1/*
2 *  linux/fs/super.c
3 *
4 *  Copyright (C) 1991, 1992  Linus Torvalds
5 *
6 *  super.c contains code to handle: - mount structures
7 *                                   - super-block tables
8 *                                   - filesystem drivers list
9 *                                   - mount system call
10 *                                   - umount system call
11 *                                   - ustat system call
12 *
13 * GK 2/5/95  -  Changed to support mounting the root fs via NFS
14 *
15 *  Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 *  Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 *  Added options to /proc/mounts:
18 *    Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 *  Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 *  Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23#include <linux/export.h>
24#include <linux/slab.h>
25#include <linux/blkdev.h>
26#include <linux/mount.h>
27#include <linux/security.h>
28#include <linux/writeback.h>		/* for the emergency remount stuff */
29#include <linux/idr.h>
30#include <linux/mutex.h>
31#include <linux/backing-dev.h>
32#include <linux/rculist_bl.h>
33#include <linux/cleancache.h>
34#include <linux/fsnotify.h>
35#include <linux/lockdep.h>
36#include "internal.h"
37
38
39static LIST_HEAD(super_blocks);
40static DEFINE_SPINLOCK(sb_lock);
41
42static char *sb_writers_name[SB_FREEZE_LEVELS] = {
43	"sb_writers",
44	"sb_pagefaults",
45	"sb_internal",
46};
47
48/*
49 * One thing we have to be careful of with a per-sb shrinker is that we don't
50 * drop the last active reference to the superblock from within the shrinker.
51 * If that happens we could trigger unregistering the shrinker from within the
52 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
53 * take a passive reference to the superblock to avoid this from occurring.
54 */
55static unsigned long super_cache_scan(struct shrinker *shrink,
56				      struct shrink_control *sc)
57{
58	struct super_block *sb;
59	long	fs_objects = 0;
60	long	total_objects;
61	long	freed = 0;
62	long	dentries;
63	long	inodes;
64
65	sb = container_of(shrink, struct super_block, s_shrink);
66
67	/*
68	 * Deadlock avoidance.  We may hold various FS locks, and we don't want
69	 * to recurse into the FS that called us in clear_inode() and friends..
70	 */
71	if (!(sc->gfp_mask & __GFP_FS))
72		return SHRINK_STOP;
73
74	if (!trylock_super(sb))
75		return SHRINK_STOP;
76
77	if (sb->s_op->nr_cached_objects)
78		fs_objects = sb->s_op->nr_cached_objects(sb, sc);
79
80	inodes = list_lru_shrink_count(&sb->s_inode_lru, sc);
81	dentries = list_lru_shrink_count(&sb->s_dentry_lru, sc);
82	total_objects = dentries + inodes + fs_objects + 1;
83	if (!total_objects)
84		total_objects = 1;
85
86	/* proportion the scan between the caches */
87	dentries = mult_frac(sc->nr_to_scan, dentries, total_objects);
88	inodes = mult_frac(sc->nr_to_scan, inodes, total_objects);
89	fs_objects = mult_frac(sc->nr_to_scan, fs_objects, total_objects);
90
91	/*
92	 * prune the dcache first as the icache is pinned by it, then
93	 * prune the icache, followed by the filesystem specific caches
94	 *
95	 * Ensure that we always scan at least one object - memcg kmem
96	 * accounting uses this to fully empty the caches.
97	 */
98	sc->nr_to_scan = dentries + 1;
99	freed = prune_dcache_sb(sb, sc);
100	sc->nr_to_scan = inodes + 1;
101	freed += prune_icache_sb(sb, sc);
102
103	if (fs_objects) {
104		sc->nr_to_scan = fs_objects + 1;
105		freed += sb->s_op->free_cached_objects(sb, sc);
106	}
107
108	up_read(&sb->s_umount);
109	return freed;
110}
111
112static unsigned long super_cache_count(struct shrinker *shrink,
113				       struct shrink_control *sc)
114{
115	struct super_block *sb;
116	long	total_objects = 0;
117
118	sb = container_of(shrink, struct super_block, s_shrink);
119
120	/*
121	 * Don't call trylock_super as it is a potential
122	 * scalability bottleneck. The counts could get updated
123	 * between super_cache_count and super_cache_scan anyway.
124	 * Call to super_cache_count with shrinker_rwsem held
125	 * ensures the safety of call to list_lru_shrink_count() and
126	 * s_op->nr_cached_objects().
127	 */
128	if (sb->s_op && sb->s_op->nr_cached_objects)
129		total_objects = sb->s_op->nr_cached_objects(sb, sc);
130
131	total_objects += list_lru_shrink_count(&sb->s_dentry_lru, sc);
132	total_objects += list_lru_shrink_count(&sb->s_inode_lru, sc);
133
134	total_objects = vfs_pressure_ratio(total_objects);
135	return total_objects;
136}
137
138/**
139 *	destroy_super	-	frees a superblock
140 *	@s: superblock to free
141 *
142 *	Frees a superblock.
143 */
144static void destroy_super(struct super_block *s)
145{
146	int i;
147	list_lru_destroy(&s->s_dentry_lru);
148	list_lru_destroy(&s->s_inode_lru);
149	for (i = 0; i < SB_FREEZE_LEVELS; i++)
150		percpu_counter_destroy(&s->s_writers.counter[i]);
151	security_sb_free(s);
152	WARN_ON(!list_empty(&s->s_mounts));
153	kfree(s->s_subtype);
154	kfree(s->s_options);
155	kfree_rcu(s, rcu);
156}
157
158/**
159 *	alloc_super	-	create new superblock
160 *	@type:	filesystem type superblock should belong to
161 *	@flags: the mount flags
162 *
163 *	Allocates and initializes a new &struct super_block.  alloc_super()
164 *	returns a pointer new superblock or %NULL if allocation had failed.
165 */
166static struct super_block *alloc_super(struct file_system_type *type, int flags)
167{
168	struct super_block *s = kzalloc(sizeof(struct super_block),  GFP_USER);
169	static const struct super_operations default_op;
170	int i;
171
172	if (!s)
173		return NULL;
174
175	INIT_LIST_HEAD(&s->s_mounts);
176
177	if (security_sb_alloc(s))
178		goto fail;
179
180	for (i = 0; i < SB_FREEZE_LEVELS; i++) {
181		if (percpu_counter_init(&s->s_writers.counter[i], 0,
182					GFP_KERNEL) < 0)
183			goto fail;
184		lockdep_init_map(&s->s_writers.lock_map[i], sb_writers_name[i],
185				 &type->s_writers_key[i], 0);
186	}
187	init_waitqueue_head(&s->s_writers.wait);
188	init_waitqueue_head(&s->s_writers.wait_unfrozen);
189	s->s_bdi = &noop_backing_dev_info;
190	s->s_flags = flags;
191	INIT_HLIST_NODE(&s->s_instances);
192	INIT_HLIST_BL_HEAD(&s->s_anon);
193	INIT_LIST_HEAD(&s->s_inodes);
194
195	if (list_lru_init_memcg(&s->s_dentry_lru))
196		goto fail;
197	if (list_lru_init_memcg(&s->s_inode_lru))
198		goto fail;
199
200	init_rwsem(&s->s_umount);
201	lockdep_set_class(&s->s_umount, &type->s_umount_key);
202	/*
203	 * sget() can have s_umount recursion.
204	 *
205	 * When it cannot find a suitable sb, it allocates a new
206	 * one (this one), and tries again to find a suitable old
207	 * one.
208	 *
209	 * In case that succeeds, it will acquire the s_umount
210	 * lock of the old one. Since these are clearly distrinct
211	 * locks, and this object isn't exposed yet, there's no
212	 * risk of deadlocks.
213	 *
214	 * Annotate this by putting this lock in a different
215	 * subclass.
216	 */
217	down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
218	s->s_count = 1;
219	atomic_set(&s->s_active, 1);
220	mutex_init(&s->s_vfs_rename_mutex);
221	lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
222	mutex_init(&s->s_dquot.dqio_mutex);
223	mutex_init(&s->s_dquot.dqonoff_mutex);
224	s->s_maxbytes = MAX_NON_LFS;
225	s->s_op = &default_op;
226	s->s_time_gran = 1000000000;
227	s->cleancache_poolid = CLEANCACHE_NO_POOL;
228
229	s->s_shrink.seeks = DEFAULT_SEEKS;
230	s->s_shrink.scan_objects = super_cache_scan;
231	s->s_shrink.count_objects = super_cache_count;
232	s->s_shrink.batch = 1024;
233	s->s_shrink.flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE;
234	return s;
235
236fail:
237	destroy_super(s);
238	return NULL;
239}
240
241/* Superblock refcounting  */
242
243/*
244 * Drop a superblock's refcount.  The caller must hold sb_lock.
245 */
246static void __put_super(struct super_block *sb)
247{
248	if (!--sb->s_count) {
249		list_del_init(&sb->s_list);
250		destroy_super(sb);
251	}
252}
253
254/**
255 *	put_super	-	drop a temporary reference to superblock
256 *	@sb: superblock in question
257 *
258 *	Drops a temporary reference, frees superblock if there's no
259 *	references left.
260 */
261static void put_super(struct super_block *sb)
262{
263	spin_lock(&sb_lock);
264	__put_super(sb);
265	spin_unlock(&sb_lock);
266}
267
268
269/**
270 *	deactivate_locked_super	-	drop an active reference to superblock
271 *	@s: superblock to deactivate
272 *
273 *	Drops an active reference to superblock, converting it into a temprory
274 *	one if there is no other active references left.  In that case we
275 *	tell fs driver to shut it down and drop the temporary reference we
276 *	had just acquired.
277 *
278 *	Caller holds exclusive lock on superblock; that lock is released.
279 */
280void deactivate_locked_super(struct super_block *s)
281{
282	struct file_system_type *fs = s->s_type;
283	if (atomic_dec_and_test(&s->s_active)) {
284		cleancache_invalidate_fs(s);
285		unregister_shrinker(&s->s_shrink);
286		fs->kill_sb(s);
287
288		/*
289		 * Since list_lru_destroy() may sleep, we cannot call it from
290		 * put_super(), where we hold the sb_lock. Therefore we destroy
291		 * the lru lists right now.
292		 */
293		list_lru_destroy(&s->s_dentry_lru);
294		list_lru_destroy(&s->s_inode_lru);
295
296		put_filesystem(fs);
297		put_super(s);
298	} else {
299		up_write(&s->s_umount);
300	}
301}
302
303EXPORT_SYMBOL(deactivate_locked_super);
304
305/**
306 *	deactivate_super	-	drop an active reference to superblock
307 *	@s: superblock to deactivate
308 *
309 *	Variant of deactivate_locked_super(), except that superblock is *not*
310 *	locked by caller.  If we are going to drop the final active reference,
311 *	lock will be acquired prior to that.
312 */
313void deactivate_super(struct super_block *s)
314{
315        if (!atomic_add_unless(&s->s_active, -1, 1)) {
316		down_write(&s->s_umount);
317		deactivate_locked_super(s);
318	}
319}
320
321EXPORT_SYMBOL(deactivate_super);
322
323/**
324 *	grab_super - acquire an active reference
325 *	@s: reference we are trying to make active
326 *
327 *	Tries to acquire an active reference.  grab_super() is used when we
328 * 	had just found a superblock in super_blocks or fs_type->fs_supers
329 *	and want to turn it into a full-blown active reference.  grab_super()
330 *	is called with sb_lock held and drops it.  Returns 1 in case of
331 *	success, 0 if we had failed (superblock contents was already dead or
332 *	dying when grab_super() had been called).  Note that this is only
333 *	called for superblocks not in rundown mode (== ones still on ->fs_supers
334 *	of their type), so increment of ->s_count is OK here.
335 */
336static int grab_super(struct super_block *s) __releases(sb_lock)
337{
338	s->s_count++;
339	spin_unlock(&sb_lock);
340	down_write(&s->s_umount);
341	if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
342		put_super(s);
343		return 1;
344	}
345	up_write(&s->s_umount);
346	put_super(s);
347	return 0;
348}
349
350/*
351 *	trylock_super - try to grab ->s_umount shared
352 *	@sb: reference we are trying to grab
353 *
354 *	Try to prevent fs shutdown.  This is used in places where we
355 *	cannot take an active reference but we need to ensure that the
356 *	filesystem is not shut down while we are working on it. It returns
357 *	false if we cannot acquire s_umount or if we lose the race and
358 *	filesystem already got into shutdown, and returns true with the s_umount
359 *	lock held in read mode in case of success. On successful return,
360 *	the caller must drop the s_umount lock when done.
361 *
362 *	Note that unlike get_super() et.al. this one does *not* bump ->s_count.
363 *	The reason why it's safe is that we are OK with doing trylock instead
364 *	of down_read().  There's a couple of places that are OK with that, but
365 *	it's very much not a general-purpose interface.
366 */
367bool trylock_super(struct super_block *sb)
368{
369	if (down_read_trylock(&sb->s_umount)) {
370		if (!hlist_unhashed(&sb->s_instances) &&
371		    sb->s_root && (sb->s_flags & MS_BORN))
372			return true;
373		up_read(&sb->s_umount);
374	}
375
376	return false;
377}
378
379/**
380 *	generic_shutdown_super	-	common helper for ->kill_sb()
381 *	@sb: superblock to kill
382 *
383 *	generic_shutdown_super() does all fs-independent work on superblock
384 *	shutdown.  Typical ->kill_sb() should pick all fs-specific objects
385 *	that need destruction out of superblock, call generic_shutdown_super()
386 *	and release aforementioned objects.  Note: dentries and inodes _are_
387 *	taken care of and do not need specific handling.
388 *
389 *	Upon calling this function, the filesystem may no longer alter or
390 *	rearrange the set of dentries belonging to this super_block, nor may it
391 *	change the attachments of dentries to inodes.
392 */
393void generic_shutdown_super(struct super_block *sb)
394{
395	const struct super_operations *sop = sb->s_op;
396
397	if (sb->s_root) {
398		shrink_dcache_for_umount(sb);
399		sync_filesystem(sb);
400		sb->s_flags &= ~MS_ACTIVE;
401
402		fsnotify_unmount_inodes(&sb->s_inodes);
403
404		evict_inodes(sb);
405
406		if (sb->s_dio_done_wq) {
407			destroy_workqueue(sb->s_dio_done_wq);
408			sb->s_dio_done_wq = NULL;
409		}
410
411		if (sop->put_super)
412			sop->put_super(sb);
413
414		if (!list_empty(&sb->s_inodes)) {
415			printk("VFS: Busy inodes after unmount of %s. "
416			   "Self-destruct in 5 seconds.  Have a nice day...\n",
417			   sb->s_id);
418		}
419	}
420	spin_lock(&sb_lock);
421	/* should be initialized for __put_super_and_need_restart() */
422	hlist_del_init(&sb->s_instances);
423	spin_unlock(&sb_lock);
424	up_write(&sb->s_umount);
425}
426
427EXPORT_SYMBOL(generic_shutdown_super);
428
429/**
430 *	sget	-	find or create a superblock
431 *	@type:	filesystem type superblock should belong to
432 *	@test:	comparison callback
433 *	@set:	setup callback
434 *	@flags:	mount flags
435 *	@data:	argument to each of them
436 */
437struct super_block *sget(struct file_system_type *type,
438			int (*test)(struct super_block *,void *),
439			int (*set)(struct super_block *,void *),
440			int flags,
441			void *data)
442{
443	struct super_block *s = NULL;
444	struct super_block *old;
445	int err;
446
447retry:
448	spin_lock(&sb_lock);
449	if (test) {
450		hlist_for_each_entry(old, &type->fs_supers, s_instances) {
451			if (!test(old, data))
452				continue;
453			if (!grab_super(old))
454				goto retry;
455			if (s) {
456				up_write(&s->s_umount);
457				destroy_super(s);
458				s = NULL;
459			}
460			return old;
461		}
462	}
463	if (!s) {
464		spin_unlock(&sb_lock);
465		s = alloc_super(type, flags);
466		if (!s)
467			return ERR_PTR(-ENOMEM);
468		goto retry;
469	}
470
471	err = set(s, data);
472	if (err) {
473		spin_unlock(&sb_lock);
474		up_write(&s->s_umount);
475		destroy_super(s);
476		return ERR_PTR(err);
477	}
478	s->s_type = type;
479	strlcpy(s->s_id, type->name, sizeof(s->s_id));
480	list_add_tail(&s->s_list, &super_blocks);
481	hlist_add_head(&s->s_instances, &type->fs_supers);
482	spin_unlock(&sb_lock);
483	get_filesystem(type);
484	register_shrinker(&s->s_shrink);
485	return s;
486}
487
488EXPORT_SYMBOL(sget);
489
490void drop_super(struct super_block *sb)
491{
492	up_read(&sb->s_umount);
493	put_super(sb);
494}
495
496EXPORT_SYMBOL(drop_super);
497
498/**
499 *	iterate_supers - call function for all active superblocks
500 *	@f: function to call
501 *	@arg: argument to pass to it
502 *
503 *	Scans the superblock list and calls given function, passing it
504 *	locked superblock and given argument.
505 */
506void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
507{
508	struct super_block *sb, *p = NULL;
509
510	spin_lock(&sb_lock);
511	list_for_each_entry(sb, &super_blocks, s_list) {
512		if (hlist_unhashed(&sb->s_instances))
513			continue;
514		sb->s_count++;
515		spin_unlock(&sb_lock);
516
517		down_read(&sb->s_umount);
518		if (sb->s_root && (sb->s_flags & MS_BORN))
519			f(sb, arg);
520		up_read(&sb->s_umount);
521
522		spin_lock(&sb_lock);
523		if (p)
524			__put_super(p);
525		p = sb;
526	}
527	if (p)
528		__put_super(p);
529	spin_unlock(&sb_lock);
530}
531
532/**
533 *	iterate_supers_type - call function for superblocks of given type
534 *	@type: fs type
535 *	@f: function to call
536 *	@arg: argument to pass to it
537 *
538 *	Scans the superblock list and calls given function, passing it
539 *	locked superblock and given argument.
540 */
541void iterate_supers_type(struct file_system_type *type,
542	void (*f)(struct super_block *, void *), void *arg)
543{
544	struct super_block *sb, *p = NULL;
545
546	spin_lock(&sb_lock);
547	hlist_for_each_entry(sb, &type->fs_supers, s_instances) {
548		sb->s_count++;
549		spin_unlock(&sb_lock);
550
551		down_read(&sb->s_umount);
552		if (sb->s_root && (sb->s_flags & MS_BORN))
553			f(sb, arg);
554		up_read(&sb->s_umount);
555
556		spin_lock(&sb_lock);
557		if (p)
558			__put_super(p);
559		p = sb;
560	}
561	if (p)
562		__put_super(p);
563	spin_unlock(&sb_lock);
564}
565
566EXPORT_SYMBOL(iterate_supers_type);
567
568/**
569 *	get_super - get the superblock of a device
570 *	@bdev: device to get the superblock for
571 *
572 *	Scans the superblock list and finds the superblock of the file system
573 *	mounted on the device given. %NULL is returned if no match is found.
574 */
575
576struct super_block *get_super(struct block_device *bdev)
577{
578	struct super_block *sb;
579
580	if (!bdev)
581		return NULL;
582
583	spin_lock(&sb_lock);
584rescan:
585	list_for_each_entry(sb, &super_blocks, s_list) {
586		if (hlist_unhashed(&sb->s_instances))
587			continue;
588		if (sb->s_bdev == bdev) {
589			sb->s_count++;
590			spin_unlock(&sb_lock);
591			down_read(&sb->s_umount);
592			/* still alive? */
593			if (sb->s_root && (sb->s_flags & MS_BORN))
594				return sb;
595			up_read(&sb->s_umount);
596			/* nope, got unmounted */
597			spin_lock(&sb_lock);
598			__put_super(sb);
599			goto rescan;
600		}
601	}
602	spin_unlock(&sb_lock);
603	return NULL;
604}
605
606EXPORT_SYMBOL(get_super);
607
608/**
609 *	get_super_thawed - get thawed superblock of a device
610 *	@bdev: device to get the superblock for
611 *
612 *	Scans the superblock list and finds the superblock of the file system
613 *	mounted on the device. The superblock is returned once it is thawed
614 *	(or immediately if it was not frozen). %NULL is returned if no match
615 *	is found.
616 */
617struct super_block *get_super_thawed(struct block_device *bdev)
618{
619	while (1) {
620		struct super_block *s = get_super(bdev);
621		if (!s || s->s_writers.frozen == SB_UNFROZEN)
622			return s;
623		up_read(&s->s_umount);
624		wait_event(s->s_writers.wait_unfrozen,
625			   s->s_writers.frozen == SB_UNFROZEN);
626		put_super(s);
627	}
628}
629EXPORT_SYMBOL(get_super_thawed);
630
631/**
632 * get_active_super - get an active reference to the superblock of a device
633 * @bdev: device to get the superblock for
634 *
635 * Scans the superblock list and finds the superblock of the file system
636 * mounted on the device given.  Returns the superblock with an active
637 * reference or %NULL if none was found.
638 */
639struct super_block *get_active_super(struct block_device *bdev)
640{
641	struct super_block *sb;
642
643	if (!bdev)
644		return NULL;
645
646restart:
647	spin_lock(&sb_lock);
648	list_for_each_entry(sb, &super_blocks, s_list) {
649		if (hlist_unhashed(&sb->s_instances))
650			continue;
651		if (sb->s_bdev == bdev) {
652			if (!grab_super(sb))
653				goto restart;
654			up_write(&sb->s_umount);
655			return sb;
656		}
657	}
658	spin_unlock(&sb_lock);
659	return NULL;
660}
661
662struct super_block *user_get_super(dev_t dev)
663{
664	struct super_block *sb;
665
666	spin_lock(&sb_lock);
667rescan:
668	list_for_each_entry(sb, &super_blocks, s_list) {
669		if (hlist_unhashed(&sb->s_instances))
670			continue;
671		if (sb->s_dev ==  dev) {
672			sb->s_count++;
673			spin_unlock(&sb_lock);
674			down_read(&sb->s_umount);
675			/* still alive? */
676			if (sb->s_root && (sb->s_flags & MS_BORN))
677				return sb;
678			up_read(&sb->s_umount);
679			/* nope, got unmounted */
680			spin_lock(&sb_lock);
681			__put_super(sb);
682			goto rescan;
683		}
684	}
685	spin_unlock(&sb_lock);
686	return NULL;
687}
688
689/**
690 *	do_remount_sb - asks filesystem to change mount options.
691 *	@sb:	superblock in question
692 *	@flags:	numeric part of options
693 *	@data:	the rest of options
694 *      @force: whether or not to force the change
695 *
696 *	Alters the mount options of a mounted file system.
697 */
698int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
699{
700	int retval;
701	int remount_ro;
702
703	if (sb->s_writers.frozen != SB_UNFROZEN)
704		return -EBUSY;
705
706#ifdef CONFIG_BLOCK
707	if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
708		return -EACCES;
709#endif
710
711	remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
712
713	if (remount_ro) {
714		if (!hlist_empty(&sb->s_pins)) {
715			up_write(&sb->s_umount);
716			group_pin_kill(&sb->s_pins);
717			down_write(&sb->s_umount);
718			if (!sb->s_root)
719				return 0;
720			if (sb->s_writers.frozen != SB_UNFROZEN)
721				return -EBUSY;
722			remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
723		}
724	}
725	shrink_dcache_sb(sb);
726
727	/* If we are remounting RDONLY and current sb is read/write,
728	   make sure there are no rw files opened */
729	if (remount_ro) {
730		if (force) {
731			sb->s_readonly_remount = 1;
732			smp_wmb();
733		} else {
734			retval = sb_prepare_remount_readonly(sb);
735			if (retval)
736				return retval;
737		}
738	}
739
740	if (sb->s_op->remount_fs) {
741		retval = sb->s_op->remount_fs(sb, &flags, data);
742		if (retval) {
743			if (!force)
744				goto cancel_readonly;
745			/* If forced remount, go ahead despite any errors */
746			WARN(1, "forced remount of a %s fs returned %i\n",
747			     sb->s_type->name, retval);
748		}
749	}
750	sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
751	/* Needs to be ordered wrt mnt_is_readonly() */
752	smp_wmb();
753	sb->s_readonly_remount = 0;
754
755	/*
756	 * Some filesystems modify their metadata via some other path than the
757	 * bdev buffer cache (eg. use a private mapping, or directories in
758	 * pagecache, etc). Also file data modifications go via their own
759	 * mappings. So If we try to mount readonly then copy the filesystem
760	 * from bdev, we could get stale data, so invalidate it to give a best
761	 * effort at coherency.
762	 */
763	if (remount_ro && sb->s_bdev)
764		invalidate_bdev(sb->s_bdev);
765	return 0;
766
767cancel_readonly:
768	sb->s_readonly_remount = 0;
769	return retval;
770}
771
772static void do_emergency_remount(struct work_struct *work)
773{
774	struct super_block *sb, *p = NULL;
775
776	spin_lock(&sb_lock);
777	list_for_each_entry(sb, &super_blocks, s_list) {
778		if (hlist_unhashed(&sb->s_instances))
779			continue;
780		sb->s_count++;
781		spin_unlock(&sb_lock);
782		down_write(&sb->s_umount);
783		if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
784		    !(sb->s_flags & MS_RDONLY)) {
785			/*
786			 * What lock protects sb->s_flags??
787			 */
788			do_remount_sb(sb, MS_RDONLY, NULL, 1);
789		}
790		up_write(&sb->s_umount);
791		spin_lock(&sb_lock);
792		if (p)
793			__put_super(p);
794		p = sb;
795	}
796	if (p)
797		__put_super(p);
798	spin_unlock(&sb_lock);
799	kfree(work);
800	printk("Emergency Remount complete\n");
801}
802
803void emergency_remount(void)
804{
805	struct work_struct *work;
806
807	work = kmalloc(sizeof(*work), GFP_ATOMIC);
808	if (work) {
809		INIT_WORK(work, do_emergency_remount);
810		schedule_work(work);
811	}
812}
813
814/*
815 * Unnamed block devices are dummy devices used by virtual
816 * filesystems which don't use real block-devices.  -- jrs
817 */
818
819static DEFINE_IDA(unnamed_dev_ida);
820static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
821/* Many userspace utilities consider an FSID of 0 invalid.
822 * Always return at least 1 from get_anon_bdev.
823 */
824static int unnamed_dev_start = 1;
825
826int get_anon_bdev(dev_t *p)
827{
828	int dev;
829	int error;
830
831 retry:
832	if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
833		return -ENOMEM;
834	spin_lock(&unnamed_dev_lock);
835	error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
836	if (!error)
837		unnamed_dev_start = dev + 1;
838	spin_unlock(&unnamed_dev_lock);
839	if (error == -EAGAIN)
840		/* We raced and lost with another CPU. */
841		goto retry;
842	else if (error)
843		return -EAGAIN;
844
845	if (dev == (1 << MINORBITS)) {
846		spin_lock(&unnamed_dev_lock);
847		ida_remove(&unnamed_dev_ida, dev);
848		if (unnamed_dev_start > dev)
849			unnamed_dev_start = dev;
850		spin_unlock(&unnamed_dev_lock);
851		return -EMFILE;
852	}
853	*p = MKDEV(0, dev & MINORMASK);
854	return 0;
855}
856EXPORT_SYMBOL(get_anon_bdev);
857
858void free_anon_bdev(dev_t dev)
859{
860	int slot = MINOR(dev);
861	spin_lock(&unnamed_dev_lock);
862	ida_remove(&unnamed_dev_ida, slot);
863	if (slot < unnamed_dev_start)
864		unnamed_dev_start = slot;
865	spin_unlock(&unnamed_dev_lock);
866}
867EXPORT_SYMBOL(free_anon_bdev);
868
869int set_anon_super(struct super_block *s, void *data)
870{
871	return get_anon_bdev(&s->s_dev);
872}
873
874EXPORT_SYMBOL(set_anon_super);
875
876void kill_anon_super(struct super_block *sb)
877{
878	dev_t dev = sb->s_dev;
879	generic_shutdown_super(sb);
880	free_anon_bdev(dev);
881}
882
883EXPORT_SYMBOL(kill_anon_super);
884
885void kill_litter_super(struct super_block *sb)
886{
887	if (sb->s_root)
888		d_genocide(sb->s_root);
889	kill_anon_super(sb);
890}
891
892EXPORT_SYMBOL(kill_litter_super);
893
894static int ns_test_super(struct super_block *sb, void *data)
895{
896	return sb->s_fs_info == data;
897}
898
899static int ns_set_super(struct super_block *sb, void *data)
900{
901	sb->s_fs_info = data;
902	return set_anon_super(sb, NULL);
903}
904
905struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
906	void *data, int (*fill_super)(struct super_block *, void *, int))
907{
908	struct super_block *sb;
909
910	sb = sget(fs_type, ns_test_super, ns_set_super, flags, data);
911	if (IS_ERR(sb))
912		return ERR_CAST(sb);
913
914	if (!sb->s_root) {
915		int err;
916		err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
917		if (err) {
918			deactivate_locked_super(sb);
919			return ERR_PTR(err);
920		}
921
922		sb->s_flags |= MS_ACTIVE;
923	}
924
925	return dget(sb->s_root);
926}
927
928EXPORT_SYMBOL(mount_ns);
929
930#ifdef CONFIG_BLOCK
931static int set_bdev_super(struct super_block *s, void *data)
932{
933	s->s_bdev = data;
934	s->s_dev = s->s_bdev->bd_dev;
935
936	/*
937	 * We set the bdi here to the queue backing, file systems can
938	 * overwrite this in ->fill_super()
939	 */
940	s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
941	return 0;
942}
943
944static int test_bdev_super(struct super_block *s, void *data)
945{
946	return (void *)s->s_bdev == data;
947}
948
949struct dentry *mount_bdev(struct file_system_type *fs_type,
950	int flags, const char *dev_name, void *data,
951	int (*fill_super)(struct super_block *, void *, int))
952{
953	struct block_device *bdev;
954	struct super_block *s;
955	fmode_t mode = FMODE_READ | FMODE_EXCL;
956	int error = 0;
957
958	if (!(flags & MS_RDONLY))
959		mode |= FMODE_WRITE;
960
961	bdev = blkdev_get_by_path(dev_name, mode, fs_type);
962	if (IS_ERR(bdev))
963		return ERR_CAST(bdev);
964
965	/*
966	 * once the super is inserted into the list by sget, s_umount
967	 * will protect the lockfs code from trying to start a snapshot
968	 * while we are mounting
969	 */
970	mutex_lock(&bdev->bd_fsfreeze_mutex);
971	if (bdev->bd_fsfreeze_count > 0) {
972		mutex_unlock(&bdev->bd_fsfreeze_mutex);
973		error = -EBUSY;
974		goto error_bdev;
975	}
976	s = sget(fs_type, test_bdev_super, set_bdev_super, flags | MS_NOSEC,
977		 bdev);
978	mutex_unlock(&bdev->bd_fsfreeze_mutex);
979	if (IS_ERR(s))
980		goto error_s;
981
982	if (s->s_root) {
983		if ((flags ^ s->s_flags) & MS_RDONLY) {
984			deactivate_locked_super(s);
985			error = -EBUSY;
986			goto error_bdev;
987		}
988
989		/*
990		 * s_umount nests inside bd_mutex during
991		 * __invalidate_device().  blkdev_put() acquires
992		 * bd_mutex and can't be called under s_umount.  Drop
993		 * s_umount temporarily.  This is safe as we're
994		 * holding an active reference.
995		 */
996		up_write(&s->s_umount);
997		blkdev_put(bdev, mode);
998		down_write(&s->s_umount);
999	} else {
1000		char b[BDEVNAME_SIZE];
1001
1002		s->s_mode = mode;
1003		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1004		sb_set_blocksize(s, block_size(bdev));
1005		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1006		if (error) {
1007			deactivate_locked_super(s);
1008			goto error;
1009		}
1010
1011		s->s_flags |= MS_ACTIVE;
1012		bdev->bd_super = s;
1013	}
1014
1015	return dget(s->s_root);
1016
1017error_s:
1018	error = PTR_ERR(s);
1019error_bdev:
1020	blkdev_put(bdev, mode);
1021error:
1022	return ERR_PTR(error);
1023}
1024EXPORT_SYMBOL(mount_bdev);
1025
1026void kill_block_super(struct super_block *sb)
1027{
1028	struct block_device *bdev = sb->s_bdev;
1029	fmode_t mode = sb->s_mode;
1030
1031	bdev->bd_super = NULL;
1032	generic_shutdown_super(sb);
1033	sync_blockdev(bdev);
1034	WARN_ON_ONCE(!(mode & FMODE_EXCL));
1035	blkdev_put(bdev, mode | FMODE_EXCL);
1036}
1037
1038EXPORT_SYMBOL(kill_block_super);
1039#endif
1040
1041struct dentry *mount_nodev(struct file_system_type *fs_type,
1042	int flags, void *data,
1043	int (*fill_super)(struct super_block *, void *, int))
1044{
1045	int error;
1046	struct super_block *s = sget(fs_type, NULL, set_anon_super, flags, NULL);
1047
1048	if (IS_ERR(s))
1049		return ERR_CAST(s);
1050
1051	error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1052	if (error) {
1053		deactivate_locked_super(s);
1054		return ERR_PTR(error);
1055	}
1056	s->s_flags |= MS_ACTIVE;
1057	return dget(s->s_root);
1058}
1059EXPORT_SYMBOL(mount_nodev);
1060
1061static int compare_single(struct super_block *s, void *p)
1062{
1063	return 1;
1064}
1065
1066struct dentry *mount_single(struct file_system_type *fs_type,
1067	int flags, void *data,
1068	int (*fill_super)(struct super_block *, void *, int))
1069{
1070	struct super_block *s;
1071	int error;
1072
1073	s = sget(fs_type, compare_single, set_anon_super, flags, NULL);
1074	if (IS_ERR(s))
1075		return ERR_CAST(s);
1076	if (!s->s_root) {
1077		error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1078		if (error) {
1079			deactivate_locked_super(s);
1080			return ERR_PTR(error);
1081		}
1082		s->s_flags |= MS_ACTIVE;
1083	} else {
1084		do_remount_sb(s, flags, data, 0);
1085	}
1086	return dget(s->s_root);
1087}
1088EXPORT_SYMBOL(mount_single);
1089
1090struct dentry *
1091mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1092{
1093	struct dentry *root;
1094	struct super_block *sb;
1095	char *secdata = NULL;
1096	int error = -ENOMEM;
1097
1098	if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1099		secdata = alloc_secdata();
1100		if (!secdata)
1101			goto out;
1102
1103		error = security_sb_copy_data(data, secdata);
1104		if (error)
1105			goto out_free_secdata;
1106	}
1107
1108	root = type->mount(type, flags, name, data);
1109	if (IS_ERR(root)) {
1110		error = PTR_ERR(root);
1111		goto out_free_secdata;
1112	}
1113	sb = root->d_sb;
1114	BUG_ON(!sb);
1115	WARN_ON(!sb->s_bdi);
1116	sb->s_flags |= MS_BORN;
1117
1118	error = security_sb_kern_mount(sb, flags, secdata);
1119	if (error)
1120		goto out_sb;
1121
1122	/*
1123	 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1124	 * but s_maxbytes was an unsigned long long for many releases. Throw
1125	 * this warning for a little while to try and catch filesystems that
1126	 * violate this rule.
1127	 */
1128	WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1129		"negative value (%lld)\n", type->name, sb->s_maxbytes);
1130
1131	up_write(&sb->s_umount);
1132	free_secdata(secdata);
1133	return root;
1134out_sb:
1135	dput(root);
1136	deactivate_locked_super(sb);
1137out_free_secdata:
1138	free_secdata(secdata);
1139out:
1140	return ERR_PTR(error);
1141}
1142
1143/*
1144 * This is an internal function, please use sb_end_{write,pagefault,intwrite}
1145 * instead.
1146 */
1147void __sb_end_write(struct super_block *sb, int level)
1148{
1149	percpu_counter_dec(&sb->s_writers.counter[level-1]);
1150	/*
1151	 * Make sure s_writers are updated before we wake up waiters in
1152	 * freeze_super().
1153	 */
1154	smp_mb();
1155	if (waitqueue_active(&sb->s_writers.wait))
1156		wake_up(&sb->s_writers.wait);
1157	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _RET_IP_);
1158}
1159EXPORT_SYMBOL(__sb_end_write);
1160
1161#ifdef CONFIG_LOCKDEP
1162/*
1163 * We want lockdep to tell us about possible deadlocks with freezing but
1164 * it's it bit tricky to properly instrument it. Getting a freeze protection
1165 * works as getting a read lock but there are subtle problems. XFS for example
1166 * gets freeze protection on internal level twice in some cases, which is OK
1167 * only because we already hold a freeze protection also on higher level. Due
1168 * to these cases we have to tell lockdep we are doing trylock when we
1169 * already hold a freeze protection for a higher freeze level.
1170 */
1171static void acquire_freeze_lock(struct super_block *sb, int level, bool trylock,
1172				unsigned long ip)
1173{
1174	int i;
1175
1176	if (!trylock) {
1177		for (i = 0; i < level - 1; i++)
1178			if (lock_is_held(&sb->s_writers.lock_map[i])) {
1179				trylock = true;
1180				break;
1181			}
1182	}
1183	rwsem_acquire_read(&sb->s_writers.lock_map[level-1], 0, trylock, ip);
1184}
1185#endif
1186
1187/*
1188 * This is an internal function, please use sb_start_{write,pagefault,intwrite}
1189 * instead.
1190 */
1191int __sb_start_write(struct super_block *sb, int level, bool wait)
1192{
1193retry:
1194	if (unlikely(sb->s_writers.frozen >= level)) {
1195		if (!wait)
1196			return 0;
1197		wait_event(sb->s_writers.wait_unfrozen,
1198			   sb->s_writers.frozen < level);
1199	}
1200
1201#ifdef CONFIG_LOCKDEP
1202	acquire_freeze_lock(sb, level, !wait, _RET_IP_);
1203#endif
1204	percpu_counter_inc(&sb->s_writers.counter[level-1]);
1205	/*
1206	 * Make sure counter is updated before we check for frozen.
1207	 * freeze_super() first sets frozen and then checks the counter.
1208	 */
1209	smp_mb();
1210	if (unlikely(sb->s_writers.frozen >= level)) {
1211		__sb_end_write(sb, level);
1212		goto retry;
1213	}
1214	return 1;
1215}
1216EXPORT_SYMBOL(__sb_start_write);
1217
1218/**
1219 * sb_wait_write - wait until all writers to given file system finish
1220 * @sb: the super for which we wait
1221 * @level: type of writers we wait for (normal vs page fault)
1222 *
1223 * This function waits until there are no writers of given type to given file
1224 * system. Caller of this function should make sure there can be no new writers
1225 * of type @level before calling this function. Otherwise this function can
1226 * livelock.
1227 */
1228static void sb_wait_write(struct super_block *sb, int level)
1229{
1230	s64 writers;
1231
1232	/*
1233	 * We just cycle-through lockdep here so that it does not complain
1234	 * about returning with lock to userspace
1235	 */
1236	rwsem_acquire(&sb->s_writers.lock_map[level-1], 0, 0, _THIS_IP_);
1237	rwsem_release(&sb->s_writers.lock_map[level-1], 1, _THIS_IP_);
1238
1239	do {
1240		DEFINE_WAIT(wait);
1241
1242		/*
1243		 * We use a barrier in prepare_to_wait() to separate setting
1244		 * of frozen and checking of the counter
1245		 */
1246		prepare_to_wait(&sb->s_writers.wait, &wait,
1247				TASK_UNINTERRUPTIBLE);
1248
1249		writers = percpu_counter_sum(&sb->s_writers.counter[level-1]);
1250		if (writers)
1251			schedule();
1252
1253		finish_wait(&sb->s_writers.wait, &wait);
1254	} while (writers);
1255}
1256
1257/**
1258 * freeze_super - lock the filesystem and force it into a consistent state
1259 * @sb: the super to lock
1260 *
1261 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1262 * freeze_fs.  Subsequent calls to this without first thawing the fs will return
1263 * -EBUSY.
1264 *
1265 * During this function, sb->s_writers.frozen goes through these values:
1266 *
1267 * SB_UNFROZEN: File system is normal, all writes progress as usual.
1268 *
1269 * SB_FREEZE_WRITE: The file system is in the process of being frozen.  New
1270 * writes should be blocked, though page faults are still allowed. We wait for
1271 * all writes to complete and then proceed to the next stage.
1272 *
1273 * SB_FREEZE_PAGEFAULT: Freezing continues. Now also page faults are blocked
1274 * but internal fs threads can still modify the filesystem (although they
1275 * should not dirty new pages or inodes), writeback can run etc. After waiting
1276 * for all running page faults we sync the filesystem which will clean all
1277 * dirty pages and inodes (no new dirty pages or inodes can be created when
1278 * sync is running).
1279 *
1280 * SB_FREEZE_FS: The file system is frozen. Now all internal sources of fs
1281 * modification are blocked (e.g. XFS preallocation truncation on inode
1282 * reclaim). This is usually implemented by blocking new transactions for
1283 * filesystems that have them and need this additional guard. After all
1284 * internal writers are finished we call ->freeze_fs() to finish filesystem
1285 * freezing. Then we transition to SB_FREEZE_COMPLETE state. This state is
1286 * mostly auxiliary for filesystems to verify they do not modify frozen fs.
1287 *
1288 * sb->s_writers.frozen is protected by sb->s_umount.
1289 */
1290int freeze_super(struct super_block *sb)
1291{
1292	int ret;
1293
1294	atomic_inc(&sb->s_active);
1295	down_write(&sb->s_umount);
1296	if (sb->s_writers.frozen != SB_UNFROZEN) {
1297		deactivate_locked_super(sb);
1298		return -EBUSY;
1299	}
1300
1301	if (!(sb->s_flags & MS_BORN)) {
1302		up_write(&sb->s_umount);
1303		return 0;	/* sic - it's "nothing to do" */
1304	}
1305
1306	if (sb->s_flags & MS_RDONLY) {
1307		/* Nothing to do really... */
1308		sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1309		up_write(&sb->s_umount);
1310		return 0;
1311	}
1312
1313	/* From now on, no new normal writers can start */
1314	sb->s_writers.frozen = SB_FREEZE_WRITE;
1315	smp_wmb();
1316
1317	/* Release s_umount to preserve sb_start_write -> s_umount ordering */
1318	up_write(&sb->s_umount);
1319
1320	sb_wait_write(sb, SB_FREEZE_WRITE);
1321
1322	/* Now we go and block page faults... */
1323	down_write(&sb->s_umount);
1324	sb->s_writers.frozen = SB_FREEZE_PAGEFAULT;
1325	smp_wmb();
1326
1327	sb_wait_write(sb, SB_FREEZE_PAGEFAULT);
1328
1329	/* All writers are done so after syncing there won't be dirty data */
1330	sync_filesystem(sb);
1331
1332	/* Now wait for internal filesystem counter */
1333	sb->s_writers.frozen = SB_FREEZE_FS;
1334	smp_wmb();
1335	sb_wait_write(sb, SB_FREEZE_FS);
1336
1337	if (sb->s_op->freeze_fs) {
1338		ret = sb->s_op->freeze_fs(sb);
1339		if (ret) {
1340			printk(KERN_ERR
1341				"VFS:Filesystem freeze failed\n");
1342			sb->s_writers.frozen = SB_UNFROZEN;
1343			smp_wmb();
1344			wake_up(&sb->s_writers.wait_unfrozen);
1345			deactivate_locked_super(sb);
1346			return ret;
1347		}
1348	}
1349	/*
1350	 * This is just for debugging purposes so that fs can warn if it
1351	 * sees write activity when frozen is set to SB_FREEZE_COMPLETE.
1352	 */
1353	sb->s_writers.frozen = SB_FREEZE_COMPLETE;
1354	up_write(&sb->s_umount);
1355	return 0;
1356}
1357EXPORT_SYMBOL(freeze_super);
1358
1359/**
1360 * thaw_super -- unlock filesystem
1361 * @sb: the super to thaw
1362 *
1363 * Unlocks the filesystem and marks it writeable again after freeze_super().
1364 */
1365int thaw_super(struct super_block *sb)
1366{
1367	int error;
1368
1369	down_write(&sb->s_umount);
1370	if (sb->s_writers.frozen == SB_UNFROZEN) {
1371		up_write(&sb->s_umount);
1372		return -EINVAL;
1373	}
1374
1375	if (sb->s_flags & MS_RDONLY)
1376		goto out;
1377
1378	if (sb->s_op->unfreeze_fs) {
1379		error = sb->s_op->unfreeze_fs(sb);
1380		if (error) {
1381			printk(KERN_ERR
1382				"VFS:Filesystem thaw failed\n");
1383			up_write(&sb->s_umount);
1384			return error;
1385		}
1386	}
1387
1388out:
1389	sb->s_writers.frozen = SB_UNFROZEN;
1390	smp_wmb();
1391	wake_up(&sb->s_writers.wait_unfrozen);
1392	deactivate_locked_super(sb);
1393
1394	return 0;
1395}
1396EXPORT_SYMBOL(thaw_super);
1397