1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 *          Adrian Hunter
21 */
22
23/*
24 * This file implements VFS file and inode operations for regular files, device
25 * nodes and symlinks as well as address space operations.
26 *
27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28 * the page is dirty and is used for optimization purposes - dirty pages are
29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30 * the budget for this page. The @PG_checked flag is set if full budgeting is
31 * required for the page e.g., when it corresponds to a file hole or it is
32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33 * it is OK to fail in this function, and the budget is released in
34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35 * information about how the page was budgeted, to make it possible to release
36 * the budget properly.
37 *
38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39 * implement. However, this is not true for 'ubifs_writepage()', which may be
40 * called with @i_mutex unlocked. For example, when flusher thread is doing
41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44 * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45 *
46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49 * set as well. However, UBIFS disables readahead.
50 */
51
52#include "ubifs.h"
53#include <linux/mount.h>
54#include <linux/namei.h>
55#include <linux/slab.h>
56
57static int read_block(struct inode *inode, void *addr, unsigned int block,
58		      struct ubifs_data_node *dn)
59{
60	struct ubifs_info *c = inode->i_sb->s_fs_info;
61	int err, len, out_len;
62	union ubifs_key key;
63	unsigned int dlen;
64
65	data_key_init(c, &key, inode->i_ino, block);
66	err = ubifs_tnc_lookup(c, &key, dn);
67	if (err) {
68		if (err == -ENOENT)
69			/* Not found, so it must be a hole */
70			memset(addr, 0, UBIFS_BLOCK_SIZE);
71		return err;
72	}
73
74	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75		     ubifs_inode(inode)->creat_sqnum);
76	len = le32_to_cpu(dn->size);
77	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78		goto dump;
79
80	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81	out_len = UBIFS_BLOCK_SIZE;
82	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
83			       le16_to_cpu(dn->compr_type));
84	if (err || len != out_len)
85		goto dump;
86
87	/*
88	 * Data length can be less than a full block, even for blocks that are
89	 * not the last in the file (e.g., as a result of making a hole and
90	 * appending data). Ensure that the remainder is zeroed out.
91	 */
92	if (len < UBIFS_BLOCK_SIZE)
93		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
94
95	return 0;
96
97dump:
98	ubifs_err(c, "bad data node (block %u, inode %lu)",
99		  block, inode->i_ino);
100	ubifs_dump_node(c, dn);
101	return -EINVAL;
102}
103
104static int do_readpage(struct page *page)
105{
106	void *addr;
107	int err = 0, i;
108	unsigned int block, beyond;
109	struct ubifs_data_node *dn;
110	struct inode *inode = page->mapping->host;
111	loff_t i_size = i_size_read(inode);
112
113	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114		inode->i_ino, page->index, i_size, page->flags);
115	ubifs_assert(!PageChecked(page));
116	ubifs_assert(!PagePrivate(page));
117
118	addr = kmap(page);
119
120	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
121	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
122	if (block >= beyond) {
123		/* Reading beyond inode */
124		SetPageChecked(page);
125		memset(addr, 0, PAGE_CACHE_SIZE);
126		goto out;
127	}
128
129	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
130	if (!dn) {
131		err = -ENOMEM;
132		goto error;
133	}
134
135	i = 0;
136	while (1) {
137		int ret;
138
139		if (block >= beyond) {
140			/* Reading beyond inode */
141			err = -ENOENT;
142			memset(addr, 0, UBIFS_BLOCK_SIZE);
143		} else {
144			ret = read_block(inode, addr, block, dn);
145			if (ret) {
146				err = ret;
147				if (err != -ENOENT)
148					break;
149			} else if (block + 1 == beyond) {
150				int dlen = le32_to_cpu(dn->size);
151				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
152
153				if (ilen && ilen < dlen)
154					memset(addr + ilen, 0, dlen - ilen);
155			}
156		}
157		if (++i >= UBIFS_BLOCKS_PER_PAGE)
158			break;
159		block += 1;
160		addr += UBIFS_BLOCK_SIZE;
161	}
162	if (err) {
163		struct ubifs_info *c = inode->i_sb->s_fs_info;
164		if (err == -ENOENT) {
165			/* Not found, so it must be a hole */
166			SetPageChecked(page);
167			dbg_gen("hole");
168			goto out_free;
169		}
170		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
171			  page->index, inode->i_ino, err);
172		goto error;
173	}
174
175out_free:
176	kfree(dn);
177out:
178	SetPageUptodate(page);
179	ClearPageError(page);
180	flush_dcache_page(page);
181	kunmap(page);
182	return 0;
183
184error:
185	kfree(dn);
186	ClearPageUptodate(page);
187	SetPageError(page);
188	flush_dcache_page(page);
189	kunmap(page);
190	return err;
191}
192
193/**
194 * release_new_page_budget - release budget of a new page.
195 * @c: UBIFS file-system description object
196 *
197 * This is a helper function which releases budget corresponding to the budget
198 * of one new page of data.
199 */
200static void release_new_page_budget(struct ubifs_info *c)
201{
202	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203
204	ubifs_release_budget(c, &req);
205}
206
207/**
208 * release_existing_page_budget - release budget of an existing page.
209 * @c: UBIFS file-system description object
210 *
211 * This is a helper function which releases budget corresponding to the budget
212 * of changing one one page of data which already exists on the flash media.
213 */
214static void release_existing_page_budget(struct ubifs_info *c)
215{
216	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
217
218	ubifs_release_budget(c, &req);
219}
220
221static int write_begin_slow(struct address_space *mapping,
222			    loff_t pos, unsigned len, struct page **pagep,
223			    unsigned flags)
224{
225	struct inode *inode = mapping->host;
226	struct ubifs_info *c = inode->i_sb->s_fs_info;
227	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228	struct ubifs_budget_req req = { .new_page = 1 };
229	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230	struct page *page;
231
232	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233		inode->i_ino, pos, len, inode->i_size);
234
235	/*
236	 * At the slow path we have to budget before locking the page, because
237	 * budgeting may force write-back, which would wait on locked pages and
238	 * deadlock if we had the page locked. At this point we do not know
239	 * anything about the page, so assume that this is a new page which is
240	 * written to a hole. This corresponds to largest budget. Later the
241	 * budget will be amended if this is not true.
242	 */
243	if (appending)
244		/* We are appending data, budget for inode change */
245		req.dirtied_ino = 1;
246
247	err = ubifs_budget_space(c, &req);
248	if (unlikely(err))
249		return err;
250
251	page = grab_cache_page_write_begin(mapping, index, flags);
252	if (unlikely(!page)) {
253		ubifs_release_budget(c, &req);
254		return -ENOMEM;
255	}
256
257	if (!PageUptodate(page)) {
258		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259			SetPageChecked(page);
260		else {
261			err = do_readpage(page);
262			if (err) {
263				unlock_page(page);
264				page_cache_release(page);
265				ubifs_release_budget(c, &req);
266				return err;
267			}
268		}
269
270		SetPageUptodate(page);
271		ClearPageError(page);
272	}
273
274	if (PagePrivate(page))
275		/*
276		 * The page is dirty, which means it was budgeted twice:
277		 *   o first time the budget was allocated by the task which
278		 *     made the page dirty and set the PG_private flag;
279		 *   o and then we budgeted for it for the second time at the
280		 *     very beginning of this function.
281		 *
282		 * So what we have to do is to release the page budget we
283		 * allocated.
284		 */
285		release_new_page_budget(c);
286	else if (!PageChecked(page))
287		/*
288		 * We are changing a page which already exists on the media.
289		 * This means that changing the page does not make the amount
290		 * of indexing information larger, and this part of the budget
291		 * which we have already acquired may be released.
292		 */
293		ubifs_convert_page_budget(c);
294
295	if (appending) {
296		struct ubifs_inode *ui = ubifs_inode(inode);
297
298		/*
299		 * 'ubifs_write_end()' is optimized from the fast-path part of
300		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
301		 * if data is appended.
302		 */
303		mutex_lock(&ui->ui_mutex);
304		if (ui->dirty)
305			/*
306			 * The inode is dirty already, so we may free the
307			 * budget we allocated.
308			 */
309			ubifs_release_dirty_inode_budget(c, ui);
310	}
311
312	*pagep = page;
313	return 0;
314}
315
316/**
317 * allocate_budget - allocate budget for 'ubifs_write_begin()'.
318 * @c: UBIFS file-system description object
319 * @page: page to allocate budget for
320 * @ui: UBIFS inode object the page belongs to
321 * @appending: non-zero if the page is appended
322 *
323 * This is a helper function for 'ubifs_write_begin()' which allocates budget
324 * for the operation. The budget is allocated differently depending on whether
325 * this is appending, whether the page is dirty or not, and so on. This
326 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
327 * in case of success and %-ENOSPC in case of failure.
328 */
329static int allocate_budget(struct ubifs_info *c, struct page *page,
330			   struct ubifs_inode *ui, int appending)
331{
332	struct ubifs_budget_req req = { .fast = 1 };
333
334	if (PagePrivate(page)) {
335		if (!appending)
336			/*
337			 * The page is dirty and we are not appending, which
338			 * means no budget is needed at all.
339			 */
340			return 0;
341
342		mutex_lock(&ui->ui_mutex);
343		if (ui->dirty)
344			/*
345			 * The page is dirty and we are appending, so the inode
346			 * has to be marked as dirty. However, it is already
347			 * dirty, so we do not need any budget. We may return,
348			 * but @ui->ui_mutex hast to be left locked because we
349			 * should prevent write-back from flushing the inode
350			 * and freeing the budget. The lock will be released in
351			 * 'ubifs_write_end()'.
352			 */
353			return 0;
354
355		/*
356		 * The page is dirty, we are appending, the inode is clean, so
357		 * we need to budget the inode change.
358		 */
359		req.dirtied_ino = 1;
360	} else {
361		if (PageChecked(page))
362			/*
363			 * The page corresponds to a hole and does not
364			 * exist on the media. So changing it makes
365			 * make the amount of indexing information
366			 * larger, and we have to budget for a new
367			 * page.
368			 */
369			req.new_page = 1;
370		else
371			/*
372			 * Not a hole, the change will not add any new
373			 * indexing information, budget for page
374			 * change.
375			 */
376			req.dirtied_page = 1;
377
378		if (appending) {
379			mutex_lock(&ui->ui_mutex);
380			if (!ui->dirty)
381				/*
382				 * The inode is clean but we will have to mark
383				 * it as dirty because we are appending. This
384				 * needs a budget.
385				 */
386				req.dirtied_ino = 1;
387		}
388	}
389
390	return ubifs_budget_space(c, &req);
391}
392
393/*
394 * This function is called when a page of data is going to be written. Since
395 * the page of data will not necessarily go to the flash straight away, UBIFS
396 * has to reserve space on the media for it, which is done by means of
397 * budgeting.
398 *
399 * This is the hot-path of the file-system and we are trying to optimize it as
400 * much as possible. For this reasons it is split on 2 parts - slow and fast.
401 *
402 * There many budgeting cases:
403 *     o a new page is appended - we have to budget for a new page and for
404 *       changing the inode; however, if the inode is already dirty, there is
405 *       no need to budget for it;
406 *     o an existing clean page is changed - we have budget for it; if the page
407 *       does not exist on the media (a hole), we have to budget for a new
408 *       page; otherwise, we may budget for changing an existing page; the
409 *       difference between these cases is that changing an existing page does
410 *       not introduce anything new to the FS indexing information, so it does
411 *       not grow, and smaller budget is acquired in this case;
412 *     o an existing dirty page is changed - no need to budget at all, because
413 *       the page budget has been acquired by earlier, when the page has been
414 *       marked dirty.
415 *
416 * UBIFS budgeting sub-system may force write-back if it thinks there is no
417 * space to reserve. This imposes some locking restrictions and makes it
418 * impossible to take into account the above cases, and makes it impossible to
419 * optimize budgeting.
420 *
421 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
422 * there is a plenty of flash space and the budget will be acquired quickly,
423 * without forcing write-back. The slow path does not make this assumption.
424 */
425static int ubifs_write_begin(struct file *file, struct address_space *mapping,
426			     loff_t pos, unsigned len, unsigned flags,
427			     struct page **pagep, void **fsdata)
428{
429	struct inode *inode = mapping->host;
430	struct ubifs_info *c = inode->i_sb->s_fs_info;
431	struct ubifs_inode *ui = ubifs_inode(inode);
432	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
433	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
434	int skipped_read = 0;
435	struct page *page;
436
437	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
438	ubifs_assert(!c->ro_media && !c->ro_mount);
439
440	if (unlikely(c->ro_error))
441		return -EROFS;
442
443	/* Try out the fast-path part first */
444	page = grab_cache_page_write_begin(mapping, index, flags);
445	if (unlikely(!page))
446		return -ENOMEM;
447
448	if (!PageUptodate(page)) {
449		/* The page is not loaded from the flash */
450		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
451			/*
452			 * We change whole page so no need to load it. But we
453			 * do not know whether this page exists on the media or
454			 * not, so we assume the latter because it requires
455			 * larger budget. The assumption is that it is better
456			 * to budget a bit more than to read the page from the
457			 * media. Thus, we are setting the @PG_checked flag
458			 * here.
459			 */
460			SetPageChecked(page);
461			skipped_read = 1;
462		} else {
463			err = do_readpage(page);
464			if (err) {
465				unlock_page(page);
466				page_cache_release(page);
467				return err;
468			}
469		}
470
471		SetPageUptodate(page);
472		ClearPageError(page);
473	}
474
475	err = allocate_budget(c, page, ui, appending);
476	if (unlikely(err)) {
477		ubifs_assert(err == -ENOSPC);
478		/*
479		 * If we skipped reading the page because we were going to
480		 * write all of it, then it is not up to date.
481		 */
482		if (skipped_read) {
483			ClearPageChecked(page);
484			ClearPageUptodate(page);
485		}
486		/*
487		 * Budgeting failed which means it would have to force
488		 * write-back but didn't, because we set the @fast flag in the
489		 * request. Write-back cannot be done now, while we have the
490		 * page locked, because it would deadlock. Unlock and free
491		 * everything and fall-back to slow-path.
492		 */
493		if (appending) {
494			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
495			mutex_unlock(&ui->ui_mutex);
496		}
497		unlock_page(page);
498		page_cache_release(page);
499
500		return write_begin_slow(mapping, pos, len, pagep, flags);
501	}
502
503	/*
504	 * Whee, we acquired budgeting quickly - without involving
505	 * garbage-collection, committing or forcing write-back. We return
506	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
507	 * otherwise. This is an optimization (slightly hacky though).
508	 */
509	*pagep = page;
510	return 0;
511
512}
513
514/**
515 * cancel_budget - cancel budget.
516 * @c: UBIFS file-system description object
517 * @page: page to cancel budget for
518 * @ui: UBIFS inode object the page belongs to
519 * @appending: non-zero if the page is appended
520 *
521 * This is a helper function for a page write operation. It unlocks the
522 * @ui->ui_mutex in case of appending.
523 */
524static void cancel_budget(struct ubifs_info *c, struct page *page,
525			  struct ubifs_inode *ui, int appending)
526{
527	if (appending) {
528		if (!ui->dirty)
529			ubifs_release_dirty_inode_budget(c, ui);
530		mutex_unlock(&ui->ui_mutex);
531	}
532	if (!PagePrivate(page)) {
533		if (PageChecked(page))
534			release_new_page_budget(c);
535		else
536			release_existing_page_budget(c);
537	}
538}
539
540static int ubifs_write_end(struct file *file, struct address_space *mapping,
541			   loff_t pos, unsigned len, unsigned copied,
542			   struct page *page, void *fsdata)
543{
544	struct inode *inode = mapping->host;
545	struct ubifs_inode *ui = ubifs_inode(inode);
546	struct ubifs_info *c = inode->i_sb->s_fs_info;
547	loff_t end_pos = pos + len;
548	int appending = !!(end_pos > inode->i_size);
549
550	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
551		inode->i_ino, pos, page->index, len, copied, inode->i_size);
552
553	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
554		/*
555		 * VFS copied less data to the page that it intended and
556		 * declared in its '->write_begin()' call via the @len
557		 * argument. If the page was not up-to-date, and @len was
558		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
559		 * not load it from the media (for optimization reasons). This
560		 * means that part of the page contains garbage. So read the
561		 * page now.
562		 */
563		dbg_gen("copied %d instead of %d, read page and repeat",
564			copied, len);
565		cancel_budget(c, page, ui, appending);
566		ClearPageChecked(page);
567
568		/*
569		 * Return 0 to force VFS to repeat the whole operation, or the
570		 * error code if 'do_readpage()' fails.
571		 */
572		copied = do_readpage(page);
573		goto out;
574	}
575
576	if (!PagePrivate(page)) {
577		SetPagePrivate(page);
578		atomic_long_inc(&c->dirty_pg_cnt);
579		__set_page_dirty_nobuffers(page);
580	}
581
582	if (appending) {
583		i_size_write(inode, end_pos);
584		ui->ui_size = end_pos;
585		/*
586		 * Note, we do not set @I_DIRTY_PAGES (which means that the
587		 * inode has dirty pages), this has been done in
588		 * '__set_page_dirty_nobuffers()'.
589		 */
590		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
591		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
592		mutex_unlock(&ui->ui_mutex);
593	}
594
595out:
596	unlock_page(page);
597	page_cache_release(page);
598	return copied;
599}
600
601/**
602 * populate_page - copy data nodes into a page for bulk-read.
603 * @c: UBIFS file-system description object
604 * @page: page
605 * @bu: bulk-read information
606 * @n: next zbranch slot
607 *
608 * This function returns %0 on success and a negative error code on failure.
609 */
610static int populate_page(struct ubifs_info *c, struct page *page,
611			 struct bu_info *bu, int *n)
612{
613	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
614	struct inode *inode = page->mapping->host;
615	loff_t i_size = i_size_read(inode);
616	unsigned int page_block;
617	void *addr, *zaddr;
618	pgoff_t end_index;
619
620	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
621		inode->i_ino, page->index, i_size, page->flags);
622
623	addr = zaddr = kmap(page);
624
625	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
626	if (!i_size || page->index > end_index) {
627		hole = 1;
628		memset(addr, 0, PAGE_CACHE_SIZE);
629		goto out_hole;
630	}
631
632	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
633	while (1) {
634		int err, len, out_len, dlen;
635
636		if (nn >= bu->cnt) {
637			hole = 1;
638			memset(addr, 0, UBIFS_BLOCK_SIZE);
639		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
640			struct ubifs_data_node *dn;
641
642			dn = bu->buf + (bu->zbranch[nn].offs - offs);
643
644			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
645				     ubifs_inode(inode)->creat_sqnum);
646
647			len = le32_to_cpu(dn->size);
648			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
649				goto out_err;
650
651			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
652			out_len = UBIFS_BLOCK_SIZE;
653			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
654					       le16_to_cpu(dn->compr_type));
655			if (err || len != out_len)
656				goto out_err;
657
658			if (len < UBIFS_BLOCK_SIZE)
659				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
660
661			nn += 1;
662			read = (i << UBIFS_BLOCK_SHIFT) + len;
663		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
664			nn += 1;
665			continue;
666		} else {
667			hole = 1;
668			memset(addr, 0, UBIFS_BLOCK_SIZE);
669		}
670		if (++i >= UBIFS_BLOCKS_PER_PAGE)
671			break;
672		addr += UBIFS_BLOCK_SIZE;
673		page_block += 1;
674	}
675
676	if (end_index == page->index) {
677		int len = i_size & (PAGE_CACHE_SIZE - 1);
678
679		if (len && len < read)
680			memset(zaddr + len, 0, read - len);
681	}
682
683out_hole:
684	if (hole) {
685		SetPageChecked(page);
686		dbg_gen("hole");
687	}
688
689	SetPageUptodate(page);
690	ClearPageError(page);
691	flush_dcache_page(page);
692	kunmap(page);
693	*n = nn;
694	return 0;
695
696out_err:
697	ClearPageUptodate(page);
698	SetPageError(page);
699	flush_dcache_page(page);
700	kunmap(page);
701	ubifs_err(c, "bad data node (block %u, inode %lu)",
702		  page_block, inode->i_ino);
703	return -EINVAL;
704}
705
706/**
707 * ubifs_do_bulk_read - do bulk-read.
708 * @c: UBIFS file-system description object
709 * @bu: bulk-read information
710 * @page1: first page to read
711 *
712 * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713 */
714static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
715			      struct page *page1)
716{
717	pgoff_t offset = page1->index, end_index;
718	struct address_space *mapping = page1->mapping;
719	struct inode *inode = mapping->host;
720	struct ubifs_inode *ui = ubifs_inode(inode);
721	int err, page_idx, page_cnt, ret = 0, n = 0;
722	int allocate = bu->buf ? 0 : 1;
723	loff_t isize;
724
725	err = ubifs_tnc_get_bu_keys(c, bu);
726	if (err)
727		goto out_warn;
728
729	if (bu->eof) {
730		/* Turn off bulk-read at the end of the file */
731		ui->read_in_a_row = 1;
732		ui->bulk_read = 0;
733	}
734
735	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
736	if (!page_cnt) {
737		/*
738		 * This happens when there are multiple blocks per page and the
739		 * blocks for the first page we are looking for, are not
740		 * together. If all the pages were like this, bulk-read would
741		 * reduce performance, so we turn it off for a while.
742		 */
743		goto out_bu_off;
744	}
745
746	if (bu->cnt) {
747		if (allocate) {
748			/*
749			 * Allocate bulk-read buffer depending on how many data
750			 * nodes we are going to read.
751			 */
752			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
753				      bu->zbranch[bu->cnt - 1].len -
754				      bu->zbranch[0].offs;
755			ubifs_assert(bu->buf_len > 0);
756			ubifs_assert(bu->buf_len <= c->leb_size);
757			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
758			if (!bu->buf)
759				goto out_bu_off;
760		}
761
762		err = ubifs_tnc_bulk_read(c, bu);
763		if (err)
764			goto out_warn;
765	}
766
767	err = populate_page(c, page1, bu, &n);
768	if (err)
769		goto out_warn;
770
771	unlock_page(page1);
772	ret = 1;
773
774	isize = i_size_read(inode);
775	if (isize == 0)
776		goto out_free;
777	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
778
779	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
780		pgoff_t page_offset = offset + page_idx;
781		struct page *page;
782
783		if (page_offset > end_index)
784			break;
785		page = find_or_create_page(mapping, page_offset,
786					   GFP_NOFS | __GFP_COLD);
787		if (!page)
788			break;
789		if (!PageUptodate(page))
790			err = populate_page(c, page, bu, &n);
791		unlock_page(page);
792		page_cache_release(page);
793		if (err)
794			break;
795	}
796
797	ui->last_page_read = offset + page_idx - 1;
798
799out_free:
800	if (allocate)
801		kfree(bu->buf);
802	return ret;
803
804out_warn:
805	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
806	goto out_free;
807
808out_bu_off:
809	ui->read_in_a_row = ui->bulk_read = 0;
810	goto out_free;
811}
812
813/**
814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
815 * @page: page from which to start bulk-read.
816 *
817 * Some flash media are capable of reading sequentially at faster rates. UBIFS
818 * bulk-read facility is designed to take advantage of that, by reading in one
819 * go consecutive data nodes that are also located consecutively in the same
820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821 */
822static int ubifs_bulk_read(struct page *page)
823{
824	struct inode *inode = page->mapping->host;
825	struct ubifs_info *c = inode->i_sb->s_fs_info;
826	struct ubifs_inode *ui = ubifs_inode(inode);
827	pgoff_t index = page->index, last_page_read = ui->last_page_read;
828	struct bu_info *bu;
829	int err = 0, allocated = 0;
830
831	ui->last_page_read = index;
832	if (!c->bulk_read)
833		return 0;
834
835	/*
836	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837	 * so don't bother if we cannot lock the mutex.
838	 */
839	if (!mutex_trylock(&ui->ui_mutex))
840		return 0;
841
842	if (index != last_page_read + 1) {
843		/* Turn off bulk-read if we stop reading sequentially */
844		ui->read_in_a_row = 1;
845		if (ui->bulk_read)
846			ui->bulk_read = 0;
847		goto out_unlock;
848	}
849
850	if (!ui->bulk_read) {
851		ui->read_in_a_row += 1;
852		if (ui->read_in_a_row < 3)
853			goto out_unlock;
854		/* Three reads in a row, so switch on bulk-read */
855		ui->bulk_read = 1;
856	}
857
858	/*
859	 * If possible, try to use pre-allocated bulk-read information, which
860	 * is protected by @c->bu_mutex.
861	 */
862	if (mutex_trylock(&c->bu_mutex))
863		bu = &c->bu;
864	else {
865		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
866		if (!bu)
867			goto out_unlock;
868
869		bu->buf = NULL;
870		allocated = 1;
871	}
872
873	bu->buf_len = c->max_bu_buf_len;
874	data_key_init(c, &bu->key, inode->i_ino,
875		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
876	err = ubifs_do_bulk_read(c, bu, page);
877
878	if (!allocated)
879		mutex_unlock(&c->bu_mutex);
880	else
881		kfree(bu);
882
883out_unlock:
884	mutex_unlock(&ui->ui_mutex);
885	return err;
886}
887
888static int ubifs_readpage(struct file *file, struct page *page)
889{
890	if (ubifs_bulk_read(page))
891		return 0;
892	do_readpage(page);
893	unlock_page(page);
894	return 0;
895}
896
897static int do_writepage(struct page *page, int len)
898{
899	int err = 0, i, blen;
900	unsigned int block;
901	void *addr;
902	union ubifs_key key;
903	struct inode *inode = page->mapping->host;
904	struct ubifs_info *c = inode->i_sb->s_fs_info;
905
906#ifdef UBIFS_DEBUG
907	struct ubifs_inode *ui = ubifs_inode(inode);
908	spin_lock(&ui->ui_lock);
909	ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
910	spin_unlock(&ui->ui_lock);
911#endif
912
913	/* Update radix tree tags */
914	set_page_writeback(page);
915
916	addr = kmap(page);
917	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
918	i = 0;
919	while (len) {
920		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
921		data_key_init(c, &key, inode->i_ino, block);
922		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923		if (err)
924			break;
925		if (++i >= UBIFS_BLOCKS_PER_PAGE)
926			break;
927		block += 1;
928		addr += blen;
929		len -= blen;
930	}
931	if (err) {
932		SetPageError(page);
933		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
934			  page->index, inode->i_ino, err);
935		ubifs_ro_mode(c, err);
936	}
937
938	ubifs_assert(PagePrivate(page));
939	if (PageChecked(page))
940		release_new_page_budget(c);
941	else
942		release_existing_page_budget(c);
943
944	atomic_long_dec(&c->dirty_pg_cnt);
945	ClearPagePrivate(page);
946	ClearPageChecked(page);
947
948	kunmap(page);
949	unlock_page(page);
950	end_page_writeback(page);
951	return err;
952}
953
954/*
955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the
956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
957 * situation when a we have an inode with size 0, then a megabyte of data is
958 * appended to the inode, then write-back starts and flushes some amount of the
959 * dirty pages, the journal becomes full, commit happens and finishes, and then
960 * an unclean reboot happens. When the file system is mounted next time, the
961 * inode size would still be 0, but there would be many pages which are beyond
962 * the inode size, they would be indexed and consume flash space. Because the
963 * journal has been committed, the replay would not be able to detect this
964 * situation and correct the inode size. This means UBIFS would have to scan
965 * whole index and correct all inode sizes, which is long an unacceptable.
966 *
967 * To prevent situations like this, UBIFS writes pages back only if they are
968 * within the last synchronized inode size, i.e. the size which has been
969 * written to the flash media last time. Otherwise, UBIFS forces inode
970 * write-back, thus making sure the on-flash inode contains current inode size,
971 * and then keeps writing pages back.
972 *
973 * Some locking issues explanation. 'ubifs_writepage()' first is called with
974 * the page locked, and it locks @ui_mutex. However, write-back does take inode
975 * @i_mutex, which means other VFS operations may be run on this inode at the
976 * same time. And the problematic one is truncation to smaller size, from where
977 * we have to call 'truncate_setsize()', which first changes @inode->i_size,
978 * then drops the truncated pages. And while dropping the pages, it takes the
979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
981 * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982 *
983 * XXX(truncate): with the new truncate sequence this is not true anymore,
984 * and the calls to truncate_setsize can be move around freely.  They should
985 * be moved to the very end of the truncate sequence.
986 *
987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
988 * inode size. How do we do this if @inode->i_size may became smaller while we
989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
991 * internally and updates it under @ui_mutex.
992 *
993 * Q: why we do not worry that if we race with truncation, we may end up with a
994 * situation when the inode is truncated while we are in the middle of
995 * 'do_writepage()', so we do write beyond inode size?
996 * A: If we are in the middle of 'do_writepage()', truncation would be locked
997 * on the page lock and it would not write the truncated inode node to the
998 * journal before we have finished.
999 */
1000static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001{
1002	struct inode *inode = page->mapping->host;
1003	struct ubifs_inode *ui = ubifs_inode(inode);
1004	loff_t i_size =  i_size_read(inode), synced_i_size;
1005	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1006	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1007	void *kaddr;
1008
1009	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1010		inode->i_ino, page->index, page->flags);
1011	ubifs_assert(PagePrivate(page));
1012
1013	/* Is the page fully outside @i_size? (truncate in progress) */
1014	if (page->index > end_index || (page->index == end_index && !len)) {
1015		err = 0;
1016		goto out_unlock;
1017	}
1018
1019	spin_lock(&ui->ui_lock);
1020	synced_i_size = ui->synced_i_size;
1021	spin_unlock(&ui->ui_lock);
1022
1023	/* Is the page fully inside @i_size? */
1024	if (page->index < end_index) {
1025		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1026			err = inode->i_sb->s_op->write_inode(inode, NULL);
1027			if (err)
1028				goto out_unlock;
1029			/*
1030			 * The inode has been written, but the write-buffer has
1031			 * not been synchronized, so in case of an unclean
1032			 * reboot we may end up with some pages beyond inode
1033			 * size, but they would be in the journal (because
1034			 * commit flushes write buffers) and recovery would deal
1035			 * with this.
1036			 */
1037		}
1038		return do_writepage(page, PAGE_CACHE_SIZE);
1039	}
1040
1041	/*
1042	 * The page straddles @i_size. It must be zeroed out on each and every
1043	 * writepage invocation because it may be mmapped. "A file is mapped
1044	 * in multiples of the page size. For a file that is not a multiple of
1045	 * the page size, the remaining memory is zeroed when mapped, and
1046	 * writes to that region are not written out to the file."
1047	 */
1048	kaddr = kmap_atomic(page);
1049	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1050	flush_dcache_page(page);
1051	kunmap_atomic(kaddr);
1052
1053	if (i_size > synced_i_size) {
1054		err = inode->i_sb->s_op->write_inode(inode, NULL);
1055		if (err)
1056			goto out_unlock;
1057	}
1058
1059	return do_writepage(page, len);
1060
1061out_unlock:
1062	unlock_page(page);
1063	return err;
1064}
1065
1066/**
1067 * do_attr_changes - change inode attributes.
1068 * @inode: inode to change attributes for
1069 * @attr: describes attributes to change
1070 */
1071static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1072{
1073	if (attr->ia_valid & ATTR_UID)
1074		inode->i_uid = attr->ia_uid;
1075	if (attr->ia_valid & ATTR_GID)
1076		inode->i_gid = attr->ia_gid;
1077	if (attr->ia_valid & ATTR_ATIME)
1078		inode->i_atime = timespec_trunc(attr->ia_atime,
1079						inode->i_sb->s_time_gran);
1080	if (attr->ia_valid & ATTR_MTIME)
1081		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1082						inode->i_sb->s_time_gran);
1083	if (attr->ia_valid & ATTR_CTIME)
1084		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1085						inode->i_sb->s_time_gran);
1086	if (attr->ia_valid & ATTR_MODE) {
1087		umode_t mode = attr->ia_mode;
1088
1089		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1090			mode &= ~S_ISGID;
1091		inode->i_mode = mode;
1092	}
1093}
1094
1095/**
1096 * do_truncation - truncate an inode.
1097 * @c: UBIFS file-system description object
1098 * @inode: inode to truncate
1099 * @attr: inode attribute changes description
1100 *
1101 * This function implements VFS '->setattr()' call when the inode is truncated
1102 * to a smaller size. Returns zero in case of success and a negative error code
1103 * in case of failure.
1104 */
1105static int do_truncation(struct ubifs_info *c, struct inode *inode,
1106			 const struct iattr *attr)
1107{
1108	int err;
1109	struct ubifs_budget_req req;
1110	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1111	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1112	struct ubifs_inode *ui = ubifs_inode(inode);
1113
1114	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1115	memset(&req, 0, sizeof(struct ubifs_budget_req));
1116
1117	/*
1118	 * If this is truncation to a smaller size, and we do not truncate on a
1119	 * block boundary, budget for changing one data block, because the last
1120	 * block will be re-written.
1121	 */
1122	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1123		req.dirtied_page = 1;
1124
1125	req.dirtied_ino = 1;
1126	/* A funny way to budget for truncation node */
1127	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1128	err = ubifs_budget_space(c, &req);
1129	if (err) {
1130		/*
1131		 * Treat truncations to zero as deletion and always allow them,
1132		 * just like we do for '->unlink()'.
1133		 */
1134		if (new_size || err != -ENOSPC)
1135			return err;
1136		budgeted = 0;
1137	}
1138
1139	truncate_setsize(inode, new_size);
1140
1141	if (offset) {
1142		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1143		struct page *page;
1144
1145		page = find_lock_page(inode->i_mapping, index);
1146		if (page) {
1147			if (PageDirty(page)) {
1148				/*
1149				 * 'ubifs_jnl_truncate()' will try to truncate
1150				 * the last data node, but it contains
1151				 * out-of-date data because the page is dirty.
1152				 * Write the page now, so that
1153				 * 'ubifs_jnl_truncate()' will see an already
1154				 * truncated (and up to date) data node.
1155				 */
1156				ubifs_assert(PagePrivate(page));
1157
1158				clear_page_dirty_for_io(page);
1159				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1160					offset = new_size &
1161						 (PAGE_CACHE_SIZE - 1);
1162				err = do_writepage(page, offset);
1163				page_cache_release(page);
1164				if (err)
1165					goto out_budg;
1166				/*
1167				 * We could now tell 'ubifs_jnl_truncate()' not
1168				 * to read the last block.
1169				 */
1170			} else {
1171				/*
1172				 * We could 'kmap()' the page and pass the data
1173				 * to 'ubifs_jnl_truncate()' to save it from
1174				 * having to read it.
1175				 */
1176				unlock_page(page);
1177				page_cache_release(page);
1178			}
1179		}
1180	}
1181
1182	mutex_lock(&ui->ui_mutex);
1183	ui->ui_size = inode->i_size;
1184	/* Truncation changes inode [mc]time */
1185	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1186	/* Other attributes may be changed at the same time as well */
1187	do_attr_changes(inode, attr);
1188	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1189	mutex_unlock(&ui->ui_mutex);
1190
1191out_budg:
1192	if (budgeted)
1193		ubifs_release_budget(c, &req);
1194	else {
1195		c->bi.nospace = c->bi.nospace_rp = 0;
1196		smp_wmb();
1197	}
1198	return err;
1199}
1200
1201/**
1202 * do_setattr - change inode attributes.
1203 * @c: UBIFS file-system description object
1204 * @inode: inode to change attributes for
1205 * @attr: inode attribute changes description
1206 *
1207 * This function implements VFS '->setattr()' call for all cases except
1208 * truncations to smaller size. Returns zero in case of success and a negative
1209 * error code in case of failure.
1210 */
1211static int do_setattr(struct ubifs_info *c, struct inode *inode,
1212		      const struct iattr *attr)
1213{
1214	int err, release;
1215	loff_t new_size = attr->ia_size;
1216	struct ubifs_inode *ui = ubifs_inode(inode);
1217	struct ubifs_budget_req req = { .dirtied_ino = 1,
1218				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1219
1220	err = ubifs_budget_space(c, &req);
1221	if (err)
1222		return err;
1223
1224	if (attr->ia_valid & ATTR_SIZE) {
1225		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1226		truncate_setsize(inode, new_size);
1227	}
1228
1229	mutex_lock(&ui->ui_mutex);
1230	if (attr->ia_valid & ATTR_SIZE) {
1231		/* Truncation changes inode [mc]time */
1232		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1233		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1234		ui->ui_size = inode->i_size;
1235	}
1236
1237	do_attr_changes(inode, attr);
1238
1239	release = ui->dirty;
1240	if (attr->ia_valid & ATTR_SIZE)
1241		/*
1242		 * Inode length changed, so we have to make sure
1243		 * @I_DIRTY_DATASYNC is set.
1244		 */
1245		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1246	else
1247		mark_inode_dirty_sync(inode);
1248	mutex_unlock(&ui->ui_mutex);
1249
1250	if (release)
1251		ubifs_release_budget(c, &req);
1252	if (IS_SYNC(inode))
1253		err = inode->i_sb->s_op->write_inode(inode, NULL);
1254	return err;
1255}
1256
1257int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1258{
1259	int err;
1260	struct inode *inode = d_inode(dentry);
1261	struct ubifs_info *c = inode->i_sb->s_fs_info;
1262
1263	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1264		inode->i_ino, inode->i_mode, attr->ia_valid);
1265	err = inode_change_ok(inode, attr);
1266	if (err)
1267		return err;
1268
1269	err = dbg_check_synced_i_size(c, inode);
1270	if (err)
1271		return err;
1272
1273	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1274		/* Truncation to a smaller size */
1275		err = do_truncation(c, inode, attr);
1276	else
1277		err = do_setattr(c, inode, attr);
1278
1279	return err;
1280}
1281
1282static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1283				 unsigned int length)
1284{
1285	struct inode *inode = page->mapping->host;
1286	struct ubifs_info *c = inode->i_sb->s_fs_info;
1287
1288	ubifs_assert(PagePrivate(page));
1289	if (offset || length < PAGE_CACHE_SIZE)
1290		/* Partial page remains dirty */
1291		return;
1292
1293	if (PageChecked(page))
1294		release_new_page_budget(c);
1295	else
1296		release_existing_page_budget(c);
1297
1298	atomic_long_dec(&c->dirty_pg_cnt);
1299	ClearPagePrivate(page);
1300	ClearPageChecked(page);
1301}
1302
1303static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1304{
1305	struct ubifs_inode *ui = ubifs_inode(d_inode(dentry));
1306
1307	nd_set_link(nd, ui->data);
1308	return NULL;
1309}
1310
1311int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312{
1313	struct inode *inode = file->f_mapping->host;
1314	struct ubifs_info *c = inode->i_sb->s_fs_info;
1315	int err;
1316
1317	dbg_gen("syncing inode %lu", inode->i_ino);
1318
1319	if (c->ro_mount)
1320		/*
1321		 * For some really strange reasons VFS does not filter out
1322		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323		 */
1324		return 0;
1325
1326	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1327	if (err)
1328		return err;
1329	mutex_lock(&inode->i_mutex);
1330
1331	/* Synchronize the inode unless this is a 'datasync()' call. */
1332	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1333		err = inode->i_sb->s_op->write_inode(inode, NULL);
1334		if (err)
1335			goto out;
1336	}
1337
1338	/*
1339	 * Nodes related to this inode may still sit in a write-buffer. Flush
1340	 * them.
1341	 */
1342	err = ubifs_sync_wbufs_by_inode(c, inode);
1343out:
1344	mutex_unlock(&inode->i_mutex);
1345	return err;
1346}
1347
1348/**
1349 * mctime_update_needed - check if mtime or ctime update is needed.
1350 * @inode: the inode to do the check for
1351 * @now: current time
1352 *
1353 * This helper function checks if the inode mtime/ctime should be updated or
1354 * not. If current values of the time-stamps are within the UBIFS inode time
1355 * granularity, they are not updated. This is an optimization.
1356 */
1357static inline int mctime_update_needed(const struct inode *inode,
1358				       const struct timespec *now)
1359{
1360	if (!timespec_equal(&inode->i_mtime, now) ||
1361	    !timespec_equal(&inode->i_ctime, now))
1362		return 1;
1363	return 0;
1364}
1365
1366/**
1367 * update_ctime - update mtime and ctime of an inode.
1368 * @inode: inode to update
1369 *
1370 * This function updates mtime and ctime of the inode if it is not equivalent to
1371 * current time. Returns zero in case of success and a negative error code in
1372 * case of failure.
1373 */
1374static int update_mctime(struct inode *inode)
1375{
1376	struct timespec now = ubifs_current_time(inode);
1377	struct ubifs_inode *ui = ubifs_inode(inode);
1378	struct ubifs_info *c = inode->i_sb->s_fs_info;
1379
1380	if (mctime_update_needed(inode, &now)) {
1381		int err, release;
1382		struct ubifs_budget_req req = { .dirtied_ino = 1,
1383				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1384
1385		err = ubifs_budget_space(c, &req);
1386		if (err)
1387			return err;
1388
1389		mutex_lock(&ui->ui_mutex);
1390		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1391		release = ui->dirty;
1392		mark_inode_dirty_sync(inode);
1393		mutex_unlock(&ui->ui_mutex);
1394		if (release)
1395			ubifs_release_budget(c, &req);
1396	}
1397
1398	return 0;
1399}
1400
1401static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1402{
1403	int err = update_mctime(file_inode(iocb->ki_filp));
1404	if (err)
1405		return err;
1406
1407	return generic_file_write_iter(iocb, from);
1408}
1409
1410static int ubifs_set_page_dirty(struct page *page)
1411{
1412	int ret;
1413
1414	ret = __set_page_dirty_nobuffers(page);
1415	/*
1416	 * An attempt to dirty a page without budgeting for it - should not
1417	 * happen.
1418	 */
1419	ubifs_assert(ret == 0);
1420	return ret;
1421}
1422
1423static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1424{
1425	/*
1426	 * An attempt to release a dirty page without budgeting for it - should
1427	 * not happen.
1428	 */
1429	if (PageWriteback(page))
1430		return 0;
1431	ubifs_assert(PagePrivate(page));
1432	ubifs_assert(0);
1433	ClearPagePrivate(page);
1434	ClearPageChecked(page);
1435	return 1;
1436}
1437
1438/*
1439 * mmap()d file has taken write protection fault and is being made writable.
1440 * UBIFS must ensure page is budgeted for.
1441 */
1442static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1443				 struct vm_fault *vmf)
1444{
1445	struct page *page = vmf->page;
1446	struct inode *inode = file_inode(vma->vm_file);
1447	struct ubifs_info *c = inode->i_sb->s_fs_info;
1448	struct timespec now = ubifs_current_time(inode);
1449	struct ubifs_budget_req req = { .new_page = 1 };
1450	int err, update_time;
1451
1452	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1453		i_size_read(inode));
1454	ubifs_assert(!c->ro_media && !c->ro_mount);
1455
1456	if (unlikely(c->ro_error))
1457		return VM_FAULT_SIGBUS; /* -EROFS */
1458
1459	/*
1460	 * We have not locked @page so far so we may budget for changing the
1461	 * page. Note, we cannot do this after we locked the page, because
1462	 * budgeting may cause write-back which would cause deadlock.
1463	 *
1464	 * At the moment we do not know whether the page is dirty or not, so we
1465	 * assume that it is not and budget for a new page. We could look at
1466	 * the @PG_private flag and figure this out, but we may race with write
1467	 * back and the page state may change by the time we lock it, so this
1468	 * would need additional care. We do not bother with this at the
1469	 * moment, although it might be good idea to do. Instead, we allocate
1470	 * budget for a new page and amend it later on if the page was in fact
1471	 * dirty.
1472	 *
1473	 * The budgeting-related logic of this function is similar to what we
1474	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1475	 * for more comments.
1476	 */
1477	update_time = mctime_update_needed(inode, &now);
1478	if (update_time)
1479		/*
1480		 * We have to change inode time stamp which requires extra
1481		 * budgeting.
1482		 */
1483		req.dirtied_ino = 1;
1484
1485	err = ubifs_budget_space(c, &req);
1486	if (unlikely(err)) {
1487		if (err == -ENOSPC)
1488			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1489				   inode->i_ino);
1490		return VM_FAULT_SIGBUS;
1491	}
1492
1493	lock_page(page);
1494	if (unlikely(page->mapping != inode->i_mapping ||
1495		     page_offset(page) > i_size_read(inode))) {
1496		/* Page got truncated out from underneath us */
1497		err = -EINVAL;
1498		goto out_unlock;
1499	}
1500
1501	if (PagePrivate(page))
1502		release_new_page_budget(c);
1503	else {
1504		if (!PageChecked(page))
1505			ubifs_convert_page_budget(c);
1506		SetPagePrivate(page);
1507		atomic_long_inc(&c->dirty_pg_cnt);
1508		__set_page_dirty_nobuffers(page);
1509	}
1510
1511	if (update_time) {
1512		int release;
1513		struct ubifs_inode *ui = ubifs_inode(inode);
1514
1515		mutex_lock(&ui->ui_mutex);
1516		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1517		release = ui->dirty;
1518		mark_inode_dirty_sync(inode);
1519		mutex_unlock(&ui->ui_mutex);
1520		if (release)
1521			ubifs_release_dirty_inode_budget(c, ui);
1522	}
1523
1524	wait_for_stable_page(page);
1525	return VM_FAULT_LOCKED;
1526
1527out_unlock:
1528	unlock_page(page);
1529	ubifs_release_budget(c, &req);
1530	if (err)
1531		err = VM_FAULT_SIGBUS;
1532	return err;
1533}
1534
1535static const struct vm_operations_struct ubifs_file_vm_ops = {
1536	.fault        = filemap_fault,
1537	.map_pages = filemap_map_pages,
1538	.page_mkwrite = ubifs_vm_page_mkwrite,
1539};
1540
1541static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1542{
1543	int err;
1544
1545	err = generic_file_mmap(file, vma);
1546	if (err)
1547		return err;
1548	vma->vm_ops = &ubifs_file_vm_ops;
1549	return 0;
1550}
1551
1552const struct address_space_operations ubifs_file_address_operations = {
1553	.readpage       = ubifs_readpage,
1554	.writepage      = ubifs_writepage,
1555	.write_begin    = ubifs_write_begin,
1556	.write_end      = ubifs_write_end,
1557	.invalidatepage = ubifs_invalidatepage,
1558	.set_page_dirty = ubifs_set_page_dirty,
1559	.releasepage    = ubifs_releasepage,
1560};
1561
1562const struct inode_operations ubifs_file_inode_operations = {
1563	.setattr     = ubifs_setattr,
1564	.getattr     = ubifs_getattr,
1565	.setxattr    = ubifs_setxattr,
1566	.getxattr    = ubifs_getxattr,
1567	.listxattr   = ubifs_listxattr,
1568	.removexattr = ubifs_removexattr,
1569};
1570
1571const struct inode_operations ubifs_symlink_inode_operations = {
1572	.readlink    = generic_readlink,
1573	.follow_link = ubifs_follow_link,
1574	.setattr     = ubifs_setattr,
1575	.getattr     = ubifs_getattr,
1576	.setxattr    = ubifs_setxattr,
1577	.getxattr    = ubifs_getxattr,
1578	.listxattr   = ubifs_listxattr,
1579	.removexattr = ubifs_removexattr,
1580};
1581
1582const struct file_operations ubifs_file_operations = {
1583	.llseek         = generic_file_llseek,
1584	.read_iter      = generic_file_read_iter,
1585	.write_iter     = ubifs_write_iter,
1586	.mmap           = ubifs_file_mmap,
1587	.fsync          = ubifs_fsync,
1588	.unlocked_ioctl = ubifs_ioctl,
1589	.splice_read	= generic_file_splice_read,
1590	.splice_write	= iter_file_splice_write,
1591#ifdef CONFIG_COMPAT
1592	.compat_ioctl   = ubifs_compat_ioctl,
1593#endif
1594};
1595