}
501
502/*
503 * TODO: Make this into a generic get_blocks function.
504 *
505 * From do_direct_io in direct-io.c:
506 *  "So what we do is to permit the ->get_blocks function to populate
507 *   bh.b_size with the size of IO which is permitted at this offset and
508 *   this i_blkbits."
509 *
510 * This function is called directly from get_more_blocks in direct-io.c.
511 *
512 * called like this: dio->get_blocks(dio->inode, fs_startblk,
513 * 					fs_count, map_bh, dio->rw == WRITE);
514 */
515static int ocfs2_direct_IO_get_blocks(struct inode *inode, sector_t iblock,
516				     struct buffer_head *bh_result, int create)
517{
518	int ret;
519	u32 cpos = 0;
520	int alloc_locked = 0;
521	u64 p_blkno, inode_blocks, contig_blocks;
522	unsigned int ext_flags;
523	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
524	unsigned long max_blocks = bh_result->b_size >> inode->i_blkbits;
525	unsigned long len = bh_result->b_size;
526	unsigned int clusters_to_alloc = 0;
527
528	cpos = ocfs2_blocks_to_clusters(inode->i_sb, iblock);
529
530	/* This function won't even be called if the request isn't all
531	 * nicely aligned and of the right size, so there's no need
532	 * for us to check any of that. */
533
534	inode_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
535
536	/* This figures out the size of the next contiguous block, and
537	 * our logical offset */
538	ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
539					  &contig_blocks, &ext_flags);
540	if (ret) {
541		mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
542		     (unsigned long long)iblock);
543		ret = -EIO;
544		goto bail;
545	}
546
547	/* We should already CoW the refcounted extent in case of create. */
548	BUG_ON(create && (ext_flags & OCFS2_EXT_REFCOUNTED));
549
550	/* allocate blocks if no p_blkno is found, and create == 1 */
551	if (!p_blkno && create) {
552		ret = ocfs2_inode_lock(inode, NULL, 1);
553		if (ret < 0) {
554			mlog_errno(ret);
555			goto bail;
556		}
557
558		alloc_locked = 1;
559
560		/* fill hole, allocate blocks can't be larger than the size
561		 * of the hole */
562		clusters_to_alloc = ocfs2_clusters_for_bytes(inode->i_sb, len);
563		if (clusters_to_alloc > contig_blocks)
564			clusters_to_alloc = contig_blocks;
565
566		/* allocate extent and insert them into the extent tree */
567		ret = ocfs2_extend_allocation(inode, cpos,
568				clusters_to_alloc, 0);
569		if (ret < 0) {
570			mlog_errno(ret);
571			goto bail;
572		}
573
574		ret = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno,
575				&contig_blocks, &ext_flags);
576		if (ret < 0) {
577			mlog(ML_ERROR, "get_blocks() failed iblock=%llu\n",
578					(unsigned long long)iblock);
579			ret = -EIO;
580			goto bail;
581		}
582	}
583
584	/*
585	 * get_more_blocks() expects us to describe a hole by clearing
586	 * the mapped bit on bh_result().
587	 *
588	 * Consider an unwritten extent as a hole.
589	 */
590	if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
591		map_bh(bh_result, inode->i_sb, p_blkno);
592	else
593		clear_buffer_mapped(bh_result);
594
595	/* make sure we don't map more than max_blocks blocks here as
596	   that's all the kernel will handle at this point. */
597	if (max_blocks < contig_blocks)
598		contig_blocks = max_blocks;
599	bh_result->b_size = contig_blocks << blocksize_bits;
600bail:
601	if (alloc_locked)
602		ocfs2_inode_unlock(inode, 1);
603	return ret;
604}
605
606/*
607 * ocfs2_dio_end_io is called by the dio core when a dio is finished.  We're
608 * particularly interested in the aio/dio case.  We use the rw_lock DLM lock
609 * to protect io on one node from truncation on another.
610 */
611static void ocfs2_dio_end_io(struct kiocb *iocb,
612			     loff_t offset,
613			     ssize_t bytes,
614			     void *private)
615{
616	struct inode *inode = file_inode(iocb->ki_filp);
617	int level;
618
619	/* this io's submitter should not have unlocked this before we could */
620	BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
621
622	if (ocfs2_iocb_is_sem_locked(iocb))
623		ocfs2_iocb_clear_sem_locked(iocb);
624
625	if (ocfs2_iocb_is_unaligned_aio(iocb)) {
626		ocfs2_iocb_clear_unaligned_aio(iocb);
627
628		mutex_unlock(&OCFS2_I(inode)->ip_unaligned_aio);
629	}
630
631	ocfs2_iocb_clear_rw_locked(iocb);
632
633	level = ocfs2_iocb_rw_locked_level(iocb);
634	ocfs2_rw_unlock(inode, level);
635}
636
637static int ocfs2_releasepage(struct page *page, gfp_t wait)
638{
639	if (!page_has_buffers(page))
640		return 0;
641	return try_to_free_buffers(page);
642}
643
644static int ocfs2_is_overwrite(struct ocfs2_super *osb,
645		struct inode *inode, loff_t offset)
646{
647	int ret = 0;
648	u32 v_cpos = 0;
649	u32 p_cpos = 0;
650	unsigned int num_clusters = 0;
651	unsigned int ext_flags = 0;
652
653	v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
654	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
655			&num_clusters, &ext_flags);
656	if (ret < 0) {
657		mlog_errno(ret);
658		return ret;
659	}
660
661	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN))
662		return 1;
663
664	return 0;
665}
666
667static int ocfs2_direct_IO_zero_extend(struct ocfs2_super *osb,
668		struct inode *inode, loff_t offset,
669		u64 zero_len, int cluster_align)
670{
671	u32 p_cpos = 0;
672	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
673	unsigned int num_clusters = 0;
674	unsigned int ext_flags = 0;
675	int ret = 0;
676
677	if (offset <= i_size_read(inode) || cluster_align)
678		return 0;
679
680	ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
681			&ext_flags);
682	if (ret < 0) {
683		mlog_errno(ret);
684		return ret;
685	}
686
687	if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
688		u64 s = i_size_read(inode);
689		sector_t sector = ((u64)p_cpos << (osb->s_clustersize_bits - 9)) +
690			(do_div(s, osb->s_clustersize) >> 9);
691
692		ret = blkdev_issue_zeroout(osb->sb->s_bdev, sector,
693				zero_len >> 9, GFP_NOFS, false);
694		if (ret < 0)
695			mlog_errno(ret);
696	}
697
698	return ret;
699}
700
701static int ocfs2_direct_IO_extend_no_holes(struct ocfs2_super *osb,
702		struct inode *inode, loff_t offset)
703{
704	u64 zero_start, zero_len, total_zero_len;
705	u32 p_cpos = 0, clusters_to_add;
706	u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, i_size_read(inode));
707	unsigned int num_clusters = 0;
708	unsigned int ext_flags = 0;
709	u32 size_div, offset_div;
710	int ret = 0;
711
712	{
713		u64 o = offset;
714		u64 s = i_size_read(inode);
715
716		offset_div = do_div(o, osb->s_clustersize);
717		size_div = do_div(s, osb->s_clustersize);
718	}
719
720	if (offset <= i_size_read(inode))
721		return 0;
722
723	clusters_to_add = ocfs2_bytes_to_clusters(inode->i_sb, offset) -
724		ocfs2_bytes_to_clusters(inode->i_sb, i_size_read(inode));
725	total_zero_len = offset - i_size_read(inode);
726	if (clusters_to_add)
727		total_zero_len -= offset_div;
728
729	/* Allocate clusters to fill out holes, and this is only needed
730	 * when we add more than one clusters. Otherwise the cluster will
731	 * be allocated during direct IO */
732	if (clusters_to_add > 1) {
733		ret = ocfs2_extend_allocation(inode,
734				OCFS2_I(inode)->ip_clusters,
735				clusters_to_add - 1, 0);
736		if (ret) {
737			mlog_errno(ret);
738			goto out;
739		}
740	}
741
742	while (total_zero_len) {
743		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos, &num_clusters,
744				&ext_flags);
745		if (ret < 0) {
746			mlog_errno(ret);
747			goto out;
748		}
749
750		zero_start = ocfs2_clusters_to_bytes(osb->sb, p_cpos) +
751			size_div;
752		zero_len = ocfs2_clusters_to_bytes(osb->sb, num_clusters) -
753			size_div;
754		zero_len = min(total_zero_len, zero_len);
755
756		if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) {
757			ret = blkdev_issue_zeroout(osb->sb->s_bdev,
758					zero_start >> 9, zero_len >> 9,
759					GFP_NOFS, false);
760			if (ret < 0) {
761				mlog_errno(ret);
762				goto out;
763			}
764		}
765
766		total_zero_len -= zero_len;
767		v_cpos += ocfs2_bytes_to_clusters(osb->sb, zero_len + size_div);
768
769		/* Only at first iteration can be cluster not aligned.
770		 * So set size_div to 0 for the rest */
771		size_div = 0;
772	}
773
774out:
775	return ret;
776}
777
778static ssize_t ocfs2_direct_IO_write(struct kiocb *iocb,
779		struct iov_iter *iter,
780		loff_t offset)
781{
782	ssize_t ret = 0;
783	ssize_t written = 0;
784	bool orphaned = false;
785	int is_overwrite = 0;
786	struct file *file = iocb->ki_filp;
787	struct inode *inode = file_inode(file)->i_mapping->host;
788	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
789	struct buffer_head *di_bh = NULL;
790	size_t count = iter->count;
791	journal_t *journal = osb->journal->j_journal;
792	u64 zero_len_head, zero_len_tail;
793	int cluster_align_head, cluster_align_tail;
794	loff_t final_size = offset + count;
795	int append_write = offset >= i_size_read(inode) ? 1 : 0;
796	unsigned int num_clusters = 0;
797	unsigned int ext_flags = 0;
798
799	{
800		u64 o = offset;
801		u64 s = i_size_read(inode);
802
803		zero_len_head = do_div(o, 1 << osb->s_clustersize_bits);
804		cluster_align_head = !zero_len_head;
805
806		zero_len_tail = osb->s_clustersize -
807			do_div(s, osb->s_clustersize);
808		if ((offset - i_size_read(inode)) < zero_len_tail)
809			zero_len_tail = offset - i_size_read(inode);
810		cluster_align_tail = !zero_len_tail;
811	}
812
813	/*
814	 * when final_size > inode->i_size, inode->i_size will be
815	 * updated after direct write, so add the inode to orphan
816	 * dir first.
817	 */
818	if (final_size > i_size_read(inode)) {
819		ret = ocfs2_add_inode_to_orphan(osb, inode);
820		if (ret < 0) {
821			mlog_errno(ret);
822			goto out;
823		}
824		orphaned = true;
825	}
826
827	if (append_write) {
828		ret = ocfs2_inode_lock(inode, NULL, 1);
829		if (ret < 0) {
830			mlog_errno(ret);
831			goto clean_orphan;
832		}
833
834		/* zeroing out the previously allocated cluster tail
835		 * that but not zeroed */
836		if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
837			ret = ocfs2_direct_IO_zero_extend(osb, inode, offset,
838					zero_len_tail, cluster_align_tail);
839		else
840			ret = ocfs2_direct_IO_extend_no_holes(osb, inode,
841					offset);
842		if (ret < 0) {
843			mlog_errno(ret);
844			ocfs2_inode_unlock(inode, 1);
845			goto clean_orphan;
846		}
847
848		is_overwrite = ocfs2_is_overwrite(osb, inode, offset);
849		if (is_overwrite < 0) {
850			mlog_errno(is_overwrite);
851			ocfs2_inode_unlock(inode, 1);
852			goto clean_orphan;
853		}
854
855		ocfs2_inode_unlock(inode, 1);
856	}
857
858	written = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
859				       offset, ocfs2_direct_IO_get_blocks,
860				       ocfs2_dio_end_io, NULL, 0);
861	if (unlikely(written < 0)) {
862		loff_t i_size = i_size_read(inode);
863
864		if (offset + count > i_size) {
865			ret = ocfs2_inode_lock(inode, &di_bh, 1);
866			if (ret < 0) {
867				mlog_errno(ret);
868				goto clean_orphan;
869			}
870
871			if (i_size == i_size_read(inode)) {
872				ret = ocfs2_truncate_file(inode, di_bh,
873						i_size);
874				if (ret < 0) {
875					if (ret != -ENOSPC)
876						mlog_errno(ret);
877
878					ocfs2_inode_unlock(inode, 1);
879					brelse(di_bh);
880					goto clean_orphan;
881				}
882			}
883
884			ocfs2_inode_unlock(inode, 1);
885			brelse(di_bh);
886
887			ret = jbd2_journal_force_commit(journal);
888			if (ret < 0)
889				mlog_errno(ret);
890		}
891	} else if (written > 0 && append_write && !is_overwrite &&
892			!cluster_align_head) {
893		/* zeroing out the allocated cluster head */
894		u32 p_cpos = 0;
895		u32 v_cpos = ocfs2_bytes_to_clusters(osb->sb, offset);
896
897		ret = ocfs2_inode_lock(inode, NULL, 0);
898		if (ret < 0) {
899			mlog_errno(ret);
900			goto clean_orphan;
901		}
902
903		ret = ocfs2_get_clusters(inode, v_cpos, &p_cpos,
904				&num_clusters, &ext_flags);
905		if (ret < 0) {
906			mlog_errno(ret);
907			ocfs2_inode_unlock(inode, 0);
908			goto clean_orphan;
909		}
910
911		BUG_ON(!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN));
912
913		ret = blkdev_issue_zeroout(osb->sb->s_bdev,
914				(u64)p_cpos << (osb->s_clustersize_bits - 9),
915				zero_len_head >> 9, GFP_NOFS, false);
916		if (ret < 0)
917			mlog_errno(ret);
918
919		ocfs2_inode_unlock(inode, 0);
920	}
921
922clean_orphan:
923	if (orphaned) {
924		int tmp_ret;
925		int update_isize = written > 0 ? 1 : 0;
926		loff_t end = update_isize ? offset + written : 0;
927
928		tmp_ret = ocfs2_del_inode_from_orphan(osb, inode,
929				update_isize, end);
930		if (tmp_ret < 0) {
931			ret = tmp_ret;
932			goto out;
933		}
934
935		tmp_ret = jbd2_journal_force_commit(journal);
936		if (tmp_ret < 0) {
937			ret = tmp_ret;
938			mlog_errno(tmp_ret);
939		}
940	}
941
942out:
943	if (ret >= 0)
944		ret = written;
945	return ret;
946}
947
948static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
949			       loff_t offset)
950{
951	struct file *file = iocb->ki_filp;
952	struct inode *inode = file_inode(file)->i_mapping->host;
953	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
954	int full_coherency = !(osb->s_mount_opt &
955			OCFS2_MOUNT_COHERENCY_BUFFERED);
956
957	/*
958	 * Fallback to buffered I/O if we see an inode without
959	 * extents.
960	 */
961	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
962		return 0;
963
964	/* Fallback to buffered I/O if we are appending and
965	 * concurrent O_DIRECT writes are allowed.
966	 */
967	if (i_size_read(inode) <= offset && !full_coherency)
968		return 0;
969
970	if (iov_iter_rw(iter) == READ)
971		return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
972					    iter, offset,
973					    ocfs2_direct_IO_get_blocks,
974					    ocfs2_dio_end_io, NULL, 0);
975	else
976		return ocfs2_direct_IO_write(iocb, iter, offset);
977}
978
979static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
980					    u32 cpos,
981					    unsigned int *start,
982					    unsigned int *end)
983{
984	unsigned int cluster_start = 0, cluster_end = PAGE_CACHE_SIZE;
985
986	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits)) {
987		unsigned int cpp;
988
989		cpp = 1 << (PAGE_CACHE_SHIFT - osb->s_clustersize_bits);
990
991		cluster_start = cpos % cpp;
992		cluster_start = cluster_start << osb->s_clustersize_bits;
993
994		cluster_end = cluster_start + osb->s_clustersize;
995	}
996
997	BUG_ON(cluster_start > PAGE_SIZE);
998	BUG_ON(cluster_end > PAGE_SIZE);
999
1000	if (start)
1001		*start = cluster_start;
1002	if (end)
1003		*end = cluster_end;
1004}
1005
1006/*
1007 * 'from' and 'to' are the region in the page to avoid zeroing.
1008 *
1009 * If pagesize > clustersize, this function will avoid zeroing outside
1010 * of the cluster boundary.
1011 *
1012 * from == to == 0 is code for "zero the entire cluster region"
1013 */
1014static void ocfs2_clear_page_regions(struct page *page,
1015				     struct ocfs2_super *osb, u32 cpos,
1016				     unsigned from, unsigned to)
1017{
1018	void *kaddr;
1019	unsigned int cluster_start, cluster_end;
1020
1021	ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
1022
1023	kaddr = kmap_atomic(page);
1024
1025	if (from || to) {
1026		if (from > cluster_start)
1027			memset(kaddr + cluster_start, 0, from - cluster_start);
1028		if (to < cluster_end)
1029			memset(kaddr + to, 0, cluster_end - to);
1030	} else {
1031		memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
1032	}
1033
1034	kunmap_atomic(kaddr);
1035}
1036
1037/*
1038 * Nonsparse file systems fully allocate before we get to the write
1039 * code. This prevents ocfs2_write() from tagging the write as an
1040 * allocating one, which means ocfs2_map_page_blocks() might try to
1041 * read-in the blocks at the tail of our file. Avoid reading them by
1042 * testing i_size against each block offset.
1043 */
1044static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
1045				 unsigned int block_start)
1046{
1047	u64 offset = page_offset(page) + block_start;
1048
1049	if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
1050		return 1;
1051
1052	if (i_size_read(inode) > offset)
1053		return 1;
1054
1055	return 0;
1056}
1057
1058/*
1059 * Some of this taken from __block_write_begin(). We already have our
1060 * mapping by now though, and the entire write will be allocating or
1061 * it won't, so not much need to use BH_New.
1062 *
1063 * This will also skip zeroing, which is handled externally.
1064 */
1065int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
1066			  struct inode *inode, unsigned int from,
1067			  unsigned int to, int new)
1068{
1069	int ret = 0;
1070	struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
1071	unsigned int block_end, block_start;
1072	unsigned int bsize = 1 << inode->i_blkbits;
1073
1074	if (!page_has_buffers(page))
1075		create_empty_buffers(page, bsize, 0);
1076
1077	head = page_buffers(page);
1078	for (bh = head, block_start = 0; bh != head || !block_start;
1079	     bh = bh->b_this_page, block_start += bsize) {
1080		block_end = block_start + bsize;
1081
1082		clear_buffer_new(bh);
1083
1084		/*
1085		 * Ignore blocks outside of our i/o range -
1086		 * they may belong to unallocated clusters.
1087		 */
1088		if (block_start >= to || block_end <= from) {
1089			if (PageUptodate(page))
1090				set_buffer_uptodate(bh);
1091			continue;
1092		}
1093
1094		/*
1095		 * For an allocating write with cluster size >= page
1096		 * size, we always write the entire page.
1097		 */
1098		if (new)
1099			set_buffer_new(bh);
1100
1101		if (!buffer_mapped(bh)) {
1102			map_bh(bh, inode->i_sb, *p_blkno);
1103			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
1104		}
1105
1106		if (PageUptodate(page)) {
1107			if (!buffer_uptodate(bh))
1108				set_buffer_uptodate(bh);
1109		} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1110			   !buffer_new(bh) &&
1111			   ocfs2_should_read_blk(inode, page, block_start) &&
1112			   (block_start < from || block_end > to)) {
1113			ll_rw_block(READ, 1, &bh);
1114			*wait_bh++=bh;
1115		}
1116
1117		*p_blkno = *p_blkno + 1;
1118	}
1119
1120	/*
1121	 * If we issued read requests - let them complete.
1122	 */
1123	while(wait_bh > wait) {
1124		wait_on_buffer(*--wait_bh);
1125		if (!buffer_uptodate(*wait_bh))
1126			ret = -EIO;
1127	}
1128
1129	if (ret == 0 || !new)
1130		return ret;
1131
1132	/*
1133	 * If we get -EIO above, zero out any newly allocated blocks
1134	 * to avoid exposing stale data.
1135	 */
1136	bh = head;
1137	block_start = 0;
1138	do {
1139		block_end = block_start + bsize;
1140		if (block_end <= from)
1141			goto next_bh;
1142		if (block_start >= to)
1143			break;
1144
1145		zero_user(page, block_start, bh->b_size);
1146		set_buffer_uptodate(bh);
1147		mark_buffer_dirty(bh);
1148
1149next_bh:
1150		block_start = block_end;
1151		bh = bh->b_this_page;
1152	} while (bh != head);
1153
1154	return ret;
1155}
1156
1157#if (PAGE_CACHE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
1158#define OCFS2_MAX_CTXT_PAGES	1
1159#else
1160#define OCFS2_MAX_CTXT_PAGES	(OCFS2_MAX_CLUSTERSIZE / PAGE_CACHE_SIZE)
1161#endif
1162
1163#define OCFS2_MAX_CLUSTERS_PER_PAGE	(PAGE_CACHE_SIZE / OCFS2_MIN_CLUSTERSIZE)
1164
1165/*
1166 * Describe the state of a single cluster to be written to.
1167 */
1168struct ocfs2_write_cluster_desc {
1169	u32		c_cpos;
1170	u32		c_phys;
1171	/*
1172	 * Give this a unique field because c_phys eventually gets
1173	 * filled.
1174	 */
1175	unsigned	c_new;
1176	unsigned	c_unwritten;
1177	unsigned	c_needs_zero;
1178};
1179
1180struct ocfs2_write_ctxt {
1181	/* Logical cluster position / len of write */
1182	u32				w_cpos;
1183	u32				w_clen;
1184
1185	/* First cluster allocated in a nonsparse extend */
1186	u32				w_first_new_cpos;
1187
1188	struct ocfs2_write_cluster_desc	w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
1189
1190	/*
1191	 * This is true if page_size > cluster_size.
1192	 *
1193	 * It triggers a set of special cases during write which might
1194	 * have to deal with allocating writes to partial pages.
1195	 */
1196	unsigned int			w_large_pages;
1197
1198	/*
1199	 * Pages involved in this write.
1200	 *
1201	 * w_target_page is the page being written to by the user.
1202	 *
1203	 * w_pages is an array of pages which always contains
1204	 * w_target_page, and in the case of an allocating write with
1205	 * page_size < cluster size, it will contain zero'd and mapped
1206	 * pages adjacent to w_target_page which need to be written
1207	 * out in so that future reads from that region will get
1208	 * zero's.
1209	 */
1210	unsigned int			w_num_pages;
1211	struct page			*w_pages[OCFS2_MAX_CTXT_PAGES];
1212	struct page			*w_target_page;
1213
1214	/*
1215	 * w_target_locked is used for page_mkwrite path indicating no unlocking
1216	 * against w_target_page in ocfs2_write_end_nolock.
1217	 */
1218	unsigned int			w_target_locked:1;
1219
1220	/*
1221	 * ocfs2_write_end() uses this to know what the real range to
1222	 * write in the target should be.
1223	 */
1224	unsigned int			w_target_from;
1225	unsigned int			w_target_to;
1226
1227	/*
1228	 * We could use journal_current_handle() but this is cleaner,
1229	 * IMHO -Mark
1230	 */
1231	handle_t			*w_handle;
1232
1233	struct buffer_head		*w_di_bh;
1234
1235	struct ocfs2_cached_dealloc_ctxt w_dealloc;
1236};
1237
1238void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
1239{
1240	int i;
1241
1242	for(i = 0; i < num_pages; i++) {
1243		if (pages[i]) {
1244			unlock_page(pages[i]);
1245			mark_page_accessed(pages[i]);
1246			page_cache_release(pages[i]);
1247		}
1248	}
1249}
1250
1251static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
1252{
1253	int i;
1254
1255	/*
1256	 * w_target_locked is only set to true in the page_mkwrite() case.
1257	 * The intent is to allow us to lock the target page from write_begin()
1258	 * to write_end(). The caller must hold a ref on w_target_page.
1259	 */
1260	if (wc->w_target_locked) {
1261		BUG_ON(!wc->w_target_page);
1262		for (i = 0; i < wc->w_num_pages; i++) {
1263			if (wc->w_target_page == wc->w_pages[i]) {
1264				wc->w_pages[i] = NULL;
1265				break;
1266			}
1267		}
1268		mark_page_accessed(wc->w_target_page);
1269		page_cache_release(wc->w_target_page);
1270	}
1271	ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
1272}
1273
1274static void ocfs2_free_write_ctxt(struct ocfs2_write_ctxt *wc)
1275{
1276	ocfs2_unlock_pages(wc);
1277	brelse(wc->w_di_bh);
1278	kfree(wc);
1279}
1280
1281static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
1282				  struct ocfs2_super *osb, loff_t pos,
1283				  unsigned len, struct buffer_head *di_bh)
1284{
1285	u32 cend;
1286	struct ocfs2_write_ctxt *wc;
1287
1288	wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
1289	if (!wc)
1290		return -ENOMEM;
1291
1292	wc->w_cpos = pos >> osb->s_clustersize_bits;
1293	wc->w_first_new_cpos = UINT_MAX;
1294	cend = (pos + len - 1) >> osb->s_clustersize_bits;
1295	wc->w_clen = cend - wc->w_cpos + 1;
1296	get_bh(di_bh);
1297	wc->w_di_bh = di_bh;
1298
1299	if (unlikely(PAGE_CACHE_SHIFT > osb->s_clustersize_bits))
1300		wc->w_large_pages = 1;
1301	else
1302		wc->w_large_pages = 0;
1303
1304	ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
1305
1306	*wcp = wc;
1307
1308	return 0;
1309}
1310
1311/*
1312 * If a page has any new buffers, zero them out here, and mark them uptodate
1313 * and dirty so they'll be written out (in order to prevent uninitialised
1314 * block data from leaking). And clear the new bit.
1315 */
1316static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1317{
1318	unsigned int block_start, block_end;
1319	struct buffer_head *head, *bh;
1320
1321	BUG_ON(!PageLocked(page));
1322	if (!page_has_buffers(page))
1323		return;
1324
1325	bh = head = page_buffers(page);
1326	block_start = 0;
1327	do {
1328		block_end = block_start + bh->b_size;
1329
1330		if (buffer_new(bh)) {
1331			if (block_end > from && block_start < to) {
1332				if (!PageUptodate(page)) {
1333					unsigned start, end;
1334
1335					start = max(from, block_start);
1336					end = min(to, block_end);
1337
1338					zero_user_segment(page, start, end);
1339					set_buffer_uptodate(bh);
1340				}
1341
1342				clear_buffer_new(bh);
1343				mark_buffer_dirty(bh);
1344			}
1345		}
1346
1347		block_start = block_end;
1348		bh = bh->b_this_page;
1349	} while (bh != head);
1350}
1351
1352/*
1353 * Only called when we have a failure during allocating write to write
1354 * zero's to the newly allocated region.
1355 */
1356static void ocfs2_write_failure(struct inode *inode,
1357				struct ocfs2_write_ctxt *wc,
1358				loff_t user_pos, unsigned user_len)
1359{
1360	int i;
1361	unsigned from = user_pos & (PAGE_CACHE_SIZE - 1),
1362		to = user_pos + user_len;
1363	struct page *tmppage;
1364
1365	ocfs2_zero_new_buffers(wc->w_target_page, from, to);
1366
1367	for(i = 0; i < wc->w_num_pages; i++) {
1368		tmppage = wc->w_pages[i];
1369
1370		if (page_has_buffers(tmppage)) {
1371			if (ocfs2_should_order_data(inode))
1372				ocfs2_jbd2_file_inode(wc->w_handle, inode);
1373
1374			block_commit_write(tmppage, from, to);
1375		}
1376	}
1377}
1378
1379static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
1380					struct ocfs2_write_ctxt *wc,
1381					struct page *page, u32 cpos,
1382					loff_t user_pos, unsigned user_len,
1383					int new)
1384{
1385	int ret;
1386	unsigned int map_from = 0, map_to = 0;
1387	unsigned int cluster_start, cluster_end;
1388	unsigned int user_data_from = 0, user_data_to = 0;
1389
1390	ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
1391					&cluster_start, &cluster_end);
1392
1393	/* treat the write as new if the a hole/lseek spanned across
1394	 * the page boundary.
1395	 */
1396	new = new | ((i_size_read(inode) <= page_offset(page)) &&
1397			(page_offset(page) <= user_pos));
1398
1399	if (page == wc->w_target_page) {
1400		map_from = user_pos & (PAGE_CACHE_SIZE - 1);
1401		map_to = map_from + user_len;
1402
1403		if (new)
1404			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1405						    cluster_start, cluster_end,
1406						    new);
1407		else
1408			ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1409						    map_from, map_to, new);
1410		if (ret) {
1411			mlog_errno(ret);
1412			goto out;
1413		}
1414
1415		user_data_from = map_from;
1416		user_data_to = map_to;
1417		if (new) {
1418			map_from = cluster_start;
1419			map_to = cluster_end;
1420		}
1421	} else {
1422		/*
1423		 * If we haven't allocated the new page yet, we
1424		 * shouldn't be writing it out without copying user
1425		 * data. This is likely a math error from the caller.
1426		 */
1427		BUG_ON(!new);
1428
1429		map_from = cluster_start;
1430		map_to = cluster_end;
1431
1432		ret = ocfs2_map_page_blocks(page, p_blkno, inode,
1433					    cluster_start, cluster_end, new);
1434		if (ret) {
1435			mlog_errno(ret);
1436			goto out;
1437		}
1438	}
1439
1440	/*
1441	 * Parts of newly allocated pages need to be zero'd.
1442	 *
1443	 * Above, we have also rewritten 'to' and 'from' - as far as
1444	 * the rest of the function is concerned, the entire cluster
1445	 * range inside of a page needs to be written.
1446	 *
1447	 * We can skip this if the page is up to date - it's already
1448	 * been zero'd from being read in as a hole.
1449	 */
1450	if (new && !PageUptodate(page))
1451		ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
1452					 cpos, user_data_from, user_data_to);
1453
1454	flush_dcache_page(page);
1455
1456out:
1457	return ret;
1458}
1459
1460/*
1461 * This function will only grab one clusters worth of pages.
1462 */
1463static int ocfs2_grab_pages_for_write(struct address_space *mapping,
1464				      struct ocfs2_write_ctxt *wc,
1465				      u32 cpos, loff_t user_pos,
1466				      unsigned user_len, int new,
1467				      struct page *mmap_page)
1468{
1469	int ret = 0, i;
1470	unsigned long start, target_index, end_index, index;
1471	struct inode *inode = mapping->host;
1472	loff_t last_byte;
1473
1474	target_index = user_pos >> PAGE_CACHE_SHIFT;
1475
1476	/*
1477	 * Figure out how many pages we'll be manipulating here. For
1478	 * non allocating write, we just change the one
1479	 * page. Otherwise, we'll need a whole clusters worth.  If we're
1480	 * writing past i_size, we only need enough pages to cover the
1481	 * last page of the write.
1482	 */
1483	if (new) {
1484		wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
1485		start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
1486		/*
1487		 * We need the index *past* the last page we could possibly
1488		 * touch.  This is the page past the end of the write or
1489		 * i_size, whichever is greater.
1490		 */
1491		last_byte = max(user_pos + user_len, i_size_read(inode));
1492		BUG_ON(last_byte < 1);
1493		end_index = ((last_byte - 1) >> PAGE_CACHE_SHIFT) + 1;
1494		if ((start + wc->w_num_pages) > end_index)
1495			wc->w_num_pages = end_index - start;
1496	} else {
1497		wc->w_num_pages = 1;
1498		start = target_index;
1499	}
1500
1501	for(i = 0; i < wc->w_num_pages; i++) {
1502		index = start + i;
1503
1504		if (index == target_index && mmap_page) {
1505			/*
1506			 * ocfs2_pagemkwrite() is a little different
1507			 * and wants us to directly use the page
1508			 * passed in.
1509			 */
1510			lock_page(mmap_page);
1511
1512			/* Exit and let the caller retry */
1513			if (mmap_page->mapping != mapping) {
1514				WARN_ON(mmap_page->mapping);
1515				unlock_page(mmap_page);
1516				ret = -EAGAIN;
1517				goto out;
1518			}
1519
1520			page_cache_get(mmap_page);
1521			wc->w_pages[i] = mmap_page;
1522			wc->w_target_locked = true;
1523		} else {
1524			wc->w_pages[i] = find_or_create_page(mapping, index,
1525							     GFP_NOFS);
1526			if (!wc->w_pages[i]) {
1527				ret = -ENOMEM;
1528				mlog_errno(ret);
1529				goto out;
1530			}
1531		}
1532		wait_for_stable_page(wc->w_pages[i]);
1533
1534		if (index == target_index)
1535			wc->w_target_page = wc->w_pages[i];
1536	}
1537out:
1538	if (ret)
1539		wc->w_target_locked = false;
1540	return ret;
1541}
1542
1543/*
1544 * Prepare a single cluster for write one cluster into the file.
1545 */
1546static int ocfs2_write_cluster(struct address_space *mapping,
1547			       u32 phys, unsigned int unwritten,
1548			       unsigned int should_zero,
1549			       struct ocfs2_alloc_context *data_ac,
1550			       struct ocfs2_alloc_context *meta_ac,
1551			       struct ocfs2_write_ctxt *wc, u32 cpos,
1552			       loff_t user_pos, unsigned user_len)
1553{
1554	int ret, i, new;
1555	u64 v_blkno, p_blkno;
1556	struct inode *inode = mapping->host;
1557	struct ocfs2_extent_tree et;
1558
1559	new = phys == 0 ? 1 : 0;
1560	if (new) {
1561		u32 tmp_pos;
1562
1563		/*
1564		 * This is safe to call with the page locks - it won't take
1565		 * any additional semaphores or cluster locks.
1566		 */
1567		tmp_pos = cpos;
1568		ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
1569					   &tmp_pos, 1, 0, wc->w_di_bh,
1570					   wc->w_handle, data_ac,
1571					   meta_ac, NULL);
1572		/*
1573		 * This shouldn't happen because we must have already
1574		 * calculated the correct meta data allocation required. The
1575		 * internal tree allocation code should know how to increase
1576		 * transaction credits itself.
1577		 *
1578		 * If need be, we could handle -EAGAIN for a
1579		 * RESTART_TRANS here.
1580		 */
1581		mlog_bug_on_msg(ret == -EAGAIN,
1582				"Inode %llu: EAGAIN return during allocation.\n",
1583				(unsigned long long)OCFS2_I(inode)->ip_blkno);
1584		if (ret < 0) {
1585			mlog_errno(ret);
1586			goto out;
1587		}
1588	} else if (unwritten) {
1589		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
1590					      wc->w_di_bh);
1591		ret = ocfs2_mark_extent_written(inode, &et,
1592						wc->w_handle, cpos, 1, phys,
1593						meta_ac, &wc->w_dealloc);
1594		if (ret < 0) {
1595			mlog_errno(ret);
1596			goto out;
1597		}
1598	}
1599
1600	if (should_zero)
1601		v_blkno = ocfs2_clusters_to_blocks(inode->i_sb, cpos);
1602	else
1603		v_blkno = user_pos >> inode->i_sb->s_blocksize_bits;
1604
1605	/*
1606	 * The only reason this should fail is due to an inability to
1607	 * find the extent added.
1608	 */
1609	ret = ocfs2_extent_map_get_blocks(inode, v_blkno, &p_blkno, NULL,
1610					  NULL);
1611	if (ret < 0) {
1612		mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
1613			    "at logical block %llu",
1614			    (unsigned long long)OCFS2_I(inode)->ip_blkno,
1615			    (unsigned long long)v_blkno);
1616		goto out;
1617	}
1618
1619	BUG_ON(p_blkno == 0);
1620
1621	for(i = 0; i < wc->w_num_pages; i++) {
1622		int tmpret;
1623
1624		tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
1625						      wc->w_pages[i], cpos,
1626						      user_pos, user_len,
1627						      should_zero);
1628		if (tmpret) {
1629			mlog_errno(tmpret);
1630			if (ret == 0)
1631				ret = tmpret;
1632		}
1633	}
1634
1635	/*
1636	 * We only have cleanup to do in case of allocating write.
1637	 */
1638	if (ret && new)
1639		ocfs2_write_failure(inode, wc, user_pos, user_len);
1640
1641out:
1642
1643	return ret;
1644}
1645
1646static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
1647				       struct ocfs2_alloc_context *data_ac,
1648				       struct ocfs2_alloc_context *meta_ac,
1649				       struct ocfs2_write_ctxt *wc,
1650				       loff_t pos, unsigned len)
1651{
1652	int ret, i;
1653	loff_t cluster_off;
1654	unsigned int local_len = len;
1655	struct ocfs2_write_cluster_desc *desc;
1656	struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
1657
1658	for (i = 0; i < wc->w_clen; i++) {
1659		desc = &wc->w_desc[i];
1660
1661		/*
1662		 * We have to make sure that the total write passed in
1663		 * doesn't extend past a single cluster.
1664		 */
1665		local_len = len;
1666		cluster_off = pos & (osb->s_clustersize - 1);
1667		if ((cluster_off + local_len) > osb->s_clustersize)
1668			local_len = osb->s_clustersize - cluster_off;
1669
1670		ret = ocfs2_write_cluster(mapping, desc->c_phys,
1671					  desc->c_unwritten,
1672					  desc->c_needs_zero,
1673					  data_ac, meta_ac,
1674					  wc, desc->c_cpos, pos, local_len);
1675		if (ret) {
1676			mlog_errno(ret);
1677			goto out;
1678		}
1679
1680		len -= local_len;
1681		pos += local_len;
1682	}
1683
1684	ret = 0;
1685out:
1686	return ret;
1687}
1688
1689/*
1690 * ocfs2_write_end() wants to know which parts of the target page it
1691 * should complete the write on. It's easiest to compute them ahead of
1692 * time when a more complete view of the write is available.
1693 */
1694static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
1695					struct ocfs2_write_ctxt *wc,
1696					loff_t pos, unsigned len, int alloc)
1697{
1698	struct ocfs2_write_cluster_desc *desc;
1699
1700	wc->w_target_from = pos & (PAGE_CACHE_SIZE - 1);
1701	wc->w_target_to = wc->w_target_from + len;
1702
1703	if (alloc == 0)
1704		return;
1705
1706	/*
1707	 * Allocating write - we may have different boundaries based
1708	 * on page size and cluster size.
1709	 *
1710	 * NOTE: We can no longer compute one value from the other as
1711	 * the actual write length and user provided length may be
1712	 * different.
1713	 */
1714
1715	if (wc->w_large_pages) {
1716		/*
1717		 * We only care about the 1st and last cluster within
1718		 * our range and whether they should be zero'd or not. Either
1719		 * value may be extended out to the start/end of a
1720		 * newly allocated cluster.
1721		 */
1722		desc = &wc->w_desc[0];
1723		if (desc->c_needs_zero)
1724			ocfs2_figure_cluster_boundaries(osb,
1725							desc->c_cpos,
1726							&wc->w_target_from,
1727							NULL);
1728
1729		desc = &wc->w_desc[wc->w_clen - 1];
1730		if (desc->c_needs_zero)
1731			ocfs2_figure_cluster_boundaries(osb,
1732							desc->c_cpos,
1733							NULL,
1734							&wc->w_target_to);
1735	} else {
1736		wc->w_target_from = 0;
1737		wc->w_target_to = PAGE_CACHE_SIZE;
1738	}
1739}
1740
1741/*
1742 * Populate each single-cluster write descriptor in the write context
1743 * with information about the i/o to be done.
1744 *
1745 * Returns the number of clusters that will have to be allocated, as
1746 * well as a worst case estimate of the number of extent records that
1747 * would have to be created during a write to an unwritten region.
1748 */
1749static int ocfs2_populate_write_desc(struct inode *inode,
1750				     struct ocfs2_write_ctxt *wc,
1751				     unsigned int *clusters_to_alloc,
1752				     unsigned int *extents_to_split)
1753{
1754	int ret;
1755	struct ocfs2_write_cluster_desc *desc;
1756	unsigned int num_clusters = 0;
1757	unsigned int ext_flags = 0;
1758	u32 phys = 0;
1759	int i;
1760
1761	*clusters_to_alloc = 0;
1762	*extents_to_split = 0;
1763
1764	for (i = 0; i < wc->w_clen; i++) {
1765		desc = &wc->w_desc[i];
1766		desc->c_cpos = wc->w_cpos + i;
1767
1768		if (num_clusters == 0) {
1769			/*
1770			 * Need to look up the next extent record.
1771			 */
1772			ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
1773						 &num_clusters, &ext_flags);
1774			if (ret) {
1775				mlog_errno(ret);
1776				goto out;
1777			}
1778
1779			/* We should already CoW the refcountd extent. */
1780			BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
1781
1782			/*
1783			 * Assume worst case - that we're writing in
1784			 * the middle of the extent.
1785			 *
1786			 * We can assume that the write proceeds from
1787			 * left to right, in which case the extent
1788			 * insert code is smart enough to coalesce the
1789			 * next splits into the previous records created.
1790			 */
1791			if (ext_flags & OCFS2_EXT_UNWRITTEN)
1792				*extents_to_split = *extents_to_split + 2;
1793		} else if (phys) {
1794			/*
1795			 * Only increment phys if it doesn't describe
1796			 * a hole.
1797			 */
1798			phys++;
1799		}
1800
1801		/*
1802		 * If w_first_new_cpos is < UINT_MAX, we have a non-sparse
1803		 * file that got extended.  w_first_new_cpos tells us
1804		 * where the newly allocated clusters are so we can
1805		 * zero them.
1806		 */
1807		if (desc->c_cpos >= wc->w_first_new_cpos) {
1808			BUG_ON(phys == 0);
1809			desc->c_needs_zero = 1;
1810		}
1811
1812		desc->c_phys = phys;
1813		if (phys == 0) {
1814			desc->c_new = 1;
1815			desc->c_needs_zero = 1;
1816			*clusters_to_alloc = *clusters_to_alloc + 1;
1817		}
1818
1819		if (ext_flags & OCFS2_EXT_UNWRITTEN) {
1820			desc->c_unwritten = 1;
1821			desc->c_needs_zero = 1;
1822		}
1823
1824		num_clusters--;
1825	}
1826
1827	ret = 0;
1828out:
1829	return ret;
1830}
1831
1832static int ocfs2_write_begin_inline(struct address_space *mapping,
1833				    struct inode *inode,
1834				    struct ocfs2_write_ctxt *wc)
1835{
1836	int ret;
1837	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1838	struct page *page;
1839	handle_t *handle;
1840	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1841
1842	handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
1843	if (IS_ERR(handle)) {
1844		ret = PTR_ERR(handle);
1845		mlog_errno(ret);
1846		goto out;
1847	}
1848
1849	page = find_or_create_page(mapping, 0, GFP_NOFS);
1850	if (!page) {
1851		ocfs2_commit_trans(osb, handle);
1852		ret = -ENOMEM;
1853		mlog_errno(ret);
1854		goto out;
1855	}
1856	/*
1857	 * If we don't set w_num_pages then this page won't get unlocked
1858	 * and freed on cleanup of the write context.
1859	 */
1860	wc->w_pages[0] = wc->w_target_page = page;
1861	wc->w_num_pages = 1;
1862
1863	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
1864				      OCFS2_JOURNAL_ACCESS_WRITE);
1865	if (ret) {
1866		ocfs2_commit_trans(osb, handle);
1867
1868		mlog_errno(ret);
1869		goto out;
1870	}
1871
1872	if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
1873		ocfs2_set_inode_data_inline(inode, di);
1874
1875	if (!PageUptodate(page)) {
1876		ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
1877		if (ret) {
1878			ocfs2_commit_trans(osb, handle);
1879
1880			goto out;
1881		}
1882	}
1883
1884	wc->w_handle = handle;
1885out:
1886	return ret;
1887}
1888
1889int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
1890{
1891	struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
1892
1893	if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
1894		return 1;
1895	return 0;
1896}
1897
1898static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
1899					  struct inode *inode, loff_t pos,
1900					  unsigned len, struct page *mmap_page,
1901					  struct ocfs2_write_ctxt *wc)
1902{
1903	int ret, written = 0;
1904	loff_t end = pos + len;
1905	struct ocfs2_inode_info *oi = OCFS2_I(inode);
1906	struct ocfs2_dinode *di = NULL;
1907
1908	trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
1909					     len, (unsigned long long)pos,
1910					     oi->ip_dyn_features);
1911
1912	/*
1913	 * Handle inodes which already have inline data 1st.
1914	 */
1915	if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
1916		if (mmap_page == NULL &&
1917		    ocfs2_size_fits_inline_data(wc->w_di_bh, end))
1918			goto do_inline_write;
1919
1920		/*
1921		 * The write won't fit - we have to give this inode an
1922		 * inline extent list now.
1923		 */
1924		ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
1925		if (ret)
1926			mlog_errno(ret);
1927		goto out;
1928	}
1929
1930	/*
1931	 * Check whether the inode can accept inline data.
1932	 */
1933	if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
1934		return 0;
1935
1936	/*
1937	 * Check whether the write can fit.
1938	 */
1939	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
1940	if (mmap_page ||
1941	    end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
1942		return 0;
1943
1944do_inline_write:
1945	ret = ocfs2_write_begin_inline(mapping, inode, wc);
1946	if (ret) {
1947		mlog_errno(ret);
1948		goto out;
1949	}
1950
1951	/*
1952	 * This signals to the caller that the data can be written
1953	 * inline.
1954	 */
1955	written = 1;
1956out:
1957	return written ? written : ret;
1958}
1959
1960/*
1961 * This function only does anything for file systems which can't
1962 * handle sparse files.
1963 *
1964 * What we want to do here is fill in any hole between the current end
1965 * of allocation and the end of our write. That way the rest of the
1966 * write path can treat it as an non-allocating write, which has no
1967 * special case code for sparse/nonsparse files.
1968 */
1969static int ocfs2_expand_nonsparse_inode(struct inode *inode,
1970					struct buffer_head *di_bh,
1971					loff_t pos, unsigned len,
1972					struct ocfs2_write_ctxt *wc)
1973{
1974	int ret;
1975	loff_t newsize = pos + len;
1976
1977	BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1978
1979	if (newsize <= i_size_read(inode))
1980		return 0;
1981
1982	ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
1983	if (ret)
1984		mlog_errno(ret);
1985
1986	wc->w_first_new_cpos =
1987		ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
1988
1989	return ret;
1990}
1991
1992static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
1993			   loff_t pos)
1994{
1995	int ret = 0;
1996
1997	BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
1998	if (pos > i_size_read(inode))
1999		ret = ocfs2_zero_extend(inode, di_bh, pos);
2000
2001	return ret;
2002}
2003
2004/*
2005 * Try to flush truncate logs if we can free enough clusters from it.
2006 * As for return value, "< 0" means error, "0" no space and "1" means
2007 * we have freed enough spaces and let the caller try to allocate again.
2008 */
2009static int ocfs2_try_to_free_truncate_log(struct ocfs2_super *osb,
2010					  unsigned int needed)
2011{
2012	tid_t target;
2013	int ret = 0;
2014	unsigned int truncated_clusters;
2015
2016	mutex_lock(&osb->osb_tl_inode->i_mutex);
2017	truncated_clusters = osb->truncated_clusters;
2018	mutex_unlock(&osb->osb_tl_inode->i_mutex);
2019
2020	/*
2021	 * Check whether we can succeed in allocating if we free
2022	 * the truncate log.
2023	 */
2024	if (truncated_clusters < needed)
2025		goto out;
2026
2027	ret = ocfs2_flush_truncate_log(osb);
2028	if (ret) {
2029		mlog_errno(ret);
2030		goto out;
2031	}
2032
2033	if (jbd2_journal_start_commit(osb->journal->j_journal, &target)) {
2034		jbd2_log_wait_commit(osb->journal->j_journal, target);
2035		ret = 1;
2036	}
2037out:
2038	return ret;
2039}
2040
2041int ocfs2_write_begin_nolock(struct file *filp,
2042			     struct address_space *mapping,
2043			     loff_t pos, unsigned len, unsigned flags,
2044			     struct page **pagep, void **fsdata,
2045			     struct buffer_head *di_bh, struct page *mmap_page)
2046{
2047	int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
2048	unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
2049	struct ocfs2_write_ctxt *wc;
2050	struct inode *inode = mapping->host;
2051	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2052	struct ocfs2_dinode *di;
2053	struct ocfs2_alloc_context *data_ac = NULL;
2054	struct ocfs2_alloc_context *meta_ac = NULL;
2055	handle_t *handle;
2056	struct ocfs2_extent_tree et;
2057	int try_free = 1, ret1;
2058
2059try_again:
2060	ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, di_bh);
2061	if (ret) {
2062		mlog_errno(ret);
2063		return ret;
2064	}
2065
2066	if (ocfs2_supports_inline_data(osb)) {
2067		ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
2068						     mmap_page, wc);
2069		if (ret == 1) {
2070			ret = 0;
2071			goto success;
2072		}
2073		if (ret < 0) {
2074			mlog_errno(ret);
2075			goto out;
2076		}
2077	}
2078
2079	if (ocfs2_sparse_alloc(osb))
2080		ret = ocfs2_zero_tail(inode, di_bh, pos);
2081	else
2082		ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos, len,
2083						   wc);
2084	if (ret) {
2085		mlog_errno(ret);
2086		goto out;
2087	}
2088
2089	ret = ocfs2_check_range_for_refcount(inode, pos, len);
2090	if (ret < 0) {
2091		mlog_errno(ret);
2092		goto out;
2093	} else if (ret == 1) {
2094		clusters_need = wc->w_clen;
2095		ret = ocfs2_refcount_cow(inode, di_bh,
2096					 wc->w_cpos, wc->w_clen, UINT_MAX);
2097		if (ret) {
2098			mlog_errno(ret);
2099			goto out;
2100		}
2101	}
2102
2103	ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
2104					&extents_to_split);
2105	if (ret) {
2106		mlog_errno(ret);
2107		goto out;
2108	}
2109	clusters_need += clusters_to_alloc;
2110
2111	di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2112
2113	trace_ocfs2_write_begin_nolock(
2114			(unsigned long long)OCFS2_I(inode)->ip_blkno,
2115			(long long)i_size_read(inode),
2116			le32_to_cpu(di->i_clusters),
2117			pos, len, flags, mmap_page,
2118			clusters_to_alloc, extents_to_split);
2119
2120	/*
2121	 * We set w_target_from, w_target_to here so that
2122	 * ocfs2_write_end() knows which range in the target page to
2123	 * write out. An allocation requires that we write the entire
2124	 * cluster range.
2125	 */
2126	if (clusters_to_alloc || extents_to_split) {
2127		/*
2128		 * XXX: We are stretching the limits of
2129		 * ocfs2_lock_allocators(). It greatly over-estimates
2130		 * the work to be done.
2131		 */
2132		ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
2133					      wc->w_di_bh);
2134		ret = ocfs2_lock_allocators(inode, &et,
2135					    clusters_to_alloc, extents_to_split,
2136					    &data_ac, &meta_ac);
2137		if (ret) {
2138			mlog_errno(ret);
2139			goto out;
2140		}
2141
2142		if (data_ac)
2143			data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
2144
2145		credits = ocfs2_calc_extend_credits(inode->i_sb,
2146						    &di->id2.i_list);
2147
2148	}
2149
2150	/*
2151	 * We have to zero sparse allocated clusters, unwritten extent clusters,
2152	 * and non-sparse clusters we just extended.  For non-sparse writes,
2153	 * we know zeros will only be needed in the first and/or last cluster.
2154	 */
2155	if (clusters_to_alloc || extents_to_split ||
2156	    (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
2157			    wc->w_desc[wc->w_clen - 1].c_needs_zero)))
2158		cluster_of_pages = 1;
2159	else
2160		cluster_of_pages = 0;
2161
2162	ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
2163
2164	handle = ocfs2_start_trans(osb, credits);
2165	if (IS_ERR(handle)) {
2166		ret = PTR_ERR(handle);
2167		mlog_errno(ret);
2168		goto out;
2169	}
2170
2171	wc->w_handle = handle;
2172
2173	if (clusters_to_alloc) {
2174		ret = dquot_alloc_space_nodirty(inode,
2175			ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2176		if (ret)
2177			goto out_commit;
2178	}
2179	/*
2180	 * We don't want this to fail in ocfs2_write_end(), so do it
2181	 * here.
2182	 */
2183	ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
2184				      OCFS2_JOURNAL_ACCESS_WRITE);
2185	if (ret) {
2186		mlog_errno(ret);
2187		goto out_quota;
2188	}
2189
2190	/*
2191	 * Fill our page array first. That way we've grabbed enough so
2192	 * that we can zero and flush if we error after adding the
2193	 * extent.
2194	 */
2195	ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
2196					 cluster_of_pages, mmap_page);
2197	if (ret && ret != -EAGAIN) {
2198		mlog_errno(ret);
2199		goto out_quota;
2200	}
2201
2202	/*
2203	 * ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
2204	 * the target page. In this case, we exit with no error and no target
2205	 * page. This will trigger the caller, page_mkwrite(), to re-try
2206	 * the operation.
2207	 */
2208	if (ret == -EAGAIN) {
2209		BUG_ON(wc->w_target_page);
2210		ret = 0;
2211		goto out_quota;
2212	}
2213
2214	ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
2215					  len);
2216	if (ret) {
2217		mlog_errno(ret);
2218		goto out_quota;
2219	}
2220
2221	if (data_ac)
2222		ocfs2_free_alloc_context(data_ac);
2223	if (meta_ac)
2224		ocfs2_free_alloc_context(meta_ac);
2225
2226success:
2227	*pagep = wc->w_target_page;
2228	*fsdata = wc;
2229	return 0;
2230out_quota:
2231	if (clusters_to_alloc)
2232		dquot_free_space(inode,
2233			  ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
2234out_commit:
2235	ocfs2_commit_trans(osb, handle);
2236
2237out:
2238	ocfs2_free_write_ctxt(wc);
2239
2240	if (data_ac) {
2241		ocfs2_free_alloc_context(data_ac);
2242		data_ac = NULL;
2243	}
2244	if (meta_ac) {
2245		ocfs2_free_alloc_context(meta_ac);
2246		meta_ac = NULL;
2247	}
2248
2249	if (ret == -ENOSPC && try_free) {
2250		/*
2251		 * Try to free some truncate log so that we can have enough
2252		 * clusters to allocate.
2253		 */
2254		try_free = 0;
2255
2256		ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
2257		if (ret1 == 1)
2258			goto try_again;
2259
2260		if (ret1 < 0)
2261			mlog_errno(ret1);
2262	}
2263
2264	return ret;
2265}
2266
2267static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
2268			     loff_t pos, unsigned len, unsigned flags,
2269			     struct page **pagep, void **fsdata)
2270{
2271	int ret;
2272	struct buffer_head *di_bh = NULL;
2273	struct inode *inode = mapping->host;
2274
2275	ret = ocfs2_inode_lock(inode, &di_bh, 1);
2276	if (ret) {
2277		mlog_errno(ret);
2278		return ret;
2279	}
2280
2281	/*
2282	 * Take alloc sem here to prevent concurrent lookups. That way
2283	 * the mapping, zeroing and tree manipulation within
2284	 * ocfs2_write() will be safe against ->readpage(). This
2285	 * should also serve to lock out allocation from a shared
2286	 * writeable region.
2287	 */
2288	down_write(&OCFS2_I(inode)->ip_alloc_sem);
2289
2290	ret = ocfs2_write_begin_nolock(file, mapping, pos, len, flags, pagep,
2291				       fsdata, di_bh, NULL);
2292	if (ret) {
2293		mlog_errno(ret);
2294		goto out_fail;
2295	}
2296
2297	brelse(di_bh);
2298
2299	return 0;
2300
2301out_fail:
2302	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2303
2304	brelse(di_bh);
2305	ocfs2_inode_unlock(inode, 1);
2306
2307	return ret;
2308}
2309
2310static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
2311				   unsigned len, unsigned *copied,
2312				   struct ocfs2_dinode *di,
2313				   struct ocfs2_write_ctxt *wc)
2314{
2315	void *kaddr;
2316
2317	if (unlikely(*copied < len)) {
2318		if (!PageUptodate(wc->w_target_page)) {
2319			*copied = 0;
2320			return;
2321		}
2322	}
2323
2324	kaddr = kmap_atomic(wc->w_target_page);
2325	memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
2326	kunmap_atomic(kaddr);
2327
2328	trace_ocfs2_write_end_inline(
2329	     (unsigned long long)OCFS2_I(inode)->ip_blkno,
2330	     (unsigned long long)pos, *copied,
2331	     le16_to_cpu(di->id2.i_data.id_count),
2332	     le16_to_cpu(di->i_dyn_features));
2333}
2334
2335int ocfs2_write_end_nolock(struct address_space *mapping,
2336			   loff_t pos, unsigned len, unsigned copied,
2337			   struct page *page, void *fsdata)
2338{
2339	int i;
2340	unsigned from, to, start = pos & (PAGE_CACHE_SIZE - 1);
2341	struct inode *inode = mapping->host;
2342	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
2343	struct ocfs2_write_ctxt *wc = fsdata;
2344	struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
2345	handle_t *handle = wc->w_handle;
2346	struct page *tmppage;
2347
2348	if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
2349		ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
2350		goto out_write_size;
2351	}
2352
2353	if (unlikely(copied < len)) {
2354		if (!PageUptodate(wc->w_target_page))
2355			copied = 0;
2356
2357		ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
2358				       start+len);
2359	}
2360	flush_dcache_page(wc->w_target_page);
2361
2362	for(i = 0; i < wc->w_num_pages; i++) {
2363		tmppage = wc->w_pages[i];
2364
2365		if (tmppage == wc->w_target_page) {
2366			from = wc->w_target_from;
2367			to = wc->w_target_to;
2368
2369			BUG_ON(from > PAGE_CACHE_SIZE ||
2370			       to > PAGE_CACHE_SIZE ||
2371			       to < from);
2372		} else {
2373			/*
2374			 * Pages adjacent to the target (if any) imply
2375			 * a hole-filling write in which case we want
2376			 * to flush their entire range.
2377			 */
2378			from = 0;
2379			to = PAGE_CACHE_SIZE;
2380		}
2381
2382		if (page_has_buffers(tmppage)) {
2383			if (ocfs2_should_order_data(inode))
2384				ocfs2_jbd2_file_inode(wc->w_handle, inode);
2385			block_commit_write(tmppage, from, to);
2386		}
2387	}
2388
2389out_write_size:
2390	pos += copied;
2391	if (pos > i_size_read(inode)) {
2392		i_size_write(inode, pos);
2393		mark_inode_dirty(inode);
2394	}
2395	inode->i_blocks = ocfs2_inode_sector_count(inode);
2396	di->i_size = cpu_to_le64((u64)i_size_read(inode));
2397	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2398	di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
2399	di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
2400	ocfs2_update_inode_fsync_trans(handle, inode, 1);
2401	ocfs2_journal_dirty(handle, wc->w_di_bh);
2402
2403	/* unlock pages before dealloc since it needs acquiring j_trans_barrier
2404	 * lock, or it will cause a deadlock since journal commit threads holds
2405	 * this lock and will ask for the page lock when flushing the data.
2406	 * put it here to preserve the unlock order.
2407	 */
2408	ocfs2_unlock_pages(wc);
2409
2410	ocfs2_commit_trans(osb, handle);
2411
2412	ocfs2_run_deallocs(osb, &wc->w_dealloc);
2413
2414	brelse(wc->w_di_bh);
2415	kfree(wc);
2416
2417	return copied;
2418}
2419
2420static int ocfs2_write_end(struct file *file, struct address_space *mapping,
2421			   loff_t pos, unsigned len, unsigned copied,
2422			   struct page *page, void *fsdata)
2423{
2424	int ret;
2425	struct inode *inode = mapping->host;
2426
2427	ret = ocfs2_write_end_nolock(mapping, pos, len, copied, page, fsdata);
2428
2429	up_write(&OCFS2_I(inode)->ip_alloc_sem);
2430	ocfs2_inode_unlock(inode, 1);
2431
2432	return ret;
2433}
2434
2435const struct address_space_operations ocfs2_aops = {
2436	.readpage		= ocfs2_readpage,
2437	.readpages		= ocfs2_readpages,
2438	.writepage		= ocfs2_writepage,
2439	.write_begin		= ocfs2_write_begin,
2440	.write_end		= ocfs2_write_end,
2441	.bmap			= ocfs2_bmap,
2442	.direct_IO		= ocfs2_direct_IO,
2443	.invalidatepage		= block_invalidatepage,
2444	.releasepage		= ocfs2_releasepage,
2445	.migratepage		= buffer_migrate_page,
2446	.is_partially_uptodate	= block_is_partially_uptodate,
2447	.error_remove_page	= generic_error_remove_page,
2448};
2449