1/*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
4 *
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17 */
18#include <linux/log2.h>
19
20#include "xfs.h"
21#include "xfs_fs.h"
22#include "xfs_shared.h"
23#include "xfs_format.h"
24#include "xfs_log_format.h"
25#include "xfs_trans_resv.h"
26#include "xfs_sb.h"
27#include "xfs_mount.h"
28#include "xfs_inode.h"
29#include "xfs_da_format.h"
30#include "xfs_da_btree.h"
31#include "xfs_dir2.h"
32#include "xfs_attr_sf.h"
33#include "xfs_attr.h"
34#include "xfs_trans_space.h"
35#include "xfs_trans.h"
36#include "xfs_buf_item.h"
37#include "xfs_inode_item.h"
38#include "xfs_ialloc.h"
39#include "xfs_bmap.h"
40#include "xfs_bmap_util.h"
41#include "xfs_error.h"
42#include "xfs_quota.h"
43#include "xfs_filestream.h"
44#include "xfs_cksum.h"
45#include "xfs_trace.h"
46#include "xfs_icache.h"
47#include "xfs_symlink.h"
48#include "xfs_trans_priv.h"
49#include "xfs_log.h"
50#include "xfs_bmap_btree.h"
51
52kmem_zone_t *xfs_inode_zone;
53
54/*
55 * Used in xfs_itruncate_extents().  This is the maximum number of extents
56 * freed from a file in a single transaction.
57 */
58#define	XFS_ITRUNC_MAX_EXTENTS	2
59
60STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61
62STATIC int xfs_iunlink_remove(xfs_trans_t *, xfs_inode_t *);
63
64/*
65 * helper function to extract extent size hint from inode
66 */
67xfs_extlen_t
68xfs_get_extsz_hint(
69	struct xfs_inode	*ip)
70{
71	if ((ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE) && ip->i_d.di_extsize)
72		return ip->i_d.di_extsize;
73	if (XFS_IS_REALTIME_INODE(ip))
74		return ip->i_mount->m_sb.sb_rextsize;
75	return 0;
76}
77
78/*
79 * These two are wrapper routines around the xfs_ilock() routine used to
80 * centralize some grungy code.  They are used in places that wish to lock the
81 * inode solely for reading the extents.  The reason these places can't just
82 * call xfs_ilock(ip, XFS_ILOCK_SHARED) is that the inode lock also guards to
83 * bringing in of the extents from disk for a file in b-tree format.  If the
84 * inode is in b-tree format, then we need to lock the inode exclusively until
85 * the extents are read in.  Locking it exclusively all the time would limit
86 * our parallelism unnecessarily, though.  What we do instead is check to see
87 * if the extents have been read in yet, and only lock the inode exclusively
88 * if they have not.
89 *
90 * The functions return a value which should be given to the corresponding
91 * xfs_iunlock() call.
92 */
93uint
94xfs_ilock_data_map_shared(
95	struct xfs_inode	*ip)
96{
97	uint			lock_mode = XFS_ILOCK_SHARED;
98
99	if (ip->i_d.di_format == XFS_DINODE_FMT_BTREE &&
100	    (ip->i_df.if_flags & XFS_IFEXTENTS) == 0)
101		lock_mode = XFS_ILOCK_EXCL;
102	xfs_ilock(ip, lock_mode);
103	return lock_mode;
104}
105
106uint
107xfs_ilock_attr_map_shared(
108	struct xfs_inode	*ip)
109{
110	uint			lock_mode = XFS_ILOCK_SHARED;
111
112	if (ip->i_d.di_aformat == XFS_DINODE_FMT_BTREE &&
113	    (ip->i_afp->if_flags & XFS_IFEXTENTS) == 0)
114		lock_mode = XFS_ILOCK_EXCL;
115	xfs_ilock(ip, lock_mode);
116	return lock_mode;
117}
118
119/*
120 * The xfs inode contains 3 multi-reader locks: the i_iolock the i_mmap_lock and
121 * the i_lock.  This routine allows various combinations of the locks to be
122 * obtained.
123 *
124 * The 3 locks should always be ordered so that the IO lock is obtained first,
125 * the mmap lock second and the ilock last in order to prevent deadlock.
126 *
127 * Basic locking order:
128 *
129 * i_iolock -> i_mmap_lock -> page_lock -> i_ilock
130 *
131 * mmap_sem locking order:
132 *
133 * i_iolock -> page lock -> mmap_sem
134 * mmap_sem -> i_mmap_lock -> page_lock
135 *
136 * The difference in mmap_sem locking order mean that we cannot hold the
137 * i_mmap_lock over syscall based read(2)/write(2) based IO. These IO paths can
138 * fault in pages during copy in/out (for buffered IO) or require the mmap_sem
139 * in get_user_pages() to map the user pages into the kernel address space for
140 * direct IO. Similarly the i_iolock cannot be taken inside a page fault because
141 * page faults already hold the mmap_sem.
142 *
143 * Hence to serialise fully against both syscall and mmap based IO, we need to
144 * take both the i_iolock and the i_mmap_lock. These locks should *only* be both
145 * taken in places where we need to invalidate the page cache in a race
146 * free manner (e.g. truncate, hole punch and other extent manipulation
147 * functions).
148 */
149void
150xfs_ilock(
151	xfs_inode_t		*ip,
152	uint			lock_flags)
153{
154	trace_xfs_ilock(ip, lock_flags, _RET_IP_);
155
156	/*
157	 * You can't set both SHARED and EXCL for the same lock,
158	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
159	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
160	 */
161	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
162	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
163	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
164	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
165	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
166	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
167	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
168
169	if (lock_flags & XFS_IOLOCK_EXCL)
170		mrupdate_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
171	else if (lock_flags & XFS_IOLOCK_SHARED)
172		mraccess_nested(&ip->i_iolock, XFS_IOLOCK_DEP(lock_flags));
173
174	if (lock_flags & XFS_MMAPLOCK_EXCL)
175		mrupdate_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
176	else if (lock_flags & XFS_MMAPLOCK_SHARED)
177		mraccess_nested(&ip->i_mmaplock, XFS_MMAPLOCK_DEP(lock_flags));
178
179	if (lock_flags & XFS_ILOCK_EXCL)
180		mrupdate_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
181	else if (lock_flags & XFS_ILOCK_SHARED)
182		mraccess_nested(&ip->i_lock, XFS_ILOCK_DEP(lock_flags));
183}
184
185/*
186 * This is just like xfs_ilock(), except that the caller
187 * is guaranteed not to sleep.  It returns 1 if it gets
188 * the requested locks and 0 otherwise.  If the IO lock is
189 * obtained but the inode lock cannot be, then the IO lock
190 * is dropped before returning.
191 *
192 * ip -- the inode being locked
193 * lock_flags -- this parameter indicates the inode's locks to be
194 *       to be locked.  See the comment for xfs_ilock() for a list
195 *	 of valid values.
196 */
197int
198xfs_ilock_nowait(
199	xfs_inode_t		*ip,
200	uint			lock_flags)
201{
202	trace_xfs_ilock_nowait(ip, lock_flags, _RET_IP_);
203
204	/*
205	 * You can't set both SHARED and EXCL for the same lock,
206	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
207	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
208	 */
209	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
210	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
211	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
212	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
213	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
214	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
215	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
216
217	if (lock_flags & XFS_IOLOCK_EXCL) {
218		if (!mrtryupdate(&ip->i_iolock))
219			goto out;
220	} else if (lock_flags & XFS_IOLOCK_SHARED) {
221		if (!mrtryaccess(&ip->i_iolock))
222			goto out;
223	}
224
225	if (lock_flags & XFS_MMAPLOCK_EXCL) {
226		if (!mrtryupdate(&ip->i_mmaplock))
227			goto out_undo_iolock;
228	} else if (lock_flags & XFS_MMAPLOCK_SHARED) {
229		if (!mrtryaccess(&ip->i_mmaplock))
230			goto out_undo_iolock;
231	}
232
233	if (lock_flags & XFS_ILOCK_EXCL) {
234		if (!mrtryupdate(&ip->i_lock))
235			goto out_undo_mmaplock;
236	} else if (lock_flags & XFS_ILOCK_SHARED) {
237		if (!mrtryaccess(&ip->i_lock))
238			goto out_undo_mmaplock;
239	}
240	return 1;
241
242out_undo_mmaplock:
243	if (lock_flags & XFS_MMAPLOCK_EXCL)
244		mrunlock_excl(&ip->i_mmaplock);
245	else if (lock_flags & XFS_MMAPLOCK_SHARED)
246		mrunlock_shared(&ip->i_mmaplock);
247out_undo_iolock:
248	if (lock_flags & XFS_IOLOCK_EXCL)
249		mrunlock_excl(&ip->i_iolock);
250	else if (lock_flags & XFS_IOLOCK_SHARED)
251		mrunlock_shared(&ip->i_iolock);
252out:
253	return 0;
254}
255
256/*
257 * xfs_iunlock() is used to drop the inode locks acquired with
258 * xfs_ilock() and xfs_ilock_nowait().  The caller must pass
259 * in the flags given to xfs_ilock() or xfs_ilock_nowait() so
260 * that we know which locks to drop.
261 *
262 * ip -- the inode being unlocked
263 * lock_flags -- this parameter indicates the inode's locks to be
264 *       to be unlocked.  See the comment for xfs_ilock() for a list
265 *	 of valid values for this parameter.
266 *
267 */
268void
269xfs_iunlock(
270	xfs_inode_t		*ip,
271	uint			lock_flags)
272{
273	/*
274	 * You can't set both SHARED and EXCL for the same lock,
275	 * and only XFS_IOLOCK_SHARED, XFS_IOLOCK_EXCL, XFS_ILOCK_SHARED,
276	 * and XFS_ILOCK_EXCL are valid values to set in lock_flags.
277	 */
278	ASSERT((lock_flags & (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL)) !=
279	       (XFS_IOLOCK_SHARED | XFS_IOLOCK_EXCL));
280	ASSERT((lock_flags & (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL)) !=
281	       (XFS_MMAPLOCK_SHARED | XFS_MMAPLOCK_EXCL));
282	ASSERT((lock_flags & (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL)) !=
283	       (XFS_ILOCK_SHARED | XFS_ILOCK_EXCL));
284	ASSERT((lock_flags & ~(XFS_LOCK_MASK | XFS_LOCK_DEP_MASK)) == 0);
285	ASSERT(lock_flags != 0);
286
287	if (lock_flags & XFS_IOLOCK_EXCL)
288		mrunlock_excl(&ip->i_iolock);
289	else if (lock_flags & XFS_IOLOCK_SHARED)
290		mrunlock_shared(&ip->i_iolock);
291
292	if (lock_flags & XFS_MMAPLOCK_EXCL)
293		mrunlock_excl(&ip->i_mmaplock);
294	else if (lock_flags & XFS_MMAPLOCK_SHARED)
295		mrunlock_shared(&ip->i_mmaplock);
296
297	if (lock_flags & XFS_ILOCK_EXCL)
298		mrunlock_excl(&ip->i_lock);
299	else if (lock_flags & XFS_ILOCK_SHARED)
300		mrunlock_shared(&ip->i_lock);
301
302	trace_xfs_iunlock(ip, lock_flags, _RET_IP_);
303}
304
305/*
306 * give up write locks.  the i/o lock cannot be held nested
307 * if it is being demoted.
308 */
309void
310xfs_ilock_demote(
311	xfs_inode_t		*ip,
312	uint			lock_flags)
313{
314	ASSERT(lock_flags & (XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL));
315	ASSERT((lock_flags &
316		~(XFS_IOLOCK_EXCL|XFS_MMAPLOCK_EXCL|XFS_ILOCK_EXCL)) == 0);
317
318	if (lock_flags & XFS_ILOCK_EXCL)
319		mrdemote(&ip->i_lock);
320	if (lock_flags & XFS_MMAPLOCK_EXCL)
321		mrdemote(&ip->i_mmaplock);
322	if (lock_flags & XFS_IOLOCK_EXCL)
323		mrdemote(&ip->i_iolock);
324
325	trace_xfs_ilock_demote(ip, lock_flags, _RET_IP_);
326}
327
328#if defined(DEBUG) || defined(XFS_WARN)
329int
330xfs_isilocked(
331	xfs_inode_t		*ip,
332	uint			lock_flags)
333{
334	if (lock_flags & (XFS_ILOCK_EXCL|XFS_ILOCK_SHARED)) {
335		if (!(lock_flags & XFS_ILOCK_SHARED))
336			return !!ip->i_lock.mr_writer;
337		return rwsem_is_locked(&ip->i_lock.mr_lock);
338	}
339
340	if (lock_flags & (XFS_MMAPLOCK_EXCL|XFS_MMAPLOCK_SHARED)) {
341		if (!(lock_flags & XFS_MMAPLOCK_SHARED))
342			return !!ip->i_mmaplock.mr_writer;
343		return rwsem_is_locked(&ip->i_mmaplock.mr_lock);
344	}
345
346	if (lock_flags & (XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED)) {
347		if (!(lock_flags & XFS_IOLOCK_SHARED))
348			return !!ip->i_iolock.mr_writer;
349		return rwsem_is_locked(&ip->i_iolock.mr_lock);
350	}
351
352	ASSERT(0);
353	return 0;
354}
355#endif
356
357#ifdef DEBUG
358int xfs_locked_n;
359int xfs_small_retries;
360int xfs_middle_retries;
361int xfs_lots_retries;
362int xfs_lock_delays;
363#endif
364
365/*
366 * Bump the subclass so xfs_lock_inodes() acquires each lock with a different
367 * value. This shouldn't be called for page fault locking, but we also need to
368 * ensure we don't overrun the number of lockdep subclasses for the iolock or
369 * mmaplock as that is limited to 12 by the mmap lock lockdep annotations.
370 */
371static inline int
372xfs_lock_inumorder(int lock_mode, int subclass)
373{
374	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
375		ASSERT(subclass + XFS_LOCK_INUMORDER <
376			(1 << (XFS_MMAPLOCK_SHIFT - XFS_IOLOCK_SHIFT)));
377		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_IOLOCK_SHIFT;
378	}
379
380	if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)) {
381		ASSERT(subclass + XFS_LOCK_INUMORDER <
382			(1 << (XFS_ILOCK_SHIFT - XFS_MMAPLOCK_SHIFT)));
383		lock_mode |= (subclass + XFS_LOCK_INUMORDER) <<
384							XFS_MMAPLOCK_SHIFT;
385	}
386
387	if (lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL))
388		lock_mode |= (subclass + XFS_LOCK_INUMORDER) << XFS_ILOCK_SHIFT;
389
390	return lock_mode;
391}
392
393/*
394 * The following routine will lock n inodes in exclusive mode.  We assume the
395 * caller calls us with the inodes in i_ino order.
396 *
397 * We need to detect deadlock where an inode that we lock is in the AIL and we
398 * start waiting for another inode that is locked by a thread in a long running
399 * transaction (such as truncate). This can result in deadlock since the long
400 * running trans might need to wait for the inode we just locked in order to
401 * push the tail and free space in the log.
402 */
403void
404xfs_lock_inodes(
405	xfs_inode_t	**ips,
406	int		inodes,
407	uint		lock_mode)
408{
409	int		attempts = 0, i, j, try_lock;
410	xfs_log_item_t	*lp;
411
412	/* currently supports between 2 and 5 inodes */
413	ASSERT(ips && inodes >= 2 && inodes <= 5);
414
415	try_lock = 0;
416	i = 0;
417again:
418	for (; i < inodes; i++) {
419		ASSERT(ips[i]);
420
421		if (i && (ips[i] == ips[i - 1]))	/* Already locked */
422			continue;
423
424		/*
425		 * If try_lock is not set yet, make sure all locked inodes are
426		 * not in the AIL.  If any are, set try_lock to be used later.
427		 */
428		if (!try_lock) {
429			for (j = (i - 1); j >= 0 && !try_lock; j--) {
430				lp = (xfs_log_item_t *)ips[j]->i_itemp;
431				if (lp && (lp->li_flags & XFS_LI_IN_AIL))
432					try_lock++;
433			}
434		}
435
436		/*
437		 * If any of the previous locks we have locked is in the AIL,
438		 * we must TRY to get the second and subsequent locks. If
439		 * we can't get any, we must release all we have
440		 * and try again.
441		 */
442		if (!try_lock) {
443			xfs_ilock(ips[i], xfs_lock_inumorder(lock_mode, i));
444			continue;
445		}
446
447		/* try_lock means we have an inode locked that is in the AIL. */
448		ASSERT(i != 0);
449		if (xfs_ilock_nowait(ips[i], xfs_lock_inumorder(lock_mode, i)))
450			continue;
451
452		/*
453		 * Unlock all previous guys and try again.  xfs_iunlock will try
454		 * to push the tail if the inode is in the AIL.
455		 */
456		attempts++;
457		for (j = i - 1; j >= 0; j--) {
458			/*
459			 * Check to see if we've already unlocked this one.  Not
460			 * the first one going back, and the inode ptr is the
461			 * same.
462			 */
463			if (j != (i - 1) && ips[j] == ips[j + 1])
464				continue;
465
466			xfs_iunlock(ips[j], lock_mode);
467		}
468
469		if ((attempts % 5) == 0) {
470			delay(1); /* Don't just spin the CPU */
471#ifdef DEBUG
472			xfs_lock_delays++;
473#endif
474		}
475		i = 0;
476		try_lock = 0;
477		goto again;
478	}
479
480#ifdef DEBUG
481	if (attempts) {
482		if (attempts < 5) xfs_small_retries++;
483		else if (attempts < 100) xfs_middle_retries++;
484		else xfs_lots_retries++;
485	} else {
486		xfs_locked_n++;
487	}
488#endif
489}
490
491/*
492 * xfs_lock_two_inodes() can only be used to lock one type of lock at a time -
493 * the iolock, the mmaplock or the ilock, but not more than one at a time. If we
494 * lock more than one at a time, lockdep will report false positives saying we
495 * have violated locking orders.
496 */
497void
498xfs_lock_two_inodes(
499	xfs_inode_t		*ip0,
500	xfs_inode_t		*ip1,
501	uint			lock_mode)
502{
503	xfs_inode_t		*temp;
504	int			attempts = 0;
505	xfs_log_item_t		*lp;
506
507	if (lock_mode & (XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL)) {
508		ASSERT(!(lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL)));
509		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
510	} else if (lock_mode & (XFS_MMAPLOCK_SHARED|XFS_MMAPLOCK_EXCL))
511		ASSERT(!(lock_mode & (XFS_ILOCK_SHARED|XFS_ILOCK_EXCL)));
512
513	ASSERT(ip0->i_ino != ip1->i_ino);
514
515	if (ip0->i_ino > ip1->i_ino) {
516		temp = ip0;
517		ip0 = ip1;
518		ip1 = temp;
519	}
520
521 again:
522	xfs_ilock(ip0, xfs_lock_inumorder(lock_mode, 0));
523
524	/*
525	 * If the first lock we have locked is in the AIL, we must TRY to get
526	 * the second lock. If we can't get it, we must release the first one
527	 * and try again.
528	 */
529	lp = (xfs_log_item_t *)ip0->i_itemp;
530	if (lp && (lp->li_flags & XFS_LI_IN_AIL)) {
531		if (!xfs_ilock_nowait(ip1, xfs_lock_inumorder(lock_mode, 1))) {
532			xfs_iunlock(ip0, lock_mode);
533			if ((++attempts % 5) == 0)
534				delay(1); /* Don't just spin the CPU */
535			goto again;
536		}
537	} else {
538		xfs_ilock(ip1, xfs_lock_inumorder(lock_mode, 1));
539	}
540}
541
542
543void
544__xfs_iflock(
545	struct xfs_inode	*ip)
546{
547	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IFLOCK_BIT);
548	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IFLOCK_BIT);
549
550	do {
551		prepare_to_wait_exclusive(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
552		if (xfs_isiflocked(ip))
553			io_schedule();
554	} while (!xfs_iflock_nowait(ip));
555
556	finish_wait(wq, &wait.wait);
557}
558
559STATIC uint
560_xfs_dic2xflags(
561	__uint16_t		di_flags)
562{
563	uint			flags = 0;
564
565	if (di_flags & XFS_DIFLAG_ANY) {
566		if (di_flags & XFS_DIFLAG_REALTIME)
567			flags |= XFS_XFLAG_REALTIME;
568		if (di_flags & XFS_DIFLAG_PREALLOC)
569			flags |= XFS_XFLAG_PREALLOC;
570		if (di_flags & XFS_DIFLAG_IMMUTABLE)
571			flags |= XFS_XFLAG_IMMUTABLE;
572		if (di_flags & XFS_DIFLAG_APPEND)
573			flags |= XFS_XFLAG_APPEND;
574		if (di_flags & XFS_DIFLAG_SYNC)
575			flags |= XFS_XFLAG_SYNC;
576		if (di_flags & XFS_DIFLAG_NOATIME)
577			flags |= XFS_XFLAG_NOATIME;
578		if (di_flags & XFS_DIFLAG_NODUMP)
579			flags |= XFS_XFLAG_NODUMP;
580		if (di_flags & XFS_DIFLAG_RTINHERIT)
581			flags |= XFS_XFLAG_RTINHERIT;
582		if (di_flags & XFS_DIFLAG_PROJINHERIT)
583			flags |= XFS_XFLAG_PROJINHERIT;
584		if (di_flags & XFS_DIFLAG_NOSYMLINKS)
585			flags |= XFS_XFLAG_NOSYMLINKS;
586		if (di_flags & XFS_DIFLAG_EXTSIZE)
587			flags |= XFS_XFLAG_EXTSIZE;
588		if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
589			flags |= XFS_XFLAG_EXTSZINHERIT;
590		if (di_flags & XFS_DIFLAG_NODEFRAG)
591			flags |= XFS_XFLAG_NODEFRAG;
592		if (di_flags & XFS_DIFLAG_FILESTREAM)
593			flags |= XFS_XFLAG_FILESTREAM;
594	}
595
596	return flags;
597}
598
599uint
600xfs_ip2xflags(
601	xfs_inode_t		*ip)
602{
603	xfs_icdinode_t		*dic = &ip->i_d;
604
605	return _xfs_dic2xflags(dic->di_flags) |
606				(XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
607}
608
609uint
610xfs_dic2xflags(
611	xfs_dinode_t		*dip)
612{
613	return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
614				(XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
615}
616
617/*
618 * Lookups up an inode from "name". If ci_name is not NULL, then a CI match
619 * is allowed, otherwise it has to be an exact match. If a CI match is found,
620 * ci_name->name will point to a the actual name (caller must free) or
621 * will be set to NULL if an exact match is found.
622 */
623int
624xfs_lookup(
625	xfs_inode_t		*dp,
626	struct xfs_name		*name,
627	xfs_inode_t		**ipp,
628	struct xfs_name		*ci_name)
629{
630	xfs_ino_t		inum;
631	int			error;
632	uint			lock_mode;
633
634	trace_xfs_lookup(dp, name);
635
636	if (XFS_FORCED_SHUTDOWN(dp->i_mount))
637		return -EIO;
638
639	lock_mode = xfs_ilock_data_map_shared(dp);
640	error = xfs_dir_lookup(NULL, dp, name, &inum, ci_name);
641	xfs_iunlock(dp, lock_mode);
642
643	if (error)
644		goto out;
645
646	error = xfs_iget(dp->i_mount, NULL, inum, 0, 0, ipp);
647	if (error)
648		goto out_free_name;
649
650	return 0;
651
652out_free_name:
653	if (ci_name)
654		kmem_free(ci_name->name);
655out:
656	*ipp = NULL;
657	return error;
658}
659
660/*
661 * Allocate an inode on disk and return a copy of its in-core version.
662 * The in-core inode is locked exclusively.  Set mode, nlink, and rdev
663 * appropriately within the inode.  The uid and gid for the inode are
664 * set according to the contents of the given cred structure.
665 *
666 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
667 * has a free inode available, call xfs_iget() to obtain the in-core
668 * version of the allocated inode.  Finally, fill in the inode and
669 * log its initial contents.  In this case, ialloc_context would be
670 * set to NULL.
671 *
672 * If xfs_dialloc() does not have an available inode, it will replenish
673 * its supply by doing an allocation. Since we can only do one
674 * allocation within a transaction without deadlocks, we must commit
675 * the current transaction before returning the inode itself.
676 * In this case, therefore, we will set ialloc_context and return.
677 * The caller should then commit the current transaction, start a new
678 * transaction, and call xfs_ialloc() again to actually get the inode.
679 *
680 * To ensure that some other process does not grab the inode that
681 * was allocated during the first call to xfs_ialloc(), this routine
682 * also returns the [locked] bp pointing to the head of the freelist
683 * as ialloc_context.  The caller should hold this buffer across
684 * the commit and pass it back into this routine on the second call.
685 *
686 * If we are allocating quota inodes, we do not have a parent inode
687 * to attach to or associate with (i.e. pip == NULL) because they
688 * are not linked into the directory structure - they are attached
689 * directly to the superblock - and so have no parent.
690 */
691int
692xfs_ialloc(
693	xfs_trans_t	*tp,
694	xfs_inode_t	*pip,
695	umode_t		mode,
696	xfs_nlink_t	nlink,
697	xfs_dev_t	rdev,
698	prid_t		prid,
699	int		okalloc,
700	xfs_buf_t	**ialloc_context,
701	xfs_inode_t	**ipp)
702{
703	struct xfs_mount *mp = tp->t_mountp;
704	xfs_ino_t	ino;
705	xfs_inode_t	*ip;
706	uint		flags;
707	int		error;
708	struct timespec	tv;
709
710	/*
711	 * Call the space management code to pick
712	 * the on-disk inode to be allocated.
713	 */
714	error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
715			    ialloc_context, &ino);
716	if (error)
717		return error;
718	if (*ialloc_context || ino == NULLFSINO) {
719		*ipp = NULL;
720		return 0;
721	}
722	ASSERT(*ialloc_context == NULL);
723
724	/*
725	 * Get the in-core inode with the lock held exclusively.
726	 * This is because we're setting fields here we need
727	 * to prevent others from looking at until we're done.
728	 */
729	error = xfs_iget(mp, tp, ino, XFS_IGET_CREATE,
730			 XFS_ILOCK_EXCL, &ip);
731	if (error)
732		return error;
733	ASSERT(ip != NULL);
734
735	/*
736	 * We always convert v1 inodes to v2 now - we only support filesystems
737	 * with >= v2 inode capability, so there is no reason for ever leaving
738	 * an inode in v1 format.
739	 */
740	if (ip->i_d.di_version == 1)
741		ip->i_d.di_version = 2;
742
743	ip->i_d.di_mode = mode;
744	ip->i_d.di_onlink = 0;
745	ip->i_d.di_nlink = nlink;
746	ASSERT(ip->i_d.di_nlink == nlink);
747	ip->i_d.di_uid = xfs_kuid_to_uid(current_fsuid());
748	ip->i_d.di_gid = xfs_kgid_to_gid(current_fsgid());
749	xfs_set_projid(ip, prid);
750	memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
751
752	if (pip && XFS_INHERIT_GID(pip)) {
753		ip->i_d.di_gid = pip->i_d.di_gid;
754		if ((pip->i_d.di_mode & S_ISGID) && S_ISDIR(mode)) {
755			ip->i_d.di_mode |= S_ISGID;
756		}
757	}
758
759	/*
760	 * If the group ID of the new file does not match the effective group
761	 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
762	 * (and only if the irix_sgid_inherit compatibility variable is set).
763	 */
764	if ((irix_sgid_inherit) &&
765	    (ip->i_d.di_mode & S_ISGID) &&
766	    (!in_group_p(xfs_gid_to_kgid(ip->i_d.di_gid)))) {
767		ip->i_d.di_mode &= ~S_ISGID;
768	}
769
770	ip->i_d.di_size = 0;
771	ip->i_d.di_nextents = 0;
772	ASSERT(ip->i_d.di_nblocks == 0);
773
774	tv = current_fs_time(mp->m_super);
775	ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
776	ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
777	ip->i_d.di_atime = ip->i_d.di_mtime;
778	ip->i_d.di_ctime = ip->i_d.di_mtime;
779
780	/*
781	 * di_gen will have been taken care of in xfs_iread.
782	 */
783	ip->i_d.di_extsize = 0;
784	ip->i_d.di_dmevmask = 0;
785	ip->i_d.di_dmstate = 0;
786	ip->i_d.di_flags = 0;
787
788	if (ip->i_d.di_version == 3) {
789		ASSERT(ip->i_d.di_ino == ino);
790		ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_uuid));
791		ip->i_d.di_crc = 0;
792		ip->i_d.di_changecount = 1;
793		ip->i_d.di_lsn = 0;
794		ip->i_d.di_flags2 = 0;
795		memset(&(ip->i_d.di_pad2[0]), 0, sizeof(ip->i_d.di_pad2));
796		ip->i_d.di_crtime = ip->i_d.di_mtime;
797	}
798
799
800	flags = XFS_ILOG_CORE;
801	switch (mode & S_IFMT) {
802	case S_IFIFO:
803	case S_IFCHR:
804	case S_IFBLK:
805	case S_IFSOCK:
806		ip->i_d.di_format = XFS_DINODE_FMT_DEV;
807		ip->i_df.if_u2.if_rdev = rdev;
808		ip->i_df.if_flags = 0;
809		flags |= XFS_ILOG_DEV;
810		break;
811	case S_IFREG:
812	case S_IFDIR:
813		if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
814			uint	di_flags = 0;
815
816			if (S_ISDIR(mode)) {
817				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
818					di_flags |= XFS_DIFLAG_RTINHERIT;
819				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
820					di_flags |= XFS_DIFLAG_EXTSZINHERIT;
821					ip->i_d.di_extsize = pip->i_d.di_extsize;
822				}
823				if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
824					di_flags |= XFS_DIFLAG_PROJINHERIT;
825			} else if (S_ISREG(mode)) {
826				if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
827					di_flags |= XFS_DIFLAG_REALTIME;
828				if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
829					di_flags |= XFS_DIFLAG_EXTSIZE;
830					ip->i_d.di_extsize = pip->i_d.di_extsize;
831				}
832			}
833			if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
834			    xfs_inherit_noatime)
835				di_flags |= XFS_DIFLAG_NOATIME;
836			if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
837			    xfs_inherit_nodump)
838				di_flags |= XFS_DIFLAG_NODUMP;
839			if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
840			    xfs_inherit_sync)
841				di_flags |= XFS_DIFLAG_SYNC;
842			if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
843			    xfs_inherit_nosymlinks)
844				di_flags |= XFS_DIFLAG_NOSYMLINKS;
845			if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
846			    xfs_inherit_nodefrag)
847				di_flags |= XFS_DIFLAG_NODEFRAG;
848			if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
849				di_flags |= XFS_DIFLAG_FILESTREAM;
850			ip->i_d.di_flags |= di_flags;
851		}
852		/* FALLTHROUGH */
853	case S_IFLNK:
854		ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
855		ip->i_df.if_flags = XFS_IFEXTENTS;
856		ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
857		ip->i_df.if_u1.if_extents = NULL;
858		break;
859	default:
860		ASSERT(0);
861	}
862	/*
863	 * Attribute fork settings for new inode.
864	 */
865	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
866	ip->i_d.di_anextents = 0;
867
868	/*
869	 * Log the new values stuffed into the inode.
870	 */
871	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
872	xfs_trans_log_inode(tp, ip, flags);
873
874	/* now that we have an i_mode we can setup the inode structure */
875	xfs_setup_inode(ip);
876
877	*ipp = ip;
878	return 0;
879}
880
881/*
882 * Allocates a new inode from disk and return a pointer to the
883 * incore copy. This routine will internally commit the current
884 * transaction and allocate a new one if the Space Manager needed
885 * to do an allocation to replenish the inode free-list.
886 *
887 * This routine is designed to be called from xfs_create and
888 * xfs_create_dir.
889 *
890 */
891int
892xfs_dir_ialloc(
893	xfs_trans_t	**tpp,		/* input: current transaction;
894					   output: may be a new transaction. */
895	xfs_inode_t	*dp,		/* directory within whose allocate
896					   the inode. */
897	umode_t		mode,
898	xfs_nlink_t	nlink,
899	xfs_dev_t	rdev,
900	prid_t		prid,		/* project id */
901	int		okalloc,	/* ok to allocate new space */
902	xfs_inode_t	**ipp,		/* pointer to inode; it will be
903					   locked. */
904	int		*committed)
905
906{
907	xfs_trans_t	*tp;
908	xfs_trans_t	*ntp;
909	xfs_inode_t	*ip;
910	xfs_buf_t	*ialloc_context = NULL;
911	int		code;
912	void		*dqinfo;
913	uint		tflags;
914
915	tp = *tpp;
916	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
917
918	/*
919	 * xfs_ialloc will return a pointer to an incore inode if
920	 * the Space Manager has an available inode on the free
921	 * list. Otherwise, it will do an allocation and replenish
922	 * the freelist.  Since we can only do one allocation per
923	 * transaction without deadlocks, we will need to commit the
924	 * current transaction and start a new one.  We will then
925	 * need to call xfs_ialloc again to get the inode.
926	 *
927	 * If xfs_ialloc did an allocation to replenish the freelist,
928	 * it returns the bp containing the head of the freelist as
929	 * ialloc_context. We will hold a lock on it across the
930	 * transaction commit so that no other process can steal
931	 * the inode(s) that we've just allocated.
932	 */
933	code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid, okalloc,
934			  &ialloc_context, &ip);
935
936	/*
937	 * Return an error if we were unable to allocate a new inode.
938	 * This should only happen if we run out of space on disk or
939	 * encounter a disk error.
940	 */
941	if (code) {
942		*ipp = NULL;
943		return code;
944	}
945	if (!ialloc_context && !ip) {
946		*ipp = NULL;
947		return -ENOSPC;
948	}
949
950	/*
951	 * If the AGI buffer is non-NULL, then we were unable to get an
952	 * inode in one operation.  We need to commit the current
953	 * transaction and call xfs_ialloc() again.  It is guaranteed
954	 * to succeed the second time.
955	 */
956	if (ialloc_context) {
957		struct xfs_trans_res tres;
958
959		/*
960		 * Normally, xfs_trans_commit releases all the locks.
961		 * We call bhold to hang on to the ialloc_context across
962		 * the commit.  Holding this buffer prevents any other
963		 * processes from doing any allocations in this
964		 * allocation group.
965		 */
966		xfs_trans_bhold(tp, ialloc_context);
967		/*
968		 * Save the log reservation so we can use
969		 * them in the next transaction.
970		 */
971		tres.tr_logres = xfs_trans_get_log_res(tp);
972		tres.tr_logcount = xfs_trans_get_log_count(tp);
973
974		/*
975		 * We want the quota changes to be associated with the next
976		 * transaction, NOT this one. So, detach the dqinfo from this
977		 * and attach it to the next transaction.
978		 */
979		dqinfo = NULL;
980		tflags = 0;
981		if (tp->t_dqinfo) {
982			dqinfo = (void *)tp->t_dqinfo;
983			tp->t_dqinfo = NULL;
984			tflags = tp->t_flags & XFS_TRANS_DQ_DIRTY;
985			tp->t_flags &= ~(XFS_TRANS_DQ_DIRTY);
986		}
987
988		ntp = xfs_trans_dup(tp);
989		code = xfs_trans_commit(tp, 0);
990		tp = ntp;
991		if (committed != NULL) {
992			*committed = 1;
993		}
994		/*
995		 * If we get an error during the commit processing,
996		 * release the buffer that is still held and return
997		 * to the caller.
998		 */
999		if (code) {
1000			xfs_buf_relse(ialloc_context);
1001			if (dqinfo) {
1002				tp->t_dqinfo = dqinfo;
1003				xfs_trans_free_dqinfo(tp);
1004			}
1005			*tpp = ntp;
1006			*ipp = NULL;
1007			return code;
1008		}
1009
1010		/*
1011		 * transaction commit worked ok so we can drop the extra ticket
1012		 * reference that we gained in xfs_trans_dup()
1013		 */
1014		xfs_log_ticket_put(tp->t_ticket);
1015		tres.tr_logflags = XFS_TRANS_PERM_LOG_RES;
1016		code = xfs_trans_reserve(tp, &tres, 0, 0);
1017
1018		/*
1019		 * Re-attach the quota info that we detached from prev trx.
1020		 */
1021		if (dqinfo) {
1022			tp->t_dqinfo = dqinfo;
1023			tp->t_flags |= tflags;
1024		}
1025
1026		if (code) {
1027			xfs_buf_relse(ialloc_context);
1028			*tpp = ntp;
1029			*ipp = NULL;
1030			return code;
1031		}
1032		xfs_trans_bjoin(tp, ialloc_context);
1033
1034		/*
1035		 * Call ialloc again. Since we've locked out all
1036		 * other allocations in this allocation group,
1037		 * this call should always succeed.
1038		 */
1039		code = xfs_ialloc(tp, dp, mode, nlink, rdev, prid,
1040				  okalloc, &ialloc_context, &ip);
1041
1042		/*
1043		 * If we get an error at this point, return to the caller
1044		 * so that the current transaction can be aborted.
1045		 */
1046		if (code) {
1047			*tpp = tp;
1048			*ipp = NULL;
1049			return code;
1050		}
1051		ASSERT(!ialloc_context && ip);
1052
1053	} else {
1054		if (committed != NULL)
1055			*committed = 0;
1056	}
1057
1058	*ipp = ip;
1059	*tpp = tp;
1060
1061	return 0;
1062}
1063
1064/*
1065 * Decrement the link count on an inode & log the change.
1066 * If this causes the link count to go to zero, initiate the
1067 * logging activity required to truncate a file.
1068 */
1069int				/* error */
1070xfs_droplink(
1071	xfs_trans_t *tp,
1072	xfs_inode_t *ip)
1073{
1074	int	error;
1075
1076	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1077
1078	ASSERT (ip->i_d.di_nlink > 0);
1079	ip->i_d.di_nlink--;
1080	drop_nlink(VFS_I(ip));
1081	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1082
1083	error = 0;
1084	if (ip->i_d.di_nlink == 0) {
1085		/*
1086		 * We're dropping the last link to this file.
1087		 * Move the on-disk inode to the AGI unlinked list.
1088		 * From xfs_inactive() we will pull the inode from
1089		 * the list and free it.
1090		 */
1091		error = xfs_iunlink(tp, ip);
1092	}
1093	return error;
1094}
1095
1096/*
1097 * Increment the link count on an inode & log the change.
1098 */
1099int
1100xfs_bumplink(
1101	xfs_trans_t *tp,
1102	xfs_inode_t *ip)
1103{
1104	xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG);
1105
1106	ASSERT(ip->i_d.di_version > 1);
1107	ASSERT(ip->i_d.di_nlink > 0 || (VFS_I(ip)->i_state & I_LINKABLE));
1108	ip->i_d.di_nlink++;
1109	inc_nlink(VFS_I(ip));
1110	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1111	return 0;
1112}
1113
1114int
1115xfs_create(
1116	xfs_inode_t		*dp,
1117	struct xfs_name		*name,
1118	umode_t			mode,
1119	xfs_dev_t		rdev,
1120	xfs_inode_t		**ipp)
1121{
1122	int			is_dir = S_ISDIR(mode);
1123	struct xfs_mount	*mp = dp->i_mount;
1124	struct xfs_inode	*ip = NULL;
1125	struct xfs_trans	*tp = NULL;
1126	int			error;
1127	xfs_bmap_free_t		free_list;
1128	xfs_fsblock_t		first_block;
1129	bool                    unlock_dp_on_error = false;
1130	uint			cancel_flags;
1131	int			committed;
1132	prid_t			prid;
1133	struct xfs_dquot	*udqp = NULL;
1134	struct xfs_dquot	*gdqp = NULL;
1135	struct xfs_dquot	*pdqp = NULL;
1136	struct xfs_trans_res	*tres;
1137	uint			resblks;
1138
1139	trace_xfs_create(dp, name);
1140
1141	if (XFS_FORCED_SHUTDOWN(mp))
1142		return -EIO;
1143
1144	prid = xfs_get_initial_prid(dp);
1145
1146	/*
1147	 * Make sure that we have allocated dquot(s) on disk.
1148	 */
1149	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1150					xfs_kgid_to_gid(current_fsgid()), prid,
1151					XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1152					&udqp, &gdqp, &pdqp);
1153	if (error)
1154		return error;
1155
1156	if (is_dir) {
1157		rdev = 0;
1158		resblks = XFS_MKDIR_SPACE_RES(mp, name->len);
1159		tres = &M_RES(mp)->tr_mkdir;
1160		tp = xfs_trans_alloc(mp, XFS_TRANS_MKDIR);
1161	} else {
1162		resblks = XFS_CREATE_SPACE_RES(mp, name->len);
1163		tres = &M_RES(mp)->tr_create;
1164		tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE);
1165	}
1166
1167	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1168
1169	/*
1170	 * Initially assume that the file does not exist and
1171	 * reserve the resources for that case.  If that is not
1172	 * the case we'll drop the one we have and get a more
1173	 * appropriate transaction later.
1174	 */
1175	error = xfs_trans_reserve(tp, tres, resblks, 0);
1176	if (error == -ENOSPC) {
1177		/* flush outstanding delalloc blocks and retry */
1178		xfs_flush_inodes(mp);
1179		error = xfs_trans_reserve(tp, tres, resblks, 0);
1180	}
1181	if (error == -ENOSPC) {
1182		/* No space at all so try a "no-allocation" reservation */
1183		resblks = 0;
1184		error = xfs_trans_reserve(tp, tres, 0, 0);
1185	}
1186	if (error) {
1187		cancel_flags = 0;
1188		goto out_trans_cancel;
1189	}
1190
1191	xfs_ilock(dp, XFS_ILOCK_EXCL | XFS_ILOCK_PARENT);
1192	unlock_dp_on_error = true;
1193
1194	xfs_bmap_init(&free_list, &first_block);
1195
1196	/*
1197	 * Reserve disk quota and the inode.
1198	 */
1199	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1200						pdqp, resblks, 1, 0);
1201	if (error)
1202		goto out_trans_cancel;
1203
1204	if (!resblks) {
1205		error = xfs_dir_canenter(tp, dp, name);
1206		if (error)
1207			goto out_trans_cancel;
1208	}
1209
1210	/*
1211	 * A newly created regular or special file just has one directory
1212	 * entry pointing to them, but a directory also the "." entry
1213	 * pointing to itself.
1214	 */
1215	error = xfs_dir_ialloc(&tp, dp, mode, is_dir ? 2 : 1, rdev,
1216			       prid, resblks > 0, &ip, &committed);
1217	if (error) {
1218		if (error == -ENOSPC)
1219			goto out_trans_cancel;
1220		goto out_trans_abort;
1221	}
1222
1223	/*
1224	 * Now we join the directory inode to the transaction.  We do not do it
1225	 * earlier because xfs_dir_ialloc might commit the previous transaction
1226	 * (and release all the locks).  An error from here on will result in
1227	 * the transaction cancel unlocking dp so don't do it explicitly in the
1228	 * error path.
1229	 */
1230	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
1231	unlock_dp_on_error = false;
1232
1233	error = xfs_dir_createname(tp, dp, name, ip->i_ino,
1234					&first_block, &free_list, resblks ?
1235					resblks - XFS_IALLOC_SPACE_RES(mp) : 0);
1236	if (error) {
1237		ASSERT(error != -ENOSPC);
1238		goto out_trans_abort;
1239	}
1240	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1241	xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
1242
1243	if (is_dir) {
1244		error = xfs_dir_init(tp, ip, dp);
1245		if (error)
1246			goto out_bmap_cancel;
1247
1248		error = xfs_bumplink(tp, dp);
1249		if (error)
1250			goto out_bmap_cancel;
1251	}
1252
1253	/*
1254	 * If this is a synchronous mount, make sure that the
1255	 * create transaction goes to disk before returning to
1256	 * the user.
1257	 */
1258	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
1259		xfs_trans_set_sync(tp);
1260
1261	/*
1262	 * Attach the dquot(s) to the inodes and modify them incore.
1263	 * These ids of the inode couldn't have changed since the new
1264	 * inode has been locked ever since it was created.
1265	 */
1266	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1267
1268	error = xfs_bmap_finish(&tp, &free_list, &committed);
1269	if (error)
1270		goto out_bmap_cancel;
1271
1272	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1273	if (error)
1274		goto out_release_inode;
1275
1276	xfs_qm_dqrele(udqp);
1277	xfs_qm_dqrele(gdqp);
1278	xfs_qm_dqrele(pdqp);
1279
1280	*ipp = ip;
1281	return 0;
1282
1283 out_bmap_cancel:
1284	xfs_bmap_cancel(&free_list);
1285 out_trans_abort:
1286	cancel_flags |= XFS_TRANS_ABORT;
1287 out_trans_cancel:
1288	xfs_trans_cancel(tp, cancel_flags);
1289 out_release_inode:
1290	/*
1291	 * Wait until after the current transaction is aborted to finish the
1292	 * setup of the inode and release the inode.  This prevents recursive
1293	 * transactions and deadlocks from xfs_inactive.
1294	 */
1295	if (ip) {
1296		xfs_finish_inode_setup(ip);
1297		IRELE(ip);
1298	}
1299
1300	xfs_qm_dqrele(udqp);
1301	xfs_qm_dqrele(gdqp);
1302	xfs_qm_dqrele(pdqp);
1303
1304	if (unlock_dp_on_error)
1305		xfs_iunlock(dp, XFS_ILOCK_EXCL);
1306	return error;
1307}
1308
1309int
1310xfs_create_tmpfile(
1311	struct xfs_inode	*dp,
1312	struct dentry		*dentry,
1313	umode_t			mode,
1314	struct xfs_inode	**ipp)
1315{
1316	struct xfs_mount	*mp = dp->i_mount;
1317	struct xfs_inode	*ip = NULL;
1318	struct xfs_trans	*tp = NULL;
1319	int			error;
1320	uint			cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1321	prid_t                  prid;
1322	struct xfs_dquot	*udqp = NULL;
1323	struct xfs_dquot	*gdqp = NULL;
1324	struct xfs_dquot	*pdqp = NULL;
1325	struct xfs_trans_res	*tres;
1326	uint			resblks;
1327
1328	if (XFS_FORCED_SHUTDOWN(mp))
1329		return -EIO;
1330
1331	prid = xfs_get_initial_prid(dp);
1332
1333	/*
1334	 * Make sure that we have allocated dquot(s) on disk.
1335	 */
1336	error = xfs_qm_vop_dqalloc(dp, xfs_kuid_to_uid(current_fsuid()),
1337				xfs_kgid_to_gid(current_fsgid()), prid,
1338				XFS_QMOPT_QUOTALL | XFS_QMOPT_INHERIT,
1339				&udqp, &gdqp, &pdqp);
1340	if (error)
1341		return error;
1342
1343	resblks = XFS_IALLOC_SPACE_RES(mp);
1344	tp = xfs_trans_alloc(mp, XFS_TRANS_CREATE_TMPFILE);
1345
1346	tres = &M_RES(mp)->tr_create_tmpfile;
1347	error = xfs_trans_reserve(tp, tres, resblks, 0);
1348	if (error == -ENOSPC) {
1349		/* No space at all so try a "no-allocation" reservation */
1350		resblks = 0;
1351		error = xfs_trans_reserve(tp, tres, 0, 0);
1352	}
1353	if (error) {
1354		cancel_flags = 0;
1355		goto out_trans_cancel;
1356	}
1357
1358	error = xfs_trans_reserve_quota(tp, mp, udqp, gdqp,
1359						pdqp, resblks, 1, 0);
1360	if (error)
1361		goto out_trans_cancel;
1362
1363	error = xfs_dir_ialloc(&tp, dp, mode, 1, 0,
1364				prid, resblks > 0, &ip, NULL);
1365	if (error) {
1366		if (error == -ENOSPC)
1367			goto out_trans_cancel;
1368		goto out_trans_abort;
1369	}
1370
1371	if (mp->m_flags & XFS_MOUNT_WSYNC)
1372		xfs_trans_set_sync(tp);
1373
1374	/*
1375	 * Attach the dquot(s) to the inodes and modify them incore.
1376	 * These ids of the inode couldn't have changed since the new
1377	 * inode has been locked ever since it was created.
1378	 */
1379	xfs_qm_vop_create_dqattach(tp, ip, udqp, gdqp, pdqp);
1380
1381	ip->i_d.di_nlink--;
1382	error = xfs_iunlink(tp, ip);
1383	if (error)
1384		goto out_trans_abort;
1385
1386	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1387	if (error)
1388		goto out_release_inode;
1389
1390	xfs_qm_dqrele(udqp);
1391	xfs_qm_dqrele(gdqp);
1392	xfs_qm_dqrele(pdqp);
1393
1394	*ipp = ip;
1395	return 0;
1396
1397 out_trans_abort:
1398	cancel_flags |= XFS_TRANS_ABORT;
1399 out_trans_cancel:
1400	xfs_trans_cancel(tp, cancel_flags);
1401 out_release_inode:
1402	/*
1403	 * Wait until after the current transaction is aborted to finish the
1404	 * setup of the inode and release the inode.  This prevents recursive
1405	 * transactions and deadlocks from xfs_inactive.
1406	 */
1407	if (ip) {
1408		xfs_finish_inode_setup(ip);
1409		IRELE(ip);
1410	}
1411
1412	xfs_qm_dqrele(udqp);
1413	xfs_qm_dqrele(gdqp);
1414	xfs_qm_dqrele(pdqp);
1415
1416	return error;
1417}
1418
1419int
1420xfs_link(
1421	xfs_inode_t		*tdp,
1422	xfs_inode_t		*sip,
1423	struct xfs_name		*target_name)
1424{
1425	xfs_mount_t		*mp = tdp->i_mount;
1426	xfs_trans_t		*tp;
1427	int			error;
1428	xfs_bmap_free_t         free_list;
1429	xfs_fsblock_t           first_block;
1430	int			cancel_flags;
1431	int			committed;
1432	int			resblks;
1433
1434	trace_xfs_link(tdp, target_name);
1435
1436	ASSERT(!S_ISDIR(sip->i_d.di_mode));
1437
1438	if (XFS_FORCED_SHUTDOWN(mp))
1439		return -EIO;
1440
1441	error = xfs_qm_dqattach(sip, 0);
1442	if (error)
1443		goto std_return;
1444
1445	error = xfs_qm_dqattach(tdp, 0);
1446	if (error)
1447		goto std_return;
1448
1449	tp = xfs_trans_alloc(mp, XFS_TRANS_LINK);
1450	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
1451	resblks = XFS_LINK_SPACE_RES(mp, target_name->len);
1452	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, resblks, 0);
1453	if (error == -ENOSPC) {
1454		resblks = 0;
1455		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_link, 0, 0);
1456	}
1457	if (error) {
1458		cancel_flags = 0;
1459		goto error_return;
1460	}
1461
1462	xfs_lock_two_inodes(sip, tdp, XFS_ILOCK_EXCL);
1463
1464	xfs_trans_ijoin(tp, sip, XFS_ILOCK_EXCL);
1465	xfs_trans_ijoin(tp, tdp, XFS_ILOCK_EXCL);
1466
1467	/*
1468	 * If we are using project inheritance, we only allow hard link
1469	 * creation in our tree when the project IDs are the same; else
1470	 * the tree quota mechanism could be circumvented.
1471	 */
1472	if (unlikely((tdp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
1473		     (xfs_get_projid(tdp) != xfs_get_projid(sip)))) {
1474		error = -EXDEV;
1475		goto error_return;
1476	}
1477
1478	if (!resblks) {
1479		error = xfs_dir_canenter(tp, tdp, target_name);
1480		if (error)
1481			goto error_return;
1482	}
1483
1484	xfs_bmap_init(&free_list, &first_block);
1485
1486	if (sip->i_d.di_nlink == 0) {
1487		error = xfs_iunlink_remove(tp, sip);
1488		if (error)
1489			goto abort_return;
1490	}
1491
1492	error = xfs_dir_createname(tp, tdp, target_name, sip->i_ino,
1493					&first_block, &free_list, resblks);
1494	if (error)
1495		goto abort_return;
1496	xfs_trans_ichgtime(tp, tdp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
1497	xfs_trans_log_inode(tp, tdp, XFS_ILOG_CORE);
1498
1499	error = xfs_bumplink(tp, sip);
1500	if (error)
1501		goto abort_return;
1502
1503	/*
1504	 * If this is a synchronous mount, make sure that the
1505	 * link transaction goes to disk before returning to
1506	 * the user.
1507	 */
1508	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC)) {
1509		xfs_trans_set_sync(tp);
1510	}
1511
1512	error = xfs_bmap_finish (&tp, &free_list, &committed);
1513	if (error) {
1514		xfs_bmap_cancel(&free_list);
1515		goto abort_return;
1516	}
1517
1518	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1519
1520 abort_return:
1521	cancel_flags |= XFS_TRANS_ABORT;
1522 error_return:
1523	xfs_trans_cancel(tp, cancel_flags);
1524 std_return:
1525	return error;
1526}
1527
1528/*
1529 * Free up the underlying blocks past new_size.  The new size must be smaller
1530 * than the current size.  This routine can be used both for the attribute and
1531 * data fork, and does not modify the inode size, which is left to the caller.
1532 *
1533 * The transaction passed to this routine must have made a permanent log
1534 * reservation of at least XFS_ITRUNCATE_LOG_RES.  This routine may commit the
1535 * given transaction and start new ones, so make sure everything involved in
1536 * the transaction is tidy before calling here.  Some transaction will be
1537 * returned to the caller to be committed.  The incoming transaction must
1538 * already include the inode, and both inode locks must be held exclusively.
1539 * The inode must also be "held" within the transaction.  On return the inode
1540 * will be "held" within the returned transaction.  This routine does NOT
1541 * require any disk space to be reserved for it within the transaction.
1542 *
1543 * If we get an error, we must return with the inode locked and linked into the
1544 * current transaction. This keeps things simple for the higher level code,
1545 * because it always knows that the inode is locked and held in the transaction
1546 * that returns to it whether errors occur or not.  We don't mark the inode
1547 * dirty on error so that transactions can be easily aborted if possible.
1548 */
1549int
1550xfs_itruncate_extents(
1551	struct xfs_trans	**tpp,
1552	struct xfs_inode	*ip,
1553	int			whichfork,
1554	xfs_fsize_t		new_size)
1555{
1556	struct xfs_mount	*mp = ip->i_mount;
1557	struct xfs_trans	*tp = *tpp;
1558	struct xfs_trans	*ntp;
1559	xfs_bmap_free_t		free_list;
1560	xfs_fsblock_t		first_block;
1561	xfs_fileoff_t		first_unmap_block;
1562	xfs_fileoff_t		last_block;
1563	xfs_filblks_t		unmap_len;
1564	int			committed;
1565	int			error = 0;
1566	int			done = 0;
1567
1568	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
1569	ASSERT(!atomic_read(&VFS_I(ip)->i_count) ||
1570	       xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1571	ASSERT(new_size <= XFS_ISIZE(ip));
1572	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
1573	ASSERT(ip->i_itemp != NULL);
1574	ASSERT(ip->i_itemp->ili_lock_flags == 0);
1575	ASSERT(!XFS_NOT_DQATTACHED(mp, ip));
1576
1577	trace_xfs_itruncate_extents_start(ip, new_size);
1578
1579	/*
1580	 * Since it is possible for space to become allocated beyond
1581	 * the end of the file (in a crash where the space is allocated
1582	 * but the inode size is not yet updated), simply remove any
1583	 * blocks which show up between the new EOF and the maximum
1584	 * possible file size.  If the first block to be removed is
1585	 * beyond the maximum file size (ie it is the same as last_block),
1586	 * then there is nothing to do.
1587	 */
1588	first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1589	last_block = XFS_B_TO_FSB(mp, mp->m_super->s_maxbytes);
1590	if (first_unmap_block == last_block)
1591		return 0;
1592
1593	ASSERT(first_unmap_block < last_block);
1594	unmap_len = last_block - first_unmap_block + 1;
1595	while (!done) {
1596		xfs_bmap_init(&free_list, &first_block);
1597		error = xfs_bunmapi(tp, ip,
1598				    first_unmap_block, unmap_len,
1599				    xfs_bmapi_aflag(whichfork),
1600				    XFS_ITRUNC_MAX_EXTENTS,
1601				    &first_block, &free_list,
1602				    &done);
1603		if (error)
1604			goto out_bmap_cancel;
1605
1606		/*
1607		 * Duplicate the transaction that has the permanent
1608		 * reservation and commit the old transaction.
1609		 */
1610		error = xfs_bmap_finish(&tp, &free_list, &committed);
1611		if (committed)
1612			xfs_trans_ijoin(tp, ip, 0);
1613		if (error)
1614			goto out_bmap_cancel;
1615
1616		if (committed) {
1617			/*
1618			 * Mark the inode dirty so it will be logged and
1619			 * moved forward in the log as part of every commit.
1620			 */
1621			xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1622		}
1623
1624		ntp = xfs_trans_dup(tp);
1625		error = xfs_trans_commit(tp, 0);
1626		tp = ntp;
1627
1628		xfs_trans_ijoin(tp, ip, 0);
1629
1630		if (error)
1631			goto out;
1632
1633		/*
1634		 * Transaction commit worked ok so we can drop the extra ticket
1635		 * reference that we gained in xfs_trans_dup()
1636		 */
1637		xfs_log_ticket_put(tp->t_ticket);
1638		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1639		if (error)
1640			goto out;
1641	}
1642
1643	/*
1644	 * Always re-log the inode so that our permanent transaction can keep
1645	 * on rolling it forward in the log.
1646	 */
1647	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1648
1649	trace_xfs_itruncate_extents_end(ip, new_size);
1650
1651out:
1652	*tpp = tp;
1653	return error;
1654out_bmap_cancel:
1655	/*
1656	 * If the bunmapi call encounters an error, return to the caller where
1657	 * the transaction can be properly aborted.  We just need to make sure
1658	 * we're not holding any resources that we were not when we came in.
1659	 */
1660	xfs_bmap_cancel(&free_list);
1661	goto out;
1662}
1663
1664int
1665xfs_release(
1666	xfs_inode_t	*ip)
1667{
1668	xfs_mount_t	*mp = ip->i_mount;
1669	int		error;
1670
1671	if (!S_ISREG(ip->i_d.di_mode) || (ip->i_d.di_mode == 0))
1672		return 0;
1673
1674	/* If this is a read-only mount, don't do this (would generate I/O) */
1675	if (mp->m_flags & XFS_MOUNT_RDONLY)
1676		return 0;
1677
1678	if (!XFS_FORCED_SHUTDOWN(mp)) {
1679		int truncated;
1680
1681		/*
1682		 * If we previously truncated this file and removed old data
1683		 * in the process, we want to initiate "early" writeout on
1684		 * the last close.  This is an attempt to combat the notorious
1685		 * NULL files problem which is particularly noticeable from a
1686		 * truncate down, buffered (re-)write (delalloc), followed by
1687		 * a crash.  What we are effectively doing here is
1688		 * significantly reducing the time window where we'd otherwise
1689		 * be exposed to that problem.
1690		 */
1691		truncated = xfs_iflags_test_and_clear(ip, XFS_ITRUNCATED);
1692		if (truncated) {
1693			xfs_iflags_clear(ip, XFS_IDIRTY_RELEASE);
1694			if (ip->i_delayed_blks > 0) {
1695				error = filemap_flush(VFS_I(ip)->i_mapping);
1696				if (error)
1697					return error;
1698			}
1699		}
1700	}
1701
1702	if (ip->i_d.di_nlink == 0)
1703		return 0;
1704
1705	if (xfs_can_free_eofblocks(ip, false)) {
1706
1707		/*
1708		 * If we can't get the iolock just skip truncating the blocks
1709		 * past EOF because we could deadlock with the mmap_sem
1710		 * otherwise.  We'll get another chance to drop them once the
1711		 * last reference to the inode is dropped, so we'll never leak
1712		 * blocks permanently.
1713		 *
1714		 * Further, check if the inode is being opened, written and
1715		 * closed frequently and we have delayed allocation blocks
1716		 * outstanding (e.g. streaming writes from the NFS server),
1717		 * truncating the blocks past EOF will cause fragmentation to
1718		 * occur.
1719		 *
1720		 * In this case don't do the truncation, either, but we have to
1721		 * be careful how we detect this case. Blocks beyond EOF show
1722		 * up as i_delayed_blks even when the inode is clean, so we
1723		 * need to truncate them away first before checking for a dirty
1724		 * release. Hence on the first dirty close we will still remove
1725		 * the speculative allocation, but after that we will leave it
1726		 * in place.
1727		 */
1728		if (xfs_iflags_test(ip, XFS_IDIRTY_RELEASE))
1729			return 0;
1730
1731		error = xfs_free_eofblocks(mp, ip, true);
1732		if (error && error != -EAGAIN)
1733			return error;
1734
1735		/* delalloc blocks after truncation means it really is dirty */
1736		if (ip->i_delayed_blks)
1737			xfs_iflags_set(ip, XFS_IDIRTY_RELEASE);
1738	}
1739	return 0;
1740}
1741
1742/*
1743 * xfs_inactive_truncate
1744 *
1745 * Called to perform a truncate when an inode becomes unlinked.
1746 */
1747STATIC int
1748xfs_inactive_truncate(
1749	struct xfs_inode *ip)
1750{
1751	struct xfs_mount	*mp = ip->i_mount;
1752	struct xfs_trans	*tp;
1753	int			error;
1754
1755	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1756	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_itruncate, 0, 0);
1757	if (error) {
1758		ASSERT(XFS_FORCED_SHUTDOWN(mp));
1759		xfs_trans_cancel(tp, 0);
1760		return error;
1761	}
1762
1763	xfs_ilock(ip, XFS_ILOCK_EXCL);
1764	xfs_trans_ijoin(tp, ip, 0);
1765
1766	/*
1767	 * Log the inode size first to prevent stale data exposure in the event
1768	 * of a system crash before the truncate completes. See the related
1769	 * comment in xfs_setattr_size() for details.
1770	 */
1771	ip->i_d.di_size = 0;
1772	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
1773
1774	error = xfs_itruncate_extents(&tp, ip, XFS_DATA_FORK, 0);
1775	if (error)
1776		goto error_trans_cancel;
1777
1778	ASSERT(ip->i_d.di_nextents == 0);
1779
1780	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1781	if (error)
1782		goto error_unlock;
1783
1784	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1785	return 0;
1786
1787error_trans_cancel:
1788	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES | XFS_TRANS_ABORT);
1789error_unlock:
1790	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1791	return error;
1792}
1793
1794/*
1795 * xfs_inactive_ifree()
1796 *
1797 * Perform the inode free when an inode is unlinked.
1798 */
1799STATIC int
1800xfs_inactive_ifree(
1801	struct xfs_inode *ip)
1802{
1803	xfs_bmap_free_t		free_list;
1804	xfs_fsblock_t		first_block;
1805	int			committed;
1806	struct xfs_mount	*mp = ip->i_mount;
1807	struct xfs_trans	*tp;
1808	int			error;
1809
1810	tp = xfs_trans_alloc(mp, XFS_TRANS_INACTIVE);
1811
1812	/*
1813	 * The ifree transaction might need to allocate blocks for record
1814	 * insertion to the finobt. We don't want to fail here at ENOSPC, so
1815	 * allow ifree to dip into the reserved block pool if necessary.
1816	 *
1817	 * Freeing large sets of inodes generally means freeing inode chunks,
1818	 * directory and file data blocks, so this should be relatively safe.
1819	 * Only under severe circumstances should it be possible to free enough
1820	 * inodes to exhaust the reserve block pool via finobt expansion while
1821	 * at the same time not creating free space in the filesystem.
1822	 *
1823	 * Send a warning if the reservation does happen to fail, as the inode
1824	 * now remains allocated and sits on the unlinked list until the fs is
1825	 * repaired.
1826	 */
1827	tp->t_flags |= XFS_TRANS_RESERVE;
1828	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_ifree,
1829				  XFS_IFREE_SPACE_RES(mp), 0);
1830	if (error) {
1831		if (error == -ENOSPC) {
1832			xfs_warn_ratelimited(mp,
1833			"Failed to remove inode(s) from unlinked list. "
1834			"Please free space, unmount and run xfs_repair.");
1835		} else {
1836			ASSERT(XFS_FORCED_SHUTDOWN(mp));
1837		}
1838		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES);
1839		return error;
1840	}
1841
1842	xfs_ilock(ip, XFS_ILOCK_EXCL);
1843	xfs_trans_ijoin(tp, ip, 0);
1844
1845	xfs_bmap_init(&free_list, &first_block);
1846	error = xfs_ifree(tp, ip, &free_list);
1847	if (error) {
1848		/*
1849		 * If we fail to free the inode, shut down.  The cancel
1850		 * might do that, we need to make sure.  Otherwise the
1851		 * inode might be lost for a long time or forever.
1852		 */
1853		if (!XFS_FORCED_SHUTDOWN(mp)) {
1854			xfs_notice(mp, "%s: xfs_ifree returned error %d",
1855				__func__, error);
1856			xfs_force_shutdown(mp, SHUTDOWN_META_IO_ERROR);
1857		}
1858		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
1859		xfs_iunlock(ip, XFS_ILOCK_EXCL);
1860		return error;
1861	}
1862
1863	/*
1864	 * Credit the quota account(s). The inode is gone.
1865	 */
1866	xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_ICOUNT, -1);
1867
1868	/*
1869	 * Just ignore errors at this point.  There is nothing we can
1870	 * do except to try to keep going. Make sure it's not a silent
1871	 * error.
1872	 */
1873	error = xfs_bmap_finish(&tp,  &free_list, &committed);
1874	if (error)
1875		xfs_notice(mp, "%s: xfs_bmap_finish returned error %d",
1876			__func__, error);
1877	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
1878	if (error)
1879		xfs_notice(mp, "%s: xfs_trans_commit returned error %d",
1880			__func__, error);
1881
1882	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1883	return 0;
1884}
1885
1886/*
1887 * xfs_inactive
1888 *
1889 * This is called when the vnode reference count for the vnode
1890 * goes to zero.  If the file has been unlinked, then it must
1891 * now be truncated.  Also, we clear all of the read-ahead state
1892 * kept for the inode here since the file is now closed.
1893 */
1894void
1895xfs_inactive(
1896	xfs_inode_t	*ip)
1897{
1898	struct xfs_mount	*mp;
1899	int			error;
1900	int			truncate = 0;
1901
1902	/*
1903	 * If the inode is already free, then there can be nothing
1904	 * to clean up here.
1905	 */
1906	if (ip->i_d.di_mode == 0) {
1907		ASSERT(ip->i_df.if_real_bytes == 0);
1908		ASSERT(ip->i_df.if_broot_bytes == 0);
1909		return;
1910	}
1911
1912	mp = ip->i_mount;
1913
1914	/* If this is a read-only mount, don't do this (would generate I/O) */
1915	if (mp->m_flags & XFS_MOUNT_RDONLY)
1916		return;
1917
1918	if (ip->i_d.di_nlink != 0) {
1919		/*
1920		 * force is true because we are evicting an inode from the
1921		 * cache. Post-eof blocks must be freed, lest we end up with
1922		 * broken free space accounting.
1923		 */
1924		if (xfs_can_free_eofblocks(ip, true))
1925			xfs_free_eofblocks(mp, ip, false);
1926
1927		return;
1928	}
1929
1930	if (S_ISREG(ip->i_d.di_mode) &&
1931	    (ip->i_d.di_size != 0 || XFS_ISIZE(ip) != 0 ||
1932	     ip->i_d.di_nextents > 0 || ip->i_delayed_blks > 0))
1933		truncate = 1;
1934
1935	error = xfs_qm_dqattach(ip, 0);
1936	if (error)
1937		return;
1938
1939	if (S_ISLNK(ip->i_d.di_mode))
1940		error = xfs_inactive_symlink(ip);
1941	else if (truncate)
1942		error = xfs_inactive_truncate(ip);
1943	if (error)
1944		return;
1945
1946	/*
1947	 * If there are attributes associated with the file then blow them away
1948	 * now.  The code calls a routine that recursively deconstructs the
1949	 * attribute fork. If also blows away the in-core attribute fork.
1950	 */
1951	if (XFS_IFORK_Q(ip)) {
1952		error = xfs_attr_inactive(ip);
1953		if (error)
1954			return;
1955	}
1956
1957	ASSERT(!ip->i_afp);
1958	ASSERT(ip->i_d.di_anextents == 0);
1959	ASSERT(ip->i_d.di_forkoff == 0);
1960
1961	/*
1962	 * Free the inode.
1963	 */
1964	error = xfs_inactive_ifree(ip);
1965	if (error)
1966		return;
1967
1968	/*
1969	 * Release the dquots held by inode, if any.
1970	 */
1971	xfs_qm_dqdetach(ip);
1972}
1973
1974/*
1975 * This is called when the inode's link count goes to 0.
1976 * We place the on-disk inode on a list in the AGI.  It
1977 * will be pulled from this list when the inode is freed.
1978 */
1979int
1980xfs_iunlink(
1981	xfs_trans_t	*tp,
1982	xfs_inode_t	*ip)
1983{
1984	xfs_mount_t	*mp;
1985	xfs_agi_t	*agi;
1986	xfs_dinode_t	*dip;
1987	xfs_buf_t	*agibp;
1988	xfs_buf_t	*ibp;
1989	xfs_agino_t	agino;
1990	short		bucket_index;
1991	int		offset;
1992	int		error;
1993
1994	ASSERT(ip->i_d.di_nlink == 0);
1995	ASSERT(ip->i_d.di_mode != 0);
1996
1997	mp = tp->t_mountp;
1998
1999	/*
2000	 * Get the agi buffer first.  It ensures lock ordering
2001	 * on the list.
2002	 */
2003	error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
2004	if (error)
2005		return error;
2006	agi = XFS_BUF_TO_AGI(agibp);
2007
2008	/*
2009	 * Get the index into the agi hash table for the
2010	 * list this inode will go on.
2011	 */
2012	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2013	ASSERT(agino != 0);
2014	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2015	ASSERT(agi->agi_unlinked[bucket_index]);
2016	ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
2017
2018	if (agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO)) {
2019		/*
2020		 * There is already another inode in the bucket we need
2021		 * to add ourselves to.  Add us at the front of the list.
2022		 * Here we put the head pointer into our next pointer,
2023		 * and then we fall through to point the head at us.
2024		 */
2025		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2026				       0, 0);
2027		if (error)
2028			return error;
2029
2030		ASSERT(dip->di_next_unlinked == cpu_to_be32(NULLAGINO));
2031		dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
2032		offset = ip->i_imap.im_boffset +
2033			offsetof(xfs_dinode_t, di_next_unlinked);
2034
2035		/* need to recalc the inode CRC if appropriate */
2036		xfs_dinode_calc_crc(mp, dip);
2037
2038		xfs_trans_inode_buf(tp, ibp);
2039		xfs_trans_log_buf(tp, ibp, offset,
2040				  (offset + sizeof(xfs_agino_t) - 1));
2041		xfs_inobp_check(mp, ibp);
2042	}
2043
2044	/*
2045	 * Point the bucket head pointer at the inode being inserted.
2046	 */
2047	ASSERT(agino != 0);
2048	agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
2049	offset = offsetof(xfs_agi_t, agi_unlinked) +
2050		(sizeof(xfs_agino_t) * bucket_index);
2051	xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2052	xfs_trans_log_buf(tp, agibp, offset,
2053			  (offset + sizeof(xfs_agino_t) - 1));
2054	return 0;
2055}
2056
2057/*
2058 * Pull the on-disk inode from the AGI unlinked list.
2059 */
2060STATIC int
2061xfs_iunlink_remove(
2062	xfs_trans_t	*tp,
2063	xfs_inode_t	*ip)
2064{
2065	xfs_ino_t	next_ino;
2066	xfs_mount_t	*mp;
2067	xfs_agi_t	*agi;
2068	xfs_dinode_t	*dip;
2069	xfs_buf_t	*agibp;
2070	xfs_buf_t	*ibp;
2071	xfs_agnumber_t	agno;
2072	xfs_agino_t	agino;
2073	xfs_agino_t	next_agino;
2074	xfs_buf_t	*last_ibp;
2075	xfs_dinode_t	*last_dip = NULL;
2076	short		bucket_index;
2077	int		offset, last_offset = 0;
2078	int		error;
2079
2080	mp = tp->t_mountp;
2081	agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
2082
2083	/*
2084	 * Get the agi buffer first.  It ensures lock ordering
2085	 * on the list.
2086	 */
2087	error = xfs_read_agi(mp, tp, agno, &agibp);
2088	if (error)
2089		return error;
2090
2091	agi = XFS_BUF_TO_AGI(agibp);
2092
2093	/*
2094	 * Get the index into the agi hash table for the
2095	 * list this inode will go on.
2096	 */
2097	agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
2098	ASSERT(agino != 0);
2099	bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
2100	ASSERT(agi->agi_unlinked[bucket_index] != cpu_to_be32(NULLAGINO));
2101	ASSERT(agi->agi_unlinked[bucket_index]);
2102
2103	if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
2104		/*
2105		 * We're at the head of the list.  Get the inode's on-disk
2106		 * buffer to see if there is anyone after us on the list.
2107		 * Only modify our next pointer if it is not already NULLAGINO.
2108		 * This saves us the overhead of dealing with the buffer when
2109		 * there is no need to change it.
2110		 */
2111		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2112				       0, 0);
2113		if (error) {
2114			xfs_warn(mp, "%s: xfs_imap_to_bp returned error %d.",
2115				__func__, error);
2116			return error;
2117		}
2118		next_agino = be32_to_cpu(dip->di_next_unlinked);
2119		ASSERT(next_agino != 0);
2120		if (next_agino != NULLAGINO) {
2121			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2122			offset = ip->i_imap.im_boffset +
2123				offsetof(xfs_dinode_t, di_next_unlinked);
2124
2125			/* need to recalc the inode CRC if appropriate */
2126			xfs_dinode_calc_crc(mp, dip);
2127
2128			xfs_trans_inode_buf(tp, ibp);
2129			xfs_trans_log_buf(tp, ibp, offset,
2130					  (offset + sizeof(xfs_agino_t) - 1));
2131			xfs_inobp_check(mp, ibp);
2132		} else {
2133			xfs_trans_brelse(tp, ibp);
2134		}
2135		/*
2136		 * Point the bucket head pointer at the next inode.
2137		 */
2138		ASSERT(next_agino != 0);
2139		ASSERT(next_agino != agino);
2140		agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
2141		offset = offsetof(xfs_agi_t, agi_unlinked) +
2142			(sizeof(xfs_agino_t) * bucket_index);
2143		xfs_trans_buf_set_type(tp, agibp, XFS_BLFT_AGI_BUF);
2144		xfs_trans_log_buf(tp, agibp, offset,
2145				  (offset + sizeof(xfs_agino_t) - 1));
2146	} else {
2147		/*
2148		 * We need to search the list for the inode being freed.
2149		 */
2150		next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
2151		last_ibp = NULL;
2152		while (next_agino != agino) {
2153			struct xfs_imap	imap;
2154
2155			if (last_ibp)
2156				xfs_trans_brelse(tp, last_ibp);
2157
2158			imap.im_blkno = 0;
2159			next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
2160
2161			error = xfs_imap(mp, tp, next_ino, &imap, 0);
2162			if (error) {
2163				xfs_warn(mp,
2164	"%s: xfs_imap returned error %d.",
2165					 __func__, error);
2166				return error;
2167			}
2168
2169			error = xfs_imap_to_bp(mp, tp, &imap, &last_dip,
2170					       &last_ibp, 0, 0);
2171			if (error) {
2172				xfs_warn(mp,
2173	"%s: xfs_imap_to_bp returned error %d.",
2174					__func__, error);
2175				return error;
2176			}
2177
2178			last_offset = imap.im_boffset;
2179			next_agino = be32_to_cpu(last_dip->di_next_unlinked);
2180			ASSERT(next_agino != NULLAGINO);
2181			ASSERT(next_agino != 0);
2182		}
2183
2184		/*
2185		 * Now last_ibp points to the buffer previous to us on the
2186		 * unlinked list.  Pull us from the list.
2187		 */
2188		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &ibp,
2189				       0, 0);
2190		if (error) {
2191			xfs_warn(mp, "%s: xfs_imap_to_bp(2) returned error %d.",
2192				__func__, error);
2193			return error;
2194		}
2195		next_agino = be32_to_cpu(dip->di_next_unlinked);
2196		ASSERT(next_agino != 0);
2197		ASSERT(next_agino != agino);
2198		if (next_agino != NULLAGINO) {
2199			dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
2200			offset = ip->i_imap.im_boffset +
2201				offsetof(xfs_dinode_t, di_next_unlinked);
2202
2203			/* need to recalc the inode CRC if appropriate */
2204			xfs_dinode_calc_crc(mp, dip);
2205
2206			xfs_trans_inode_buf(tp, ibp);
2207			xfs_trans_log_buf(tp, ibp, offset,
2208					  (offset + sizeof(xfs_agino_t) - 1));
2209			xfs_inobp_check(mp, ibp);
2210		} else {
2211			xfs_trans_brelse(tp, ibp);
2212		}
2213		/*
2214		 * Point the previous inode on the list to the next inode.
2215		 */
2216		last_dip->di_next_unlinked = cpu_to_be32(next_agino);
2217		ASSERT(next_agino != 0);
2218		offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
2219
2220		/* need to recalc the inode CRC if appropriate */
2221		xfs_dinode_calc_crc(mp, last_dip);
2222
2223		xfs_trans_inode_buf(tp, last_ibp);
2224		xfs_trans_log_buf(tp, last_ibp, offset,
2225				  (offset + sizeof(xfs_agino_t) - 1));
2226		xfs_inobp_check(mp, last_ibp);
2227	}
2228	return 0;
2229}
2230
2231/*
2232 * A big issue when freeing the inode cluster is that we _cannot_ skip any
2233 * inodes that are in memory - they all must be marked stale and attached to
2234 * the cluster buffer.
2235 */
2236STATIC int
2237xfs_ifree_cluster(
2238	xfs_inode_t	*free_ip,
2239	xfs_trans_t	*tp,
2240	xfs_ino_t	inum)
2241{
2242	xfs_mount_t		*mp = free_ip->i_mount;
2243	int			blks_per_cluster;
2244	int			inodes_per_cluster;
2245	int			nbufs;
2246	int			i, j;
2247	xfs_daddr_t		blkno;
2248	xfs_buf_t		*bp;
2249	xfs_inode_t		*ip;
2250	xfs_inode_log_item_t	*iip;
2251	xfs_log_item_t		*lip;
2252	struct xfs_perag	*pag;
2253
2254	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
2255	blks_per_cluster = xfs_icluster_size_fsb(mp);
2256	inodes_per_cluster = blks_per_cluster << mp->m_sb.sb_inopblog;
2257	nbufs = mp->m_ialloc_blks / blks_per_cluster;
2258
2259	for (j = 0; j < nbufs; j++, inum += inodes_per_cluster) {
2260		blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
2261					 XFS_INO_TO_AGBNO(mp, inum));
2262
2263		/*
2264		 * We obtain and lock the backing buffer first in the process
2265		 * here, as we have to ensure that any dirty inode that we
2266		 * can't get the flush lock on is attached to the buffer.
2267		 * If we scan the in-memory inodes first, then buffer IO can
2268		 * complete before we get a lock on it, and hence we may fail
2269		 * to mark all the active inodes on the buffer stale.
2270		 */
2271		bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
2272					mp->m_bsize * blks_per_cluster,
2273					XBF_UNMAPPED);
2274
2275		if (!bp)
2276			return -ENOMEM;
2277
2278		/*
2279		 * This buffer may not have been correctly initialised as we
2280		 * didn't read it from disk. That's not important because we are
2281		 * only using to mark the buffer as stale in the log, and to
2282		 * attach stale cached inodes on it. That means it will never be
2283		 * dispatched for IO. If it is, we want to know about it, and we
2284		 * want it to fail. We can acheive this by adding a write
2285		 * verifier to the buffer.
2286		 */
2287		 bp->b_ops = &xfs_inode_buf_ops;
2288
2289		/*
2290		 * Walk the inodes already attached to the buffer and mark them
2291		 * stale. These will all have the flush locks held, so an
2292		 * in-memory inode walk can't lock them. By marking them all
2293		 * stale first, we will not attempt to lock them in the loop
2294		 * below as the XFS_ISTALE flag will be set.
2295		 */
2296		lip = bp->b_fspriv;
2297		while (lip) {
2298			if (lip->li_type == XFS_LI_INODE) {
2299				iip = (xfs_inode_log_item_t *)lip;
2300				ASSERT(iip->ili_logged == 1);
2301				lip->li_cb = xfs_istale_done;
2302				xfs_trans_ail_copy_lsn(mp->m_ail,
2303							&iip->ili_flush_lsn,
2304							&iip->ili_item.li_lsn);
2305				xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
2306			}
2307			lip = lip->li_bio_list;
2308		}
2309
2310
2311		/*
2312		 * For each inode in memory attempt to add it to the inode
2313		 * buffer and set it up for being staled on buffer IO
2314		 * completion.  This is safe as we've locked out tail pushing
2315		 * and flushing by locking the buffer.
2316		 *
2317		 * We have already marked every inode that was part of a
2318		 * transaction stale above, which means there is no point in
2319		 * even trying to lock them.
2320		 */
2321		for (i = 0; i < inodes_per_cluster; i++) {
2322retry:
2323			rcu_read_lock();
2324			ip = radix_tree_lookup(&pag->pag_ici_root,
2325					XFS_INO_TO_AGINO(mp, (inum + i)));
2326
2327			/* Inode not in memory, nothing to do */
2328			if (!ip) {
2329				rcu_read_unlock();
2330				continue;
2331			}
2332
2333			/*
2334			 * because this is an RCU protected lookup, we could
2335			 * find a recently freed or even reallocated inode
2336			 * during the lookup. We need to check under the
2337			 * i_flags_lock for a valid inode here. Skip it if it
2338			 * is not valid, the wrong inode or stale.
2339			 */
2340			spin_lock(&ip->i_flags_lock);
2341			if (ip->i_ino != inum + i ||
2342			    __xfs_iflags_test(ip, XFS_ISTALE)) {
2343				spin_unlock(&ip->i_flags_lock);
2344				rcu_read_unlock();
2345				continue;
2346			}
2347			spin_unlock(&ip->i_flags_lock);
2348
2349			/*
2350			 * Don't try to lock/unlock the current inode, but we
2351			 * _cannot_ skip the other inodes that we did not find
2352			 * in the list attached to the buffer and are not
2353			 * already marked stale. If we can't lock it, back off
2354			 * and retry.
2355			 */
2356			if (ip != free_ip &&
2357			    !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2358				rcu_read_unlock();
2359				delay(1);
2360				goto retry;
2361			}
2362			rcu_read_unlock();
2363
2364			xfs_iflock(ip);
2365			xfs_iflags_set(ip, XFS_ISTALE);
2366
2367			/*
2368			 * we don't need to attach clean inodes or those only
2369			 * with unlogged changes (which we throw away, anyway).
2370			 */
2371			iip = ip->i_itemp;
2372			if (!iip || xfs_inode_clean(ip)) {
2373				ASSERT(ip != free_ip);
2374				xfs_ifunlock(ip);
2375				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2376				continue;
2377			}
2378
2379			iip->ili_last_fields = iip->ili_fields;
2380			iip->ili_fields = 0;
2381			iip->ili_logged = 1;
2382			xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2383						&iip->ili_item.li_lsn);
2384
2385			xfs_buf_attach_iodone(bp, xfs_istale_done,
2386						  &iip->ili_item);
2387
2388			if (ip != free_ip)
2389				xfs_iunlock(ip, XFS_ILOCK_EXCL);
2390		}
2391
2392		xfs_trans_stale_inode_buf(tp, bp);
2393		xfs_trans_binval(tp, bp);
2394	}
2395
2396	xfs_perag_put(pag);
2397	return 0;
2398}
2399
2400/*
2401 * This is called to return an inode to the inode free list.
2402 * The inode should already be truncated to 0 length and have
2403 * no pages associated with it.  This routine also assumes that
2404 * the inode is already a part of the transaction.
2405 *
2406 * The on-disk copy of the inode will have been added to the list
2407 * of unlinked inodes in the AGI. We need to remove the inode from
2408 * that list atomically with respect to freeing it here.
2409 */
2410int
2411xfs_ifree(
2412	xfs_trans_t	*tp,
2413	xfs_inode_t	*ip,
2414	xfs_bmap_free_t	*flist)
2415{
2416	int			error;
2417	int			delete;
2418	xfs_ino_t		first_ino;
2419
2420	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2421	ASSERT(ip->i_d.di_nlink == 0);
2422	ASSERT(ip->i_d.di_nextents == 0);
2423	ASSERT(ip->i_d.di_anextents == 0);
2424	ASSERT(ip->i_d.di_size == 0 || !S_ISREG(ip->i_d.di_mode));
2425	ASSERT(ip->i_d.di_nblocks == 0);
2426
2427	/*
2428	 * Pull the on-disk inode from the AGI unlinked list.
2429	 */
2430	error = xfs_iunlink_remove(tp, ip);
2431	if (error)
2432		return error;
2433
2434	error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2435	if (error)
2436		return error;
2437
2438	ip->i_d.di_mode = 0;		/* mark incore inode as free */
2439	ip->i_d.di_flags = 0;
2440	ip->i_d.di_dmevmask = 0;
2441	ip->i_d.di_forkoff = 0;		/* mark the attr fork not in use */
2442	ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2443	ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2444	/*
2445	 * Bump the generation count so no one will be confused
2446	 * by reincarnations of this inode.
2447	 */
2448	ip->i_d.di_gen++;
2449	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2450
2451	if (delete)
2452		error = xfs_ifree_cluster(ip, tp, first_ino);
2453
2454	return error;
2455}
2456
2457/*
2458 * This is called to unpin an inode.  The caller must have the inode locked
2459 * in at least shared mode so that the buffer cannot be subsequently pinned
2460 * once someone is waiting for it to be unpinned.
2461 */
2462static void
2463xfs_iunpin(
2464	struct xfs_inode	*ip)
2465{
2466	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2467
2468	trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2469
2470	/* Give the log a push to start the unpinning I/O */
2471	xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2472
2473}
2474
2475static void
2476__xfs_iunpin_wait(
2477	struct xfs_inode	*ip)
2478{
2479	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_IPINNED_BIT);
2480	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_IPINNED_BIT);
2481
2482	xfs_iunpin(ip);
2483
2484	do {
2485		prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
2486		if (xfs_ipincount(ip))
2487			io_schedule();
2488	} while (xfs_ipincount(ip));
2489	finish_wait(wq, &wait.wait);
2490}
2491
2492void
2493xfs_iunpin_wait(
2494	struct xfs_inode	*ip)
2495{
2496	if (xfs_ipincount(ip))
2497		__xfs_iunpin_wait(ip);
2498}
2499
2500/*
2501 * Removing an inode from the namespace involves removing the directory entry
2502 * and dropping the link count on the inode. Removing the directory entry can
2503 * result in locking an AGF (directory blocks were freed) and removing a link
2504 * count can result in placing the inode on an unlinked list which results in
2505 * locking an AGI.
2506 *
2507 * The big problem here is that we have an ordering constraint on AGF and AGI
2508 * locking - inode allocation locks the AGI, then can allocate a new extent for
2509 * new inodes, locking the AGF after the AGI. Similarly, freeing the inode
2510 * removes the inode from the unlinked list, requiring that we lock the AGI
2511 * first, and then freeing the inode can result in an inode chunk being freed
2512 * and hence freeing disk space requiring that we lock an AGF.
2513 *
2514 * Hence the ordering that is imposed by other parts of the code is AGI before
2515 * AGF. This means we cannot remove the directory entry before we drop the inode
2516 * reference count and put it on the unlinked list as this results in a lock
2517 * order of AGF then AGI, and this can deadlock against inode allocation and
2518 * freeing. Therefore we must drop the link counts before we remove the
2519 * directory entry.
2520 *
2521 * This is still safe from a transactional point of view - it is not until we
2522 * get to xfs_bmap_finish() that we have the possibility of multiple
2523 * transactions in this operation. Hence as long as we remove the directory
2524 * entry and drop the link count in the first transaction of the remove
2525 * operation, there are no transactional constraints on the ordering here.
2526 */
2527int
2528xfs_remove(
2529	xfs_inode_t             *dp,
2530	struct xfs_name		*name,
2531	xfs_inode_t		*ip)
2532{
2533	xfs_mount_t		*mp = dp->i_mount;
2534	xfs_trans_t             *tp = NULL;
2535	int			is_dir = S_ISDIR(ip->i_d.di_mode);
2536	int                     error = 0;
2537	xfs_bmap_free_t         free_list;
2538	xfs_fsblock_t           first_block;
2539	int			cancel_flags;
2540	int			committed;
2541	uint			resblks;
2542
2543	trace_xfs_remove(dp, name);
2544
2545	if (XFS_FORCED_SHUTDOWN(mp))
2546		return -EIO;
2547
2548	error = xfs_qm_dqattach(dp, 0);
2549	if (error)
2550		goto std_return;
2551
2552	error = xfs_qm_dqattach(ip, 0);
2553	if (error)
2554		goto std_return;
2555
2556	if (is_dir)
2557		tp = xfs_trans_alloc(mp, XFS_TRANS_RMDIR);
2558	else
2559		tp = xfs_trans_alloc(mp, XFS_TRANS_REMOVE);
2560	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2561
2562	/*
2563	 * We try to get the real space reservation first,
2564	 * allowing for directory btree deletion(s) implying
2565	 * possible bmap insert(s).  If we can't get the space
2566	 * reservation then we use 0 instead, and avoid the bmap
2567	 * btree insert(s) in the directory code by, if the bmap
2568	 * insert tries to happen, instead trimming the LAST
2569	 * block from the directory.
2570	 */
2571	resblks = XFS_REMOVE_SPACE_RES(mp);
2572	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, resblks, 0);
2573	if (error == -ENOSPC) {
2574		resblks = 0;
2575		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_remove, 0, 0);
2576	}
2577	if (error) {
2578		ASSERT(error != -ENOSPC);
2579		cancel_flags = 0;
2580		goto out_trans_cancel;
2581	}
2582
2583	xfs_lock_two_inodes(dp, ip, XFS_ILOCK_EXCL);
2584
2585	xfs_trans_ijoin(tp, dp, XFS_ILOCK_EXCL);
2586	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
2587
2588	/*
2589	 * If we're removing a directory perform some additional validation.
2590	 */
2591	cancel_flags |= XFS_TRANS_ABORT;
2592	if (is_dir) {
2593		ASSERT(ip->i_d.di_nlink >= 2);
2594		if (ip->i_d.di_nlink != 2) {
2595			error = -ENOTEMPTY;
2596			goto out_trans_cancel;
2597		}
2598		if (!xfs_dir_isempty(ip)) {
2599			error = -ENOTEMPTY;
2600			goto out_trans_cancel;
2601		}
2602
2603		/* Drop the link from ip's "..".  */
2604		error = xfs_droplink(tp, dp);
2605		if (error)
2606			goto out_trans_cancel;
2607
2608		/* Drop the "." link from ip to self.  */
2609		error = xfs_droplink(tp, ip);
2610		if (error)
2611			goto out_trans_cancel;
2612	} else {
2613		/*
2614		 * When removing a non-directory we need to log the parent
2615		 * inode here.  For a directory this is done implicitly
2616		 * by the xfs_droplink call for the ".." entry.
2617		 */
2618		xfs_trans_log_inode(tp, dp, XFS_ILOG_CORE);
2619	}
2620	xfs_trans_ichgtime(tp, dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2621
2622	/* Drop the link from dp to ip. */
2623	error = xfs_droplink(tp, ip);
2624	if (error)
2625		goto out_trans_cancel;
2626
2627	xfs_bmap_init(&free_list, &first_block);
2628	error = xfs_dir_removename(tp, dp, name, ip->i_ino,
2629					&first_block, &free_list, resblks);
2630	if (error) {
2631		ASSERT(error != -ENOENT);
2632		goto out_bmap_cancel;
2633	}
2634
2635	/*
2636	 * If this is a synchronous mount, make sure that the
2637	 * remove transaction goes to disk before returning to
2638	 * the user.
2639	 */
2640	if (mp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2641		xfs_trans_set_sync(tp);
2642
2643	error = xfs_bmap_finish(&tp, &free_list, &committed);
2644	if (error)
2645		goto out_bmap_cancel;
2646
2647	error = xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2648	if (error)
2649		goto std_return;
2650
2651	if (is_dir && xfs_inode_is_filestream(ip))
2652		xfs_filestream_deassociate(ip);
2653
2654	return 0;
2655
2656 out_bmap_cancel:
2657	xfs_bmap_cancel(&free_list);
2658 out_trans_cancel:
2659	xfs_trans_cancel(tp, cancel_flags);
2660 std_return:
2661	return error;
2662}
2663
2664/*
2665 * Enter all inodes for a rename transaction into a sorted array.
2666 */
2667#define __XFS_SORT_INODES	5
2668STATIC void
2669xfs_sort_for_rename(
2670	struct xfs_inode	*dp1,	/* in: old (source) directory inode */
2671	struct xfs_inode	*dp2,	/* in: new (target) directory inode */
2672	struct xfs_inode	*ip1,	/* in: inode of old entry */
2673	struct xfs_inode	*ip2,	/* in: inode of new entry */
2674	struct xfs_inode	*wip,	/* in: whiteout inode */
2675	struct xfs_inode	**i_tab,/* out: sorted array of inodes */
2676	int			*num_inodes)  /* in/out: inodes in array */
2677{
2678	int			i, j;
2679
2680	ASSERT(*num_inodes == __XFS_SORT_INODES);
2681	memset(i_tab, 0, *num_inodes * sizeof(struct xfs_inode *));
2682
2683	/*
2684	 * i_tab contains a list of pointers to inodes.  We initialize
2685	 * the table here & we'll sort it.  We will then use it to
2686	 * order the acquisition of the inode locks.
2687	 *
2688	 * Note that the table may contain duplicates.  e.g., dp1 == dp2.
2689	 */
2690	i = 0;
2691	i_tab[i++] = dp1;
2692	i_tab[i++] = dp2;
2693	i_tab[i++] = ip1;
2694	if (ip2)
2695		i_tab[i++] = ip2;
2696	if (wip)
2697		i_tab[i++] = wip;
2698	*num_inodes = i;
2699
2700	/*
2701	 * Sort the elements via bubble sort.  (Remember, there are at
2702	 * most 5 elements to sort, so this is adequate.)
2703	 */
2704	for (i = 0; i < *num_inodes; i++) {
2705		for (j = 1; j < *num_inodes; j++) {
2706			if (i_tab[j]->i_ino < i_tab[j-1]->i_ino) {
2707				struct xfs_inode *temp = i_tab[j];
2708				i_tab[j] = i_tab[j-1];
2709				i_tab[j-1] = temp;
2710			}
2711		}
2712	}
2713}
2714
2715static int
2716xfs_finish_rename(
2717	struct xfs_trans	*tp,
2718	struct xfs_bmap_free	*free_list)
2719{
2720	int			committed = 0;
2721	int			error;
2722
2723	/*
2724	 * If this is a synchronous mount, make sure that the rename transaction
2725	 * goes to disk before returning to the user.
2726	 */
2727	if (tp->t_mountp->m_flags & (XFS_MOUNT_WSYNC|XFS_MOUNT_DIRSYNC))
2728		xfs_trans_set_sync(tp);
2729
2730	error = xfs_bmap_finish(&tp, free_list, &committed);
2731	if (error) {
2732		xfs_bmap_cancel(free_list);
2733		xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2734		return error;
2735	}
2736
2737	return xfs_trans_commit(tp, XFS_TRANS_RELEASE_LOG_RES);
2738}
2739
2740/*
2741 * xfs_cross_rename()
2742 *
2743 * responsible for handling RENAME_EXCHANGE flag in renameat2() sytemcall
2744 */
2745STATIC int
2746xfs_cross_rename(
2747	struct xfs_trans	*tp,
2748	struct xfs_inode	*dp1,
2749	struct xfs_name		*name1,
2750	struct xfs_inode	*ip1,
2751	struct xfs_inode	*dp2,
2752	struct xfs_name		*name2,
2753	struct xfs_inode	*ip2,
2754	struct xfs_bmap_free	*free_list,
2755	xfs_fsblock_t		*first_block,
2756	int			spaceres)
2757{
2758	int		error = 0;
2759	int		ip1_flags = 0;
2760	int		ip2_flags = 0;
2761	int		dp2_flags = 0;
2762
2763	/* Swap inode number for dirent in first parent */
2764	error = xfs_dir_replace(tp, dp1, name1,
2765				ip2->i_ino,
2766				first_block, free_list, spaceres);
2767	if (error)
2768		goto out_trans_abort;
2769
2770	/* Swap inode number for dirent in second parent */
2771	error = xfs_dir_replace(tp, dp2, name2,
2772				ip1->i_ino,
2773				first_block, free_list, spaceres);
2774	if (error)
2775		goto out_trans_abort;
2776
2777	/*
2778	 * If we're renaming one or more directories across different parents,
2779	 * update the respective ".." entries (and link counts) to match the new
2780	 * parents.
2781	 */
2782	if (dp1 != dp2) {
2783		dp2_flags = XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2784
2785		if (S_ISDIR(ip2->i_d.di_mode)) {
2786			error = xfs_dir_replace(tp, ip2, &xfs_name_dotdot,
2787						dp1->i_ino, first_block,
2788						free_list, spaceres);
2789			if (error)
2790				goto out_trans_abort;
2791
2792			/* transfer ip2 ".." reference to dp1 */
2793			if (!S_ISDIR(ip1->i_d.di_mode)) {
2794				error = xfs_droplink(tp, dp2);
2795				if (error)
2796					goto out_trans_abort;
2797				error = xfs_bumplink(tp, dp1);
2798				if (error)
2799					goto out_trans_abort;
2800			}
2801
2802			/*
2803			 * Although ip1 isn't changed here, userspace needs
2804			 * to be warned about the change, so that applications
2805			 * relying on it (like backup ones), will properly
2806			 * notify the change
2807			 */
2808			ip1_flags |= XFS_ICHGTIME_CHG;
2809			ip2_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2810		}
2811
2812		if (S_ISDIR(ip1->i_d.di_mode)) {
2813			error = xfs_dir_replace(tp, ip1, &xfs_name_dotdot,
2814						dp2->i_ino, first_block,
2815						free_list, spaceres);
2816			if (error)
2817				goto out_trans_abort;
2818
2819			/* transfer ip1 ".." reference to dp2 */
2820			if (!S_ISDIR(ip2->i_d.di_mode)) {
2821				error = xfs_droplink(tp, dp1);
2822				if (error)
2823					goto out_trans_abort;
2824				error = xfs_bumplink(tp, dp2);
2825				if (error)
2826					goto out_trans_abort;
2827			}
2828
2829			/*
2830			 * Although ip2 isn't changed here, userspace needs
2831			 * to be warned about the change, so that applications
2832			 * relying on it (like backup ones), will properly
2833			 * notify the change
2834			 */
2835			ip1_flags |= XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG;
2836			ip2_flags |= XFS_ICHGTIME_CHG;
2837		}
2838	}
2839
2840	if (ip1_flags) {
2841		xfs_trans_ichgtime(tp, ip1, ip1_flags);
2842		xfs_trans_log_inode(tp, ip1, XFS_ILOG_CORE);
2843	}
2844	if (ip2_flags) {
2845		xfs_trans_ichgtime(tp, ip2, ip2_flags);
2846		xfs_trans_log_inode(tp, ip2, XFS_ILOG_CORE);
2847	}
2848	if (dp2_flags) {
2849		xfs_trans_ichgtime(tp, dp2, dp2_flags);
2850		xfs_trans_log_inode(tp, dp2, XFS_ILOG_CORE);
2851	}
2852	xfs_trans_ichgtime(tp, dp1, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
2853	xfs_trans_log_inode(tp, dp1, XFS_ILOG_CORE);
2854	return xfs_finish_rename(tp, free_list);
2855
2856out_trans_abort:
2857	xfs_bmap_cancel(free_list);
2858	xfs_trans_cancel(tp, XFS_TRANS_RELEASE_LOG_RES|XFS_TRANS_ABORT);
2859	return error;
2860}
2861
2862/*
2863 * xfs_rename_alloc_whiteout()
2864 *
2865 * Return a referenced, unlinked, unlocked inode that that can be used as a
2866 * whiteout in a rename transaction. We use a tmpfile inode here so that if we
2867 * crash between allocating the inode and linking it into the rename transaction
2868 * recovery will free the inode and we won't leak it.
2869 */
2870static int
2871xfs_rename_alloc_whiteout(
2872	struct xfs_inode	*dp,
2873	struct xfs_inode	**wip)
2874{
2875	struct xfs_inode	*tmpfile;
2876	int			error;
2877
2878	error = xfs_create_tmpfile(dp, NULL, S_IFCHR | WHITEOUT_MODE, &tmpfile);
2879	if (error)
2880		return error;
2881
2882	/*
2883	 * Prepare the tmpfile inode as if it were created through the VFS.
2884	 * Otherwise, the link increment paths will complain about nlink 0->1.
2885	 * Drop the link count as done by d_tmpfile(), complete the inode setup
2886	 * and flag it as linkable.
2887	 */
2888	drop_nlink(VFS_I(tmpfile));
2889	xfs_finish_inode_setup(tmpfile);
2890	VFS_I(tmpfile)->i_state |= I_LINKABLE;
2891
2892	*wip = tmpfile;
2893	return 0;
2894}
2895
2896/*
2897 * xfs_rename
2898 */
2899int
2900xfs_rename(
2901	struct xfs_inode	*src_dp,
2902	struct xfs_name		*src_name,
2903	struct xfs_inode	*src_ip,
2904	struct xfs_inode	*target_dp,
2905	struct xfs_name		*target_name,
2906	struct xfs_inode	*target_ip,
2907	unsigned int		flags)
2908{
2909	struct xfs_mount	*mp = src_dp->i_mount;
2910	struct xfs_trans	*tp;
2911	struct xfs_bmap_free	free_list;
2912	xfs_fsblock_t		first_block;
2913	struct xfs_inode	*wip = NULL;		/* whiteout inode */
2914	struct xfs_inode	*inodes[__XFS_SORT_INODES];
2915	int			num_inodes = __XFS_SORT_INODES;
2916	bool			new_parent = (src_dp != target_dp);
2917	bool			src_is_directory = S_ISDIR(src_ip->i_d.di_mode);
2918	int			cancel_flags = 0;
2919	int			spaceres;
2920	int			error;
2921
2922	trace_xfs_rename(src_dp, target_dp, src_name, target_name);
2923
2924	if ((flags & RENAME_EXCHANGE) && !target_ip)
2925		return -EINVAL;
2926
2927	/*
2928	 * If we are doing a whiteout operation, allocate the whiteout inode
2929	 * we will be placing at the target and ensure the type is set
2930	 * appropriately.
2931	 */
2932	if (flags & RENAME_WHITEOUT) {
2933		ASSERT(!(flags & (RENAME_NOREPLACE | RENAME_EXCHANGE)));
2934		error = xfs_rename_alloc_whiteout(target_dp, &wip);
2935		if (error)
2936			return error;
2937
2938		/* setup target dirent info as whiteout */
2939		src_name->type = XFS_DIR3_FT_CHRDEV;
2940	}
2941
2942	xfs_sort_for_rename(src_dp, target_dp, src_ip, target_ip, wip,
2943				inodes, &num_inodes);
2944
2945	tp = xfs_trans_alloc(mp, XFS_TRANS_RENAME);
2946	spaceres = XFS_RENAME_SPACE_RES(mp, target_name->len);
2947	error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, spaceres, 0);
2948	if (error == -ENOSPC) {
2949		spaceres = 0;
2950		error = xfs_trans_reserve(tp, &M_RES(mp)->tr_rename, 0, 0);
2951	}
2952	if (error)
2953		goto out_trans_cancel;
2954	cancel_flags = XFS_TRANS_RELEASE_LOG_RES;
2955
2956	/*
2957	 * Attach the dquots to the inodes
2958	 */
2959	error = xfs_qm_vop_rename_dqattach(inodes);
2960	if (error)
2961		goto out_trans_cancel;
2962
2963	/*
2964	 * Lock all the participating inodes. Depending upon whether
2965	 * the target_name exists in the target directory, and
2966	 * whether the target directory is the same as the source
2967	 * directory, we can lock from 2 to 4 inodes.
2968	 */
2969	xfs_lock_inodes(inodes, num_inodes, XFS_ILOCK_EXCL);
2970
2971	/*
2972	 * Join all the inodes to the transaction. From this point on,
2973	 * we can rely on either trans_commit or trans_cancel to unlock
2974	 * them.
2975	 */
2976	xfs_trans_ijoin(tp, src_dp, XFS_ILOCK_EXCL);
2977	if (new_parent)
2978		xfs_trans_ijoin(tp, target_dp, XFS_ILOCK_EXCL);
2979	xfs_trans_ijoin(tp, src_ip, XFS_ILOCK_EXCL);
2980	if (target_ip)
2981		xfs_trans_ijoin(tp, target_ip, XFS_ILOCK_EXCL);
2982	if (wip)
2983		xfs_trans_ijoin(tp, wip, XFS_ILOCK_EXCL);
2984
2985	/*
2986	 * If we are using project inheritance, we only allow renames
2987	 * into our tree when the project IDs are the same; else the
2988	 * tree quota mechanism would be circumvented.
2989	 */
2990	if (unlikely((target_dp->i_d.di_flags & XFS_DIFLAG_PROJINHERIT) &&
2991		     (xfs_get_projid(target_dp) != xfs_get_projid(src_ip)))) {
2992		error = -EXDEV;
2993		goto out_trans_cancel;
2994	}
2995
2996	xfs_bmap_init(&free_list, &first_block);
2997
2998	/* RENAME_EXCHANGE is unique from here on. */
2999	if (flags & RENAME_EXCHANGE)
3000		return xfs_cross_rename(tp, src_dp, src_name, src_ip,
3001					target_dp, target_name, target_ip,
3002					&free_list, &first_block, spaceres);
3003
3004	/*
3005	 * Set up the target.
3006	 */
3007	if (target_ip == NULL) {
3008		/*
3009		 * If there's no space reservation, check the entry will
3010		 * fit before actually inserting it.
3011		 */
3012		if (!spaceres) {
3013			error = xfs_dir_canenter(tp, target_dp, target_name);
3014			if (error)
3015				goto out_trans_cancel;
3016		}
3017		/*
3018		 * If target does not exist and the rename crosses
3019		 * directories, adjust the target directory link count
3020		 * to account for the ".." reference from the new entry.
3021		 */
3022		error = xfs_dir_createname(tp, target_dp, target_name,
3023						src_ip->i_ino, &first_block,
3024						&free_list, spaceres);
3025		if (error == -ENOSPC)
3026			goto out_bmap_cancel;
3027		if (error)
3028			goto out_trans_abort;
3029
3030		xfs_trans_ichgtime(tp, target_dp,
3031					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3032
3033		if (new_parent && src_is_directory) {
3034			error = xfs_bumplink(tp, target_dp);
3035			if (error)
3036				goto out_trans_abort;
3037		}
3038	} else { /* target_ip != NULL */
3039		/*
3040		 * If target exists and it's a directory, check that both
3041		 * target and source are directories and that target can be
3042		 * destroyed, or that neither is a directory.
3043		 */
3044		if (S_ISDIR(target_ip->i_d.di_mode)) {
3045			/*
3046			 * Make sure target dir is empty.
3047			 */
3048			if (!(xfs_dir_isempty(target_ip)) ||
3049			    (target_ip->i_d.di_nlink > 2)) {
3050				error = -EEXIST;
3051				goto out_trans_cancel;
3052			}
3053		}
3054
3055		/*
3056		 * Link the source inode under the target name.
3057		 * If the source inode is a directory and we are moving
3058		 * it across directories, its ".." entry will be
3059		 * inconsistent until we replace that down below.
3060		 *
3061		 * In case there is already an entry with the same
3062		 * name at the destination directory, remove it first.
3063		 */
3064		error = xfs_dir_replace(tp, target_dp, target_name,
3065					src_ip->i_ino,
3066					&first_block, &free_list, spaceres);
3067		if (error)
3068			goto out_trans_abort;
3069
3070		xfs_trans_ichgtime(tp, target_dp,
3071					XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3072
3073		/*
3074		 * Decrement the link count on the target since the target
3075		 * dir no longer points to it.
3076		 */
3077		error = xfs_droplink(tp, target_ip);
3078		if (error)
3079			goto out_trans_abort;
3080
3081		if (src_is_directory) {
3082			/*
3083			 * Drop the link from the old "." entry.
3084			 */
3085			error = xfs_droplink(tp, target_ip);
3086			if (error)
3087				goto out_trans_abort;
3088		}
3089	} /* target_ip != NULL */
3090
3091	/*
3092	 * Remove the source.
3093	 */
3094	if (new_parent && src_is_directory) {
3095		/*
3096		 * Rewrite the ".." entry to point to the new
3097		 * directory.
3098		 */
3099		error = xfs_dir_replace(tp, src_ip, &xfs_name_dotdot,
3100					target_dp->i_ino,
3101					&first_block, &free_list, spaceres);
3102		ASSERT(error != -EEXIST);
3103		if (error)
3104			goto out_trans_abort;
3105	}
3106
3107	/*
3108	 * We always want to hit the ctime on the source inode.
3109	 *
3110	 * This isn't strictly required by the standards since the source
3111	 * inode isn't really being changed, but old unix file systems did
3112	 * it and some incremental backup programs won't work without it.
3113	 */
3114	xfs_trans_ichgtime(tp, src_ip, XFS_ICHGTIME_CHG);
3115	xfs_trans_log_inode(tp, src_ip, XFS_ILOG_CORE);
3116
3117	/*
3118	 * Adjust the link count on src_dp.  This is necessary when
3119	 * renaming a directory, either within one parent when
3120	 * the target existed, or across two parent directories.
3121	 */
3122	if (src_is_directory && (new_parent || target_ip != NULL)) {
3123
3124		/*
3125		 * Decrement link count on src_directory since the
3126		 * entry that's moved no longer points to it.
3127		 */
3128		error = xfs_droplink(tp, src_dp);
3129		if (error)
3130			goto out_trans_abort;
3131	}
3132
3133	/*
3134	 * For whiteouts, we only need to update the source dirent with the
3135	 * inode number of the whiteout inode rather than removing it
3136	 * altogether.
3137	 */
3138	if (wip) {
3139		error = xfs_dir_replace(tp, src_dp, src_name, wip->i_ino,
3140					&first_block, &free_list, spaceres);
3141	} else
3142		error = xfs_dir_removename(tp, src_dp, src_name, src_ip->i_ino,
3143					   &first_block, &free_list, spaceres);
3144	if (error)
3145		goto out_trans_abort;
3146
3147	/*
3148	 * For whiteouts, we need to bump the link count on the whiteout inode.
3149	 * This means that failures all the way up to this point leave the inode
3150	 * on the unlinked list and so cleanup is a simple matter of dropping
3151	 * the remaining reference to it. If we fail here after bumping the link
3152	 * count, we're shutting down the filesystem so we'll never see the
3153	 * intermediate state on disk.
3154	 */
3155	if (wip) {
3156		ASSERT(VFS_I(wip)->i_nlink == 0 && wip->i_d.di_nlink == 0);
3157		error = xfs_bumplink(tp, wip);
3158		if (error)
3159			goto out_trans_abort;
3160		error = xfs_iunlink_remove(tp, wip);
3161		if (error)
3162			goto out_trans_abort;
3163		xfs_trans_log_inode(tp, wip, XFS_ILOG_CORE);
3164
3165		/*
3166		 * Now we have a real link, clear the "I'm a tmpfile" state
3167		 * flag from the inode so it doesn't accidentally get misused in
3168		 * future.
3169		 */
3170		VFS_I(wip)->i_state &= ~I_LINKABLE;
3171	}
3172
3173	xfs_trans_ichgtime(tp, src_dp, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
3174	xfs_trans_log_inode(tp, src_dp, XFS_ILOG_CORE);
3175	if (new_parent)
3176		xfs_trans_log_inode(tp, target_dp, XFS_ILOG_CORE);
3177
3178	error = xfs_finish_rename(tp, &free_list);
3179	if (wip)
3180		IRELE(wip);
3181	return error;
3182
3183out_trans_abort:
3184	cancel_flags |= XFS_TRANS_ABORT;
3185out_bmap_cancel:
3186	xfs_bmap_cancel(&free_list);
3187out_trans_cancel:
3188	xfs_trans_cancel(tp, cancel_flags);
3189	if (wip)
3190		IRELE(wip);
3191	return error;
3192}
3193
3194STATIC int
3195xfs_iflush_cluster(
3196	xfs_inode_t	*ip,
3197	xfs_buf_t	*bp)
3198{
3199	xfs_mount_t		*mp = ip->i_mount;
3200	struct xfs_perag	*pag;
3201	unsigned long		first_index, mask;
3202	unsigned long		inodes_per_cluster;
3203	int			ilist_size;
3204	xfs_inode_t		**ilist;
3205	xfs_inode_t		*iq;
3206	int			nr_found;
3207	int			clcount = 0;
3208	int			bufwasdelwri;
3209	int			i;
3210
3211	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
3212
3213	inodes_per_cluster = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
3214	ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
3215	ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
3216	if (!ilist)
3217		goto out_put;
3218
3219	mask = ~(((mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog)) - 1);
3220	first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
3221	rcu_read_lock();
3222	/* really need a gang lookup range call here */
3223	nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
3224					first_index, inodes_per_cluster);
3225	if (nr_found == 0)
3226		goto out_free;
3227
3228	for (i = 0; i < nr_found; i++) {
3229		iq = ilist[i];
3230		if (iq == ip)
3231			continue;
3232
3233		/*
3234		 * because this is an RCU protected lookup, we could find a
3235		 * recently freed or even reallocated inode during the lookup.
3236		 * We need to check under the i_flags_lock for a valid inode
3237		 * here. Skip it if it is not valid or the wrong inode.
3238		 */
3239		spin_lock(&iq->i_flags_lock);
3240		if (!iq->i_ino ||
3241		    __xfs_iflags_test(iq, XFS_ISTALE) ||
3242		    (XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index) {
3243			spin_unlock(&iq->i_flags_lock);
3244			continue;
3245		}
3246		spin_unlock(&iq->i_flags_lock);
3247
3248		/*
3249		 * Do an un-protected check to see if the inode is dirty and
3250		 * is a candidate for flushing.  These checks will be repeated
3251		 * later after the appropriate locks are acquired.
3252		 */
3253		if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
3254			continue;
3255
3256		/*
3257		 * Try to get locks.  If any are unavailable or it is pinned,
3258		 * then this inode cannot be flushed and is skipped.
3259		 */
3260
3261		if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
3262			continue;
3263		if (!xfs_iflock_nowait(iq)) {
3264			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3265			continue;
3266		}
3267		if (xfs_ipincount(iq)) {
3268			xfs_ifunlock(iq);
3269			xfs_iunlock(iq, XFS_ILOCK_SHARED);
3270			continue;
3271		}
3272
3273		/*
3274		 * arriving here means that this inode can be flushed.  First
3275		 * re-check that it's dirty before flushing.
3276		 */
3277		if (!xfs_inode_clean(iq)) {
3278			int	error;
3279			error = xfs_iflush_int(iq, bp);
3280			if (error) {
3281				xfs_iunlock(iq, XFS_ILOCK_SHARED);
3282				goto cluster_corrupt_out;
3283			}
3284			clcount++;
3285		} else {
3286			xfs_ifunlock(iq);
3287		}
3288		xfs_iunlock(iq, XFS_ILOCK_SHARED);
3289	}
3290
3291	if (clcount) {
3292		XFS_STATS_INC(xs_icluster_flushcnt);
3293		XFS_STATS_ADD(xs_icluster_flushinode, clcount);
3294	}
3295
3296out_free:
3297	rcu_read_unlock();
3298	kmem_free(ilist);
3299out_put:
3300	xfs_perag_put(pag);
3301	return 0;
3302
3303
3304cluster_corrupt_out:
3305	/*
3306	 * Corruption detected in the clustering loop.  Invalidate the
3307	 * inode buffer and shut down the filesystem.
3308	 */
3309	rcu_read_unlock();
3310	/*
3311	 * Clean up the buffer.  If it was delwri, just release it --
3312	 * brelse can handle it with no problems.  If not, shut down the
3313	 * filesystem before releasing the buffer.
3314	 */
3315	bufwasdelwri = (bp->b_flags & _XBF_DELWRI_Q);
3316	if (bufwasdelwri)
3317		xfs_buf_relse(bp);
3318
3319	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3320
3321	if (!bufwasdelwri) {
3322		/*
3323		 * Just like incore_relse: if we have b_iodone functions,
3324		 * mark the buffer as an error and call them.  Otherwise
3325		 * mark it as stale and brelse.
3326		 */
3327		if (bp->b_iodone) {
3328			XFS_BUF_UNDONE(bp);
3329			xfs_buf_stale(bp);
3330			xfs_buf_ioerror(bp, -EIO);
3331			xfs_buf_ioend(bp);
3332		} else {
3333			xfs_buf_stale(bp);
3334			xfs_buf_relse(bp);
3335		}
3336	}
3337
3338	/*
3339	 * Unlocks the flush lock
3340	 */
3341	xfs_iflush_abort(iq, false);
3342	kmem_free(ilist);
3343	xfs_perag_put(pag);
3344	return -EFSCORRUPTED;
3345}
3346
3347/*
3348 * Flush dirty inode metadata into the backing buffer.
3349 *
3350 * The caller must have the inode lock and the inode flush lock held.  The
3351 * inode lock will still be held upon return to the caller, and the inode
3352 * flush lock will be released after the inode has reached the disk.
3353 *
3354 * The caller must write out the buffer returned in *bpp and release it.
3355 */
3356int
3357xfs_iflush(
3358	struct xfs_inode	*ip,
3359	struct xfs_buf		**bpp)
3360{
3361	struct xfs_mount	*mp = ip->i_mount;
3362	struct xfs_buf		*bp = NULL;
3363	struct xfs_dinode	*dip;
3364	int			error;
3365
3366	XFS_STATS_INC(xs_iflush_count);
3367
3368	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3369	ASSERT(xfs_isiflocked(ip));
3370	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3371	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3372
3373	*bpp = NULL;
3374
3375	xfs_iunpin_wait(ip);
3376
3377	/*
3378	 * For stale inodes we cannot rely on the backing buffer remaining
3379	 * stale in cache for the remaining life of the stale inode and so
3380	 * xfs_imap_to_bp() below may give us a buffer that no longer contains
3381	 * inodes below. We have to check this after ensuring the inode is
3382	 * unpinned so that it is safe to reclaim the stale inode after the
3383	 * flush call.
3384	 */
3385	if (xfs_iflags_test(ip, XFS_ISTALE)) {
3386		xfs_ifunlock(ip);
3387		return 0;
3388	}
3389
3390	/*
3391	 * This may have been unpinned because the filesystem is shutting
3392	 * down forcibly. If that's the case we must not write this inode
3393	 * to disk, because the log record didn't make it to disk.
3394	 *
3395	 * We also have to remove the log item from the AIL in this case,
3396	 * as we wait for an empty AIL as part of the unmount process.
3397	 */
3398	if (XFS_FORCED_SHUTDOWN(mp)) {
3399		error = -EIO;
3400		goto abort_out;
3401	}
3402
3403	/*
3404	 * Get the buffer containing the on-disk inode. We are doing a try-lock
3405	 * operation here, so we may get  an EAGAIN error. In that case, we
3406	 * simply want to return with the inode still dirty.
3407	 *
3408	 * If we get any other error, we effectively have a corruption situation
3409	 * and we cannot flush the inode, so we treat it the same as failing
3410	 * xfs_iflush_int().
3411	 */
3412	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &bp, XBF_TRYLOCK,
3413			       0);
3414	if (error == -EAGAIN) {
3415		xfs_ifunlock(ip);
3416		return error;
3417	}
3418	if (error)
3419		goto corrupt_out;
3420
3421	/*
3422	 * First flush out the inode that xfs_iflush was called with.
3423	 */
3424	error = xfs_iflush_int(ip, bp);
3425	if (error)
3426		goto corrupt_out;
3427
3428	/*
3429	 * If the buffer is pinned then push on the log now so we won't
3430	 * get stuck waiting in the write for too long.
3431	 */
3432	if (xfs_buf_ispinned(bp))
3433		xfs_log_force(mp, 0);
3434
3435	/*
3436	 * inode clustering:
3437	 * see if other inodes can be gathered into this write
3438	 */
3439	error = xfs_iflush_cluster(ip, bp);
3440	if (error)
3441		goto cluster_corrupt_out;
3442
3443	*bpp = bp;
3444	return 0;
3445
3446corrupt_out:
3447	if (bp)
3448		xfs_buf_relse(bp);
3449	xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
3450cluster_corrupt_out:
3451	error = -EFSCORRUPTED;
3452abort_out:
3453	/*
3454	 * Unlocks the flush lock
3455	 */
3456	xfs_iflush_abort(ip, false);
3457	return error;
3458}
3459
3460STATIC int
3461xfs_iflush_int(
3462	struct xfs_inode	*ip,
3463	struct xfs_buf		*bp)
3464{
3465	struct xfs_inode_log_item *iip = ip->i_itemp;
3466	struct xfs_dinode	*dip;
3467	struct xfs_mount	*mp = ip->i_mount;
3468
3469	ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
3470	ASSERT(xfs_isiflocked(ip));
3471	ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
3472	       ip->i_d.di_nextents > XFS_IFORK_MAXEXT(ip, XFS_DATA_FORK));
3473	ASSERT(iip != NULL && iip->ili_fields != 0);
3474	ASSERT(ip->i_d.di_version > 1);
3475
3476	/* set *dip = inode's place in the buffer */
3477	dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
3478
3479	if (XFS_TEST_ERROR(dip->di_magic != cpu_to_be16(XFS_DINODE_MAGIC),
3480			       mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
3481		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3482			"%s: Bad inode %Lu magic number 0x%x, ptr 0x%p",
3483			__func__, ip->i_ino, be16_to_cpu(dip->di_magic), dip);
3484		goto corrupt_out;
3485	}
3486	if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
3487				mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
3488		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3489			"%s: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
3490			__func__, ip->i_ino, ip, ip->i_d.di_magic);
3491		goto corrupt_out;
3492	}
3493	if (S_ISREG(ip->i_d.di_mode)) {
3494		if (XFS_TEST_ERROR(
3495		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3496		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
3497		    mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
3498			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3499				"%s: Bad regular inode %Lu, ptr 0x%p",
3500				__func__, ip->i_ino, ip);
3501			goto corrupt_out;
3502		}
3503	} else if (S_ISDIR(ip->i_d.di_mode)) {
3504		if (XFS_TEST_ERROR(
3505		    (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
3506		    (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
3507		    (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
3508		    mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
3509			xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3510				"%s: Bad directory inode %Lu, ptr 0x%p",
3511				__func__, ip->i_ino, ip);
3512			goto corrupt_out;
3513		}
3514	}
3515	if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
3516				ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
3517				XFS_RANDOM_IFLUSH_5)) {
3518		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3519			"%s: detected corrupt incore inode %Lu, "
3520			"total extents = %d, nblocks = %Ld, ptr 0x%p",
3521			__func__, ip->i_ino,
3522			ip->i_d.di_nextents + ip->i_d.di_anextents,
3523			ip->i_d.di_nblocks, ip);
3524		goto corrupt_out;
3525	}
3526	if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
3527				mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
3528		xfs_alert_tag(mp, XFS_PTAG_IFLUSH,
3529			"%s: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
3530			__func__, ip->i_ino, ip->i_d.di_forkoff, ip);
3531		goto corrupt_out;
3532	}
3533
3534	/*
3535	 * Inode item log recovery for v2 inodes are dependent on the
3536	 * di_flushiter count for correct sequencing. We bump the flush
3537	 * iteration count so we can detect flushes which postdate a log record
3538	 * during recovery. This is redundant as we now log every change and
3539	 * hence this can't happen but we need to still do it to ensure
3540	 * backwards compatibility with old kernels that predate logging all
3541	 * inode changes.
3542	 */
3543	if (ip->i_d.di_version < 3)
3544		ip->i_d.di_flushiter++;
3545
3546	/*
3547	 * Copy the dirty parts of the inode into the on-disk
3548	 * inode.  We always copy out the core of the inode,
3549	 * because if the inode is dirty at all the core must
3550	 * be.
3551	 */
3552	xfs_dinode_to_disk(dip, &ip->i_d);
3553
3554	/* Wrap, we never let the log put out DI_MAX_FLUSH */
3555	if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
3556		ip->i_d.di_flushiter = 0;
3557
3558	xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK);
3559	if (XFS_IFORK_Q(ip))
3560		xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK);
3561	xfs_inobp_check(mp, bp);
3562
3563	/*
3564	 * We've recorded everything logged in the inode, so we'd like to clear
3565	 * the ili_fields bits so we don't log and flush things unnecessarily.
3566	 * However, we can't stop logging all this information until the data
3567	 * we've copied into the disk buffer is written to disk.  If we did we
3568	 * might overwrite the copy of the inode in the log with all the data
3569	 * after re-logging only part of it, and in the face of a crash we
3570	 * wouldn't have all the data we need to recover.
3571	 *
3572	 * What we do is move the bits to the ili_last_fields field.  When
3573	 * logging the inode, these bits are moved back to the ili_fields field.
3574	 * In the xfs_iflush_done() routine we clear ili_last_fields, since we
3575	 * know that the information those bits represent is permanently on
3576	 * disk.  As long as the flush completes before the inode is logged
3577	 * again, then both ili_fields and ili_last_fields will be cleared.
3578	 *
3579	 * We can play with the ili_fields bits here, because the inode lock
3580	 * must be held exclusively in order to set bits there and the flush
3581	 * lock protects the ili_last_fields bits.  Set ili_logged so the flush
3582	 * done routine can tell whether or not to look in the AIL.  Also, store
3583	 * the current LSN of the inode so that we can tell whether the item has
3584	 * moved in the AIL from xfs_iflush_done().  In order to read the lsn we
3585	 * need the AIL lock, because it is a 64 bit value that cannot be read
3586	 * atomically.
3587	 */
3588	iip->ili_last_fields = iip->ili_fields;
3589	iip->ili_fields = 0;
3590	iip->ili_logged = 1;
3591
3592	xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3593				&iip->ili_item.li_lsn);
3594
3595	/*
3596	 * Attach the function xfs_iflush_done to the inode's
3597	 * buffer.  This will remove the inode from the AIL
3598	 * and unlock the inode's flush lock when the inode is
3599	 * completely written to disk.
3600	 */
3601	xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3602
3603	/* update the lsn in the on disk inode if required */
3604	if (ip->i_d.di_version == 3)
3605		dip->di_lsn = cpu_to_be64(iip->ili_item.li_lsn);
3606
3607	/* generate the checksum. */
3608	xfs_dinode_calc_crc(mp, dip);
3609
3610	ASSERT(bp->b_fspriv != NULL);
3611	ASSERT(bp->b_iodone != NULL);
3612	return 0;
3613
3614corrupt_out:
3615	return -EFSCORRUPTED;
3616}
3617