1/*
2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include "xfs.h"
19#include "xfs_shared.h"
20#include "xfs_format.h"
21#include "xfs_log_format.h"
22#include "xfs_trans_resv.h"
23#include "xfs_mount.h"
24#include "xfs_inode.h"
25#include "xfs_trans.h"
26#include "xfs_inode_item.h"
27#include "xfs_alloc.h"
28#include "xfs_error.h"
29#include "xfs_iomap.h"
30#include "xfs_trace.h"
31#include "xfs_bmap.h"
32#include "xfs_bmap_util.h"
33#include "xfs_bmap_btree.h"
34#include <linux/gfp.h>
35#include <linux/mpage.h>
36#include <linux/pagevec.h>
37#include <linux/writeback.h>
38
39void
40xfs_count_page_state(
41	struct page		*page,
42	int			*delalloc,
43	int			*unwritten)
44{
45	struct buffer_head	*bh, *head;
46
47	*delalloc = *unwritten = 0;
48
49	bh = head = page_buffers(page);
50	do {
51		if (buffer_unwritten(bh))
52			(*unwritten) = 1;
53		else if (buffer_delay(bh))
54			(*delalloc) = 1;
55	} while ((bh = bh->b_this_page) != head);
56}
57
58STATIC struct block_device *
59xfs_find_bdev_for_inode(
60	struct inode		*inode)
61{
62	struct xfs_inode	*ip = XFS_I(inode);
63	struct xfs_mount	*mp = ip->i_mount;
64
65	if (XFS_IS_REALTIME_INODE(ip))
66		return mp->m_rtdev_targp->bt_bdev;
67	else
68		return mp->m_ddev_targp->bt_bdev;
69}
70
71/*
72 * We're now finished for good with this ioend structure.
73 * Update the page state via the associated buffer_heads,
74 * release holds on the inode and bio, and finally free
75 * up memory.  Do not use the ioend after this.
76 */
77STATIC void
78xfs_destroy_ioend(
79	xfs_ioend_t		*ioend)
80{
81	struct buffer_head	*bh, *next;
82
83	for (bh = ioend->io_buffer_head; bh; bh = next) {
84		next = bh->b_private;
85		bh->b_end_io(bh, !ioend->io_error);
86	}
87
88	mempool_free(ioend, xfs_ioend_pool);
89}
90
91/*
92 * Fast and loose check if this write could update the on-disk inode size.
93 */
94static inline bool xfs_ioend_is_append(struct xfs_ioend *ioend)
95{
96	return ioend->io_offset + ioend->io_size >
97		XFS_I(ioend->io_inode)->i_d.di_size;
98}
99
100STATIC int
101xfs_setfilesize_trans_alloc(
102	struct xfs_ioend	*ioend)
103{
104	struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
105	struct xfs_trans	*tp;
106	int			error;
107
108	tp = xfs_trans_alloc(mp, XFS_TRANS_FSYNC_TS);
109
110	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_fsyncts, 0, 0);
111	if (error) {
112		xfs_trans_cancel(tp, 0);
113		return error;
114	}
115
116	ioend->io_append_trans = tp;
117
118	/*
119	 * We may pass freeze protection with a transaction.  So tell lockdep
120	 * we released it.
121	 */
122	rwsem_release(&ioend->io_inode->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
123		      1, _THIS_IP_);
124	/*
125	 * We hand off the transaction to the completion thread now, so
126	 * clear the flag here.
127	 */
128	current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS);
129	return 0;
130}
131
132/*
133 * Update on-disk file size now that data has been written to disk.
134 */
135STATIC int
136xfs_setfilesize(
137	struct xfs_inode	*ip,
138	struct xfs_trans	*tp,
139	xfs_off_t		offset,
140	size_t			size)
141{
142	xfs_fsize_t		isize;
143
144	xfs_ilock(ip, XFS_ILOCK_EXCL);
145	isize = xfs_new_eof(ip, offset + size);
146	if (!isize) {
147		xfs_iunlock(ip, XFS_ILOCK_EXCL);
148		xfs_trans_cancel(tp, 0);
149		return 0;
150	}
151
152	trace_xfs_setfilesize(ip, offset, size);
153
154	ip->i_d.di_size = isize;
155	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
156	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
157
158	return xfs_trans_commit(tp, 0);
159}
160
161STATIC int
162xfs_setfilesize_ioend(
163	struct xfs_ioend	*ioend)
164{
165	struct xfs_inode	*ip = XFS_I(ioend->io_inode);
166	struct xfs_trans	*tp = ioend->io_append_trans;
167
168	/*
169	 * The transaction may have been allocated in the I/O submission thread,
170	 * thus we need to mark ourselves as being in a transaction manually.
171	 * Similarly for freeze protection.
172	 */
173	current_set_flags_nested(&tp->t_pflags, PF_FSTRANS);
174	rwsem_acquire_read(&VFS_I(ip)->i_sb->s_writers.lock_map[SB_FREEZE_FS-1],
175			   0, 1, _THIS_IP_);
176
177	return xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size);
178}
179
180/*
181 * Schedule IO completion handling on the final put of an ioend.
182 *
183 * If there is no work to do we might as well call it a day and free the
184 * ioend right now.
185 */
186STATIC void
187xfs_finish_ioend(
188	struct xfs_ioend	*ioend)
189{
190	if (atomic_dec_and_test(&ioend->io_remaining)) {
191		struct xfs_mount	*mp = XFS_I(ioend->io_inode)->i_mount;
192
193		if (ioend->io_type == XFS_IO_UNWRITTEN)
194			queue_work(mp->m_unwritten_workqueue, &ioend->io_work);
195		else if (ioend->io_append_trans)
196			queue_work(mp->m_data_workqueue, &ioend->io_work);
197		else
198			xfs_destroy_ioend(ioend);
199	}
200}
201
202/*
203 * IO write completion.
204 */
205STATIC void
206xfs_end_io(
207	struct work_struct *work)
208{
209	xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work);
210	struct xfs_inode *ip = XFS_I(ioend->io_inode);
211	int		error = 0;
212
213	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
214		ioend->io_error = -EIO;
215		goto done;
216	}
217	if (ioend->io_error)
218		goto done;
219
220	/*
221	 * For unwritten extents we need to issue transactions to convert a
222	 * range to normal written extens after the data I/O has finished.
223	 */
224	if (ioend->io_type == XFS_IO_UNWRITTEN) {
225		error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
226						  ioend->io_size);
227	} else if (ioend->io_append_trans) {
228		error = xfs_setfilesize_ioend(ioend);
229	} else {
230		ASSERT(!xfs_ioend_is_append(ioend));
231	}
232
233done:
234	if (error)
235		ioend->io_error = error;
236	xfs_destroy_ioend(ioend);
237}
238
239/*
240 * Allocate and initialise an IO completion structure.
241 * We need to track unwritten extent write completion here initially.
242 * We'll need to extend this for updating the ondisk inode size later
243 * (vs. incore size).
244 */
245STATIC xfs_ioend_t *
246xfs_alloc_ioend(
247	struct inode		*inode,
248	unsigned int		type)
249{
250	xfs_ioend_t		*ioend;
251
252	ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
253
254	/*
255	 * Set the count to 1 initially, which will prevent an I/O
256	 * completion callback from happening before we have started
257	 * all the I/O from calling the completion routine too early.
258	 */
259	atomic_set(&ioend->io_remaining, 1);
260	ioend->io_error = 0;
261	ioend->io_list = NULL;
262	ioend->io_type = type;
263	ioend->io_inode = inode;
264	ioend->io_buffer_head = NULL;
265	ioend->io_buffer_tail = NULL;
266	ioend->io_offset = 0;
267	ioend->io_size = 0;
268	ioend->io_append_trans = NULL;
269
270	INIT_WORK(&ioend->io_work, xfs_end_io);
271	return ioend;
272}
273
274STATIC int
275xfs_map_blocks(
276	struct inode		*inode,
277	loff_t			offset,
278	struct xfs_bmbt_irec	*imap,
279	int			type,
280	int			nonblocking)
281{
282	struct xfs_inode	*ip = XFS_I(inode);
283	struct xfs_mount	*mp = ip->i_mount;
284	ssize_t			count = 1 << inode->i_blkbits;
285	xfs_fileoff_t		offset_fsb, end_fsb;
286	int			error = 0;
287	int			bmapi_flags = XFS_BMAPI_ENTIRE;
288	int			nimaps = 1;
289
290	if (XFS_FORCED_SHUTDOWN(mp))
291		return -EIO;
292
293	if (type == XFS_IO_UNWRITTEN)
294		bmapi_flags |= XFS_BMAPI_IGSTATE;
295
296	if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
297		if (nonblocking)
298			return -EAGAIN;
299		xfs_ilock(ip, XFS_ILOCK_SHARED);
300	}
301
302	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
303	       (ip->i_df.if_flags & XFS_IFEXTENTS));
304	ASSERT(offset <= mp->m_super->s_maxbytes);
305
306	if (offset + count > mp->m_super->s_maxbytes)
307		count = mp->m_super->s_maxbytes - offset;
308	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
309	offset_fsb = XFS_B_TO_FSBT(mp, offset);
310	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
311				imap, &nimaps, bmapi_flags);
312	xfs_iunlock(ip, XFS_ILOCK_SHARED);
313
314	if (error)
315		return error;
316
317	if (type == XFS_IO_DELALLOC &&
318	    (!nimaps || isnullstartblock(imap->br_startblock))) {
319		error = xfs_iomap_write_allocate(ip, offset, imap);
320		if (!error)
321			trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
322		return error;
323	}
324
325#ifdef DEBUG
326	if (type == XFS_IO_UNWRITTEN) {
327		ASSERT(nimaps);
328		ASSERT(imap->br_startblock != HOLESTARTBLOCK);
329		ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
330	}
331#endif
332	if (nimaps)
333		trace_xfs_map_blocks_found(ip, offset, count, type, imap);
334	return 0;
335}
336
337STATIC int
338xfs_imap_valid(
339	struct inode		*inode,
340	struct xfs_bmbt_irec	*imap,
341	xfs_off_t		offset)
342{
343	offset >>= inode->i_blkbits;
344
345	return offset >= imap->br_startoff &&
346		offset < imap->br_startoff + imap->br_blockcount;
347}
348
349/*
350 * BIO completion handler for buffered IO.
351 */
352STATIC void
353xfs_end_bio(
354	struct bio		*bio,
355	int			error)
356{
357	xfs_ioend_t		*ioend = bio->bi_private;
358
359	ASSERT(atomic_read(&bio->bi_cnt) >= 1);
360	ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
361
362	/* Toss bio and pass work off to an xfsdatad thread */
363	bio->bi_private = NULL;
364	bio->bi_end_io = NULL;
365	bio_put(bio);
366
367	xfs_finish_ioend(ioend);
368}
369
370STATIC void
371xfs_submit_ioend_bio(
372	struct writeback_control *wbc,
373	xfs_ioend_t		*ioend,
374	struct bio		*bio)
375{
376	atomic_inc(&ioend->io_remaining);
377	bio->bi_private = ioend;
378	bio->bi_end_io = xfs_end_bio;
379	submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
380}
381
382STATIC struct bio *
383xfs_alloc_ioend_bio(
384	struct buffer_head	*bh)
385{
386	int			nvecs = bio_get_nr_vecs(bh->b_bdev);
387	struct bio		*bio = bio_alloc(GFP_NOIO, nvecs);
388
389	ASSERT(bio->bi_private == NULL);
390	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
391	bio->bi_bdev = bh->b_bdev;
392	return bio;
393}
394
395STATIC void
396xfs_start_buffer_writeback(
397	struct buffer_head	*bh)
398{
399	ASSERT(buffer_mapped(bh));
400	ASSERT(buffer_locked(bh));
401	ASSERT(!buffer_delay(bh));
402	ASSERT(!buffer_unwritten(bh));
403
404	mark_buffer_async_write(bh);
405	set_buffer_uptodate(bh);
406	clear_buffer_dirty(bh);
407}
408
409STATIC void
410xfs_start_page_writeback(
411	struct page		*page,
412	int			clear_dirty,
413	int			buffers)
414{
415	ASSERT(PageLocked(page));
416	ASSERT(!PageWriteback(page));
417
418	/*
419	 * if the page was not fully cleaned, we need to ensure that the higher
420	 * layers come back to it correctly. That means we need to keep the page
421	 * dirty, and for WB_SYNC_ALL writeback we need to ensure the
422	 * PAGECACHE_TAG_TOWRITE index mark is not removed so another attempt to
423	 * write this page in this writeback sweep will be made.
424	 */
425	if (clear_dirty) {
426		clear_page_dirty_for_io(page);
427		set_page_writeback(page);
428	} else
429		set_page_writeback_keepwrite(page);
430
431	unlock_page(page);
432
433	/* If no buffers on the page are to be written, finish it here */
434	if (!buffers)
435		end_page_writeback(page);
436}
437
438static inline int xfs_bio_add_buffer(struct bio *bio, struct buffer_head *bh)
439{
440	return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
441}
442
443/*
444 * Submit all of the bios for all of the ioends we have saved up, covering the
445 * initial writepage page and also any probed pages.
446 *
447 * Because we may have multiple ioends spanning a page, we need to start
448 * writeback on all the buffers before we submit them for I/O. If we mark the
449 * buffers as we got, then we can end up with a page that only has buffers
450 * marked async write and I/O complete on can occur before we mark the other
451 * buffers async write.
452 *
453 * The end result of this is that we trip a bug in end_page_writeback() because
454 * we call it twice for the one page as the code in end_buffer_async_write()
455 * assumes that all buffers on the page are started at the same time.
456 *
457 * The fix is two passes across the ioend list - one to start writeback on the
458 * buffer_heads, and then submit them for I/O on the second pass.
459 *
460 * If @fail is non-zero, it means that we have a situation where some part of
461 * the submission process has failed after we have marked paged for writeback
462 * and unlocked them. In this situation, we need to fail the ioend chain rather
463 * than submit it to IO. This typically only happens on a filesystem shutdown.
464 */
465STATIC void
466xfs_submit_ioend(
467	struct writeback_control *wbc,
468	xfs_ioend_t		*ioend,
469	int			fail)
470{
471	xfs_ioend_t		*head = ioend;
472	xfs_ioend_t		*next;
473	struct buffer_head	*bh;
474	struct bio		*bio;
475	sector_t		lastblock = 0;
476
477	/* Pass 1 - start writeback */
478	do {
479		next = ioend->io_list;
480		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
481			xfs_start_buffer_writeback(bh);
482	} while ((ioend = next) != NULL);
483
484	/* Pass 2 - submit I/O */
485	ioend = head;
486	do {
487		next = ioend->io_list;
488		bio = NULL;
489
490		/*
491		 * If we are failing the IO now, just mark the ioend with an
492		 * error and finish it. This will run IO completion immediately
493		 * as there is only one reference to the ioend at this point in
494		 * time.
495		 */
496		if (fail) {
497			ioend->io_error = fail;
498			xfs_finish_ioend(ioend);
499			continue;
500		}
501
502		for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
503
504			if (!bio) {
505 retry:
506				bio = xfs_alloc_ioend_bio(bh);
507			} else if (bh->b_blocknr != lastblock + 1) {
508				xfs_submit_ioend_bio(wbc, ioend, bio);
509				goto retry;
510			}
511
512			if (xfs_bio_add_buffer(bio, bh) != bh->b_size) {
513				xfs_submit_ioend_bio(wbc, ioend, bio);
514				goto retry;
515			}
516
517			lastblock = bh->b_blocknr;
518		}
519		if (bio)
520			xfs_submit_ioend_bio(wbc, ioend, bio);
521		xfs_finish_ioend(ioend);
522	} while ((ioend = next) != NULL);
523}
524
525/*
526 * Cancel submission of all buffer_heads so far in this endio.
527 * Toss the endio too.  Only ever called for the initial page
528 * in a writepage request, so only ever one page.
529 */
530STATIC void
531xfs_cancel_ioend(
532	xfs_ioend_t		*ioend)
533{
534	xfs_ioend_t		*next;
535	struct buffer_head	*bh, *next_bh;
536
537	do {
538		next = ioend->io_list;
539		bh = ioend->io_buffer_head;
540		do {
541			next_bh = bh->b_private;
542			clear_buffer_async_write(bh);
543			/*
544			 * The unwritten flag is cleared when added to the
545			 * ioend. We're not submitting for I/O so mark the
546			 * buffer unwritten again for next time around.
547			 */
548			if (ioend->io_type == XFS_IO_UNWRITTEN)
549				set_buffer_unwritten(bh);
550			unlock_buffer(bh);
551		} while ((bh = next_bh) != NULL);
552
553		mempool_free(ioend, xfs_ioend_pool);
554	} while ((ioend = next) != NULL);
555}
556
557/*
558 * Test to see if we've been building up a completion structure for
559 * earlier buffers -- if so, we try to append to this ioend if we
560 * can, otherwise we finish off any current ioend and start another.
561 * Return true if we've finished the given ioend.
562 */
563STATIC void
564xfs_add_to_ioend(
565	struct inode		*inode,
566	struct buffer_head	*bh,
567	xfs_off_t		offset,
568	unsigned int		type,
569	xfs_ioend_t		**result,
570	int			need_ioend)
571{
572	xfs_ioend_t		*ioend = *result;
573
574	if (!ioend || need_ioend || type != ioend->io_type) {
575		xfs_ioend_t	*previous = *result;
576
577		ioend = xfs_alloc_ioend(inode, type);
578		ioend->io_offset = offset;
579		ioend->io_buffer_head = bh;
580		ioend->io_buffer_tail = bh;
581		if (previous)
582			previous->io_list = ioend;
583		*result = ioend;
584	} else {
585		ioend->io_buffer_tail->b_private = bh;
586		ioend->io_buffer_tail = bh;
587	}
588
589	bh->b_private = NULL;
590	ioend->io_size += bh->b_size;
591}
592
593STATIC void
594xfs_map_buffer(
595	struct inode		*inode,
596	struct buffer_head	*bh,
597	struct xfs_bmbt_irec	*imap,
598	xfs_off_t		offset)
599{
600	sector_t		bn;
601	struct xfs_mount	*m = XFS_I(inode)->i_mount;
602	xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
603	xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
604
605	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
606	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
607
608	bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
609	      ((offset - iomap_offset) >> inode->i_blkbits);
610
611	ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
612
613	bh->b_blocknr = bn;
614	set_buffer_mapped(bh);
615}
616
617STATIC void
618xfs_map_at_offset(
619	struct inode		*inode,
620	struct buffer_head	*bh,
621	struct xfs_bmbt_irec	*imap,
622	xfs_off_t		offset)
623{
624	ASSERT(imap->br_startblock != HOLESTARTBLOCK);
625	ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
626
627	xfs_map_buffer(inode, bh, imap, offset);
628	set_buffer_mapped(bh);
629	clear_buffer_delay(bh);
630	clear_buffer_unwritten(bh);
631}
632
633/*
634 * Test if a given page contains at least one buffer of a given @type.
635 * If @check_all_buffers is true, then we walk all the buffers in the page to
636 * try to find one of the type passed in. If it is not set, then the caller only
637 * needs to check the first buffer on the page for a match.
638 */
639STATIC bool
640xfs_check_page_type(
641	struct page		*page,
642	unsigned int		type,
643	bool			check_all_buffers)
644{
645	struct buffer_head	*bh;
646	struct buffer_head	*head;
647
648	if (PageWriteback(page))
649		return false;
650	if (!page->mapping)
651		return false;
652	if (!page_has_buffers(page))
653		return false;
654
655	bh = head = page_buffers(page);
656	do {
657		if (buffer_unwritten(bh)) {
658			if (type == XFS_IO_UNWRITTEN)
659				return true;
660		} else if (buffer_delay(bh)) {
661			if (type == XFS_IO_DELALLOC)
662				return true;
663		} else if (buffer_dirty(bh) && buffer_mapped(bh)) {
664			if (type == XFS_IO_OVERWRITE)
665				return true;
666		}
667
668		/* If we are only checking the first buffer, we are done now. */
669		if (!check_all_buffers)
670			break;
671	} while ((bh = bh->b_this_page) != head);
672
673	return false;
674}
675
676/*
677 * Allocate & map buffers for page given the extent map. Write it out.
678 * except for the original page of a writepage, this is called on
679 * delalloc/unwritten pages only, for the original page it is possible
680 * that the page has no mapping at all.
681 */
682STATIC int
683xfs_convert_page(
684	struct inode		*inode,
685	struct page		*page,
686	loff_t			tindex,
687	struct xfs_bmbt_irec	*imap,
688	xfs_ioend_t		**ioendp,
689	struct writeback_control *wbc)
690{
691	struct buffer_head	*bh, *head;
692	xfs_off_t		end_offset;
693	unsigned long		p_offset;
694	unsigned int		type;
695	int			len, page_dirty;
696	int			count = 0, done = 0, uptodate = 1;
697 	xfs_off_t		offset = page_offset(page);
698
699	if (page->index != tindex)
700		goto fail;
701	if (!trylock_page(page))
702		goto fail;
703	if (PageWriteback(page))
704		goto fail_unlock_page;
705	if (page->mapping != inode->i_mapping)
706		goto fail_unlock_page;
707	if (!xfs_check_page_type(page, (*ioendp)->io_type, false))
708		goto fail_unlock_page;
709
710	/*
711	 * page_dirty is initially a count of buffers on the page before
712	 * EOF and is decremented as we move each into a cleanable state.
713	 *
714	 * Derivation:
715	 *
716	 * End offset is the highest offset that this page should represent.
717	 * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
718	 * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
719	 * hence give us the correct page_dirty count. On any other page,
720	 * it will be zero and in that case we need page_dirty to be the
721	 * count of buffers on the page.
722	 */
723	end_offset = min_t(unsigned long long,
724			(xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
725			i_size_read(inode));
726
727	/*
728	 * If the current map does not span the entire page we are about to try
729	 * to write, then give up. The only way we can write a page that spans
730	 * multiple mappings in a single writeback iteration is via the
731	 * xfs_vm_writepage() function. Data integrity writeback requires the
732	 * entire page to be written in a single attempt, otherwise the part of
733	 * the page we don't write here doesn't get written as part of the data
734	 * integrity sync.
735	 *
736	 * For normal writeback, we also don't attempt to write partial pages
737	 * here as it simply means that write_cache_pages() will see it under
738	 * writeback and ignore the page until some point in the future, at
739	 * which time this will be the only page in the file that needs
740	 * writeback.  Hence for more optimal IO patterns, we should always
741	 * avoid partial page writeback due to multiple mappings on a page here.
742	 */
743	if (!xfs_imap_valid(inode, imap, end_offset))
744		goto fail_unlock_page;
745
746	len = 1 << inode->i_blkbits;
747	p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
748					PAGE_CACHE_SIZE);
749	p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
750	page_dirty = p_offset / len;
751
752	/*
753	 * The moment we find a buffer that doesn't match our current type
754	 * specification or can't be written, abort the loop and start
755	 * writeback. As per the above xfs_imap_valid() check, only
756	 * xfs_vm_writepage() can handle partial page writeback fully - we are
757	 * limited here to the buffers that are contiguous with the current
758	 * ioend, and hence a buffer we can't write breaks that contiguity and
759	 * we have to defer the rest of the IO to xfs_vm_writepage().
760	 */
761	bh = head = page_buffers(page);
762	do {
763		if (offset >= end_offset)
764			break;
765		if (!buffer_uptodate(bh))
766			uptodate = 0;
767		if (!(PageUptodate(page) || buffer_uptodate(bh))) {
768			done = 1;
769			break;
770		}
771
772		if (buffer_unwritten(bh) || buffer_delay(bh) ||
773		    buffer_mapped(bh)) {
774			if (buffer_unwritten(bh))
775				type = XFS_IO_UNWRITTEN;
776			else if (buffer_delay(bh))
777				type = XFS_IO_DELALLOC;
778			else
779				type = XFS_IO_OVERWRITE;
780
781			/*
782			 * imap should always be valid because of the above
783			 * partial page end_offset check on the imap.
784			 */
785			ASSERT(xfs_imap_valid(inode, imap, offset));
786
787			lock_buffer(bh);
788			if (type != XFS_IO_OVERWRITE)
789				xfs_map_at_offset(inode, bh, imap, offset);
790			xfs_add_to_ioend(inode, bh, offset, type,
791					 ioendp, done);
792
793			page_dirty--;
794			count++;
795		} else {
796			done = 1;
797			break;
798		}
799	} while (offset += len, (bh = bh->b_this_page) != head);
800
801	if (uptodate && bh == head)
802		SetPageUptodate(page);
803
804	if (count) {
805		if (--wbc->nr_to_write <= 0 &&
806		    wbc->sync_mode == WB_SYNC_NONE)
807			done = 1;
808	}
809	xfs_start_page_writeback(page, !page_dirty, count);
810
811	return done;
812 fail_unlock_page:
813	unlock_page(page);
814 fail:
815	return 1;
816}
817
818/*
819 * Convert & write out a cluster of pages in the same extent as defined
820 * by mp and following the start page.
821 */
822STATIC void
823xfs_cluster_write(
824	struct inode		*inode,
825	pgoff_t			tindex,
826	struct xfs_bmbt_irec	*imap,
827	xfs_ioend_t		**ioendp,
828	struct writeback_control *wbc,
829	pgoff_t			tlast)
830{
831	struct pagevec		pvec;
832	int			done = 0, i;
833
834	pagevec_init(&pvec, 0);
835	while (!done && tindex <= tlast) {
836		unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
837
838		if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
839			break;
840
841		for (i = 0; i < pagevec_count(&pvec); i++) {
842			done = xfs_convert_page(inode, pvec.pages[i], tindex++,
843					imap, ioendp, wbc);
844			if (done)
845				break;
846		}
847
848		pagevec_release(&pvec);
849		cond_resched();
850	}
851}
852
853STATIC void
854xfs_vm_invalidatepage(
855	struct page		*page,
856	unsigned int		offset,
857	unsigned int		length)
858{
859	trace_xfs_invalidatepage(page->mapping->host, page, offset,
860				 length);
861	block_invalidatepage(page, offset, length);
862}
863
864/*
865 * If the page has delalloc buffers on it, we need to punch them out before we
866 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
867 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
868 * is done on that same region - the delalloc extent is returned when none is
869 * supposed to be there.
870 *
871 * We prevent this by truncating away the delalloc regions on the page before
872 * invalidating it. Because they are delalloc, we can do this without needing a
873 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
874 * truncation without a transaction as there is no space left for block
875 * reservation (typically why we see a ENOSPC in writeback).
876 *
877 * This is not a performance critical path, so for now just do the punching a
878 * buffer head at a time.
879 */
880STATIC void
881xfs_aops_discard_page(
882	struct page		*page)
883{
884	struct inode		*inode = page->mapping->host;
885	struct xfs_inode	*ip = XFS_I(inode);
886	struct buffer_head	*bh, *head;
887	loff_t			offset = page_offset(page);
888
889	if (!xfs_check_page_type(page, XFS_IO_DELALLOC, true))
890		goto out_invalidate;
891
892	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
893		goto out_invalidate;
894
895	xfs_alert(ip->i_mount,
896		"page discard on page %p, inode 0x%llx, offset %llu.",
897			page, ip->i_ino, offset);
898
899	xfs_ilock(ip, XFS_ILOCK_EXCL);
900	bh = head = page_buffers(page);
901	do {
902		int		error;
903		xfs_fileoff_t	start_fsb;
904
905		if (!buffer_delay(bh))
906			goto next_buffer;
907
908		start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
909		error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
910		if (error) {
911			/* something screwed, just bail */
912			if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
913				xfs_alert(ip->i_mount,
914			"page discard unable to remove delalloc mapping.");
915			}
916			break;
917		}
918next_buffer:
919		offset += 1 << inode->i_blkbits;
920
921	} while ((bh = bh->b_this_page) != head);
922
923	xfs_iunlock(ip, XFS_ILOCK_EXCL);
924out_invalidate:
925	xfs_vm_invalidatepage(page, 0, PAGE_CACHE_SIZE);
926	return;
927}
928
929/*
930 * Write out a dirty page.
931 *
932 * For delalloc space on the page we need to allocate space and flush it.
933 * For unwritten space on the page we need to start the conversion to
934 * regular allocated space.
935 * For any other dirty buffer heads on the page we should flush them.
936 */
937STATIC int
938xfs_vm_writepage(
939	struct page		*page,
940	struct writeback_control *wbc)
941{
942	struct inode		*inode = page->mapping->host;
943	struct buffer_head	*bh, *head;
944	struct xfs_bmbt_irec	imap;
945	xfs_ioend_t		*ioend = NULL, *iohead = NULL;
946	loff_t			offset;
947	unsigned int		type;
948	__uint64_t              end_offset;
949	pgoff_t                 end_index, last_index;
950	ssize_t			len;
951	int			err, imap_valid = 0, uptodate = 1;
952	int			count = 0;
953	int			nonblocking = 0;
954
955	trace_xfs_writepage(inode, page, 0, 0);
956
957	ASSERT(page_has_buffers(page));
958
959	/*
960	 * Refuse to write the page out if we are called from reclaim context.
961	 *
962	 * This avoids stack overflows when called from deeply used stacks in
963	 * random callers for direct reclaim or memcg reclaim.  We explicitly
964	 * allow reclaim from kswapd as the stack usage there is relatively low.
965	 *
966	 * This should never happen except in the case of a VM regression so
967	 * warn about it.
968	 */
969	if (WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD)) ==
970			PF_MEMALLOC))
971		goto redirty;
972
973	/*
974	 * Given that we do not allow direct reclaim to call us, we should
975	 * never be called while in a filesystem transaction.
976	 */
977	if (WARN_ON_ONCE(current->flags & PF_FSTRANS))
978		goto redirty;
979
980	/* Is this page beyond the end of the file? */
981	offset = i_size_read(inode);
982	end_index = offset >> PAGE_CACHE_SHIFT;
983	last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
984
985	/*
986	 * The page index is less than the end_index, adjust the end_offset
987	 * to the highest offset that this page should represent.
988	 * -----------------------------------------------------
989	 * |			file mapping	       | <EOF> |
990	 * -----------------------------------------------------
991	 * | Page ... | Page N-2 | Page N-1 |  Page N  |       |
992	 * ^--------------------------------^----------|--------
993	 * |     desired writeback range    |      see else    |
994	 * ---------------------------------^------------------|
995	 */
996	if (page->index < end_index)
997		end_offset = (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT;
998	else {
999		/*
1000		 * Check whether the page to write out is beyond or straddles
1001		 * i_size or not.
1002		 * -------------------------------------------------------
1003		 * |		file mapping		        | <EOF>  |
1004		 * -------------------------------------------------------
1005		 * | Page ... | Page N-2 | Page N-1 |  Page N   | Beyond |
1006		 * ^--------------------------------^-----------|---------
1007		 * |				    |      Straddles     |
1008		 * ---------------------------------^-----------|--------|
1009		 */
1010		unsigned offset_into_page = offset & (PAGE_CACHE_SIZE - 1);
1011
1012		/*
1013		 * Skip the page if it is fully outside i_size, e.g. due to a
1014		 * truncate operation that is in progress. We must redirty the
1015		 * page so that reclaim stops reclaiming it. Otherwise
1016		 * xfs_vm_releasepage() is called on it and gets confused.
1017		 *
1018		 * Note that the end_index is unsigned long, it would overflow
1019		 * if the given offset is greater than 16TB on 32-bit system
1020		 * and if we do check the page is fully outside i_size or not
1021		 * via "if (page->index >= end_index + 1)" as "end_index + 1"
1022		 * will be evaluated to 0.  Hence this page will be redirtied
1023		 * and be written out repeatedly which would result in an
1024		 * infinite loop, the user program that perform this operation
1025		 * will hang.  Instead, we can verify this situation by checking
1026		 * if the page to write is totally beyond the i_size or if it's
1027		 * offset is just equal to the EOF.
1028		 */
1029		if (page->index > end_index ||
1030		    (page->index == end_index && offset_into_page == 0))
1031			goto redirty;
1032
1033		/*
1034		 * The page straddles i_size.  It must be zeroed out on each
1035		 * and every writepage invocation because it may be mmapped.
1036		 * "A file is mapped in multiples of the page size.  For a file
1037		 * that is not a multiple of the page size, the remaining
1038		 * memory is zeroed when mapped, and writes to that region are
1039		 * not written out to the file."
1040		 */
1041		zero_user_segment(page, offset_into_page, PAGE_CACHE_SIZE);
1042
1043		/* Adjust the end_offset to the end of file */
1044		end_offset = offset;
1045	}
1046
1047	len = 1 << inode->i_blkbits;
1048
1049	bh = head = page_buffers(page);
1050	offset = page_offset(page);
1051	type = XFS_IO_OVERWRITE;
1052
1053	if (wbc->sync_mode == WB_SYNC_NONE)
1054		nonblocking = 1;
1055
1056	do {
1057		int new_ioend = 0;
1058
1059		if (offset >= end_offset)
1060			break;
1061		if (!buffer_uptodate(bh))
1062			uptodate = 0;
1063
1064		/*
1065		 * set_page_dirty dirties all buffers in a page, independent
1066		 * of their state.  The dirty state however is entirely
1067		 * meaningless for holes (!mapped && uptodate), so skip
1068		 * buffers covering holes here.
1069		 */
1070		if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
1071			imap_valid = 0;
1072			continue;
1073		}
1074
1075		if (buffer_unwritten(bh)) {
1076			if (type != XFS_IO_UNWRITTEN) {
1077				type = XFS_IO_UNWRITTEN;
1078				imap_valid = 0;
1079			}
1080		} else if (buffer_delay(bh)) {
1081			if (type != XFS_IO_DELALLOC) {
1082				type = XFS_IO_DELALLOC;
1083				imap_valid = 0;
1084			}
1085		} else if (buffer_uptodate(bh)) {
1086			if (type != XFS_IO_OVERWRITE) {
1087				type = XFS_IO_OVERWRITE;
1088				imap_valid = 0;
1089			}
1090		} else {
1091			if (PageUptodate(page))
1092				ASSERT(buffer_mapped(bh));
1093			/*
1094			 * This buffer is not uptodate and will not be
1095			 * written to disk.  Ensure that we will put any
1096			 * subsequent writeable buffers into a new
1097			 * ioend.
1098			 */
1099			imap_valid = 0;
1100			continue;
1101		}
1102
1103		if (imap_valid)
1104			imap_valid = xfs_imap_valid(inode, &imap, offset);
1105		if (!imap_valid) {
1106			/*
1107			 * If we didn't have a valid mapping then we need to
1108			 * put the new mapping into a separate ioend structure.
1109			 * This ensures non-contiguous extents always have
1110			 * separate ioends, which is particularly important
1111			 * for unwritten extent conversion at I/O completion
1112			 * time.
1113			 */
1114			new_ioend = 1;
1115			err = xfs_map_blocks(inode, offset, &imap, type,
1116					     nonblocking);
1117			if (err)
1118				goto error;
1119			imap_valid = xfs_imap_valid(inode, &imap, offset);
1120		}
1121		if (imap_valid) {
1122			lock_buffer(bh);
1123			if (type != XFS_IO_OVERWRITE)
1124				xfs_map_at_offset(inode, bh, &imap, offset);
1125			xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1126					 new_ioend);
1127			count++;
1128		}
1129
1130		if (!iohead)
1131			iohead = ioend;
1132
1133	} while (offset += len, ((bh = bh->b_this_page) != head));
1134
1135	if (uptodate && bh == head)
1136		SetPageUptodate(page);
1137
1138	xfs_start_page_writeback(page, 1, count);
1139
1140	/* if there is no IO to be submitted for this page, we are done */
1141	if (!ioend)
1142		return 0;
1143
1144	ASSERT(iohead);
1145
1146	/*
1147	 * Any errors from this point onwards need tobe reported through the IO
1148	 * completion path as we have marked the initial page as under writeback
1149	 * and unlocked it.
1150	 */
1151	if (imap_valid) {
1152		xfs_off_t		end_index;
1153
1154		end_index = imap.br_startoff + imap.br_blockcount;
1155
1156		/* to bytes */
1157		end_index <<= inode->i_blkbits;
1158
1159		/* to pages */
1160		end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1161
1162		/* check against file size */
1163		if (end_index > last_index)
1164			end_index = last_index;
1165
1166		xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1167				  wbc, end_index);
1168	}
1169
1170
1171	/*
1172	 * Reserve log space if we might write beyond the on-disk inode size.
1173	 */
1174	err = 0;
1175	if (ioend->io_type != XFS_IO_UNWRITTEN && xfs_ioend_is_append(ioend))
1176		err = xfs_setfilesize_trans_alloc(ioend);
1177
1178	xfs_submit_ioend(wbc, iohead, err);
1179
1180	return 0;
1181
1182error:
1183	if (iohead)
1184		xfs_cancel_ioend(iohead);
1185
1186	if (err == -EAGAIN)
1187		goto redirty;
1188
1189	xfs_aops_discard_page(page);
1190	ClearPageUptodate(page);
1191	unlock_page(page);
1192	return err;
1193
1194redirty:
1195	redirty_page_for_writepage(wbc, page);
1196	unlock_page(page);
1197	return 0;
1198}
1199
1200STATIC int
1201xfs_vm_writepages(
1202	struct address_space	*mapping,
1203	struct writeback_control *wbc)
1204{
1205	xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1206	return generic_writepages(mapping, wbc);
1207}
1208
1209/*
1210 * Called to move a page into cleanable state - and from there
1211 * to be released. The page should already be clean. We always
1212 * have buffer heads in this call.
1213 *
1214 * Returns 1 if the page is ok to release, 0 otherwise.
1215 */
1216STATIC int
1217xfs_vm_releasepage(
1218	struct page		*page,
1219	gfp_t			gfp_mask)
1220{
1221	int			delalloc, unwritten;
1222
1223	trace_xfs_releasepage(page->mapping->host, page, 0, 0);
1224
1225	xfs_count_page_state(page, &delalloc, &unwritten);
1226
1227	if (WARN_ON_ONCE(delalloc))
1228		return 0;
1229	if (WARN_ON_ONCE(unwritten))
1230		return 0;
1231
1232	return try_to_free_buffers(page);
1233}
1234
1235/*
1236 * When we map a DIO buffer, we may need to attach an ioend that describes the
1237 * type of write IO we are doing. This passes to the completion function the
1238 * operations it needs to perform. If the mapping is for an overwrite wholly
1239 * within the EOF then we don't need an ioend and so we don't allocate one.
1240 * This avoids the unnecessary overhead of allocating and freeing ioends for
1241 * workloads that don't require transactions on IO completion.
1242 *
1243 * If we get multiple mappings in a single IO, we might be mapping different
1244 * types. But because the direct IO can only have a single private pointer, we
1245 * need to ensure that:
1246 *
1247 * a) i) the ioend spans the entire region of unwritten mappings; or
1248 *    ii) the ioend spans all the mappings that cross or are beyond EOF; and
1249 * b) if it contains unwritten extents, it is *permanently* marked as such
1250 *
1251 * We could do this by chaining ioends like buffered IO does, but we only
1252 * actually get one IO completion callback from the direct IO, and that spans
1253 * the entire IO regardless of how many mappings and IOs are needed to complete
1254 * the DIO. There is only going to be one reference to the ioend and its life
1255 * cycle is constrained by the DIO completion code. hence we don't need
1256 * reference counting here.
1257 */
1258static void
1259xfs_map_direct(
1260	struct inode		*inode,
1261	struct buffer_head	*bh_result,
1262	struct xfs_bmbt_irec	*imap,
1263	xfs_off_t		offset)
1264{
1265	struct xfs_ioend	*ioend;
1266	xfs_off_t		size = bh_result->b_size;
1267	int			type;
1268
1269	if (ISUNWRITTEN(imap))
1270		type = XFS_IO_UNWRITTEN;
1271	else
1272		type = XFS_IO_OVERWRITE;
1273
1274	trace_xfs_gbmap_direct(XFS_I(inode), offset, size, type, imap);
1275
1276	if (bh_result->b_private) {
1277		ioend = bh_result->b_private;
1278		ASSERT(ioend->io_size > 0);
1279		ASSERT(offset >= ioend->io_offset);
1280		if (offset + size > ioend->io_offset + ioend->io_size)
1281			ioend->io_size = offset - ioend->io_offset + size;
1282
1283		if (type == XFS_IO_UNWRITTEN && type != ioend->io_type)
1284			ioend->io_type = XFS_IO_UNWRITTEN;
1285
1286		trace_xfs_gbmap_direct_update(XFS_I(inode), ioend->io_offset,
1287					      ioend->io_size, ioend->io_type,
1288					      imap);
1289	} else if (type == XFS_IO_UNWRITTEN ||
1290		   offset + size > i_size_read(inode)) {
1291		ioend = xfs_alloc_ioend(inode, type);
1292		ioend->io_offset = offset;
1293		ioend->io_size = size;
1294
1295		bh_result->b_private = ioend;
1296		set_buffer_defer_completion(bh_result);
1297
1298		trace_xfs_gbmap_direct_new(XFS_I(inode), offset, size, type,
1299					   imap);
1300	} else {
1301		trace_xfs_gbmap_direct_none(XFS_I(inode), offset, size, type,
1302					    imap);
1303	}
1304}
1305
1306/*
1307 * If this is O_DIRECT or the mpage code calling tell them how large the mapping
1308 * is, so that we can avoid repeated get_blocks calls.
1309 *
1310 * If the mapping spans EOF, then we have to break the mapping up as the mapping
1311 * for blocks beyond EOF must be marked new so that sub block regions can be
1312 * correctly zeroed. We can't do this for mappings within EOF unless the mapping
1313 * was just allocated or is unwritten, otherwise the callers would overwrite
1314 * existing data with zeros. Hence we have to split the mapping into a range up
1315 * to and including EOF, and a second mapping for beyond EOF.
1316 */
1317static void
1318xfs_map_trim_size(
1319	struct inode		*inode,
1320	sector_t		iblock,
1321	struct buffer_head	*bh_result,
1322	struct xfs_bmbt_irec	*imap,
1323	xfs_off_t		offset,
1324	ssize_t			size)
1325{
1326	xfs_off_t		mapping_size;
1327
1328	mapping_size = imap->br_startoff + imap->br_blockcount - iblock;
1329	mapping_size <<= inode->i_blkbits;
1330
1331	ASSERT(mapping_size > 0);
1332	if (mapping_size > size)
1333		mapping_size = size;
1334	if (offset < i_size_read(inode) &&
1335	    offset + mapping_size >= i_size_read(inode)) {
1336		/* limit mapping to block that spans EOF */
1337		mapping_size = roundup_64(i_size_read(inode) - offset,
1338					  1 << inode->i_blkbits);
1339	}
1340	if (mapping_size > LONG_MAX)
1341		mapping_size = LONG_MAX;
1342
1343	bh_result->b_size = mapping_size;
1344}
1345
1346STATIC int
1347__xfs_get_blocks(
1348	struct inode		*inode,
1349	sector_t		iblock,
1350	struct buffer_head	*bh_result,
1351	int			create,
1352	int			direct)
1353{
1354	struct xfs_inode	*ip = XFS_I(inode);
1355	struct xfs_mount	*mp = ip->i_mount;
1356	xfs_fileoff_t		offset_fsb, end_fsb;
1357	int			error = 0;
1358	int			lockmode = 0;
1359	struct xfs_bmbt_irec	imap;
1360	int			nimaps = 1;
1361	xfs_off_t		offset;
1362	ssize_t			size;
1363	int			new = 0;
1364
1365	if (XFS_FORCED_SHUTDOWN(mp))
1366		return -EIO;
1367
1368	offset = (xfs_off_t)iblock << inode->i_blkbits;
1369	ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1370	size = bh_result->b_size;
1371
1372	if (!create && direct && offset >= i_size_read(inode))
1373		return 0;
1374
1375	/*
1376	 * Direct I/O is usually done on preallocated files, so try getting
1377	 * a block mapping without an exclusive lock first.  For buffered
1378	 * writes we already have the exclusive iolock anyway, so avoiding
1379	 * a lock roundtrip here by taking the ilock exclusive from the
1380	 * beginning is a useful micro optimization.
1381	 */
1382	if (create && !direct) {
1383		lockmode = XFS_ILOCK_EXCL;
1384		xfs_ilock(ip, lockmode);
1385	} else {
1386		lockmode = xfs_ilock_data_map_shared(ip);
1387	}
1388
1389	ASSERT(offset <= mp->m_super->s_maxbytes);
1390	if (offset + size > mp->m_super->s_maxbytes)
1391		size = mp->m_super->s_maxbytes - offset;
1392	end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1393	offset_fsb = XFS_B_TO_FSBT(mp, offset);
1394
1395	error = xfs_bmapi_read(ip, offset_fsb, end_fsb - offset_fsb,
1396				&imap, &nimaps, XFS_BMAPI_ENTIRE);
1397	if (error)
1398		goto out_unlock;
1399
1400	if (create &&
1401	    (!nimaps ||
1402	     (imap.br_startblock == HOLESTARTBLOCK ||
1403	      imap.br_startblock == DELAYSTARTBLOCK))) {
1404		if (direct || xfs_get_extsz_hint(ip)) {
1405			/*
1406			 * Drop the ilock in preparation for starting the block
1407			 * allocation transaction.  It will be retaken
1408			 * exclusively inside xfs_iomap_write_direct for the
1409			 * actual allocation.
1410			 */
1411			xfs_iunlock(ip, lockmode);
1412			error = xfs_iomap_write_direct(ip, offset, size,
1413						       &imap, nimaps);
1414			if (error)
1415				return error;
1416			new = 1;
1417		} else {
1418			/*
1419			 * Delalloc reservations do not require a transaction,
1420			 * we can go on without dropping the lock here. If we
1421			 * are allocating a new delalloc block, make sure that
1422			 * we set the new flag so that we mark the buffer new so
1423			 * that we know that it is newly allocated if the write
1424			 * fails.
1425			 */
1426			if (nimaps && imap.br_startblock == HOLESTARTBLOCK)
1427				new = 1;
1428			error = xfs_iomap_write_delay(ip, offset, size, &imap);
1429			if (error)
1430				goto out_unlock;
1431
1432			xfs_iunlock(ip, lockmode);
1433		}
1434		trace_xfs_get_blocks_alloc(ip, offset, size,
1435				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1436						   : XFS_IO_DELALLOC, &imap);
1437	} else if (nimaps) {
1438		trace_xfs_get_blocks_found(ip, offset, size,
1439				ISUNWRITTEN(&imap) ? XFS_IO_UNWRITTEN
1440						   : XFS_IO_OVERWRITE, &imap);
1441		xfs_iunlock(ip, lockmode);
1442	} else {
1443		trace_xfs_get_blocks_notfound(ip, offset, size);
1444		goto out_unlock;
1445	}
1446
1447	/* trim mapping down to size requested */
1448	if (direct || size > (1 << inode->i_blkbits))
1449		xfs_map_trim_size(inode, iblock, bh_result,
1450				  &imap, offset, size);
1451
1452	/*
1453	 * For unwritten extents do not report a disk address in the buffered
1454	 * read case (treat as if we're reading into a hole).
1455	 */
1456	if (imap.br_startblock != HOLESTARTBLOCK &&
1457	    imap.br_startblock != DELAYSTARTBLOCK &&
1458	    (create || !ISUNWRITTEN(&imap))) {
1459		xfs_map_buffer(inode, bh_result, &imap, offset);
1460		if (ISUNWRITTEN(&imap))
1461			set_buffer_unwritten(bh_result);
1462		/* direct IO needs special help */
1463		if (create && direct)
1464			xfs_map_direct(inode, bh_result, &imap, offset);
1465	}
1466
1467	/*
1468	 * If this is a realtime file, data may be on a different device.
1469	 * to that pointed to from the buffer_head b_bdev currently.
1470	 */
1471	bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1472
1473	/*
1474	 * If we previously allocated a block out beyond eof and we are now
1475	 * coming back to use it then we will need to flag it as new even if it
1476	 * has a disk address.
1477	 *
1478	 * With sub-block writes into unwritten extents we also need to mark
1479	 * the buffer as new so that the unwritten parts of the buffer gets
1480	 * correctly zeroed.
1481	 */
1482	if (create &&
1483	    ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1484	     (offset >= i_size_read(inode)) ||
1485	     (new || ISUNWRITTEN(&imap))))
1486		set_buffer_new(bh_result);
1487
1488	if (imap.br_startblock == DELAYSTARTBLOCK) {
1489		BUG_ON(direct);
1490		if (create) {
1491			set_buffer_uptodate(bh_result);
1492			set_buffer_mapped(bh_result);
1493			set_buffer_delay(bh_result);
1494		}
1495	}
1496
1497	return 0;
1498
1499out_unlock:
1500	xfs_iunlock(ip, lockmode);
1501	return error;
1502}
1503
1504int
1505xfs_get_blocks(
1506	struct inode		*inode,
1507	sector_t		iblock,
1508	struct buffer_head	*bh_result,
1509	int			create)
1510{
1511	return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1512}
1513
1514STATIC int
1515xfs_get_blocks_direct(
1516	struct inode		*inode,
1517	sector_t		iblock,
1518	struct buffer_head	*bh_result,
1519	int			create)
1520{
1521	return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1522}
1523
1524/*
1525 * Complete a direct I/O write request.
1526 *
1527 * The ioend structure is passed from __xfs_get_blocks() to tell us what to do.
1528 * If no ioend exists (i.e. @private == NULL) then the write IO is an overwrite
1529 * wholly within the EOF and so there is nothing for us to do. Note that in this
1530 * case the completion can be called in interrupt context, whereas if we have an
1531 * ioend we will always be called in task context (i.e. from a workqueue).
1532 */
1533STATIC void
1534xfs_end_io_direct_write(
1535	struct kiocb		*iocb,
1536	loff_t			offset,
1537	ssize_t			size,
1538	void			*private)
1539{
1540	struct inode		*inode = file_inode(iocb->ki_filp);
1541	struct xfs_inode	*ip = XFS_I(inode);
1542	struct xfs_mount	*mp = ip->i_mount;
1543	struct xfs_ioend	*ioend = private;
1544
1545	trace_xfs_gbmap_direct_endio(ip, offset, size,
1546				     ioend ? ioend->io_type : 0, NULL);
1547
1548	if (!ioend) {
1549		ASSERT(offset + size <= i_size_read(inode));
1550		return;
1551	}
1552
1553	if (XFS_FORCED_SHUTDOWN(mp))
1554		goto out_end_io;
1555
1556	/*
1557	 * dio completion end_io functions are only called on writes if more
1558	 * than 0 bytes was written.
1559	 */
1560	ASSERT(size > 0);
1561
1562	/*
1563	 * The ioend only maps whole blocks, while the IO may be sector aligned.
1564	 * Hence the ioend offset/size may not match the IO offset/size exactly.
1565	 * Because we don't map overwrites within EOF into the ioend, the offset
1566	 * may not match, but only if the endio spans EOF.  Either way, write
1567	 * the IO sizes into the ioend so that completion processing does the
1568	 * right thing.
1569	 */
1570	ASSERT(offset + size <= ioend->io_offset + ioend->io_size);
1571	ioend->io_size = size;
1572	ioend->io_offset = offset;
1573
1574	/*
1575	 * The ioend tells us whether we are doing unwritten extent conversion
1576	 * or an append transaction that updates the on-disk file size. These
1577	 * cases are the only cases where we should *potentially* be needing
1578	 * to update the VFS inode size.
1579	 *
1580	 * We need to update the in-core inode size here so that we don't end up
1581	 * with the on-disk inode size being outside the in-core inode size. We
1582	 * have no other method of updating EOF for AIO, so always do it here
1583	 * if necessary.
1584	 *
1585	 * We need to lock the test/set EOF update as we can be racing with
1586	 * other IO completions here to update the EOF. Failing to serialise
1587	 * here can result in EOF moving backwards and Bad Things Happen when
1588	 * that occurs.
1589	 */
1590	spin_lock(&ip->i_flags_lock);
1591	if (offset + size > i_size_read(inode))
1592		i_size_write(inode, offset + size);
1593	spin_unlock(&ip->i_flags_lock);
1594
1595	/*
1596	 * If we are doing an append IO that needs to update the EOF on disk,
1597	 * do the transaction reserve now so we can use common end io
1598	 * processing. Stashing the error (if there is one) in the ioend will
1599	 * result in the ioend processing passing on the error if it is
1600	 * possible as we can't return it from here.
1601	 */
1602	if (ioend->io_type == XFS_IO_OVERWRITE)
1603		ioend->io_error = xfs_setfilesize_trans_alloc(ioend);
1604
1605out_end_io:
1606	xfs_end_io(&ioend->io_work);
1607	return;
1608}
1609
1610STATIC ssize_t
1611xfs_vm_direct_IO(
1612	struct kiocb		*iocb,
1613	struct iov_iter		*iter,
1614	loff_t			offset)
1615{
1616	struct inode		*inode = iocb->ki_filp->f_mapping->host;
1617	struct block_device	*bdev = xfs_find_bdev_for_inode(inode);
1618
1619	if (iov_iter_rw(iter) == WRITE) {
1620		return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1621					    xfs_get_blocks_direct,
1622					    xfs_end_io_direct_write, NULL,
1623					    DIO_ASYNC_EXTEND);
1624	}
1625	return __blockdev_direct_IO(iocb, inode, bdev, iter, offset,
1626				    xfs_get_blocks_direct, NULL, NULL, 0);
1627}
1628
1629/*
1630 * Punch out the delalloc blocks we have already allocated.
1631 *
1632 * Don't bother with xfs_setattr given that nothing can have made it to disk yet
1633 * as the page is still locked at this point.
1634 */
1635STATIC void
1636xfs_vm_kill_delalloc_range(
1637	struct inode		*inode,
1638	loff_t			start,
1639	loff_t			end)
1640{
1641	struct xfs_inode	*ip = XFS_I(inode);
1642	xfs_fileoff_t		start_fsb;
1643	xfs_fileoff_t		end_fsb;
1644	int			error;
1645
1646	start_fsb = XFS_B_TO_FSB(ip->i_mount, start);
1647	end_fsb = XFS_B_TO_FSB(ip->i_mount, end);
1648	if (end_fsb <= start_fsb)
1649		return;
1650
1651	xfs_ilock(ip, XFS_ILOCK_EXCL);
1652	error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1653						end_fsb - start_fsb);
1654	if (error) {
1655		/* something screwed, just bail */
1656		if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1657			xfs_alert(ip->i_mount,
1658		"xfs_vm_write_failed: unable to clean up ino %lld",
1659					ip->i_ino);
1660		}
1661	}
1662	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1663}
1664
1665STATIC void
1666xfs_vm_write_failed(
1667	struct inode		*inode,
1668	struct page		*page,
1669	loff_t			pos,
1670	unsigned		len)
1671{
1672	loff_t			block_offset;
1673	loff_t			block_start;
1674	loff_t			block_end;
1675	loff_t			from = pos & (PAGE_CACHE_SIZE - 1);
1676	loff_t			to = from + len;
1677	struct buffer_head	*bh, *head;
1678
1679	/*
1680	 * The request pos offset might be 32 or 64 bit, this is all fine
1681	 * on 64-bit platform.  However, for 64-bit pos request on 32-bit
1682	 * platform, the high 32-bit will be masked off if we evaluate the
1683	 * block_offset via (pos & PAGE_MASK) because the PAGE_MASK is
1684	 * 0xfffff000 as an unsigned long, hence the result is incorrect
1685	 * which could cause the following ASSERT failed in most cases.
1686	 * In order to avoid this, we can evaluate the block_offset of the
1687	 * start of the page by using shifts rather than masks the mismatch
1688	 * problem.
1689	 */
1690	block_offset = (pos >> PAGE_CACHE_SHIFT) << PAGE_CACHE_SHIFT;
1691
1692	ASSERT(block_offset + from == pos);
1693
1694	head = page_buffers(page);
1695	block_start = 0;
1696	for (bh = head; bh != head || !block_start;
1697	     bh = bh->b_this_page, block_start = block_end,
1698				   block_offset += bh->b_size) {
1699		block_end = block_start + bh->b_size;
1700
1701		/* skip buffers before the write */
1702		if (block_end <= from)
1703			continue;
1704
1705		/* if the buffer is after the write, we're done */
1706		if (block_start >= to)
1707			break;
1708
1709		if (!buffer_delay(bh))
1710			continue;
1711
1712		if (!buffer_new(bh) && block_offset < i_size_read(inode))
1713			continue;
1714
1715		xfs_vm_kill_delalloc_range(inode, block_offset,
1716					   block_offset + bh->b_size);
1717
1718		/*
1719		 * This buffer does not contain data anymore. make sure anyone
1720		 * who finds it knows that for certain.
1721		 */
1722		clear_buffer_delay(bh);
1723		clear_buffer_uptodate(bh);
1724		clear_buffer_mapped(bh);
1725		clear_buffer_new(bh);
1726		clear_buffer_dirty(bh);
1727	}
1728
1729}
1730
1731/*
1732 * This used to call block_write_begin(), but it unlocks and releases the page
1733 * on error, and we need that page to be able to punch stale delalloc blocks out
1734 * on failure. hence we copy-n-waste it here and call xfs_vm_write_failed() at
1735 * the appropriate point.
1736 */
1737STATIC int
1738xfs_vm_write_begin(
1739	struct file		*file,
1740	struct address_space	*mapping,
1741	loff_t			pos,
1742	unsigned		len,
1743	unsigned		flags,
1744	struct page		**pagep,
1745	void			**fsdata)
1746{
1747	pgoff_t			index = pos >> PAGE_CACHE_SHIFT;
1748	struct page		*page;
1749	int			status;
1750
1751	ASSERT(len <= PAGE_CACHE_SIZE);
1752
1753	page = grab_cache_page_write_begin(mapping, index, flags);
1754	if (!page)
1755		return -ENOMEM;
1756
1757	status = __block_write_begin(page, pos, len, xfs_get_blocks);
1758	if (unlikely(status)) {
1759		struct inode	*inode = mapping->host;
1760		size_t		isize = i_size_read(inode);
1761
1762		xfs_vm_write_failed(inode, page, pos, len);
1763		unlock_page(page);
1764
1765		/*
1766		 * If the write is beyond EOF, we only want to kill blocks
1767		 * allocated in this write, not blocks that were previously
1768		 * written successfully.
1769		 */
1770		if (pos + len > isize) {
1771			ssize_t start = max_t(ssize_t, pos, isize);
1772
1773			truncate_pagecache_range(inode, start, pos + len);
1774		}
1775
1776		page_cache_release(page);
1777		page = NULL;
1778	}
1779
1780	*pagep = page;
1781	return status;
1782}
1783
1784/*
1785 * On failure, we only need to kill delalloc blocks beyond EOF in the range of
1786 * this specific write because they will never be written. Previous writes
1787 * beyond EOF where block allocation succeeded do not need to be trashed, so
1788 * only new blocks from this write should be trashed. For blocks within
1789 * EOF, generic_write_end() zeros them so they are safe to leave alone and be
1790 * written with all the other valid data.
1791 */
1792STATIC int
1793xfs_vm_write_end(
1794	struct file		*file,
1795	struct address_space	*mapping,
1796	loff_t			pos,
1797	unsigned		len,
1798	unsigned		copied,
1799	struct page		*page,
1800	void			*fsdata)
1801{
1802	int			ret;
1803
1804	ASSERT(len <= PAGE_CACHE_SIZE);
1805
1806	ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1807	if (unlikely(ret < len)) {
1808		struct inode	*inode = mapping->host;
1809		size_t		isize = i_size_read(inode);
1810		loff_t		to = pos + len;
1811
1812		if (to > isize) {
1813			/* only kill blocks in this write beyond EOF */
1814			if (pos > isize)
1815				isize = pos;
1816			xfs_vm_kill_delalloc_range(inode, isize, to);
1817			truncate_pagecache_range(inode, isize, to);
1818		}
1819	}
1820	return ret;
1821}
1822
1823STATIC sector_t
1824xfs_vm_bmap(
1825	struct address_space	*mapping,
1826	sector_t		block)
1827{
1828	struct inode		*inode = (struct inode *)mapping->host;
1829	struct xfs_inode	*ip = XFS_I(inode);
1830
1831	trace_xfs_vm_bmap(XFS_I(inode));
1832	xfs_ilock(ip, XFS_IOLOCK_SHARED);
1833	filemap_write_and_wait(mapping);
1834	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1835	return generic_block_bmap(mapping, block, xfs_get_blocks);
1836}
1837
1838STATIC int
1839xfs_vm_readpage(
1840	struct file		*unused,
1841	struct page		*page)
1842{
1843	return mpage_readpage(page, xfs_get_blocks);
1844}
1845
1846STATIC int
1847xfs_vm_readpages(
1848	struct file		*unused,
1849	struct address_space	*mapping,
1850	struct list_head	*pages,
1851	unsigned		nr_pages)
1852{
1853	return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1854}
1855
1856/*
1857 * This is basically a copy of __set_page_dirty_buffers() with one
1858 * small tweak: buffers beyond EOF do not get marked dirty. If we mark them
1859 * dirty, we'll never be able to clean them because we don't write buffers
1860 * beyond EOF, and that means we can't invalidate pages that span EOF
1861 * that have been marked dirty. Further, the dirty state can leak into
1862 * the file interior if the file is extended, resulting in all sorts of
1863 * bad things happening as the state does not match the underlying data.
1864 *
1865 * XXX: this really indicates that bufferheads in XFS need to die. Warts like
1866 * this only exist because of bufferheads and how the generic code manages them.
1867 */
1868STATIC int
1869xfs_vm_set_page_dirty(
1870	struct page		*page)
1871{
1872	struct address_space	*mapping = page->mapping;
1873	struct inode		*inode = mapping->host;
1874	loff_t			end_offset;
1875	loff_t			offset;
1876	int			newly_dirty;
1877
1878	if (unlikely(!mapping))
1879		return !TestSetPageDirty(page);
1880
1881	end_offset = i_size_read(inode);
1882	offset = page_offset(page);
1883
1884	spin_lock(&mapping->private_lock);
1885	if (page_has_buffers(page)) {
1886		struct buffer_head *head = page_buffers(page);
1887		struct buffer_head *bh = head;
1888
1889		do {
1890			if (offset < end_offset)
1891				set_buffer_dirty(bh);
1892			bh = bh->b_this_page;
1893			offset += 1 << inode->i_blkbits;
1894		} while (bh != head);
1895	}
1896	newly_dirty = !TestSetPageDirty(page);
1897	spin_unlock(&mapping->private_lock);
1898
1899	if (newly_dirty) {
1900		/* sigh - __set_page_dirty() is static, so copy it here, too */
1901		unsigned long flags;
1902
1903		spin_lock_irqsave(&mapping->tree_lock, flags);
1904		if (page->mapping) {	/* Race with truncate? */
1905			WARN_ON_ONCE(!PageUptodate(page));
1906			account_page_dirtied(page, mapping);
1907			radix_tree_tag_set(&mapping->page_tree,
1908					page_index(page), PAGECACHE_TAG_DIRTY);
1909		}
1910		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1911		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1912	}
1913	return newly_dirty;
1914}
1915
1916const struct address_space_operations xfs_address_space_operations = {
1917	.readpage		= xfs_vm_readpage,
1918	.readpages		= xfs_vm_readpages,
1919	.writepage		= xfs_vm_writepage,
1920	.writepages		= xfs_vm_writepages,
1921	.set_page_dirty		= xfs_vm_set_page_dirty,
1922	.releasepage		= xfs_vm_releasepage,
1923	.invalidatepage		= xfs_vm_invalidatepage,
1924	.write_begin		= xfs_vm_write_begin,
1925	.write_end		= xfs_vm_write_end,
1926	.bmap			= xfs_vm_bmap,
1927	.direct_IO		= xfs_vm_direct_IO,
1928	.migratepage		= buffer_migrate_page,
1929	.is_partially_uptodate  = block_is_partially_uptodate,
1930	.error_remove_page	= generic_error_remove_page,
1931};
1932