1/*
2 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_fs.h"
20#include "xfs_shared.h"
21#include "xfs_format.h"
22#include "xfs_log_format.h"
23#include "xfs_trans_resv.h"
24#include "xfs_bit.h"
25#include "xfs_sb.h"
26#include "xfs_mount.h"
27#include "xfs_inode.h"
28#include "xfs_btree.h"
29#include "xfs_ialloc.h"
30#include "xfs_ialloc_btree.h"
31#include "xfs_alloc.h"
32#include "xfs_rtalloc.h"
33#include "xfs_error.h"
34#include "xfs_bmap.h"
35#include "xfs_cksum.h"
36#include "xfs_trans.h"
37#include "xfs_buf_item.h"
38#include "xfs_icreate_item.h"
39#include "xfs_icache.h"
40#include "xfs_trace.h"
41
42
43/*
44 * Allocation group level functions.
45 */
46static inline int
47xfs_ialloc_cluster_alignment(
48	struct xfs_mount	*mp)
49{
50	if (xfs_sb_version_hasalign(&mp->m_sb) &&
51	    mp->m_sb.sb_inoalignmt >=
52			XFS_B_TO_FSBT(mp, mp->m_inode_cluster_size))
53		return mp->m_sb.sb_inoalignmt;
54	return 1;
55}
56
57/*
58 * Lookup a record by ino in the btree given by cur.
59 */
60int					/* error */
61xfs_inobt_lookup(
62	struct xfs_btree_cur	*cur,	/* btree cursor */
63	xfs_agino_t		ino,	/* starting inode of chunk */
64	xfs_lookup_t		dir,	/* <=, >=, == */
65	int			*stat)	/* success/failure */
66{
67	cur->bc_rec.i.ir_startino = ino;
68	cur->bc_rec.i.ir_freecount = 0;
69	cur->bc_rec.i.ir_free = 0;
70	return xfs_btree_lookup(cur, dir, stat);
71}
72
73/*
74 * Update the record referred to by cur to the value given.
75 * This either works (return 0) or gets an EFSCORRUPTED error.
76 */
77STATIC int				/* error */
78xfs_inobt_update(
79	struct xfs_btree_cur	*cur,	/* btree cursor */
80	xfs_inobt_rec_incore_t	*irec)	/* btree record */
81{
82	union xfs_btree_rec	rec;
83
84	rec.inobt.ir_startino = cpu_to_be32(irec->ir_startino);
85	rec.inobt.ir_freecount = cpu_to_be32(irec->ir_freecount);
86	rec.inobt.ir_free = cpu_to_be64(irec->ir_free);
87	return xfs_btree_update(cur, &rec);
88}
89
90/*
91 * Get the data from the pointed-to record.
92 */
93int					/* error */
94xfs_inobt_get_rec(
95	struct xfs_btree_cur	*cur,	/* btree cursor */
96	xfs_inobt_rec_incore_t	*irec,	/* btree record */
97	int			*stat)	/* output: success/failure */
98{
99	union xfs_btree_rec	*rec;
100	int			error;
101
102	error = xfs_btree_get_rec(cur, &rec, stat);
103	if (!error && *stat == 1) {
104		irec->ir_startino = be32_to_cpu(rec->inobt.ir_startino);
105		irec->ir_freecount = be32_to_cpu(rec->inobt.ir_freecount);
106		irec->ir_free = be64_to_cpu(rec->inobt.ir_free);
107	}
108	return error;
109}
110
111/*
112 * Insert a single inobt record. Cursor must already point to desired location.
113 */
114STATIC int
115xfs_inobt_insert_rec(
116	struct xfs_btree_cur	*cur,
117	__int32_t		freecount,
118	xfs_inofree_t		free,
119	int			*stat)
120{
121	cur->bc_rec.i.ir_freecount = freecount;
122	cur->bc_rec.i.ir_free = free;
123	return xfs_btree_insert(cur, stat);
124}
125
126/*
127 * Insert records describing a newly allocated inode chunk into the inobt.
128 */
129STATIC int
130xfs_inobt_insert(
131	struct xfs_mount	*mp,
132	struct xfs_trans	*tp,
133	struct xfs_buf		*agbp,
134	xfs_agino_t		newino,
135	xfs_agino_t		newlen,
136	xfs_btnum_t		btnum)
137{
138	struct xfs_btree_cur	*cur;
139	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
140	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
141	xfs_agino_t		thisino;
142	int			i;
143	int			error;
144
145	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, btnum);
146
147	for (thisino = newino;
148	     thisino < newino + newlen;
149	     thisino += XFS_INODES_PER_CHUNK) {
150		error = xfs_inobt_lookup(cur, thisino, XFS_LOOKUP_EQ, &i);
151		if (error) {
152			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
153			return error;
154		}
155		ASSERT(i == 0);
156
157		error = xfs_inobt_insert_rec(cur, XFS_INODES_PER_CHUNK,
158					     XFS_INOBT_ALL_FREE, &i);
159		if (error) {
160			xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
161			return error;
162		}
163		ASSERT(i == 1);
164	}
165
166	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
167
168	return 0;
169}
170
171/*
172 * Verify that the number of free inodes in the AGI is correct.
173 */
174#ifdef DEBUG
175STATIC int
176xfs_check_agi_freecount(
177	struct xfs_btree_cur	*cur,
178	struct xfs_agi		*agi)
179{
180	if (cur->bc_nlevels == 1) {
181		xfs_inobt_rec_incore_t rec;
182		int		freecount = 0;
183		int		error;
184		int		i;
185
186		error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
187		if (error)
188			return error;
189
190		do {
191			error = xfs_inobt_get_rec(cur, &rec, &i);
192			if (error)
193				return error;
194
195			if (i) {
196				freecount += rec.ir_freecount;
197				error = xfs_btree_increment(cur, 0, &i);
198				if (error)
199					return error;
200			}
201		} while (i == 1);
202
203		if (!XFS_FORCED_SHUTDOWN(cur->bc_mp))
204			ASSERT(freecount == be32_to_cpu(agi->agi_freecount));
205	}
206	return 0;
207}
208#else
209#define xfs_check_agi_freecount(cur, agi)	0
210#endif
211
212/*
213 * Initialise a new set of inodes. When called without a transaction context
214 * (e.g. from recovery) we initiate a delayed write of the inode buffers rather
215 * than logging them (which in a transaction context puts them into the AIL
216 * for writeback rather than the xfsbufd queue).
217 */
218int
219xfs_ialloc_inode_init(
220	struct xfs_mount	*mp,
221	struct xfs_trans	*tp,
222	struct list_head	*buffer_list,
223	xfs_agnumber_t		agno,
224	xfs_agblock_t		agbno,
225	xfs_agblock_t		length,
226	unsigned int		gen)
227{
228	struct xfs_buf		*fbuf;
229	struct xfs_dinode	*free;
230	int			nbufs, blks_per_cluster, inodes_per_cluster;
231	int			version;
232	int			i, j;
233	xfs_daddr_t		d;
234	xfs_ino_t		ino = 0;
235
236	/*
237	 * Loop over the new block(s), filling in the inodes.  For small block
238	 * sizes, manipulate the inodes in buffers  which are multiples of the
239	 * blocks size.
240	 */
241	blks_per_cluster = xfs_icluster_size_fsb(mp);
242	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
243	nbufs = length / blks_per_cluster;
244
245	/*
246	 * Figure out what version number to use in the inodes we create.  If
247	 * the superblock version has caught up to the one that supports the new
248	 * inode format, then use the new inode version.  Otherwise use the old
249	 * version so that old kernels will continue to be able to use the file
250	 * system.
251	 *
252	 * For v3 inodes, we also need to write the inode number into the inode,
253	 * so calculate the first inode number of the chunk here as
254	 * XFS_OFFBNO_TO_AGINO() only works within a filesystem block, not
255	 * across multiple filesystem blocks (such as a cluster) and so cannot
256	 * be used in the cluster buffer loop below.
257	 *
258	 * Further, because we are writing the inode directly into the buffer
259	 * and calculating a CRC on the entire inode, we have ot log the entire
260	 * inode so that the entire range the CRC covers is present in the log.
261	 * That means for v3 inode we log the entire buffer rather than just the
262	 * inode cores.
263	 */
264	if (xfs_sb_version_hascrc(&mp->m_sb)) {
265		version = 3;
266		ino = XFS_AGINO_TO_INO(mp, agno,
267				       XFS_OFFBNO_TO_AGINO(mp, agbno, 0));
268
269		/*
270		 * log the initialisation that is about to take place as an
271		 * logical operation. This means the transaction does not
272		 * need to log the physical changes to the inode buffers as log
273		 * recovery will know what initialisation is actually needed.
274		 * Hence we only need to log the buffers as "ordered" buffers so
275		 * they track in the AIL as if they were physically logged.
276		 */
277		if (tp)
278			xfs_icreate_log(tp, agno, agbno, mp->m_ialloc_inos,
279					mp->m_sb.sb_inodesize, length, gen);
280	} else
281		version = 2;
282
283	for (j = 0; j < nbufs; j++) {
284		/*
285		 * Get the block.
286		 */
287		d = XFS_AGB_TO_DADDR(mp, agno, agbno + (j * blks_per_cluster));
288		fbuf = xfs_trans_get_buf(tp, mp->m_ddev_targp, d,
289					 mp->m_bsize * blks_per_cluster,
290					 XBF_UNMAPPED);
291		if (!fbuf)
292			return -ENOMEM;
293
294		/* Initialize the inode buffers and log them appropriately. */
295		fbuf->b_ops = &xfs_inode_buf_ops;
296		xfs_buf_zero(fbuf, 0, BBTOB(fbuf->b_length));
297		for (i = 0; i < inodes_per_cluster; i++) {
298			int	ioffset = i << mp->m_sb.sb_inodelog;
299			uint	isize = xfs_dinode_size(version);
300
301			free = xfs_make_iptr(mp, fbuf, i);
302			free->di_magic = cpu_to_be16(XFS_DINODE_MAGIC);
303			free->di_version = version;
304			free->di_gen = cpu_to_be32(gen);
305			free->di_next_unlinked = cpu_to_be32(NULLAGINO);
306
307			if (version == 3) {
308				free->di_ino = cpu_to_be64(ino);
309				ino++;
310				uuid_copy(&free->di_uuid, &mp->m_sb.sb_uuid);
311				xfs_dinode_calc_crc(mp, free);
312			} else if (tp) {
313				/* just log the inode core */
314				xfs_trans_log_buf(tp, fbuf, ioffset,
315						  ioffset + isize - 1);
316			}
317		}
318
319		if (tp) {
320			/*
321			 * Mark the buffer as an inode allocation buffer so it
322			 * sticks in AIL at the point of this allocation
323			 * transaction. This ensures the they are on disk before
324			 * the tail of the log can be moved past this
325			 * transaction (i.e. by preventing relogging from moving
326			 * it forward in the log).
327			 */
328			xfs_trans_inode_alloc_buf(tp, fbuf);
329			if (version == 3) {
330				/*
331				 * Mark the buffer as ordered so that they are
332				 * not physically logged in the transaction but
333				 * still tracked in the AIL as part of the
334				 * transaction and pin the log appropriately.
335				 */
336				xfs_trans_ordered_buf(tp, fbuf);
337				xfs_trans_log_buf(tp, fbuf, 0,
338						  BBTOB(fbuf->b_length) - 1);
339			}
340		} else {
341			fbuf->b_flags |= XBF_DONE;
342			xfs_buf_delwri_queue(fbuf, buffer_list);
343			xfs_buf_relse(fbuf);
344		}
345	}
346	return 0;
347}
348
349/*
350 * Allocate new inodes in the allocation group specified by agbp.
351 * Return 0 for success, else error code.
352 */
353STATIC int				/* error code or 0 */
354xfs_ialloc_ag_alloc(
355	xfs_trans_t	*tp,		/* transaction pointer */
356	xfs_buf_t	*agbp,		/* alloc group buffer */
357	int		*alloc)
358{
359	xfs_agi_t	*agi;		/* allocation group header */
360	xfs_alloc_arg_t	args;		/* allocation argument structure */
361	xfs_agnumber_t	agno;
362	int		error;
363	xfs_agino_t	newino;		/* new first inode's number */
364	xfs_agino_t	newlen;		/* new number of inodes */
365	int		isaligned = 0;	/* inode allocation at stripe unit */
366					/* boundary */
367	struct xfs_perag *pag;
368
369	memset(&args, 0, sizeof(args));
370	args.tp = tp;
371	args.mp = tp->t_mountp;
372
373	/*
374	 * Locking will ensure that we don't have two callers in here
375	 * at one time.
376	 */
377	newlen = args.mp->m_ialloc_inos;
378	if (args.mp->m_maxicount &&
379	    percpu_counter_read_positive(&args.mp->m_icount) + newlen >
380							args.mp->m_maxicount)
381		return -ENOSPC;
382	args.minlen = args.maxlen = args.mp->m_ialloc_blks;
383	/*
384	 * First try to allocate inodes contiguous with the last-allocated
385	 * chunk of inodes.  If the filesystem is striped, this will fill
386	 * an entire stripe unit with inodes.
387	 */
388	agi = XFS_BUF_TO_AGI(agbp);
389	newino = be32_to_cpu(agi->agi_newino);
390	agno = be32_to_cpu(agi->agi_seqno);
391	args.agbno = XFS_AGINO_TO_AGBNO(args.mp, newino) +
392		     args.mp->m_ialloc_blks;
393	if (likely(newino != NULLAGINO &&
394		  (args.agbno < be32_to_cpu(agi->agi_length)))) {
395		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
396		args.type = XFS_ALLOCTYPE_THIS_BNO;
397		args.prod = 1;
398
399		/*
400		 * We need to take into account alignment here to ensure that
401		 * we don't modify the free list if we fail to have an exact
402		 * block. If we don't have an exact match, and every oher
403		 * attempt allocation attempt fails, we'll end up cancelling
404		 * a dirty transaction and shutting down.
405		 *
406		 * For an exact allocation, alignment must be 1,
407		 * however we need to take cluster alignment into account when
408		 * fixing up the freelist. Use the minalignslop field to
409		 * indicate that extra blocks might be required for alignment,
410		 * but not to use them in the actual exact allocation.
411		 */
412		args.alignment = 1;
413		args.minalignslop = xfs_ialloc_cluster_alignment(args.mp) - 1;
414
415		/* Allow space for the inode btree to split. */
416		args.minleft = args.mp->m_in_maxlevels - 1;
417		if ((error = xfs_alloc_vextent(&args)))
418			return error;
419
420		/*
421		 * This request might have dirtied the transaction if the AG can
422		 * satisfy the request, but the exact block was not available.
423		 * If the allocation did fail, subsequent requests will relax
424		 * the exact agbno requirement and increase the alignment
425		 * instead. It is critical that the total size of the request
426		 * (len + alignment + slop) does not increase from this point
427		 * on, so reset minalignslop to ensure it is not included in
428		 * subsequent requests.
429		 */
430		args.minalignslop = 0;
431	} else
432		args.fsbno = NULLFSBLOCK;
433
434	if (unlikely(args.fsbno == NULLFSBLOCK)) {
435		/*
436		 * Set the alignment for the allocation.
437		 * If stripe alignment is turned on then align at stripe unit
438		 * boundary.
439		 * If the cluster size is smaller than a filesystem block
440		 * then we're doing I/O for inodes in filesystem block size
441		 * pieces, so don't need alignment anyway.
442		 */
443		isaligned = 0;
444		if (args.mp->m_sinoalign) {
445			ASSERT(!(args.mp->m_flags & XFS_MOUNT_NOALIGN));
446			args.alignment = args.mp->m_dalign;
447			isaligned = 1;
448		} else
449			args.alignment = xfs_ialloc_cluster_alignment(args.mp);
450		/*
451		 * Need to figure out where to allocate the inode blocks.
452		 * Ideally they should be spaced out through the a.g.
453		 * For now, just allocate blocks up front.
454		 */
455		args.agbno = be32_to_cpu(agi->agi_root);
456		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
457		/*
458		 * Allocate a fixed-size extent of inodes.
459		 */
460		args.type = XFS_ALLOCTYPE_NEAR_BNO;
461		args.prod = 1;
462		/*
463		 * Allow space for the inode btree to split.
464		 */
465		args.minleft = args.mp->m_in_maxlevels - 1;
466		if ((error = xfs_alloc_vextent(&args)))
467			return error;
468	}
469
470	/*
471	 * If stripe alignment is turned on, then try again with cluster
472	 * alignment.
473	 */
474	if (isaligned && args.fsbno == NULLFSBLOCK) {
475		args.type = XFS_ALLOCTYPE_NEAR_BNO;
476		args.agbno = be32_to_cpu(agi->agi_root);
477		args.fsbno = XFS_AGB_TO_FSB(args.mp, agno, args.agbno);
478		args.alignment = xfs_ialloc_cluster_alignment(args.mp);
479		if ((error = xfs_alloc_vextent(&args)))
480			return error;
481	}
482
483	if (args.fsbno == NULLFSBLOCK) {
484		*alloc = 0;
485		return 0;
486	}
487	ASSERT(args.len == args.minlen);
488
489	/*
490	 * Stamp and write the inode buffers.
491	 *
492	 * Seed the new inode cluster with a random generation number. This
493	 * prevents short-term reuse of generation numbers if a chunk is
494	 * freed and then immediately reallocated. We use random numbers
495	 * rather than a linear progression to prevent the next generation
496	 * number from being easily guessable.
497	 */
498	error = xfs_ialloc_inode_init(args.mp, tp, NULL, agno, args.agbno,
499			args.len, prandom_u32());
500
501	if (error)
502		return error;
503	/*
504	 * Convert the results.
505	 */
506	newino = XFS_OFFBNO_TO_AGINO(args.mp, args.agbno, 0);
507	be32_add_cpu(&agi->agi_count, newlen);
508	be32_add_cpu(&agi->agi_freecount, newlen);
509	pag = xfs_perag_get(args.mp, agno);
510	pag->pagi_freecount += newlen;
511	xfs_perag_put(pag);
512	agi->agi_newino = cpu_to_be32(newino);
513
514	/*
515	 * Insert records describing the new inode chunk into the btrees.
516	 */
517	error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
518				 XFS_BTNUM_INO);
519	if (error)
520		return error;
521
522	if (xfs_sb_version_hasfinobt(&args.mp->m_sb)) {
523		error = xfs_inobt_insert(args.mp, tp, agbp, newino, newlen,
524					 XFS_BTNUM_FINO);
525		if (error)
526			return error;
527	}
528	/*
529	 * Log allocation group header fields
530	 */
531	xfs_ialloc_log_agi(tp, agbp,
532		XFS_AGI_COUNT | XFS_AGI_FREECOUNT | XFS_AGI_NEWINO);
533	/*
534	 * Modify/log superblock values for inode count and inode free count.
535	 */
536	xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, (long)newlen);
537	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, (long)newlen);
538	*alloc = 1;
539	return 0;
540}
541
542STATIC xfs_agnumber_t
543xfs_ialloc_next_ag(
544	xfs_mount_t	*mp)
545{
546	xfs_agnumber_t	agno;
547
548	spin_lock(&mp->m_agirotor_lock);
549	agno = mp->m_agirotor;
550	if (++mp->m_agirotor >= mp->m_maxagi)
551		mp->m_agirotor = 0;
552	spin_unlock(&mp->m_agirotor_lock);
553
554	return agno;
555}
556
557/*
558 * Select an allocation group to look for a free inode in, based on the parent
559 * inode and the mode.  Return the allocation group buffer.
560 */
561STATIC xfs_agnumber_t
562xfs_ialloc_ag_select(
563	xfs_trans_t	*tp,		/* transaction pointer */
564	xfs_ino_t	parent,		/* parent directory inode number */
565	umode_t		mode,		/* bits set to indicate file type */
566	int		okalloc)	/* ok to allocate more space */
567{
568	xfs_agnumber_t	agcount;	/* number of ag's in the filesystem */
569	xfs_agnumber_t	agno;		/* current ag number */
570	int		flags;		/* alloc buffer locking flags */
571	xfs_extlen_t	ineed;		/* blocks needed for inode allocation */
572	xfs_extlen_t	longest = 0;	/* longest extent available */
573	xfs_mount_t	*mp;		/* mount point structure */
574	int		needspace;	/* file mode implies space allocated */
575	xfs_perag_t	*pag;		/* per allocation group data */
576	xfs_agnumber_t	pagno;		/* parent (starting) ag number */
577	int		error;
578
579	/*
580	 * Files of these types need at least one block if length > 0
581	 * (and they won't fit in the inode, but that's hard to figure out).
582	 */
583	needspace = S_ISDIR(mode) || S_ISREG(mode) || S_ISLNK(mode);
584	mp = tp->t_mountp;
585	agcount = mp->m_maxagi;
586	if (S_ISDIR(mode))
587		pagno = xfs_ialloc_next_ag(mp);
588	else {
589		pagno = XFS_INO_TO_AGNO(mp, parent);
590		if (pagno >= agcount)
591			pagno = 0;
592	}
593
594	ASSERT(pagno < agcount);
595
596	/*
597	 * Loop through allocation groups, looking for one with a little
598	 * free space in it.  Note we don't look for free inodes, exactly.
599	 * Instead, we include whether there is a need to allocate inodes
600	 * to mean that blocks must be allocated for them,
601	 * if none are currently free.
602	 */
603	agno = pagno;
604	flags = XFS_ALLOC_FLAG_TRYLOCK;
605	for (;;) {
606		pag = xfs_perag_get(mp, agno);
607		if (!pag->pagi_inodeok) {
608			xfs_ialloc_next_ag(mp);
609			goto nextag;
610		}
611
612		if (!pag->pagi_init) {
613			error = xfs_ialloc_pagi_init(mp, tp, agno);
614			if (error)
615				goto nextag;
616		}
617
618		if (pag->pagi_freecount) {
619			xfs_perag_put(pag);
620			return agno;
621		}
622
623		if (!okalloc)
624			goto nextag;
625
626		if (!pag->pagf_init) {
627			error = xfs_alloc_pagf_init(mp, tp, agno, flags);
628			if (error)
629				goto nextag;
630		}
631
632		/*
633		 * Check that there is enough free space for the file plus a
634		 * chunk of inodes if we need to allocate some. If this is the
635		 * first pass across the AGs, take into account the potential
636		 * space needed for alignment of inode chunks when checking the
637		 * longest contiguous free space in the AG - this prevents us
638		 * from getting ENOSPC because we have free space larger than
639		 * m_ialloc_blks but alignment constraints prevent us from using
640		 * it.
641		 *
642		 * If we can't find an AG with space for full alignment slack to
643		 * be taken into account, we must be near ENOSPC in all AGs.
644		 * Hence we don't include alignment for the second pass and so
645		 * if we fail allocation due to alignment issues then it is most
646		 * likely a real ENOSPC condition.
647		 */
648		ineed = mp->m_ialloc_blks;
649		if (flags && ineed > 1)
650			ineed += xfs_ialloc_cluster_alignment(mp);
651		longest = pag->pagf_longest;
652		if (!longest)
653			longest = pag->pagf_flcount > 0;
654
655		if (pag->pagf_freeblks >= needspace + ineed &&
656		    longest >= ineed) {
657			xfs_perag_put(pag);
658			return agno;
659		}
660nextag:
661		xfs_perag_put(pag);
662		/*
663		 * No point in iterating over the rest, if we're shutting
664		 * down.
665		 */
666		if (XFS_FORCED_SHUTDOWN(mp))
667			return NULLAGNUMBER;
668		agno++;
669		if (agno >= agcount)
670			agno = 0;
671		if (agno == pagno) {
672			if (flags == 0)
673				return NULLAGNUMBER;
674			flags = 0;
675		}
676	}
677}
678
679/*
680 * Try to retrieve the next record to the left/right from the current one.
681 */
682STATIC int
683xfs_ialloc_next_rec(
684	struct xfs_btree_cur	*cur,
685	xfs_inobt_rec_incore_t	*rec,
686	int			*done,
687	int			left)
688{
689	int                     error;
690	int			i;
691
692	if (left)
693		error = xfs_btree_decrement(cur, 0, &i);
694	else
695		error = xfs_btree_increment(cur, 0, &i);
696
697	if (error)
698		return error;
699	*done = !i;
700	if (i) {
701		error = xfs_inobt_get_rec(cur, rec, &i);
702		if (error)
703			return error;
704		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
705	}
706
707	return 0;
708}
709
710STATIC int
711xfs_ialloc_get_rec(
712	struct xfs_btree_cur	*cur,
713	xfs_agino_t		agino,
714	xfs_inobt_rec_incore_t	*rec,
715	int			*done)
716{
717	int                     error;
718	int			i;
719
720	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_EQ, &i);
721	if (error)
722		return error;
723	*done = !i;
724	if (i) {
725		error = xfs_inobt_get_rec(cur, rec, &i);
726		if (error)
727			return error;
728		XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
729	}
730
731	return 0;
732}
733
734/*
735 * Allocate an inode using the inobt-only algorithm.
736 */
737STATIC int
738xfs_dialloc_ag_inobt(
739	struct xfs_trans	*tp,
740	struct xfs_buf		*agbp,
741	xfs_ino_t		parent,
742	xfs_ino_t		*inop)
743{
744	struct xfs_mount	*mp = tp->t_mountp;
745	struct xfs_agi		*agi = XFS_BUF_TO_AGI(agbp);
746	xfs_agnumber_t		agno = be32_to_cpu(agi->agi_seqno);
747	xfs_agnumber_t		pagno = XFS_INO_TO_AGNO(mp, parent);
748	xfs_agino_t		pagino = XFS_INO_TO_AGINO(mp, parent);
749	struct xfs_perag	*pag;
750	struct xfs_btree_cur	*cur, *tcur;
751	struct xfs_inobt_rec_incore rec, trec;
752	xfs_ino_t		ino;
753	int			error;
754	int			offset;
755	int			i, j;
756
757	pag = xfs_perag_get(mp, agno);
758
759	ASSERT(pag->pagi_init);
760	ASSERT(pag->pagi_inodeok);
761	ASSERT(pag->pagi_freecount > 0);
762
763 restart_pagno:
764	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
765	/*
766	 * If pagino is 0 (this is the root inode allocation) use newino.
767	 * This must work because we've just allocated some.
768	 */
769	if (!pagino)
770		pagino = be32_to_cpu(agi->agi_newino);
771
772	error = xfs_check_agi_freecount(cur, agi);
773	if (error)
774		goto error0;
775
776	/*
777	 * If in the same AG as the parent, try to get near the parent.
778	 */
779	if (pagno == agno) {
780		int		doneleft;	/* done, to the left */
781		int		doneright;	/* done, to the right */
782		int		searchdistance = 10;
783
784		error = xfs_inobt_lookup(cur, pagino, XFS_LOOKUP_LE, &i);
785		if (error)
786			goto error0;
787		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
788
789		error = xfs_inobt_get_rec(cur, &rec, &j);
790		if (error)
791			goto error0;
792		XFS_WANT_CORRUPTED_GOTO(mp, j == 1, error0);
793
794		if (rec.ir_freecount > 0) {
795			/*
796			 * Found a free inode in the same chunk
797			 * as the parent, done.
798			 */
799			goto alloc_inode;
800		}
801
802
803		/*
804		 * In the same AG as parent, but parent's chunk is full.
805		 */
806
807		/* duplicate the cursor, search left & right simultaneously */
808		error = xfs_btree_dup_cursor(cur, &tcur);
809		if (error)
810			goto error0;
811
812		/*
813		 * Skip to last blocks looked up if same parent inode.
814		 */
815		if (pagino != NULLAGINO &&
816		    pag->pagl_pagino == pagino &&
817		    pag->pagl_leftrec != NULLAGINO &&
818		    pag->pagl_rightrec != NULLAGINO) {
819			error = xfs_ialloc_get_rec(tcur, pag->pagl_leftrec,
820						   &trec, &doneleft);
821			if (error)
822				goto error1;
823
824			error = xfs_ialloc_get_rec(cur, pag->pagl_rightrec,
825						   &rec, &doneright);
826			if (error)
827				goto error1;
828		} else {
829			/* search left with tcur, back up 1 record */
830			error = xfs_ialloc_next_rec(tcur, &trec, &doneleft, 1);
831			if (error)
832				goto error1;
833
834			/* search right with cur, go forward 1 record. */
835			error = xfs_ialloc_next_rec(cur, &rec, &doneright, 0);
836			if (error)
837				goto error1;
838		}
839
840		/*
841		 * Loop until we find an inode chunk with a free inode.
842		 */
843		while (!doneleft || !doneright) {
844			int	useleft;  /* using left inode chunk this time */
845
846			if (!--searchdistance) {
847				/*
848				 * Not in range - save last search
849				 * location and allocate a new inode
850				 */
851				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
852				pag->pagl_leftrec = trec.ir_startino;
853				pag->pagl_rightrec = rec.ir_startino;
854				pag->pagl_pagino = pagino;
855				goto newino;
856			}
857
858			/* figure out the closer block if both are valid. */
859			if (!doneleft && !doneright) {
860				useleft = pagino -
861				 (trec.ir_startino + XFS_INODES_PER_CHUNK - 1) <
862				  rec.ir_startino - pagino;
863			} else {
864				useleft = !doneleft;
865			}
866
867			/* free inodes to the left? */
868			if (useleft && trec.ir_freecount) {
869				rec = trec;
870				xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
871				cur = tcur;
872
873				pag->pagl_leftrec = trec.ir_startino;
874				pag->pagl_rightrec = rec.ir_startino;
875				pag->pagl_pagino = pagino;
876				goto alloc_inode;
877			}
878
879			/* free inodes to the right? */
880			if (!useleft && rec.ir_freecount) {
881				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
882
883				pag->pagl_leftrec = trec.ir_startino;
884				pag->pagl_rightrec = rec.ir_startino;
885				pag->pagl_pagino = pagino;
886				goto alloc_inode;
887			}
888
889			/* get next record to check */
890			if (useleft) {
891				error = xfs_ialloc_next_rec(tcur, &trec,
892								 &doneleft, 1);
893			} else {
894				error = xfs_ialloc_next_rec(cur, &rec,
895								 &doneright, 0);
896			}
897			if (error)
898				goto error1;
899		}
900
901		/*
902		 * We've reached the end of the btree. because
903		 * we are only searching a small chunk of the
904		 * btree each search, there is obviously free
905		 * inodes closer to the parent inode than we
906		 * are now. restart the search again.
907		 */
908		pag->pagl_pagino = NULLAGINO;
909		pag->pagl_leftrec = NULLAGINO;
910		pag->pagl_rightrec = NULLAGINO;
911		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
912		xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
913		goto restart_pagno;
914	}
915
916	/*
917	 * In a different AG from the parent.
918	 * See if the most recently allocated block has any free.
919	 */
920newino:
921	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
922		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
923					 XFS_LOOKUP_EQ, &i);
924		if (error)
925			goto error0;
926
927		if (i == 1) {
928			error = xfs_inobt_get_rec(cur, &rec, &j);
929			if (error)
930				goto error0;
931
932			if (j == 1 && rec.ir_freecount > 0) {
933				/*
934				 * The last chunk allocated in the group
935				 * still has a free inode.
936				 */
937				goto alloc_inode;
938			}
939		}
940	}
941
942	/*
943	 * None left in the last group, search the whole AG
944	 */
945	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
946	if (error)
947		goto error0;
948	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
949
950	for (;;) {
951		error = xfs_inobt_get_rec(cur, &rec, &i);
952		if (error)
953			goto error0;
954		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
955		if (rec.ir_freecount > 0)
956			break;
957		error = xfs_btree_increment(cur, 0, &i);
958		if (error)
959			goto error0;
960		XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
961	}
962
963alloc_inode:
964	offset = xfs_lowbit64(rec.ir_free);
965	ASSERT(offset >= 0);
966	ASSERT(offset < XFS_INODES_PER_CHUNK);
967	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
968				   XFS_INODES_PER_CHUNK) == 0);
969	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
970	rec.ir_free &= ~XFS_INOBT_MASK(offset);
971	rec.ir_freecount--;
972	error = xfs_inobt_update(cur, &rec);
973	if (error)
974		goto error0;
975	be32_add_cpu(&agi->agi_freecount, -1);
976	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
977	pag->pagi_freecount--;
978
979	error = xfs_check_agi_freecount(cur, agi);
980	if (error)
981		goto error0;
982
983	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
984	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
985	xfs_perag_put(pag);
986	*inop = ino;
987	return 0;
988error1:
989	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
990error0:
991	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
992	xfs_perag_put(pag);
993	return error;
994}
995
996/*
997 * Use the free inode btree to allocate an inode based on distance from the
998 * parent. Note that the provided cursor may be deleted and replaced.
999 */
1000STATIC int
1001xfs_dialloc_ag_finobt_near(
1002	xfs_agino_t			pagino,
1003	struct xfs_btree_cur		**ocur,
1004	struct xfs_inobt_rec_incore	*rec)
1005{
1006	struct xfs_btree_cur		*lcur = *ocur;	/* left search cursor */
1007	struct xfs_btree_cur		*rcur;	/* right search cursor */
1008	struct xfs_inobt_rec_incore	rrec;
1009	int				error;
1010	int				i, j;
1011
1012	error = xfs_inobt_lookup(lcur, pagino, XFS_LOOKUP_LE, &i);
1013	if (error)
1014		return error;
1015
1016	if (i == 1) {
1017		error = xfs_inobt_get_rec(lcur, rec, &i);
1018		if (error)
1019			return error;
1020		XFS_WANT_CORRUPTED_RETURN(lcur->bc_mp, i == 1);
1021
1022		/*
1023		 * See if we've landed in the parent inode record. The finobt
1024		 * only tracks chunks with at least one free inode, so record
1025		 * existence is enough.
1026		 */
1027		if (pagino >= rec->ir_startino &&
1028		    pagino < (rec->ir_startino + XFS_INODES_PER_CHUNK))
1029			return 0;
1030	}
1031
1032	error = xfs_btree_dup_cursor(lcur, &rcur);
1033	if (error)
1034		return error;
1035
1036	error = xfs_inobt_lookup(rcur, pagino, XFS_LOOKUP_GE, &j);
1037	if (error)
1038		goto error_rcur;
1039	if (j == 1) {
1040		error = xfs_inobt_get_rec(rcur, &rrec, &j);
1041		if (error)
1042			goto error_rcur;
1043		XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, j == 1, error_rcur);
1044	}
1045
1046	XFS_WANT_CORRUPTED_GOTO(lcur->bc_mp, i == 1 || j == 1, error_rcur);
1047	if (i == 1 && j == 1) {
1048		/*
1049		 * Both the left and right records are valid. Choose the closer
1050		 * inode chunk to the target.
1051		 */
1052		if ((pagino - rec->ir_startino + XFS_INODES_PER_CHUNK - 1) >
1053		    (rrec.ir_startino - pagino)) {
1054			*rec = rrec;
1055			xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1056			*ocur = rcur;
1057		} else {
1058			xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1059		}
1060	} else if (j == 1) {
1061		/* only the right record is valid */
1062		*rec = rrec;
1063		xfs_btree_del_cursor(lcur, XFS_BTREE_NOERROR);
1064		*ocur = rcur;
1065	} else if (i == 1) {
1066		/* only the left record is valid */
1067		xfs_btree_del_cursor(rcur, XFS_BTREE_NOERROR);
1068	}
1069
1070	return 0;
1071
1072error_rcur:
1073	xfs_btree_del_cursor(rcur, XFS_BTREE_ERROR);
1074	return error;
1075}
1076
1077/*
1078 * Use the free inode btree to find a free inode based on a newino hint. If
1079 * the hint is NULL, find the first free inode in the AG.
1080 */
1081STATIC int
1082xfs_dialloc_ag_finobt_newino(
1083	struct xfs_agi			*agi,
1084	struct xfs_btree_cur		*cur,
1085	struct xfs_inobt_rec_incore	*rec)
1086{
1087	int error;
1088	int i;
1089
1090	if (agi->agi_newino != cpu_to_be32(NULLAGINO)) {
1091		error = xfs_inobt_lookup(cur, be32_to_cpu(agi->agi_newino),
1092					 XFS_LOOKUP_EQ, &i);
1093		if (error)
1094			return error;
1095		if (i == 1) {
1096			error = xfs_inobt_get_rec(cur, rec, &i);
1097			if (error)
1098				return error;
1099			XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1100			return 0;
1101		}
1102	}
1103
1104	/*
1105	 * Find the first inode available in the AG.
1106	 */
1107	error = xfs_inobt_lookup(cur, 0, XFS_LOOKUP_GE, &i);
1108	if (error)
1109		return error;
1110	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1111
1112	error = xfs_inobt_get_rec(cur, rec, &i);
1113	if (error)
1114		return error;
1115	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1116
1117	return 0;
1118}
1119
1120/*
1121 * Update the inobt based on a modification made to the finobt. Also ensure that
1122 * the records from both trees are equivalent post-modification.
1123 */
1124STATIC int
1125xfs_dialloc_ag_update_inobt(
1126	struct xfs_btree_cur		*cur,	/* inobt cursor */
1127	struct xfs_inobt_rec_incore	*frec,	/* finobt record */
1128	int				offset) /* inode offset */
1129{
1130	struct xfs_inobt_rec_incore	rec;
1131	int				error;
1132	int				i;
1133
1134	error = xfs_inobt_lookup(cur, frec->ir_startino, XFS_LOOKUP_EQ, &i);
1135	if (error)
1136		return error;
1137	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1138
1139	error = xfs_inobt_get_rec(cur, &rec, &i);
1140	if (error)
1141		return error;
1142	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1143	ASSERT((XFS_AGINO_TO_OFFSET(cur->bc_mp, rec.ir_startino) %
1144				   XFS_INODES_PER_CHUNK) == 0);
1145
1146	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1147	rec.ir_freecount--;
1148
1149	XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, (rec.ir_free == frec->ir_free) &&
1150				  (rec.ir_freecount == frec->ir_freecount));
1151
1152	return xfs_inobt_update(cur, &rec);
1153}
1154
1155/*
1156 * Allocate an inode using the free inode btree, if available. Otherwise, fall
1157 * back to the inobt search algorithm.
1158 *
1159 * The caller selected an AG for us, and made sure that free inodes are
1160 * available.
1161 */
1162STATIC int
1163xfs_dialloc_ag(
1164	struct xfs_trans	*tp,
1165	struct xfs_buf		*agbp,
1166	xfs_ino_t		parent,
1167	xfs_ino_t		*inop)
1168{
1169	struct xfs_mount		*mp = tp->t_mountp;
1170	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1171	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1172	xfs_agnumber_t			pagno = XFS_INO_TO_AGNO(mp, parent);
1173	xfs_agino_t			pagino = XFS_INO_TO_AGINO(mp, parent);
1174	struct xfs_perag		*pag;
1175	struct xfs_btree_cur		*cur;	/* finobt cursor */
1176	struct xfs_btree_cur		*icur;	/* inobt cursor */
1177	struct xfs_inobt_rec_incore	rec;
1178	xfs_ino_t			ino;
1179	int				error;
1180	int				offset;
1181	int				i;
1182
1183	if (!xfs_sb_version_hasfinobt(&mp->m_sb))
1184		return xfs_dialloc_ag_inobt(tp, agbp, parent, inop);
1185
1186	pag = xfs_perag_get(mp, agno);
1187
1188	/*
1189	 * If pagino is 0 (this is the root inode allocation) use newino.
1190	 * This must work because we've just allocated some.
1191	 */
1192	if (!pagino)
1193		pagino = be32_to_cpu(agi->agi_newino);
1194
1195	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1196
1197	error = xfs_check_agi_freecount(cur, agi);
1198	if (error)
1199		goto error_cur;
1200
1201	/*
1202	 * The search algorithm depends on whether we're in the same AG as the
1203	 * parent. If so, find the closest available inode to the parent. If
1204	 * not, consider the agi hint or find the first free inode in the AG.
1205	 */
1206	if (agno == pagno)
1207		error = xfs_dialloc_ag_finobt_near(pagino, &cur, &rec);
1208	else
1209		error = xfs_dialloc_ag_finobt_newino(agi, cur, &rec);
1210	if (error)
1211		goto error_cur;
1212
1213	offset = xfs_lowbit64(rec.ir_free);
1214	ASSERT(offset >= 0);
1215	ASSERT(offset < XFS_INODES_PER_CHUNK);
1216	ASSERT((XFS_AGINO_TO_OFFSET(mp, rec.ir_startino) %
1217				   XFS_INODES_PER_CHUNK) == 0);
1218	ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino + offset);
1219
1220	/*
1221	 * Modify or remove the finobt record.
1222	 */
1223	rec.ir_free &= ~XFS_INOBT_MASK(offset);
1224	rec.ir_freecount--;
1225	if (rec.ir_freecount)
1226		error = xfs_inobt_update(cur, &rec);
1227	else
1228		error = xfs_btree_delete(cur, &i);
1229	if (error)
1230		goto error_cur;
1231
1232	/*
1233	 * The finobt has now been updated appropriately. We haven't updated the
1234	 * agi and superblock yet, so we can create an inobt cursor and validate
1235	 * the original freecount. If all is well, make the equivalent update to
1236	 * the inobt using the finobt record and offset information.
1237	 */
1238	icur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1239
1240	error = xfs_check_agi_freecount(icur, agi);
1241	if (error)
1242		goto error_icur;
1243
1244	error = xfs_dialloc_ag_update_inobt(icur, &rec, offset);
1245	if (error)
1246		goto error_icur;
1247
1248	/*
1249	 * Both trees have now been updated. We must update the perag and
1250	 * superblock before we can check the freecount for each btree.
1251	 */
1252	be32_add_cpu(&agi->agi_freecount, -1);
1253	xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1254	pag->pagi_freecount--;
1255
1256	xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -1);
1257
1258	error = xfs_check_agi_freecount(icur, agi);
1259	if (error)
1260		goto error_icur;
1261	error = xfs_check_agi_freecount(cur, agi);
1262	if (error)
1263		goto error_icur;
1264
1265	xfs_btree_del_cursor(icur, XFS_BTREE_NOERROR);
1266	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1267	xfs_perag_put(pag);
1268	*inop = ino;
1269	return 0;
1270
1271error_icur:
1272	xfs_btree_del_cursor(icur, XFS_BTREE_ERROR);
1273error_cur:
1274	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1275	xfs_perag_put(pag);
1276	return error;
1277}
1278
1279/*
1280 * Allocate an inode on disk.
1281 *
1282 * Mode is used to tell whether the new inode will need space, and whether it
1283 * is a directory.
1284 *
1285 * This function is designed to be called twice if it has to do an allocation
1286 * to make more free inodes.  On the first call, *IO_agbp should be set to NULL.
1287 * If an inode is available without having to performn an allocation, an inode
1288 * number is returned.  In this case, *IO_agbp is set to NULL.  If an allocation
1289 * needs to be done, xfs_dialloc returns the current AGI buffer in *IO_agbp.
1290 * The caller should then commit the current transaction, allocate a
1291 * new transaction, and call xfs_dialloc() again, passing in the previous value
1292 * of *IO_agbp.  IO_agbp should be held across the transactions. Since the AGI
1293 * buffer is locked across the two calls, the second call is guaranteed to have
1294 * a free inode available.
1295 *
1296 * Once we successfully pick an inode its number is returned and the on-disk
1297 * data structures are updated.  The inode itself is not read in, since doing so
1298 * would break ordering constraints with xfs_reclaim.
1299 */
1300int
1301xfs_dialloc(
1302	struct xfs_trans	*tp,
1303	xfs_ino_t		parent,
1304	umode_t			mode,
1305	int			okalloc,
1306	struct xfs_buf		**IO_agbp,
1307	xfs_ino_t		*inop)
1308{
1309	struct xfs_mount	*mp = tp->t_mountp;
1310	struct xfs_buf		*agbp;
1311	xfs_agnumber_t		agno;
1312	int			error;
1313	int			ialloced;
1314	int			noroom = 0;
1315	xfs_agnumber_t		start_agno;
1316	struct xfs_perag	*pag;
1317
1318	if (*IO_agbp) {
1319		/*
1320		 * If the caller passes in a pointer to the AGI buffer,
1321		 * continue where we left off before.  In this case, we
1322		 * know that the allocation group has free inodes.
1323		 */
1324		agbp = *IO_agbp;
1325		goto out_alloc;
1326	}
1327
1328	/*
1329	 * We do not have an agbp, so select an initial allocation
1330	 * group for inode allocation.
1331	 */
1332	start_agno = xfs_ialloc_ag_select(tp, parent, mode, okalloc);
1333	if (start_agno == NULLAGNUMBER) {
1334		*inop = NULLFSINO;
1335		return 0;
1336	}
1337
1338	/*
1339	 * If we have already hit the ceiling of inode blocks then clear
1340	 * okalloc so we scan all available agi structures for a free
1341	 * inode.
1342	 *
1343	 * Read rough value of mp->m_icount by percpu_counter_read_positive,
1344	 * which will sacrifice the preciseness but improve the performance.
1345	 */
1346	if (mp->m_maxicount &&
1347	    percpu_counter_read_positive(&mp->m_icount) + mp->m_ialloc_inos
1348							> mp->m_maxicount) {
1349		noroom = 1;
1350		okalloc = 0;
1351	}
1352
1353	/*
1354	 * Loop until we find an allocation group that either has free inodes
1355	 * or in which we can allocate some inodes.  Iterate through the
1356	 * allocation groups upward, wrapping at the end.
1357	 */
1358	agno = start_agno;
1359	for (;;) {
1360		pag = xfs_perag_get(mp, agno);
1361		if (!pag->pagi_inodeok) {
1362			xfs_ialloc_next_ag(mp);
1363			goto nextag;
1364		}
1365
1366		if (!pag->pagi_init) {
1367			error = xfs_ialloc_pagi_init(mp, tp, agno);
1368			if (error)
1369				goto out_error;
1370		}
1371
1372		/*
1373		 * Do a first racy fast path check if this AG is usable.
1374		 */
1375		if (!pag->pagi_freecount && !okalloc)
1376			goto nextag;
1377
1378		/*
1379		 * Then read in the AGI buffer and recheck with the AGI buffer
1380		 * lock held.
1381		 */
1382		error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1383		if (error)
1384			goto out_error;
1385
1386		if (pag->pagi_freecount) {
1387			xfs_perag_put(pag);
1388			goto out_alloc;
1389		}
1390
1391		if (!okalloc)
1392			goto nextag_relse_buffer;
1393
1394
1395		error = xfs_ialloc_ag_alloc(tp, agbp, &ialloced);
1396		if (error) {
1397			xfs_trans_brelse(tp, agbp);
1398
1399			if (error != -ENOSPC)
1400				goto out_error;
1401
1402			xfs_perag_put(pag);
1403			*inop = NULLFSINO;
1404			return 0;
1405		}
1406
1407		if (ialloced) {
1408			/*
1409			 * We successfully allocated some inodes, return
1410			 * the current context to the caller so that it
1411			 * can commit the current transaction and call
1412			 * us again where we left off.
1413			 */
1414			ASSERT(pag->pagi_freecount > 0);
1415			xfs_perag_put(pag);
1416
1417			*IO_agbp = agbp;
1418			*inop = NULLFSINO;
1419			return 0;
1420		}
1421
1422nextag_relse_buffer:
1423		xfs_trans_brelse(tp, agbp);
1424nextag:
1425		xfs_perag_put(pag);
1426		if (++agno == mp->m_sb.sb_agcount)
1427			agno = 0;
1428		if (agno == start_agno) {
1429			*inop = NULLFSINO;
1430			return noroom ? -ENOSPC : 0;
1431		}
1432	}
1433
1434out_alloc:
1435	*IO_agbp = NULL;
1436	return xfs_dialloc_ag(tp, agbp, parent, inop);
1437out_error:
1438	xfs_perag_put(pag);
1439	return error;
1440}
1441
1442STATIC int
1443xfs_difree_inobt(
1444	struct xfs_mount		*mp,
1445	struct xfs_trans		*tp,
1446	struct xfs_buf			*agbp,
1447	xfs_agino_t			agino,
1448	struct xfs_bmap_free		*flist,
1449	int				*deleted,
1450	xfs_ino_t			*first_ino,
1451	struct xfs_inobt_rec_incore	*orec)
1452{
1453	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1454	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1455	struct xfs_perag		*pag;
1456	struct xfs_btree_cur		*cur;
1457	struct xfs_inobt_rec_incore	rec;
1458	int				ilen;
1459	int				error;
1460	int				i;
1461	int				off;
1462
1463	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
1464	ASSERT(XFS_AGINO_TO_AGBNO(mp, agino) < be32_to_cpu(agi->agi_length));
1465
1466	/*
1467	 * Initialize the cursor.
1468	 */
1469	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1470
1471	error = xfs_check_agi_freecount(cur, agi);
1472	if (error)
1473		goto error0;
1474
1475	/*
1476	 * Look for the entry describing this inode.
1477	 */
1478	if ((error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i))) {
1479		xfs_warn(mp, "%s: xfs_inobt_lookup() returned error %d.",
1480			__func__, error);
1481		goto error0;
1482	}
1483	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1484	error = xfs_inobt_get_rec(cur, &rec, &i);
1485	if (error) {
1486		xfs_warn(mp, "%s: xfs_inobt_get_rec() returned error %d.",
1487			__func__, error);
1488		goto error0;
1489	}
1490	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error0);
1491	/*
1492	 * Get the offset in the inode chunk.
1493	 */
1494	off = agino - rec.ir_startino;
1495	ASSERT(off >= 0 && off < XFS_INODES_PER_CHUNK);
1496	ASSERT(!(rec.ir_free & XFS_INOBT_MASK(off)));
1497	/*
1498	 * Mark the inode free & increment the count.
1499	 */
1500	rec.ir_free |= XFS_INOBT_MASK(off);
1501	rec.ir_freecount++;
1502
1503	/*
1504	 * When an inode cluster is free, it becomes eligible for removal
1505	 */
1506	if (!(mp->m_flags & XFS_MOUNT_IKEEP) &&
1507	    (rec.ir_freecount == mp->m_ialloc_inos)) {
1508
1509		*deleted = 1;
1510		*first_ino = XFS_AGINO_TO_INO(mp, agno, rec.ir_startino);
1511
1512		/*
1513		 * Remove the inode cluster from the AGI B+Tree, adjust the
1514		 * AGI and Superblock inode counts, and mark the disk space
1515		 * to be freed when the transaction is committed.
1516		 */
1517		ilen = mp->m_ialloc_inos;
1518		be32_add_cpu(&agi->agi_count, -ilen);
1519		be32_add_cpu(&agi->agi_freecount, -(ilen - 1));
1520		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_COUNT | XFS_AGI_FREECOUNT);
1521		pag = xfs_perag_get(mp, agno);
1522		pag->pagi_freecount -= ilen - 1;
1523		xfs_perag_put(pag);
1524		xfs_trans_mod_sb(tp, XFS_TRANS_SB_ICOUNT, -ilen);
1525		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, -(ilen - 1));
1526
1527		if ((error = xfs_btree_delete(cur, &i))) {
1528			xfs_warn(mp, "%s: xfs_btree_delete returned error %d.",
1529				__func__, error);
1530			goto error0;
1531		}
1532
1533		xfs_bmap_add_free(XFS_AGB_TO_FSB(mp, agno,
1534				  XFS_AGINO_TO_AGBNO(mp, rec.ir_startino)),
1535				  mp->m_ialloc_blks, flist, mp);
1536	} else {
1537		*deleted = 0;
1538
1539		error = xfs_inobt_update(cur, &rec);
1540		if (error) {
1541			xfs_warn(mp, "%s: xfs_inobt_update returned error %d.",
1542				__func__, error);
1543			goto error0;
1544		}
1545
1546		/*
1547		 * Change the inode free counts and log the ag/sb changes.
1548		 */
1549		be32_add_cpu(&agi->agi_freecount, 1);
1550		xfs_ialloc_log_agi(tp, agbp, XFS_AGI_FREECOUNT);
1551		pag = xfs_perag_get(mp, agno);
1552		pag->pagi_freecount++;
1553		xfs_perag_put(pag);
1554		xfs_trans_mod_sb(tp, XFS_TRANS_SB_IFREE, 1);
1555	}
1556
1557	error = xfs_check_agi_freecount(cur, agi);
1558	if (error)
1559		goto error0;
1560
1561	*orec = rec;
1562	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1563	return 0;
1564
1565error0:
1566	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1567	return error;
1568}
1569
1570/*
1571 * Free an inode in the free inode btree.
1572 */
1573STATIC int
1574xfs_difree_finobt(
1575	struct xfs_mount		*mp,
1576	struct xfs_trans		*tp,
1577	struct xfs_buf			*agbp,
1578	xfs_agino_t			agino,
1579	struct xfs_inobt_rec_incore	*ibtrec) /* inobt record */
1580{
1581	struct xfs_agi			*agi = XFS_BUF_TO_AGI(agbp);
1582	xfs_agnumber_t			agno = be32_to_cpu(agi->agi_seqno);
1583	struct xfs_btree_cur		*cur;
1584	struct xfs_inobt_rec_incore	rec;
1585	int				offset = agino - ibtrec->ir_startino;
1586	int				error;
1587	int				i;
1588
1589	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_FINO);
1590
1591	error = xfs_inobt_lookup(cur, ibtrec->ir_startino, XFS_LOOKUP_EQ, &i);
1592	if (error)
1593		goto error;
1594	if (i == 0) {
1595		/*
1596		 * If the record does not exist in the finobt, we must have just
1597		 * freed an inode in a previously fully allocated chunk. If not,
1598		 * something is out of sync.
1599		 */
1600		XFS_WANT_CORRUPTED_GOTO(mp, ibtrec->ir_freecount == 1, error);
1601
1602		error = xfs_inobt_insert_rec(cur, ibtrec->ir_freecount,
1603					     ibtrec->ir_free, &i);
1604		if (error)
1605			goto error;
1606		ASSERT(i == 1);
1607
1608		goto out;
1609	}
1610
1611	/*
1612	 * Read and update the existing record. We could just copy the ibtrec
1613	 * across here, but that would defeat the purpose of having redundant
1614	 * metadata. By making the modifications independently, we can catch
1615	 * corruptions that we wouldn't see if we just copied from one record
1616	 * to another.
1617	 */
1618	error = xfs_inobt_get_rec(cur, &rec, &i);
1619	if (error)
1620		goto error;
1621	XFS_WANT_CORRUPTED_GOTO(mp, i == 1, error);
1622
1623	rec.ir_free |= XFS_INOBT_MASK(offset);
1624	rec.ir_freecount++;
1625
1626	XFS_WANT_CORRUPTED_GOTO(mp, (rec.ir_free == ibtrec->ir_free) &&
1627				(rec.ir_freecount == ibtrec->ir_freecount),
1628				error);
1629
1630	/*
1631	 * The content of inobt records should always match between the inobt
1632	 * and finobt. The lifecycle of records in the finobt is different from
1633	 * the inobt in that the finobt only tracks records with at least one
1634	 * free inode. Hence, if all of the inodes are free and we aren't
1635	 * keeping inode chunks permanently on disk, remove the record.
1636	 * Otherwise, update the record with the new information.
1637	 */
1638	if (rec.ir_freecount == mp->m_ialloc_inos &&
1639	    !(mp->m_flags & XFS_MOUNT_IKEEP)) {
1640		error = xfs_btree_delete(cur, &i);
1641		if (error)
1642			goto error;
1643		ASSERT(i == 1);
1644	} else {
1645		error = xfs_inobt_update(cur, &rec);
1646		if (error)
1647			goto error;
1648	}
1649
1650out:
1651	error = xfs_check_agi_freecount(cur, agi);
1652	if (error)
1653		goto error;
1654
1655	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1656	return 0;
1657
1658error:
1659	xfs_btree_del_cursor(cur, XFS_BTREE_ERROR);
1660	return error;
1661}
1662
1663/*
1664 * Free disk inode.  Carefully avoids touching the incore inode, all
1665 * manipulations incore are the caller's responsibility.
1666 * The on-disk inode is not changed by this operation, only the
1667 * btree (free inode mask) is changed.
1668 */
1669int
1670xfs_difree(
1671	struct xfs_trans	*tp,		/* transaction pointer */
1672	xfs_ino_t		inode,		/* inode to be freed */
1673	struct xfs_bmap_free	*flist,		/* extents to free */
1674	int			*deleted,/* set if inode cluster was deleted */
1675	xfs_ino_t		*first_ino)/* first inode in deleted cluster */
1676{
1677	/* REFERENCED */
1678	xfs_agblock_t		agbno;	/* block number containing inode */
1679	struct xfs_buf		*agbp;	/* buffer for allocation group header */
1680	xfs_agino_t		agino;	/* allocation group inode number */
1681	xfs_agnumber_t		agno;	/* allocation group number */
1682	int			error;	/* error return value */
1683	struct xfs_mount	*mp;	/* mount structure for filesystem */
1684	struct xfs_inobt_rec_incore rec;/* btree record */
1685
1686	mp = tp->t_mountp;
1687
1688	/*
1689	 * Break up inode number into its components.
1690	 */
1691	agno = XFS_INO_TO_AGNO(mp, inode);
1692	if (agno >= mp->m_sb.sb_agcount)  {
1693		xfs_warn(mp, "%s: agno >= mp->m_sb.sb_agcount (%d >= %d).",
1694			__func__, agno, mp->m_sb.sb_agcount);
1695		ASSERT(0);
1696		return -EINVAL;
1697	}
1698	agino = XFS_INO_TO_AGINO(mp, inode);
1699	if (inode != XFS_AGINO_TO_INO(mp, agno, agino))  {
1700		xfs_warn(mp, "%s: inode != XFS_AGINO_TO_INO() (%llu != %llu).",
1701			__func__, (unsigned long long)inode,
1702			(unsigned long long)XFS_AGINO_TO_INO(mp, agno, agino));
1703		ASSERT(0);
1704		return -EINVAL;
1705	}
1706	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1707	if (agbno >= mp->m_sb.sb_agblocks)  {
1708		xfs_warn(mp, "%s: agbno >= mp->m_sb.sb_agblocks (%d >= %d).",
1709			__func__, agbno, mp->m_sb.sb_agblocks);
1710		ASSERT(0);
1711		return -EINVAL;
1712	}
1713	/*
1714	 * Get the allocation group header.
1715	 */
1716	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1717	if (error) {
1718		xfs_warn(mp, "%s: xfs_ialloc_read_agi() returned error %d.",
1719			__func__, error);
1720		return error;
1721	}
1722
1723	/*
1724	 * Fix up the inode allocation btree.
1725	 */
1726	error = xfs_difree_inobt(mp, tp, agbp, agino, flist, deleted, first_ino,
1727				 &rec);
1728	if (error)
1729		goto error0;
1730
1731	/*
1732	 * Fix up the free inode btree.
1733	 */
1734	if (xfs_sb_version_hasfinobt(&mp->m_sb)) {
1735		error = xfs_difree_finobt(mp, tp, agbp, agino, &rec);
1736		if (error)
1737			goto error0;
1738	}
1739
1740	return 0;
1741
1742error0:
1743	return error;
1744}
1745
1746STATIC int
1747xfs_imap_lookup(
1748	struct xfs_mount	*mp,
1749	struct xfs_trans	*tp,
1750	xfs_agnumber_t		agno,
1751	xfs_agino_t		agino,
1752	xfs_agblock_t		agbno,
1753	xfs_agblock_t		*chunk_agbno,
1754	xfs_agblock_t		*offset_agbno,
1755	int			flags)
1756{
1757	struct xfs_inobt_rec_incore rec;
1758	struct xfs_btree_cur	*cur;
1759	struct xfs_buf		*agbp;
1760	int			error;
1761	int			i;
1762
1763	error = xfs_ialloc_read_agi(mp, tp, agno, &agbp);
1764	if (error) {
1765		xfs_alert(mp,
1766			"%s: xfs_ialloc_read_agi() returned error %d, agno %d",
1767			__func__, error, agno);
1768		return error;
1769	}
1770
1771	/*
1772	 * Lookup the inode record for the given agino. If the record cannot be
1773	 * found, then it's an invalid inode number and we should abort. Once
1774	 * we have a record, we need to ensure it contains the inode number
1775	 * we are looking up.
1776	 */
1777	cur = xfs_inobt_init_cursor(mp, tp, agbp, agno, XFS_BTNUM_INO);
1778	error = xfs_inobt_lookup(cur, agino, XFS_LOOKUP_LE, &i);
1779	if (!error) {
1780		if (i)
1781			error = xfs_inobt_get_rec(cur, &rec, &i);
1782		if (!error && i == 0)
1783			error = -EINVAL;
1784	}
1785
1786	xfs_trans_brelse(tp, agbp);
1787	xfs_btree_del_cursor(cur, XFS_BTREE_NOERROR);
1788	if (error)
1789		return error;
1790
1791	/* check that the returned record contains the required inode */
1792	if (rec.ir_startino > agino ||
1793	    rec.ir_startino + mp->m_ialloc_inos <= agino)
1794		return -EINVAL;
1795
1796	/* for untrusted inodes check it is allocated first */
1797	if ((flags & XFS_IGET_UNTRUSTED) &&
1798	    (rec.ir_free & XFS_INOBT_MASK(agino - rec.ir_startino)))
1799		return -EINVAL;
1800
1801	*chunk_agbno = XFS_AGINO_TO_AGBNO(mp, rec.ir_startino);
1802	*offset_agbno = agbno - *chunk_agbno;
1803	return 0;
1804}
1805
1806/*
1807 * Return the location of the inode in imap, for mapping it into a buffer.
1808 */
1809int
1810xfs_imap(
1811	xfs_mount_t	 *mp,	/* file system mount structure */
1812	xfs_trans_t	 *tp,	/* transaction pointer */
1813	xfs_ino_t	ino,	/* inode to locate */
1814	struct xfs_imap	*imap,	/* location map structure */
1815	uint		flags)	/* flags for inode btree lookup */
1816{
1817	xfs_agblock_t	agbno;	/* block number of inode in the alloc group */
1818	xfs_agino_t	agino;	/* inode number within alloc group */
1819	xfs_agnumber_t	agno;	/* allocation group number */
1820	int		blks_per_cluster; /* num blocks per inode cluster */
1821	xfs_agblock_t	chunk_agbno;	/* first block in inode chunk */
1822	xfs_agblock_t	cluster_agbno;	/* first block in inode cluster */
1823	int		error;	/* error code */
1824	int		offset;	/* index of inode in its buffer */
1825	xfs_agblock_t	offset_agbno;	/* blks from chunk start to inode */
1826
1827	ASSERT(ino != NULLFSINO);
1828
1829	/*
1830	 * Split up the inode number into its parts.
1831	 */
1832	agno = XFS_INO_TO_AGNO(mp, ino);
1833	agino = XFS_INO_TO_AGINO(mp, ino);
1834	agbno = XFS_AGINO_TO_AGBNO(mp, agino);
1835	if (agno >= mp->m_sb.sb_agcount || agbno >= mp->m_sb.sb_agblocks ||
1836	    ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1837#ifdef DEBUG
1838		/*
1839		 * Don't output diagnostic information for untrusted inodes
1840		 * as they can be invalid without implying corruption.
1841		 */
1842		if (flags & XFS_IGET_UNTRUSTED)
1843			return -EINVAL;
1844		if (agno >= mp->m_sb.sb_agcount) {
1845			xfs_alert(mp,
1846				"%s: agno (%d) >= mp->m_sb.sb_agcount (%d)",
1847				__func__, agno, mp->m_sb.sb_agcount);
1848		}
1849		if (agbno >= mp->m_sb.sb_agblocks) {
1850			xfs_alert(mp,
1851		"%s: agbno (0x%llx) >= mp->m_sb.sb_agblocks (0x%lx)",
1852				__func__, (unsigned long long)agbno,
1853				(unsigned long)mp->m_sb.sb_agblocks);
1854		}
1855		if (ino != XFS_AGINO_TO_INO(mp, agno, agino)) {
1856			xfs_alert(mp,
1857		"%s: ino (0x%llx) != XFS_AGINO_TO_INO() (0x%llx)",
1858				__func__, ino,
1859				XFS_AGINO_TO_INO(mp, agno, agino));
1860		}
1861		xfs_stack_trace();
1862#endif /* DEBUG */
1863		return -EINVAL;
1864	}
1865
1866	blks_per_cluster = xfs_icluster_size_fsb(mp);
1867
1868	/*
1869	 * For bulkstat and handle lookups, we have an untrusted inode number
1870	 * that we have to verify is valid. We cannot do this just by reading
1871	 * the inode buffer as it may have been unlinked and removed leaving
1872	 * inodes in stale state on disk. Hence we have to do a btree lookup
1873	 * in all cases where an untrusted inode number is passed.
1874	 */
1875	if (flags & XFS_IGET_UNTRUSTED) {
1876		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1877					&chunk_agbno, &offset_agbno, flags);
1878		if (error)
1879			return error;
1880		goto out_map;
1881	}
1882
1883	/*
1884	 * If the inode cluster size is the same as the blocksize or
1885	 * smaller we get to the buffer by simple arithmetics.
1886	 */
1887	if (blks_per_cluster == 1) {
1888		offset = XFS_INO_TO_OFFSET(mp, ino);
1889		ASSERT(offset < mp->m_sb.sb_inopblock);
1890
1891		imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, agbno);
1892		imap->im_len = XFS_FSB_TO_BB(mp, 1);
1893		imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1894		return 0;
1895	}
1896
1897	/*
1898	 * If the inode chunks are aligned then use simple maths to
1899	 * find the location. Otherwise we have to do a btree
1900	 * lookup to find the location.
1901	 */
1902	if (mp->m_inoalign_mask) {
1903		offset_agbno = agbno & mp->m_inoalign_mask;
1904		chunk_agbno = agbno - offset_agbno;
1905	} else {
1906		error = xfs_imap_lookup(mp, tp, agno, agino, agbno,
1907					&chunk_agbno, &offset_agbno, flags);
1908		if (error)
1909			return error;
1910	}
1911
1912out_map:
1913	ASSERT(agbno >= chunk_agbno);
1914	cluster_agbno = chunk_agbno +
1915		((offset_agbno / blks_per_cluster) * blks_per_cluster);
1916	offset = ((agbno - cluster_agbno) * mp->m_sb.sb_inopblock) +
1917		XFS_INO_TO_OFFSET(mp, ino);
1918
1919	imap->im_blkno = XFS_AGB_TO_DADDR(mp, agno, cluster_agbno);
1920	imap->im_len = XFS_FSB_TO_BB(mp, blks_per_cluster);
1921	imap->im_boffset = (ushort)(offset << mp->m_sb.sb_inodelog);
1922
1923	/*
1924	 * If the inode number maps to a block outside the bounds
1925	 * of the file system then return NULL rather than calling
1926	 * read_buf and panicing when we get an error from the
1927	 * driver.
1928	 */
1929	if ((imap->im_blkno + imap->im_len) >
1930	    XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks)) {
1931		xfs_alert(mp,
1932	"%s: (im_blkno (0x%llx) + im_len (0x%llx)) > sb_dblocks (0x%llx)",
1933			__func__, (unsigned long long) imap->im_blkno,
1934			(unsigned long long) imap->im_len,
1935			XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks));
1936		return -EINVAL;
1937	}
1938	return 0;
1939}
1940
1941/*
1942 * Compute and fill in value of m_in_maxlevels.
1943 */
1944void
1945xfs_ialloc_compute_maxlevels(
1946	xfs_mount_t	*mp)		/* file system mount structure */
1947{
1948	int		level;
1949	uint		maxblocks;
1950	uint		maxleafents;
1951	int		minleafrecs;
1952	int		minnoderecs;
1953
1954	maxleafents = (1LL << XFS_INO_AGINO_BITS(mp)) >>
1955		XFS_INODES_PER_CHUNK_LOG;
1956	minleafrecs = mp->m_alloc_mnr[0];
1957	minnoderecs = mp->m_alloc_mnr[1];
1958	maxblocks = (maxleafents + minleafrecs - 1) / minleafrecs;
1959	for (level = 1; maxblocks > 1; level++)
1960		maxblocks = (maxblocks + minnoderecs - 1) / minnoderecs;
1961	mp->m_in_maxlevels = level;
1962}
1963
1964/*
1965 * Log specified fields for the ag hdr (inode section). The growth of the agi
1966 * structure over time requires that we interpret the buffer as two logical
1967 * regions delineated by the end of the unlinked list. This is due to the size
1968 * of the hash table and its location in the middle of the agi.
1969 *
1970 * For example, a request to log a field before agi_unlinked and a field after
1971 * agi_unlinked could cause us to log the entire hash table and use an excessive
1972 * amount of log space. To avoid this behavior, log the region up through
1973 * agi_unlinked in one call and the region after agi_unlinked through the end of
1974 * the structure in another.
1975 */
1976void
1977xfs_ialloc_log_agi(
1978	xfs_trans_t	*tp,		/* transaction pointer */
1979	xfs_buf_t	*bp,		/* allocation group header buffer */
1980	int		fields)		/* bitmask of fields to log */
1981{
1982	int			first;		/* first byte number */
1983	int			last;		/* last byte number */
1984	static const short	offsets[] = {	/* field starting offsets */
1985					/* keep in sync with bit definitions */
1986		offsetof(xfs_agi_t, agi_magicnum),
1987		offsetof(xfs_agi_t, agi_versionnum),
1988		offsetof(xfs_agi_t, agi_seqno),
1989		offsetof(xfs_agi_t, agi_length),
1990		offsetof(xfs_agi_t, agi_count),
1991		offsetof(xfs_agi_t, agi_root),
1992		offsetof(xfs_agi_t, agi_level),
1993		offsetof(xfs_agi_t, agi_freecount),
1994		offsetof(xfs_agi_t, agi_newino),
1995		offsetof(xfs_agi_t, agi_dirino),
1996		offsetof(xfs_agi_t, agi_unlinked),
1997		offsetof(xfs_agi_t, agi_free_root),
1998		offsetof(xfs_agi_t, agi_free_level),
1999		sizeof(xfs_agi_t)
2000	};
2001#ifdef DEBUG
2002	xfs_agi_t		*agi;	/* allocation group header */
2003
2004	agi = XFS_BUF_TO_AGI(bp);
2005	ASSERT(agi->agi_magicnum == cpu_to_be32(XFS_AGI_MAGIC));
2006#endif
2007
2008	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_AGI_BUF);
2009
2010	/*
2011	 * Compute byte offsets for the first and last fields in the first
2012	 * region and log the agi buffer. This only logs up through
2013	 * agi_unlinked.
2014	 */
2015	if (fields & XFS_AGI_ALL_BITS_R1) {
2016		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R1,
2017				  &first, &last);
2018		xfs_trans_log_buf(tp, bp, first, last);
2019	}
2020
2021	/*
2022	 * Mask off the bits in the first region and calculate the first and
2023	 * last field offsets for any bits in the second region.
2024	 */
2025	fields &= ~XFS_AGI_ALL_BITS_R1;
2026	if (fields) {
2027		xfs_btree_offsets(fields, offsets, XFS_AGI_NUM_BITS_R2,
2028				  &first, &last);
2029		xfs_trans_log_buf(tp, bp, first, last);
2030	}
2031}
2032
2033#ifdef DEBUG
2034STATIC void
2035xfs_check_agi_unlinked(
2036	struct xfs_agi		*agi)
2037{
2038	int			i;
2039
2040	for (i = 0; i < XFS_AGI_UNLINKED_BUCKETS; i++)
2041		ASSERT(agi->agi_unlinked[i]);
2042}
2043#else
2044#define xfs_check_agi_unlinked(agi)
2045#endif
2046
2047static bool
2048xfs_agi_verify(
2049	struct xfs_buf	*bp)
2050{
2051	struct xfs_mount *mp = bp->b_target->bt_mount;
2052	struct xfs_agi	*agi = XFS_BUF_TO_AGI(bp);
2053
2054	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2055	    !uuid_equal(&agi->agi_uuid, &mp->m_sb.sb_uuid))
2056			return false;
2057	/*
2058	 * Validate the magic number of the agi block.
2059	 */
2060	if (agi->agi_magicnum != cpu_to_be32(XFS_AGI_MAGIC))
2061		return false;
2062	if (!XFS_AGI_GOOD_VERSION(be32_to_cpu(agi->agi_versionnum)))
2063		return false;
2064
2065	if (be32_to_cpu(agi->agi_level) > XFS_BTREE_MAXLEVELS)
2066		return false;
2067	/*
2068	 * during growfs operations, the perag is not fully initialised,
2069	 * so we can't use it for any useful checking. growfs ensures we can't
2070	 * use it by using uncached buffers that don't have the perag attached
2071	 * so we can detect and avoid this problem.
2072	 */
2073	if (bp->b_pag && be32_to_cpu(agi->agi_seqno) != bp->b_pag->pag_agno)
2074		return false;
2075
2076	xfs_check_agi_unlinked(agi);
2077	return true;
2078}
2079
2080static void
2081xfs_agi_read_verify(
2082	struct xfs_buf	*bp)
2083{
2084	struct xfs_mount *mp = bp->b_target->bt_mount;
2085
2086	if (xfs_sb_version_hascrc(&mp->m_sb) &&
2087	    !xfs_buf_verify_cksum(bp, XFS_AGI_CRC_OFF))
2088		xfs_buf_ioerror(bp, -EFSBADCRC);
2089	else if (XFS_TEST_ERROR(!xfs_agi_verify(bp), mp,
2090				XFS_ERRTAG_IALLOC_READ_AGI,
2091				XFS_RANDOM_IALLOC_READ_AGI))
2092		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2093
2094	if (bp->b_error)
2095		xfs_verifier_error(bp);
2096}
2097
2098static void
2099xfs_agi_write_verify(
2100	struct xfs_buf	*bp)
2101{
2102	struct xfs_mount *mp = bp->b_target->bt_mount;
2103	struct xfs_buf_log_item	*bip = bp->b_fspriv;
2104
2105	if (!xfs_agi_verify(bp)) {
2106		xfs_buf_ioerror(bp, -EFSCORRUPTED);
2107		xfs_verifier_error(bp);
2108		return;
2109	}
2110
2111	if (!xfs_sb_version_hascrc(&mp->m_sb))
2112		return;
2113
2114	if (bip)
2115		XFS_BUF_TO_AGI(bp)->agi_lsn = cpu_to_be64(bip->bli_item.li_lsn);
2116	xfs_buf_update_cksum(bp, XFS_AGI_CRC_OFF);
2117}
2118
2119const struct xfs_buf_ops xfs_agi_buf_ops = {
2120	.verify_read = xfs_agi_read_verify,
2121	.verify_write = xfs_agi_write_verify,
2122};
2123
2124/*
2125 * Read in the allocation group header (inode allocation section)
2126 */
2127int
2128xfs_read_agi(
2129	struct xfs_mount	*mp,	/* file system mount structure */
2130	struct xfs_trans	*tp,	/* transaction pointer */
2131	xfs_agnumber_t		agno,	/* allocation group number */
2132	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2133{
2134	int			error;
2135
2136	trace_xfs_read_agi(mp, agno);
2137
2138	ASSERT(agno != NULLAGNUMBER);
2139	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
2140			XFS_AG_DADDR(mp, agno, XFS_AGI_DADDR(mp)),
2141			XFS_FSS_TO_BB(mp, 1), 0, bpp, &xfs_agi_buf_ops);
2142	if (error)
2143		return error;
2144
2145	xfs_buf_set_ref(*bpp, XFS_AGI_REF);
2146	return 0;
2147}
2148
2149int
2150xfs_ialloc_read_agi(
2151	struct xfs_mount	*mp,	/* file system mount structure */
2152	struct xfs_trans	*tp,	/* transaction pointer */
2153	xfs_agnumber_t		agno,	/* allocation group number */
2154	struct xfs_buf		**bpp)	/* allocation group hdr buf */
2155{
2156	struct xfs_agi		*agi;	/* allocation group header */
2157	struct xfs_perag	*pag;	/* per allocation group data */
2158	int			error;
2159
2160	trace_xfs_ialloc_read_agi(mp, agno);
2161
2162	error = xfs_read_agi(mp, tp, agno, bpp);
2163	if (error)
2164		return error;
2165
2166	agi = XFS_BUF_TO_AGI(*bpp);
2167	pag = xfs_perag_get(mp, agno);
2168	if (!pag->pagi_init) {
2169		pag->pagi_freecount = be32_to_cpu(agi->agi_freecount);
2170		pag->pagi_count = be32_to_cpu(agi->agi_count);
2171		pag->pagi_init = 1;
2172	}
2173
2174	/*
2175	 * It's possible for these to be out of sync if
2176	 * we are in the middle of a forced shutdown.
2177	 */
2178	ASSERT(pag->pagi_freecount == be32_to_cpu(agi->agi_freecount) ||
2179		XFS_FORCED_SHUTDOWN(mp));
2180	xfs_perag_put(pag);
2181	return 0;
2182}
2183
2184/*
2185 * Read in the agi to initialise the per-ag data in the mount structure
2186 */
2187int
2188xfs_ialloc_pagi_init(
2189	xfs_mount_t	*mp,		/* file system mount structure */
2190	xfs_trans_t	*tp,		/* transaction pointer */
2191	xfs_agnumber_t	agno)		/* allocation group number */
2192{
2193	xfs_buf_t	*bp = NULL;
2194	int		error;
2195
2196	error = xfs_ialloc_read_agi(mp, tp, agno, &bp);
2197	if (error)
2198		return error;
2199	if (bp)
2200		xfs_trans_brelse(tp, bp);
2201	return 0;
2202}
2203