1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 *          Adrian Hunter
21 */
22
23/*
24 * This file implements UBIFS journal.
25 *
26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27 * length and position, while a bud logical eraseblock is any LEB in the main
28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29 * contains only references to buds and some other stuff like commit
30 * start node. The idea is that when we commit the journal, we do
31 * not copy the data, the buds just become indexed. Since after the commit the
32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34 * become leafs in the future.
35 *
36 * The journal is multi-headed because we want to write data to the journal as
37 * optimally as possible. It is nice to have nodes belonging to the same inode
38 * in one LEB, so we may write data owned by different inodes to different
39 * journal heads, although at present only one data head is used.
40 *
41 * For recovery reasons, the base head contains all inode nodes, all directory
42 * entry nodes and all truncate nodes. This means that the other heads contain
43 * only data nodes.
44 *
45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46 * time of commit, the bud is retained to continue to be used in the journal,
47 * even though the "front" of the LEB is now indexed. In that case, the log
48 * reference contains the offset where the bud starts for the purposes of the
49 * journal.
50 *
51 * The journal size has to be limited, because the larger is the journal, the
52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53 * takes (indexing in the TNC).
54 *
55 * All the journal write operations like 'ubifs_jnl_update()' here, which write
56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57 * unclean reboots. Should the unclean reboot happen, the recovery code drops
58 * all the nodes.
59 */
60
61#include "ubifs.h"
62
63/**
64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65 * @ino: the inode to zero out
66 */
67static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68{
69	memset(ino->padding1, 0, 4);
70	memset(ino->padding2, 0, 26);
71}
72
73/**
74 * zero_dent_node_unused - zero out unused fields of an on-flash directory
75 *                         entry node.
76 * @dent: the directory entry to zero out
77 */
78static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79{
80	dent->padding1 = 0;
81	memset(dent->padding2, 0, 4);
82}
83
84/**
85 * zero_data_node_unused - zero out unused fields of an on-flash data node.
86 * @data: the data node to zero out
87 */
88static inline void zero_data_node_unused(struct ubifs_data_node *data)
89{
90	memset(data->padding, 0, 2);
91}
92
93/**
94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation
95 *                         node.
96 * @trun: the truncation node to zero out
97 */
98static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
99{
100	memset(trun->padding, 0, 12);
101}
102
103/**
104 * reserve_space - reserve space in the journal.
105 * @c: UBIFS file-system description object
106 * @jhead: journal head number
107 * @len: node length
108 *
109 * This function reserves space in journal head @head. If the reservation
110 * succeeded, the journal head stays locked and later has to be unlocked using
111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock
112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and
113 * other negative error codes in case of other failures.
114 */
115static int reserve_space(struct ubifs_info *c, int jhead, int len)
116{
117	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
118	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
119
120	/*
121	 * Typically, the base head has smaller nodes written to it, so it is
122	 * better to try to allocate space at the ends of eraseblocks. This is
123	 * what the squeeze parameter does.
124	 */
125	ubifs_assert(!c->ro_media && !c->ro_mount);
126	squeeze = (jhead == BASEHD);
127again:
128	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
129
130	if (c->ro_error) {
131		err = -EROFS;
132		goto out_unlock;
133	}
134
135	avail = c->leb_size - wbuf->offs - wbuf->used;
136	if (wbuf->lnum != -1 && avail >= len)
137		return 0;
138
139	/*
140	 * Write buffer wasn't seek'ed or there is no enough space - look for an
141	 * LEB with some empty space.
142	 */
143	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
144	if (lnum >= 0)
145		goto out;
146
147	err = lnum;
148	if (err != -ENOSPC)
149		goto out_unlock;
150
151	/*
152	 * No free space, we have to run garbage collector to make
153	 * some. But the write-buffer mutex has to be unlocked because
154	 * GC also takes it.
155	 */
156	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
157	mutex_unlock(&wbuf->io_mutex);
158
159	lnum = ubifs_garbage_collect(c, 0);
160	if (lnum < 0) {
161		err = lnum;
162		if (err != -ENOSPC)
163			return err;
164
165		/*
166		 * GC could not make a free LEB. But someone else may
167		 * have allocated new bud for this journal head,
168		 * because we dropped @wbuf->io_mutex, so try once
169		 * again.
170		 */
171		dbg_jnl("GC couldn't make a free LEB for jhead %s",
172			dbg_jhead(jhead));
173		if (retries++ < 2) {
174			dbg_jnl("retry (%d)", retries);
175			goto again;
176		}
177
178		dbg_jnl("return -ENOSPC");
179		return err;
180	}
181
182	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
183	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
184	avail = c->leb_size - wbuf->offs - wbuf->used;
185
186	if (wbuf->lnum != -1 && avail >= len) {
187		/*
188		 * Someone else has switched the journal head and we have
189		 * enough space now. This happens when more than one process is
190		 * trying to write to the same journal head at the same time.
191		 */
192		dbg_jnl("return LEB %d back, already have LEB %d:%d",
193			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
194		err = ubifs_return_leb(c, lnum);
195		if (err)
196			goto out_unlock;
197		return 0;
198	}
199
200	offs = 0;
201
202out:
203	/*
204	 * Make sure we synchronize the write-buffer before we add the new bud
205	 * to the log. Otherwise we may have a power cut after the log
206	 * reference node for the last bud (@lnum) is written but before the
207	 * write-buffer data are written to the next-to-last bud
208	 * (@wbuf->lnum). And the effect would be that the recovery would see
209	 * that there is corruption in the next-to-last bud.
210	 */
211	err = ubifs_wbuf_sync_nolock(wbuf);
212	if (err)
213		goto out_return;
214	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
215	if (err)
216		goto out_return;
217	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
218	if (err)
219		goto out_unlock;
220
221	return 0;
222
223out_unlock:
224	mutex_unlock(&wbuf->io_mutex);
225	return err;
226
227out_return:
228	/* An error occurred and the LEB has to be returned to lprops */
229	ubifs_assert(err < 0);
230	err1 = ubifs_return_leb(c, lnum);
231	if (err1 && err == -EAGAIN)
232		/*
233		 * Return original error code only if it is not %-EAGAIN,
234		 * which is not really an error. Otherwise, return the error
235		 * code of 'ubifs_return_leb()'.
236		 */
237		err = err1;
238	mutex_unlock(&wbuf->io_mutex);
239	return err;
240}
241
242/**
243 * write_node - write node to a journal head.
244 * @c: UBIFS file-system description object
245 * @jhead: journal head
246 * @node: node to write
247 * @len: node length
248 * @lnum: LEB number written is returned here
249 * @offs: offset written is returned here
250 *
251 * This function writes a node to reserved space of journal head @jhead.
252 * Returns zero in case of success and a negative error code in case of
253 * failure.
254 */
255static int write_node(struct ubifs_info *c, int jhead, void *node, int len,
256		      int *lnum, int *offs)
257{
258	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
259
260	ubifs_assert(jhead != GCHD);
261
262	*lnum = c->jheads[jhead].wbuf.lnum;
263	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
264
265	dbg_jnl("jhead %s, LEB %d:%d, len %d",
266		dbg_jhead(jhead), *lnum, *offs, len);
267	ubifs_prepare_node(c, node, len, 0);
268
269	return ubifs_wbuf_write_nolock(wbuf, node, len);
270}
271
272/**
273 * write_head - write data to a journal head.
274 * @c: UBIFS file-system description object
275 * @jhead: journal head
276 * @buf: buffer to write
277 * @len: length to write
278 * @lnum: LEB number written is returned here
279 * @offs: offset written is returned here
280 * @sync: non-zero if the write-buffer has to by synchronized
281 *
282 * This function is the same as 'write_node()' but it does not assume the
283 * buffer it is writing is a node, so it does not prepare it (which means
284 * initializing common header and calculating CRC).
285 */
286static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
287		      int *lnum, int *offs, int sync)
288{
289	int err;
290	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
291
292	ubifs_assert(jhead != GCHD);
293
294	*lnum = c->jheads[jhead].wbuf.lnum;
295	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
296	dbg_jnl("jhead %s, LEB %d:%d, len %d",
297		dbg_jhead(jhead), *lnum, *offs, len);
298
299	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300	if (err)
301		return err;
302	if (sync)
303		err = ubifs_wbuf_sync_nolock(wbuf);
304	return err;
305}
306
307/**
308 * make_reservation - reserve journal space.
309 * @c: UBIFS file-system description object
310 * @jhead: journal head
311 * @len: how many bytes to reserve
312 *
313 * This function makes space reservation in journal head @jhead. The function
314 * takes the commit lock and locks the journal head, and the caller has to
315 * unlock the head and finish the reservation with 'finish_reservation()'.
316 * Returns zero in case of success and a negative error code in case of
317 * failure.
318 *
319 * Note, the journal head may be unlocked as soon as the data is written, while
320 * the commit lock has to be released after the data has been added to the
321 * TNC.
322 */
323static int make_reservation(struct ubifs_info *c, int jhead, int len)
324{
325	int err, cmt_retries = 0, nospc_retries = 0;
326
327again:
328	down_read(&c->commit_sem);
329	err = reserve_space(c, jhead, len);
330	if (!err)
331		return 0;
332	up_read(&c->commit_sem);
333
334	if (err == -ENOSPC) {
335		/*
336		 * GC could not make any progress. We should try to commit
337		 * once because it could make some dirty space and GC would
338		 * make progress, so make the error -EAGAIN so that the below
339		 * will commit and re-try.
340		 */
341		if (nospc_retries++ < 2) {
342			dbg_jnl("no space, retry");
343			err = -EAGAIN;
344		}
345
346		/*
347		 * This means that the budgeting is incorrect. We always have
348		 * to be able to write to the media, because all operations are
349		 * budgeted. Deletions are not budgeted, though, but we reserve
350		 * an extra LEB for them.
351		 */
352	}
353
354	if (err != -EAGAIN)
355		goto out;
356
357	/*
358	 * -EAGAIN means that the journal is full or too large, or the above
359	 * code wants to do one commit. Do this and re-try.
360	 */
361	if (cmt_retries > 128) {
362		/*
363		 * This should not happen unless the journal size limitations
364		 * are too tough.
365		 */
366		ubifs_err(c, "stuck in space allocation");
367		err = -ENOSPC;
368		goto out;
369	} else if (cmt_retries > 32)
370		ubifs_warn(c, "too many space allocation re-tries (%d)",
371			   cmt_retries);
372
373	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
374		cmt_retries);
375	cmt_retries += 1;
376
377	err = ubifs_run_commit(c);
378	if (err)
379		return err;
380	goto again;
381
382out:
383	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
384		  len, jhead, err);
385	if (err == -ENOSPC) {
386		/* This are some budgeting problems, print useful information */
387		down_write(&c->commit_sem);
388		dump_stack();
389		ubifs_dump_budg(c, &c->bi);
390		ubifs_dump_lprops(c);
391		cmt_retries = dbg_check_lprops(c);
392		up_write(&c->commit_sem);
393	}
394	return err;
395}
396
397/**
398 * release_head - release a journal head.
399 * @c: UBIFS file-system description object
400 * @jhead: journal head
401 *
402 * This function releases journal head @jhead which was locked by
403 * the 'make_reservation()' function. It has to be called after each successful
404 * 'make_reservation()' invocation.
405 */
406static inline void release_head(struct ubifs_info *c, int jhead)
407{
408	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
409}
410
411/**
412 * finish_reservation - finish a reservation.
413 * @c: UBIFS file-system description object
414 *
415 * This function finishes journal space reservation. It must be called after
416 * 'make_reservation()'.
417 */
418static void finish_reservation(struct ubifs_info *c)
419{
420	up_read(&c->commit_sem);
421}
422
423/**
424 * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
425 * @mode: inode mode
426 */
427static int get_dent_type(int mode)
428{
429	switch (mode & S_IFMT) {
430	case S_IFREG:
431		return UBIFS_ITYPE_REG;
432	case S_IFDIR:
433		return UBIFS_ITYPE_DIR;
434	case S_IFLNK:
435		return UBIFS_ITYPE_LNK;
436	case S_IFBLK:
437		return UBIFS_ITYPE_BLK;
438	case S_IFCHR:
439		return UBIFS_ITYPE_CHR;
440	case S_IFIFO:
441		return UBIFS_ITYPE_FIFO;
442	case S_IFSOCK:
443		return UBIFS_ITYPE_SOCK;
444	default:
445		BUG();
446	}
447	return 0;
448}
449
450/**
451 * pack_inode - pack an inode node.
452 * @c: UBIFS file-system description object
453 * @ino: buffer in which to pack inode node
454 * @inode: inode to pack
455 * @last: indicates the last node of the group
456 */
457static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
458		       const struct inode *inode, int last)
459{
460	int data_len = 0, last_reference = !inode->i_nlink;
461	struct ubifs_inode *ui = ubifs_inode(inode);
462
463	ino->ch.node_type = UBIFS_INO_NODE;
464	ino_key_init_flash(c, &ino->key, inode->i_ino);
465	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
466	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
467	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
468	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
469	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
470	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
471	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
472	ino->uid   = cpu_to_le32(i_uid_read(inode));
473	ino->gid   = cpu_to_le32(i_gid_read(inode));
474	ino->mode  = cpu_to_le32(inode->i_mode);
475	ino->flags = cpu_to_le32(ui->flags);
476	ino->size  = cpu_to_le64(ui->ui_size);
477	ino->nlink = cpu_to_le32(inode->i_nlink);
478	ino->compr_type  = cpu_to_le16(ui->compr_type);
479	ino->data_len    = cpu_to_le32(ui->data_len);
480	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
481	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
482	ino->xattr_names = cpu_to_le32(ui->xattr_names);
483	zero_ino_node_unused(ino);
484
485	/*
486	 * Drop the attached data if this is a deletion inode, the data is not
487	 * needed anymore.
488	 */
489	if (!last_reference) {
490		memcpy(ino->data, ui->data, ui->data_len);
491		data_len = ui->data_len;
492	}
493
494	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
495}
496
497/**
498 * mark_inode_clean - mark UBIFS inode as clean.
499 * @c: UBIFS file-system description object
500 * @ui: UBIFS inode to mark as clean
501 *
502 * This helper function marks UBIFS inode @ui as clean by cleaning the
503 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
504 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
505 * just do nothing.
506 */
507static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
508{
509	if (ui->dirty)
510		ubifs_release_dirty_inode_budget(c, ui);
511	ui->dirty = 0;
512}
513
514/**
515 * ubifs_jnl_update - update inode.
516 * @c: UBIFS file-system description object
517 * @dir: parent inode or host inode in case of extended attributes
518 * @nm: directory entry name
519 * @inode: inode to update
520 * @deletion: indicates a directory entry deletion i.e unlink or rmdir
521 * @xent: non-zero if the directory entry is an extended attribute entry
522 *
523 * This function updates an inode by writing a directory entry (or extended
524 * attribute entry), the inode itself, and the parent directory inode (or the
525 * host inode) to the journal.
526 *
527 * The function writes the host inode @dir last, which is important in case of
528 * extended attributes. Indeed, then we guarantee that if the host inode gets
529 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
530 * the extended attribute inode gets flushed too. And this is exactly what the
531 * user expects - synchronizing the host inode synchronizes its extended
532 * attributes. Similarly, this guarantees that if @dir is synchronized, its
533 * directory entry corresponding to @nm gets synchronized too.
534 *
535 * If the inode (@inode) or the parent directory (@dir) are synchronous, this
536 * function synchronizes the write-buffer.
537 *
538 * This function marks the @dir and @inode inodes as clean and returns zero on
539 * success. In case of failure, a negative error code is returned.
540 */
541int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
542		     const struct qstr *nm, const struct inode *inode,
543		     int deletion, int xent)
544{
545	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
546	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
547	int last_reference = !!(deletion && inode->i_nlink == 0);
548	struct ubifs_inode *ui = ubifs_inode(inode);
549	struct ubifs_inode *host_ui = ubifs_inode(dir);
550	struct ubifs_dent_node *dent;
551	struct ubifs_ino_node *ino;
552	union ubifs_key dent_key, ino_key;
553
554	dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu",
555		inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino);
556	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
557
558	dlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
559	ilen = UBIFS_INO_NODE_SZ;
560
561	/*
562	 * If the last reference to the inode is being deleted, then there is
563	 * no need to attach and write inode data, it is being deleted anyway.
564	 * And if the inode is being deleted, no need to synchronize
565	 * write-buffer even if the inode is synchronous.
566	 */
567	if (!last_reference) {
568		ilen += ui->data_len;
569		sync |= IS_SYNC(inode);
570	}
571
572	aligned_dlen = ALIGN(dlen, 8);
573	aligned_ilen = ALIGN(ilen, 8);
574
575	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
576	/* Make sure to also account for extended attributes */
577	len += host_ui->data_len;
578
579	dent = kmalloc(len, GFP_NOFS);
580	if (!dent)
581		return -ENOMEM;
582
583	/* Make reservation before allocating sequence numbers */
584	err = make_reservation(c, BASEHD, len);
585	if (err)
586		goto out_free;
587
588	if (!xent) {
589		dent->ch.node_type = UBIFS_DENT_NODE;
590		dent_key_init(c, &dent_key, dir->i_ino, nm);
591	} else {
592		dent->ch.node_type = UBIFS_XENT_NODE;
593		xent_key_init(c, &dent_key, dir->i_ino, nm);
594	}
595
596	key_write(c, &dent_key, dent->key);
597	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
598	dent->type = get_dent_type(inode->i_mode);
599	dent->nlen = cpu_to_le16(nm->len);
600	memcpy(dent->name, nm->name, nm->len);
601	dent->name[nm->len] = '\0';
602	zero_dent_node_unused(dent);
603	ubifs_prep_grp_node(c, dent, dlen, 0);
604
605	ino = (void *)dent + aligned_dlen;
606	pack_inode(c, ino, inode, 0);
607	ino = (void *)ino + aligned_ilen;
608	pack_inode(c, ino, dir, 1);
609
610	if (last_reference) {
611		err = ubifs_add_orphan(c, inode->i_ino);
612		if (err) {
613			release_head(c, BASEHD);
614			goto out_finish;
615		}
616		ui->del_cmtno = c->cmt_no;
617	}
618
619	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
620	if (err)
621		goto out_release;
622	if (!sync) {
623		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
624
625		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
626		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
627	}
628	release_head(c, BASEHD);
629	kfree(dent);
630
631	if (deletion) {
632		err = ubifs_tnc_remove_nm(c, &dent_key, nm);
633		if (err)
634			goto out_ro;
635		err = ubifs_add_dirt(c, lnum, dlen);
636	} else
637		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm);
638	if (err)
639		goto out_ro;
640
641	/*
642	 * Note, we do not remove the inode from TNC even if the last reference
643	 * to it has just been deleted, because the inode may still be opened.
644	 * Instead, the inode has been added to orphan lists and the orphan
645	 * subsystem will take further care about it.
646	 */
647	ino_key_init(c, &ino_key, inode->i_ino);
648	ino_offs = dent_offs + aligned_dlen;
649	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen);
650	if (err)
651		goto out_ro;
652
653	ino_key_init(c, &ino_key, dir->i_ino);
654	ino_offs += aligned_ilen;
655	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
656			    UBIFS_INO_NODE_SZ + host_ui->data_len);
657	if (err)
658		goto out_ro;
659
660	finish_reservation(c);
661	spin_lock(&ui->ui_lock);
662	ui->synced_i_size = ui->ui_size;
663	spin_unlock(&ui->ui_lock);
664	mark_inode_clean(c, ui);
665	mark_inode_clean(c, host_ui);
666	return 0;
667
668out_finish:
669	finish_reservation(c);
670out_free:
671	kfree(dent);
672	return err;
673
674out_release:
675	release_head(c, BASEHD);
676	kfree(dent);
677out_ro:
678	ubifs_ro_mode(c, err);
679	if (last_reference)
680		ubifs_delete_orphan(c, inode->i_ino);
681	finish_reservation(c);
682	return err;
683}
684
685/**
686 * ubifs_jnl_write_data - write a data node to the journal.
687 * @c: UBIFS file-system description object
688 * @inode: inode the data node belongs to
689 * @key: node key
690 * @buf: buffer to write
691 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
692 *
693 * This function writes a data node to the journal. Returns %0 if the data node
694 * was successfully written, and a negative error code in case of failure.
695 */
696int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
697			 const union ubifs_key *key, const void *buf, int len)
698{
699	struct ubifs_data_node *data;
700	int err, lnum, offs, compr_type, out_len;
701	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
702	struct ubifs_inode *ui = ubifs_inode(inode);
703
704	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
705		(unsigned long)key_inum(c, key), key_block(c, key), len);
706	ubifs_assert(len <= UBIFS_BLOCK_SIZE);
707
708	data = kmalloc(dlen, GFP_NOFS | __GFP_NOWARN);
709	if (!data) {
710		/*
711		 * Fall-back to the write reserve buffer. Note, we might be
712		 * currently on the memory reclaim path, when the kernel is
713		 * trying to free some memory by writing out dirty pages. The
714		 * write reserve buffer helps us to guarantee that we are
715		 * always able to write the data.
716		 */
717		allocated = 0;
718		mutex_lock(&c->write_reserve_mutex);
719		data = c->write_reserve_buf;
720	}
721
722	data->ch.node_type = UBIFS_DATA_NODE;
723	key_write(c, key, &data->key);
724	data->size = cpu_to_le32(len);
725	zero_data_node_unused(data);
726
727	if (!(ui->flags & UBIFS_COMPR_FL))
728		/* Compression is disabled for this inode */
729		compr_type = UBIFS_COMPR_NONE;
730	else
731		compr_type = ui->compr_type;
732
733	out_len = dlen - UBIFS_DATA_NODE_SZ;
734	ubifs_compress(c, buf, len, &data->data, &out_len, &compr_type);
735	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
736
737	dlen = UBIFS_DATA_NODE_SZ + out_len;
738	data->compr_type = cpu_to_le16(compr_type);
739
740	/* Make reservation before allocating sequence numbers */
741	err = make_reservation(c, DATAHD, dlen);
742	if (err)
743		goto out_free;
744
745	err = write_node(c, DATAHD, data, dlen, &lnum, &offs);
746	if (err)
747		goto out_release;
748	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
749	release_head(c, DATAHD);
750
751	err = ubifs_tnc_add(c, key, lnum, offs, dlen);
752	if (err)
753		goto out_ro;
754
755	finish_reservation(c);
756	if (!allocated)
757		mutex_unlock(&c->write_reserve_mutex);
758	else
759		kfree(data);
760	return 0;
761
762out_release:
763	release_head(c, DATAHD);
764out_ro:
765	ubifs_ro_mode(c, err);
766	finish_reservation(c);
767out_free:
768	if (!allocated)
769		mutex_unlock(&c->write_reserve_mutex);
770	else
771		kfree(data);
772	return err;
773}
774
775/**
776 * ubifs_jnl_write_inode - flush inode to the journal.
777 * @c: UBIFS file-system description object
778 * @inode: inode to flush
779 *
780 * This function writes inode @inode to the journal. If the inode is
781 * synchronous, it also synchronizes the write-buffer. Returns zero in case of
782 * success and a negative error code in case of failure.
783 */
784int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
785{
786	int err, lnum, offs;
787	struct ubifs_ino_node *ino;
788	struct ubifs_inode *ui = ubifs_inode(inode);
789	int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink;
790
791	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
792
793	/*
794	 * If the inode is being deleted, do not write the attached data. No
795	 * need to synchronize the write-buffer either.
796	 */
797	if (!last_reference) {
798		len += ui->data_len;
799		sync = IS_SYNC(inode);
800	}
801	ino = kmalloc(len, GFP_NOFS);
802	if (!ino)
803		return -ENOMEM;
804
805	/* Make reservation before allocating sequence numbers */
806	err = make_reservation(c, BASEHD, len);
807	if (err)
808		goto out_free;
809
810	pack_inode(c, ino, inode, 1);
811	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
812	if (err)
813		goto out_release;
814	if (!sync)
815		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
816					  inode->i_ino);
817	release_head(c, BASEHD);
818
819	if (last_reference) {
820		err = ubifs_tnc_remove_ino(c, inode->i_ino);
821		if (err)
822			goto out_ro;
823		ubifs_delete_orphan(c, inode->i_ino);
824		err = ubifs_add_dirt(c, lnum, len);
825	} else {
826		union ubifs_key key;
827
828		ino_key_init(c, &key, inode->i_ino);
829		err = ubifs_tnc_add(c, &key, lnum, offs, len);
830	}
831	if (err)
832		goto out_ro;
833
834	finish_reservation(c);
835	spin_lock(&ui->ui_lock);
836	ui->synced_i_size = ui->ui_size;
837	spin_unlock(&ui->ui_lock);
838	kfree(ino);
839	return 0;
840
841out_release:
842	release_head(c, BASEHD);
843out_ro:
844	ubifs_ro_mode(c, err);
845	finish_reservation(c);
846out_free:
847	kfree(ino);
848	return err;
849}
850
851/**
852 * ubifs_jnl_delete_inode - delete an inode.
853 * @c: UBIFS file-system description object
854 * @inode: inode to delete
855 *
856 * This function deletes inode @inode which includes removing it from orphans,
857 * deleting it from TNC and, in some cases, writing a deletion inode to the
858 * journal.
859 *
860 * When regular file inodes are unlinked or a directory inode is removed, the
861 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
862 * direntry to the media, and adds the inode to orphans. After this, when the
863 * last reference to this inode has been dropped, this function is called. In
864 * general, it has to write one more deletion inode to the media, because if
865 * a commit happened between 'ubifs_jnl_update()' and
866 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
867 * anymore, and in fact it might not be on the flash anymore, because it might
868 * have been garbage-collected already. And for optimization reasons UBIFS does
869 * not read the orphan area if it has been unmounted cleanly, so it would have
870 * no indication in the journal that there is a deleted inode which has to be
871 * removed from TNC.
872 *
873 * However, if there was no commit between 'ubifs_jnl_update()' and
874 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
875 * inode to the media for the second time. And this is quite a typical case.
876 *
877 * This function returns zero in case of success and a negative error code in
878 * case of failure.
879 */
880int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
881{
882	int err;
883	struct ubifs_inode *ui = ubifs_inode(inode);
884
885	ubifs_assert(inode->i_nlink == 0);
886
887	if (ui->del_cmtno != c->cmt_no)
888		/* A commit happened for sure */
889		return ubifs_jnl_write_inode(c, inode);
890
891	down_read(&c->commit_sem);
892	/*
893	 * Check commit number again, because the first test has been done
894	 * without @c->commit_sem, so a commit might have happened.
895	 */
896	if (ui->del_cmtno != c->cmt_no) {
897		up_read(&c->commit_sem);
898		return ubifs_jnl_write_inode(c, inode);
899	}
900
901	err = ubifs_tnc_remove_ino(c, inode->i_ino);
902	if (err)
903		ubifs_ro_mode(c, err);
904	else
905		ubifs_delete_orphan(c, inode->i_ino);
906	up_read(&c->commit_sem);
907	return err;
908}
909
910/**
911 * ubifs_jnl_rename - rename a directory entry.
912 * @c: UBIFS file-system description object
913 * @old_dir: parent inode of directory entry to rename
914 * @old_dentry: directory entry to rename
915 * @new_dir: parent inode of directory entry to rename
916 * @new_dentry: new directory entry (or directory entry to replace)
917 * @sync: non-zero if the write-buffer has to be synchronized
918 *
919 * This function implements the re-name operation which may involve writing up
920 * to 3 inodes and 2 directory entries. It marks the written inodes as clean
921 * and returns zero on success. In case of failure, a negative error code is
922 * returned.
923 */
924int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
925		     const struct dentry *old_dentry,
926		     const struct inode *new_dir,
927		     const struct dentry *new_dentry, int sync)
928{
929	void *p;
930	union ubifs_key key;
931	struct ubifs_dent_node *dent, *dent2;
932	int err, dlen1, dlen2, ilen, lnum, offs, len;
933	const struct inode *old_inode = d_inode(old_dentry);
934	const struct inode *new_inode = d_inode(new_dentry);
935	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
936	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
937	int move = (old_dir != new_dir);
938	struct ubifs_inode *uninitialized_var(new_ui);
939
940	dbg_jnl("dent '%pd' in dir ino %lu to dent '%pd' in dir ino %lu",
941		old_dentry, old_dir->i_ino, new_dentry, new_dir->i_ino);
942	ubifs_assert(ubifs_inode(old_dir)->data_len == 0);
943	ubifs_assert(ubifs_inode(new_dir)->data_len == 0);
944	ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
945	ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
946
947	dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1;
948	dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1;
949	if (new_inode) {
950		new_ui = ubifs_inode(new_inode);
951		ubifs_assert(mutex_is_locked(&new_ui->ui_mutex));
952		ilen = UBIFS_INO_NODE_SZ;
953		if (!last_reference)
954			ilen += new_ui->data_len;
955	} else
956		ilen = 0;
957
958	aligned_dlen1 = ALIGN(dlen1, 8);
959	aligned_dlen2 = ALIGN(dlen2, 8);
960	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
961	if (old_dir != new_dir)
962		len += plen;
963	dent = kmalloc(len, GFP_NOFS);
964	if (!dent)
965		return -ENOMEM;
966
967	/* Make reservation before allocating sequence numbers */
968	err = make_reservation(c, BASEHD, len);
969	if (err)
970		goto out_free;
971
972	/* Make new dent */
973	dent->ch.node_type = UBIFS_DENT_NODE;
974	dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name);
975	dent->inum = cpu_to_le64(old_inode->i_ino);
976	dent->type = get_dent_type(old_inode->i_mode);
977	dent->nlen = cpu_to_le16(new_dentry->d_name.len);
978	memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len);
979	dent->name[new_dentry->d_name.len] = '\0';
980	zero_dent_node_unused(dent);
981	ubifs_prep_grp_node(c, dent, dlen1, 0);
982
983	/* Make deletion dent */
984	dent2 = (void *)dent + aligned_dlen1;
985	dent2->ch.node_type = UBIFS_DENT_NODE;
986	dent_key_init_flash(c, &dent2->key, old_dir->i_ino,
987			    &old_dentry->d_name);
988	dent2->inum = 0;
989	dent2->type = DT_UNKNOWN;
990	dent2->nlen = cpu_to_le16(old_dentry->d_name.len);
991	memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len);
992	dent2->name[old_dentry->d_name.len] = '\0';
993	zero_dent_node_unused(dent2);
994	ubifs_prep_grp_node(c, dent2, dlen2, 0);
995
996	p = (void *)dent2 + aligned_dlen2;
997	if (new_inode) {
998		pack_inode(c, p, new_inode, 0);
999		p += ALIGN(ilen, 8);
1000	}
1001
1002	if (!move)
1003		pack_inode(c, p, old_dir, 1);
1004	else {
1005		pack_inode(c, p, old_dir, 0);
1006		p += ALIGN(plen, 8);
1007		pack_inode(c, p, new_dir, 1);
1008	}
1009
1010	if (last_reference) {
1011		err = ubifs_add_orphan(c, new_inode->i_ino);
1012		if (err) {
1013			release_head(c, BASEHD);
1014			goto out_finish;
1015		}
1016		new_ui->del_cmtno = c->cmt_no;
1017	}
1018
1019	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1020	if (err)
1021		goto out_release;
1022	if (!sync) {
1023		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1024
1025		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1026		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1027		if (new_inode)
1028			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1029						  new_inode->i_ino);
1030	}
1031	release_head(c, BASEHD);
1032
1033	dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name);
1034	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name);
1035	if (err)
1036		goto out_ro;
1037
1038	err = ubifs_add_dirt(c, lnum, dlen2);
1039	if (err)
1040		goto out_ro;
1041
1042	dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name);
1043	err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name);
1044	if (err)
1045		goto out_ro;
1046
1047	offs += aligned_dlen1 + aligned_dlen2;
1048	if (new_inode) {
1049		ino_key_init(c, &key, new_inode->i_ino);
1050		err = ubifs_tnc_add(c, &key, lnum, offs, ilen);
1051		if (err)
1052			goto out_ro;
1053		offs += ALIGN(ilen, 8);
1054	}
1055
1056	ino_key_init(c, &key, old_dir->i_ino);
1057	err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1058	if (err)
1059		goto out_ro;
1060
1061	if (old_dir != new_dir) {
1062		offs += ALIGN(plen, 8);
1063		ino_key_init(c, &key, new_dir->i_ino);
1064		err = ubifs_tnc_add(c, &key, lnum, offs, plen);
1065		if (err)
1066			goto out_ro;
1067	}
1068
1069	finish_reservation(c);
1070	if (new_inode) {
1071		mark_inode_clean(c, new_ui);
1072		spin_lock(&new_ui->ui_lock);
1073		new_ui->synced_i_size = new_ui->ui_size;
1074		spin_unlock(&new_ui->ui_lock);
1075	}
1076	mark_inode_clean(c, ubifs_inode(old_dir));
1077	if (move)
1078		mark_inode_clean(c, ubifs_inode(new_dir));
1079	kfree(dent);
1080	return 0;
1081
1082out_release:
1083	release_head(c, BASEHD);
1084out_ro:
1085	ubifs_ro_mode(c, err);
1086	if (last_reference)
1087		ubifs_delete_orphan(c, new_inode->i_ino);
1088out_finish:
1089	finish_reservation(c);
1090out_free:
1091	kfree(dent);
1092	return err;
1093}
1094
1095/**
1096 * recomp_data_node - re-compress a truncated data node.
1097 * @dn: data node to re-compress
1098 * @new_len: new length
1099 *
1100 * This function is used when an inode is truncated and the last data node of
1101 * the inode has to be re-compressed and re-written.
1102 */
1103static int recomp_data_node(const struct ubifs_info *c,
1104			    struct ubifs_data_node *dn, int *new_len)
1105{
1106	void *buf;
1107	int err, len, compr_type, out_len;
1108
1109	out_len = le32_to_cpu(dn->size);
1110	buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS);
1111	if (!buf)
1112		return -ENOMEM;
1113
1114	len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1115	compr_type = le16_to_cpu(dn->compr_type);
1116	err = ubifs_decompress(c, &dn->data, len, buf, &out_len, compr_type);
1117	if (err)
1118		goto out;
1119
1120	ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1121	ubifs_assert(out_len <= UBIFS_BLOCK_SIZE);
1122	dn->compr_type = cpu_to_le16(compr_type);
1123	dn->size = cpu_to_le32(*new_len);
1124	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1125out:
1126	kfree(buf);
1127	return err;
1128}
1129
1130/**
1131 * ubifs_jnl_truncate - update the journal for a truncation.
1132 * @c: UBIFS file-system description object
1133 * @inode: inode to truncate
1134 * @old_size: old size
1135 * @new_size: new size
1136 *
1137 * When the size of a file decreases due to truncation, a truncation node is
1138 * written, the journal tree is updated, and the last data block is re-written
1139 * if it has been affected. The inode is also updated in order to synchronize
1140 * the new inode size.
1141 *
1142 * This function marks the inode as clean and returns zero on success. In case
1143 * of failure, a negative error code is returned.
1144 */
1145int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1146		       loff_t old_size, loff_t new_size)
1147{
1148	union ubifs_key key, to_key;
1149	struct ubifs_ino_node *ino;
1150	struct ubifs_trun_node *trun;
1151	struct ubifs_data_node *uninitialized_var(dn);
1152	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1153	struct ubifs_inode *ui = ubifs_inode(inode);
1154	ino_t inum = inode->i_ino;
1155	unsigned int blk;
1156
1157	dbg_jnl("ino %lu, size %lld -> %lld",
1158		(unsigned long)inum, old_size, new_size);
1159	ubifs_assert(!ui->data_len);
1160	ubifs_assert(S_ISREG(inode->i_mode));
1161	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
1162
1163	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1164	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1165	ino = kmalloc(sz, GFP_NOFS);
1166	if (!ino)
1167		return -ENOMEM;
1168
1169	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1170	trun->ch.node_type = UBIFS_TRUN_NODE;
1171	trun->inum = cpu_to_le32(inum);
1172	trun->old_size = cpu_to_le64(old_size);
1173	trun->new_size = cpu_to_le64(new_size);
1174	zero_trun_node_unused(trun);
1175
1176	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1177	if (dlen) {
1178		/* Get last data block so it can be truncated */
1179		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1180		blk = new_size >> UBIFS_BLOCK_SHIFT;
1181		data_key_init(c, &key, inum, blk);
1182		dbg_jnlk(&key, "last block key ");
1183		err = ubifs_tnc_lookup(c, &key, dn);
1184		if (err == -ENOENT)
1185			dlen = 0; /* Not found (so it is a hole) */
1186		else if (err)
1187			goto out_free;
1188		else {
1189			if (le32_to_cpu(dn->size) <= dlen)
1190				dlen = 0; /* Nothing to do */
1191			else {
1192				int compr_type = le16_to_cpu(dn->compr_type);
1193
1194				if (compr_type != UBIFS_COMPR_NONE) {
1195					err = recomp_data_node(c, dn, &dlen);
1196					if (err)
1197						goto out_free;
1198				} else {
1199					dn->size = cpu_to_le32(dlen);
1200					dlen += UBIFS_DATA_NODE_SZ;
1201				}
1202				zero_data_node_unused(dn);
1203			}
1204		}
1205	}
1206
1207	/* Must make reservation before allocating sequence numbers */
1208	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1209	if (dlen)
1210		len += dlen;
1211	err = make_reservation(c, BASEHD, len);
1212	if (err)
1213		goto out_free;
1214
1215	pack_inode(c, ino, inode, 0);
1216	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1217	if (dlen)
1218		ubifs_prep_grp_node(c, dn, dlen, 1);
1219
1220	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1221	if (err)
1222		goto out_release;
1223	if (!sync)
1224		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1225	release_head(c, BASEHD);
1226
1227	if (dlen) {
1228		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1229		err = ubifs_tnc_add(c, &key, lnum, sz, dlen);
1230		if (err)
1231			goto out_ro;
1232	}
1233
1234	ino_key_init(c, &key, inum);
1235	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ);
1236	if (err)
1237		goto out_ro;
1238
1239	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1240	if (err)
1241		goto out_ro;
1242
1243	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1244	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1245	data_key_init(c, &key, inum, blk);
1246
1247	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1248	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1249	data_key_init(c, &to_key, inum, blk);
1250
1251	err = ubifs_tnc_remove_range(c, &key, &to_key);
1252	if (err)
1253		goto out_ro;
1254
1255	finish_reservation(c);
1256	spin_lock(&ui->ui_lock);
1257	ui->synced_i_size = ui->ui_size;
1258	spin_unlock(&ui->ui_lock);
1259	mark_inode_clean(c, ui);
1260	kfree(ino);
1261	return 0;
1262
1263out_release:
1264	release_head(c, BASEHD);
1265out_ro:
1266	ubifs_ro_mode(c, err);
1267	finish_reservation(c);
1268out_free:
1269	kfree(ino);
1270	return err;
1271}
1272
1273
1274/**
1275 * ubifs_jnl_delete_xattr - delete an extended attribute.
1276 * @c: UBIFS file-system description object
1277 * @host: host inode
1278 * @inode: extended attribute inode
1279 * @nm: extended attribute entry name
1280 *
1281 * This function delete an extended attribute which is very similar to
1282 * un-linking regular files - it writes a deletion xentry, a deletion inode and
1283 * updates the target inode. Returns zero in case of success and a negative
1284 * error code in case of failure.
1285 */
1286int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1287			   const struct inode *inode, const struct qstr *nm)
1288{
1289	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen;
1290	struct ubifs_dent_node *xent;
1291	struct ubifs_ino_node *ino;
1292	union ubifs_key xent_key, key1, key2;
1293	int sync = IS_DIRSYNC(host);
1294	struct ubifs_inode *host_ui = ubifs_inode(host);
1295
1296	dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d",
1297		host->i_ino, inode->i_ino, nm->name,
1298		ubifs_inode(inode)->data_len);
1299	ubifs_assert(inode->i_nlink == 0);
1300	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1301
1302	/*
1303	 * Since we are deleting the inode, we do not bother to attach any data
1304	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1305	 */
1306	xlen = UBIFS_DENT_NODE_SZ + nm->len + 1;
1307	aligned_xlen = ALIGN(xlen, 8);
1308	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1309	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1310
1311	xent = kmalloc(len, GFP_NOFS);
1312	if (!xent)
1313		return -ENOMEM;
1314
1315	/* Make reservation before allocating sequence numbers */
1316	err = make_reservation(c, BASEHD, len);
1317	if (err) {
1318		kfree(xent);
1319		return err;
1320	}
1321
1322	xent->ch.node_type = UBIFS_XENT_NODE;
1323	xent_key_init(c, &xent_key, host->i_ino, nm);
1324	key_write(c, &xent_key, xent->key);
1325	xent->inum = 0;
1326	xent->type = get_dent_type(inode->i_mode);
1327	xent->nlen = cpu_to_le16(nm->len);
1328	memcpy(xent->name, nm->name, nm->len);
1329	xent->name[nm->len] = '\0';
1330	zero_dent_node_unused(xent);
1331	ubifs_prep_grp_node(c, xent, xlen, 0);
1332
1333	ino = (void *)xent + aligned_xlen;
1334	pack_inode(c, ino, inode, 0);
1335	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1336	pack_inode(c, ino, host, 1);
1337
1338	err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync);
1339	if (!sync && !err)
1340		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1341	release_head(c, BASEHD);
1342	kfree(xent);
1343	if (err)
1344		goto out_ro;
1345
1346	/* Remove the extended attribute entry from TNC */
1347	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1348	if (err)
1349		goto out_ro;
1350	err = ubifs_add_dirt(c, lnum, xlen);
1351	if (err)
1352		goto out_ro;
1353
1354	/*
1355	 * Remove all nodes belonging to the extended attribute inode from TNC.
1356	 * Well, there actually must be only one node - the inode itself.
1357	 */
1358	lowest_ino_key(c, &key1, inode->i_ino);
1359	highest_ino_key(c, &key2, inode->i_ino);
1360	err = ubifs_tnc_remove_range(c, &key1, &key2);
1361	if (err)
1362		goto out_ro;
1363	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1364	if (err)
1365		goto out_ro;
1366
1367	/* And update TNC with the new host inode position */
1368	ino_key_init(c, &key1, host->i_ino);
1369	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen);
1370	if (err)
1371		goto out_ro;
1372
1373	finish_reservation(c);
1374	spin_lock(&host_ui->ui_lock);
1375	host_ui->synced_i_size = host_ui->ui_size;
1376	spin_unlock(&host_ui->ui_lock);
1377	mark_inode_clean(c, host_ui);
1378	return 0;
1379
1380out_ro:
1381	ubifs_ro_mode(c, err);
1382	finish_reservation(c);
1383	return err;
1384}
1385
1386/**
1387 * ubifs_jnl_change_xattr - change an extended attribute.
1388 * @c: UBIFS file-system description object
1389 * @inode: extended attribute inode
1390 * @host: host inode
1391 *
1392 * This function writes the updated version of an extended attribute inode and
1393 * the host inode to the journal (to the base head). The host inode is written
1394 * after the extended attribute inode in order to guarantee that the extended
1395 * attribute will be flushed when the inode is synchronized by 'fsync()' and
1396 * consequently, the write-buffer is synchronized. This function returns zero
1397 * in case of success and a negative error code in case of failure.
1398 */
1399int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1400			   const struct inode *host)
1401{
1402	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1403	struct ubifs_inode *host_ui = ubifs_inode(host);
1404	struct ubifs_ino_node *ino;
1405	union ubifs_key key;
1406	int sync = IS_DIRSYNC(host);
1407
1408	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1409	ubifs_assert(host->i_nlink > 0);
1410	ubifs_assert(inode->i_nlink > 0);
1411	ubifs_assert(mutex_is_locked(&host_ui->ui_mutex));
1412
1413	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1414	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1415	aligned_len1 = ALIGN(len1, 8);
1416	aligned_len = aligned_len1 + ALIGN(len2, 8);
1417
1418	ino = kmalloc(aligned_len, GFP_NOFS);
1419	if (!ino)
1420		return -ENOMEM;
1421
1422	/* Make reservation before allocating sequence numbers */
1423	err = make_reservation(c, BASEHD, aligned_len);
1424	if (err)
1425		goto out_free;
1426
1427	pack_inode(c, ino, host, 0);
1428	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1429
1430	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1431	if (!sync && !err) {
1432		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1433
1434		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1435		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1436	}
1437	release_head(c, BASEHD);
1438	if (err)
1439		goto out_ro;
1440
1441	ino_key_init(c, &key, host->i_ino);
1442	err = ubifs_tnc_add(c, &key, lnum, offs, len1);
1443	if (err)
1444		goto out_ro;
1445
1446	ino_key_init(c, &key, inode->i_ino);
1447	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2);
1448	if (err)
1449		goto out_ro;
1450
1451	finish_reservation(c);
1452	spin_lock(&host_ui->ui_lock);
1453	host_ui->synced_i_size = host_ui->ui_size;
1454	spin_unlock(&host_ui->ui_lock);
1455	mark_inode_clean(c, host_ui);
1456	kfree(ino);
1457	return 0;
1458
1459out_ro:
1460	ubifs_ro_mode(c, err);
1461	finish_reservation(c);
1462out_free:
1463	kfree(ino);
1464	return err;
1465}
1466
1467